
Security in Many-Core SoCs Leveraged by Opaque
Secure Zones

Luciano Lores Caimi
UFFS

Av. Fernando Machado 108E – Chapecó, Brazil
lcaimi@uffs.edu.br

Fernando Gehm Moraes
PUCRS – School of Technology

Av. Ipiranga 6681 – Porto Alegre, Brazil
fernando.moraes@pucrs.br

Abstract—This paper presents an original approach to protect
the execution of applications with security constraints in many-
core systems. The proposed method includes three defense
mechanisms. The first one is the application admission into the
many-core using ECDH and MAC techniques. The second is the
spatial reservation of computation and communication resources,
resulting in an Opaque Secure Zone (OSZ). The key feature
enabling the runtime creation of OSZs is a rerouting mechanism
responsible for deviating any traffic traversing an OSZ. The last
mechanism is the access to peripherals using a secure protocol to
open access points in the OSZ border, and lightweight encryption
mechanisms.

Index Terms—Many-core, Network-on-Chip, Security, Opaque
Secure Zones, Peripheral Access.

I. INTRODUCTION

Many-core systems gradually walk to encompass hundreds
of PEs (processing elements) into a single IC. The system and
the applications are exposed to malicious attackers at different
moments of the applications’ life cycle which can compromise
their admission and execution due to the resource sharing
feature of many-core systems. Examples of attacks include
Denial of Service (DoS), timing attacks, spoofing, side-channel
attacks, and information leakage [1][2][3].

This paper presents an approach to protect the execution of
applications with security constraints, including three defense
mechanisms. The first one is the application admission into
the many-core system using Elliptic Curve Diffie-Hellman
(ECDH) protocol and Message Authentication Code (MAC)
techniques. The second one is the spatial reservation of com-
putation and communication resources, resulting in an Opaque
Secure Zone (OSZ). The last mechanism is the access to
peripherals using a secure protocol to open access points on the
border of the OSZ, and lightweight encryption mechanisms.

The goal of this paper is to detail the creation of the
OSZ and the protocol to define access points in the border
of the OSZ. Our original contribution is twofold. The first
one is the proposition of a comprehensive set of methods to
protect applications during its life cycle. The second one is to
introduce the concept of OSZs. In the Authors’ knowledge,
this is the first work adopting rerouting to avoid traffic crossing
regions reserved for secure applications. This feature prevents
attacks due to resource sharing.

II. RELATED WORK

The execution of a secure application (Appsec) comprises at
least three assumptions: (i) secure admission of the application,
to guarantee the object code integrity; (ii) application execu-
tion in an environment protected from attacks; (iii) protection
of the communication with peripherals and shared memories.

The application admission corresponds to the object code
transfer from an off-chip entity to the many-core system.
Two security issues are present, the authenticity of each actor
(external entity and many-core), i.e., the guarantee that the
other part is whom it says to be, and the integrity of the ap-
plication must be verified to avoid the tampering of the object
code. Solutions to these issues exist for the Internet, computer
networks, and software using techniques such as symmetric
encryption [4], Diffie-Hellmann (DH) protocol [5] and Elliptic
Curve Cryptography (ECC) [6]. However, from Table I it
is possible to observe a lack of proposals in the many-
core systems literature related to the mutual authentication of
external entities and the secure admission of applications.

Techniques to protect applications’ execution include fire-
walls [3], packet certification [7], encryption mechanisms
[8][9] and Secure Zones [1][2][10][11]. Firewalls, packet
certification, and encryption mechanisms mainly protect the
communication resources against attacks such as DoS, infor-
mation leakage, spoofing, and Hardware Trojan. Secure zones
(SZ) protects computation or communications resources.

The protection of the application with peripherals and
shared memories avoids unauthorized access to instructions
and data, which may also compromise the application ex-
ecution, due to the information tampering or leakage using
techniques such as firewalls [12] and routing schemes [13].

TABLE I
RELATED WORKS COVERING THE APPLICATION ADMISSION (A), ITS

EXECUTION (E), AND COMMUNICATION WITH I/O DEVICES (IO).
Work M∗ A / E / IO
Khernane et al.[4]-2016 (A) Symmetric Encryption

Zhimeng et al.[5]-2016 (A) Diffie-Hellmann

He et al.[6]-2012 (A) Elliptic Curve Diffie-Hellmann

Real et al.[1]-2018 � (E) SZ Partition

Sepulveda et al.[2]-2017 � (E) SZ, Sym. and Asym. Encryption

Rajesh et al.[3]-2015 � (E) Audit and Firewall

Ancajas et al.[7]-2018 � (E) Packet Certification

Oliveira et al.[8]-2018 � (E) Symmetric Encryption

Silva et al.[9]-2017 � (E) Symmetric Encryption

Fernandes et al.[10]-2017 � (E) SZ Routing Scheme

Sharma et al.[11]-2018 � (E) SZ Symmetric Encryption

Grammatikakis et al.[12]-2015 � (IO) Firewall

Reinbrecht et al.[13]-2017 � (IO) Routing Scheme

(A) Elliptic Curve Diffie-Hellmann

Our Work � (E) Opaque SZ

(IO) Lightweight Cryptography

M∗ - applied to many-core systems

Most solutions related to the security applied to NoC-based
many-core systems consider only one of the three above men-
tioned assumptions, being limited to the application execution

471

2019 IEEE Computer Society Annual Symposium on VLSI (ISVLSI)

978-1-7281-3391-1/19/$31.00 ©2019 IEEE
DOI 10.1109/ISVLSI.2019.00091

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on October 01,2021 at 19:04:04 UTC from IEEE Xplore. Restrictions apply.

or the shared memory access mechanism. Table I summarizes
related works. Our proposal stands-out from related works
because it covers all phases required to execute an application
with security constraints.

III. SECURE ZONES

Resource sharing is a native feature of NoC-based many-
core systems. Different applications may execute in the same
processor, share the NoC links, as well as shared memories.
This feature, resource sharing, is the source of issues related
to security. SZ is an approach adopted to reduce resource
sharing.

Methods deployed at design time enable the adoption of
sophisticated and robust algorithms to provide solutions to the
security problem since they do not have limitations related
to the heuristics’ computation time. However, design time
methods do not apply to dynamic workload scenarios. Thus,
these methods are limited to scenarios where the workload
is known beforehand, without any change during the system
lifetime. The literature presents several proposals to create
SZs. It is possible to classify such proposals using a set of
orthogonal criteria:

• Creation time: the definition of the SZ occurs at design
time [10] or runtime [1][2].

• Shape: the SZ may be discontinuous [2][10][11] or con-
tinuous, with a rectangular [14] or rectilinear shape [15].

• Communication sharing: the SZ may allow that flows be-
longing to sensitive applications share NoC links [2][10][11]
or the flow inside the SZ is forbidden to other applications.

• Computation sharing: the SZ may allow that tasks be-
longing to sensitive applications share the same processor
[2] or applies resource reservation to sensitive applications
[1][10][11].

• Methods: the methods used by the SZs include cryptog-
raphy [2][11], routing algorithms [10], spatial and temporal
isolation [1], rerouting.

Figure 1 presents examples of SZs. Discontinuous SZs
(SZ2) require more efforts to prevent attacks (encryption or
routing schemes) due to the flows’ exposure, while continuous
SZs can imply internal fragmentation when using a rectangu-
lar shape, due the reservation of resources without effective
use (SZ1). A rectilinear shape (SZ4) prevents internal frag-
mentation but needs dedicated routing mechanisms to avoid
flows crossing the boundary of the region.

Fig. 1. SZ1: continuous and rectangular, SZ2: discontinuous, SZ3: cont.,
rect., and opaque, SZ4: cont. and rectilinear.

The use of continuous SZ (SZ1 and SZ4) still exposes
the communication to attackers because flows belonging to
other applications can transverse the SZ allowing DoS, HT
and timing attacks.

IV. OPAQUE SECURE ZONES - OSZs

According to the previous classification, OSZs are created
at runtime, have a rectilinear shape, without computation and
communication resource sharing. The PEs of the OSZ are
reserved for running a single secure application (SZ3, in
Figure 1). The only resource sharing exception is commu-
nication with I/O devices. The method that enables OSZ is
the dynamic rerouting mechanism. The rerouting mechanism
ensures that the Appsec’s traffic stays inside the OSZ, and
deviates all traffic that should cross the OSZ.

A. OSZ Threat Model and Features
OSZ prevents DoS and timing attacks since it is not

possible for any external flow to traverse the boundaries of
the reserved region. Data confidentiality and integrity is guar-
anteed because processors of the reserved region do not share
the computation with any other application, thus preventing
spoofing and hijacking attacks.

Note that due to the resource reservation, there is no appli-
cation disturbing Appsec, improving its performance compared
to scenarios where there is NoC congestion or processor
sharing.

Hardware Trojans (e.g., inserted into the NoC) are not able
to send sniffed data to malicious tasks because no outcoming
traffic is allowed and no malicious task can share a PE inside
the OSZ.

The proposed method guarantees data application confi-
dentiality and integrity without using encryption inside the
OSZ. This feature provides two advantages over solutions
that use cryptography, a smaller hardware implementation cost
and no delay due to encryption and decryption of messages.
Thus, the performance of applications running on an OSZ
presents better performance compared to methods requiring
flow encryption.

The OSZ also has a smaller area overhead compared to
firewall-based solutions since its hardware implementation
uses simple gates to mask the control flow signals on the OSZ
boundaries (Section V-B), without using tables and rules to
check security policies.

B. OSZ Requirements to Meet the Threat Model
Figure 1 presents the reference architecture, an NoC-based

many-core system. The software executing at each PE defines
its role. The system has a hierarchical architecture organized
in clusters, with two types of PEs: (i) manager PEs (MP),
responsible by cluster control and management; (ii) PEs ex-
ecuting applications’ tasks - slave processors (SP). There are
two distinct MPs, global manager (GMP) and local managers
(LMP). The GMP is an LMP with additional functions, such
as communication with external entities to authenticate each
other and key management.

Requirements to implement OSZs:

1) Processors’ selection to execute Appsec. The MPs are in
charge to find a continuous region with free SPs to receive
Appsec. In the absence of a continuous region, the system
must support task migration to release SPs in such a way
to create the region. Attention must be given to avoid
unreachable SPs. For example, in Figure 1 considering
all SZs as opaques, the top right SPs are unable to
communicate with MPs. Thus, processors’ selection should

472

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on October 01,2021 at 19:04:04 UTC from IEEE Xplore. Restrictions apply.

consider not only the availability of resources but also
prevents unreachable SPs.

2) Secure application admission. The Operating System (OS)
of each SP receiving an Appsec task verifies the task MAC
to guarantee the object code authenticity and integrity.
The MP enables the Appsec execution after receiving the
notification that the code of all tasks was correctly verified
(Section V-A).

3) Runtime rerouting mechanism. It implies in a dedicated
NoC to search paths to circumvent the OSZs, and a data
NoC with support to source routing. At the software level,
the OS of each SP should be able to resend packets that hit
the border of an OSZ and were discarded (Section V-B).

4) Communication of the Appsec with peripherals (e.g.,
shared memory and I/O devices). This requirement may
seem contradictory w.r.t the OSZ definition, which states
that there is no communication sharing. There is no contra-
diction because the applications’ flow is distinct from the
peripherals’ flows (Section V-C).

C. PE Architecture and Peripherals

The main PE internal modules include (Figure 2): a proces-
sor, a DMNI (a network interface with DMA capabilities [16]),
a local dual-port memory, a 256-bit pseudo-random number
generator (PRNG), wrappers and routers. Two NoCs intercon-
nects the PEs: data and control NoC. The data NoC transfers
data messages, exchanged by applications. The control NoC
adopts broadcast as the default transmission method, with a
small area footprint, corresponding roughly to 20% of the data
router [17]. The data NoC adopts duplicated physical channels
(ensuring full routing adaptivity), wormhole packet switching,
simultaneous support for distributed XY and source routing.

Fig. 2. PE Architecture. Wrappers (W) are added to the control flow signals
of the NoC links, enabling to isolate each port individually.

Both NoCs contain test wrappers, or simply wrappers, in
the control flow signals. The wrappers’ function is to block
the traffic of a given port to create the OSZs. The incoming
and outcoming packets at a given port are discarded when
wrappers are enabled.

The control NoC has two operation modes: global and
restrict. The global mode enables the control messages to pass
through the wrappers, even if they are enabled. This mode
enables PEs inside the SZ to exchange messages with MPs.
The restrict mode observes the status of the wrappers, i.e., if
a control message hits an activated wrapper, the message is
discarded. This mode enables the path discovery mechanism
by the control NoC.

Peripherals are connected at unused ports of the mesh NoC
(e.g., North ports of top routers). The system requires at least
one peripheral: Application Injector or simply AppInj. It is
an external entity attached to the many-core system previously
authenticated and enabled to transmit Appsecs to execute in
the many-core system. The GMP manages the communication
between the many-core system and the AppInj by executing
the secure application admission protocol.

Architectural assumptions include hardware and software
components. At the hardware level, it is necessary to have a
control NoC, and wrappers to isolate the PEs. At the software
level, only the OSs are modified, responsible for executing the
different protocols. Thus, in the Authors’ opinion, the proposal
may be adapted to other NoC-based many-core systems, not
being tightly coupled to the case-study system presented in
the results section.

V. DEFENSE MECHANISMS

This Section details the defense mechanisms, related to
the secure admission and execution of applications. Each
phase has internal steps. The application admission phase
has five internal steps: (i) setup; (ii) mutual authentication;
(iii) OSZ positioning; (iv) task’s code reception; (v) object-
code verification. The executions phase three internal steps:
(i) activation of the wrappers; (ii) application execution; (iii)
OSZ opening. The I/O access occurs during the application
execution, and the concern is to enable communication without
compromising security.

At the admission phase, the GMP is responsible by the
mutual authentication. The LMP defines the OSZ shape and
position and sends a broadcast command to the PEs’ OS
to activate the wrappers. The LMPs also open the OSZ.
Thus, Appsecs cannot interfere in security management. It is
impossible for an Appsec to know where other Appsecs are or
make decisions regarding its mapping.

A. Secure Application Admission
The secure admission uses a mutual authentication mech-

anism based on ECDH to guarantee the authenticity of the
AppInj that wants to run an application in the manycore, and
a MAC to ensure the integrity of applications during the object
code transfer.

Initial steps of the application admission include
setup and mutual authentication. At the setup step both
AppInj/peripherals and the many-core system initially
compute a key pair suitable for elliptic curve cryptography.
The key pair {Pk, PuK}, corresponds to a private key (Pk)
and a public key (PuK), where each key is represented by a
random multiplier number and a point over an Elliptic Curve.
Next, each one publishes their respective ID and PuK. This
phase ends with each part loading the pair {PuK, ID} of each
other. The reason to create the keys at the setup phase comes
from its high computational cost. At the end of this phase,
the GMP contains a table with AppInj and peripherals keys
(PuK) and identifiers (ID).

After loading the AppInj key pair, {PuKi, IDi}, starts
the authentication step:

(a) The AppInj sends a request message encrypted by the
many-core system public key (PuKm). The request message
(AppInjreq) contains the AppInj identifier (IDi) and a ran-
dom number (noncei).

473

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on October 01,2021 at 19:04:04 UTC from IEEE Xplore. Restrictions apply.

(b) The GMP decrypts AppInjreq using it’s private key (PKm),
verifying the received IDi. Next, the GMP sends a reply
message (GMPrep) according to the IDi verification:

(b1) known IDi: GMPrep encrypted by PuKi with the tuple
{IDm, noncei, noncem}, where IDm is the many-core ID,
and noncem is a random number generated by the many-
core;

(b2) unknown IDi: GMPrep encrypted by PuKm since there
is no public key associated to the received IDi. The reply
message is always sent to avoid information leakage;

(c) The AppInj decrypts GMPrep. The noncei is evaluated:

(c1) if the noncei does not match, it means that the connection
with the many-core system is compromised because other
actor tried to forge the many-core system ID.

(c2) the noncei comparison returns true, corresponding to a
correct authentication of the many-core system, once just the
lawful pair {PuKm, PKm} can encrypt/decrypt the initial
request message.

(d) The AppInj sends to the many-core system a reply message,
AppInjrep, with the tuple {noncei, noncem} encrypted with
PuKm.

(e) The many-core decrypts AppInjrep using PKm. A correct
noncem authenticates the AppInj, once just the lawful pair
{PuKi, PKi} can encrypt/decrypt the message with noncem.
The many-core system verifies noncem and IDi (received on
first request message):

(e1) If correct, the many-core system sends an accept message
encrypted by PuKi;

(e2) Otherwise a reject message is sent encrypted by PuKm.

Once received the accept message, the AppInj generates
a session key, Ke (or Kp for other peripherals). Then, the
AppInj sends the tuple (IDi, noncem, Ke) encrypted by
PuKm to the GMP. The GMP keeps the pair {IDi, Ke}
to use it in future secure applications deployment by AppInj,
saving resource consumption and decreasing the latency to
start secure applications.

Next steps have three goals: (i) define the OSZ location; (ii)
ask to the AppInj the tasks’ codes; (iii) transmit to the SPs
that will receive the task’s codes Ke, and Kps if the application
needs peripheral access.

The GMP receives an application request from the AppInj
with the application task graph, using this information to
select a given cluster to execute the Appsec. Next, the GMP
sends to the LMP of the chosen cluster this graph. Using this
information, the LMP defines the OSZ shape and location,
mapping the application tasks inside it [15]. The resulting task
mapping returns to the GMP, which requests the tasks to the
AppInj and transmits Ke (and Kps if necessary) to the SPs
of the OSZ using lightweight cryptography.

The AppInj uses Ke to compute a MAC using the
SIPHASH algorithm [18]. The AppInj sends the task’s object
code with the MAC attached at the end of the message. The
SP receives the task’s object code and, using the same Ke,
computes the MAC locally. If the computed MAC matches
with the received MAC, the object code integrity is validated.

B. Secure Application Execution

If the previous phase succeeded for all tasks, Appsec might
execute. The ”Close OSZ” step activates the wrappers sur-
rounding the OSZ (”W” in Figure 2), and starts the execution
of the Appsec.

The wrapper activation occurs using a memory mapped
register (wrapper reg) at each PE. Each bit in the wrapper
register enables/disables a given port wrapper of the PE. The

Fig. 3. (a) Wrapper logic for one port; (b) Detailed Wrapper Control masking
logic.

wrapper acts over the control flow signals of each NoC port
(8 ports for the Data NoC and 4 ports for the Control NoC).
Figure 3.a shows the wrapper logic for one port. Thus, the
wrappers’ area overhead is negligible since its implementation
requires a small number of gates, a register, and an FSM.

When the wrapper value is activated, the internal PE side
has the control flow signals masked, disabling all external
requests. If a request arrives, it is blocked, and due to the
masking, the ack signal is high. This simple process results in
discarding the packets arriving at the PE. The same process
occurs when the PE tries to send a packet, req blocked and
ack enabled. The control NoC uses a single wrapper value,
opening or blocking the flows in both directions. The data NoC
contains two wrapper values, enabling to selectively block the
flow direction (required for I/O communication).

Occurring a packet discarding, the control NoC broadcast
a retransmission request to the packet source PE. When the
retransmission request arrives at the source PE, the OS uses
the control NoC to obtain a new path to the target PE, which
avoids the OSZ. The control NoC returns a path, which
is used to retransmit the packet, and all subsequent packets
through source routing.

At the end of Appsec execution, the ”Open OSZ” step
clears the memory contents of the SPs inside it preventing
any information leakage from being used by an attacker. Also,
the OS erase the Ke value (also Kps if used) and release the
wrapper opening the OSZ. Finally, the LMP clears internal
structures to release the cluster resources previously allocated
to Appsec and sends a message to the GMP that release its
internal structures related to the cluster resources.

For security reasons, applications running at the SPs cannot
access wrapper reg, only the OS has access to it. Figure 3.b
details the ”wrapper control” module presented in Figure 2.
The value applied to the wrapper logic explained above
is a result of a AND operation between the wrapper reg
value and a mask value coming from “wrapper mask logic”
(WML) module. The default value of mask signals arriving
the AND operation is ’1’, i.e., by default the wrappers values
corresponds to wrapper reg contents.

C. Access to Peripherals

The communication model assumed in this work is message
passing (MPI-like), with the API using Send() and Receive()
primitives. At the lower level, the OS communicates with the
data NoC with data request and data delivery packets. A
message buffer (in the OS) enables packet retransmission.

474

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on October 01,2021 at 19:04:04 UTC from IEEE Xplore. Restrictions apply.

Fig. 4. Example of I/O communication through an OSZ.

The support for I/O communication uses a second API,
with IO Send() and IO Receive() primitives, using a mas-
ter/slave communication model. The PE is the communication
master and the peripherals the communication slaves. At
the lower level, the OS communicates with the data NoC
with IO request, IO delivery, and IO ack packets. The
IO Receive() primitive uses the IO request at the PE side
and the IO delivery at the peripheral side. The IO Send()
primitive uses IO delivery at the PE side and the IO ack
at the peripheral side.

The data NoC differentiates the API with a flag in the header
field (first flit of the packet). This feature enables to block all
data packets arriving at the boundary of the OSZ (in both
directions) and to apply selective management of I/O packets.

Figure 4 presents an example of an SP belonging to an OSZ
communicating with an external peripheral, using the default
XY routing algorithm.

Before transmitting a message to a peripheral, the com-
municating SP first sends two configuration messages to the
boundary of the OSZ, to set the mask registers. The SP knows
the boundaries of OSZ, obtained in the ’Close OSZ’ step.
When the mask configuration message arrives at the target
router, the wrapper control module (Figure 2) intercepts the
message (i.e., this message is not consumed by the PE) to set
the mask value (input mask or output mask value) as shows
the Figure 3.b.

The mask configuration messages contain the direction
(input or output) and the port side to mask (e.g., north). Note
that the WML module (Figure 3) receive the EOP signals
(End-Of-Packet) of each data router port. Thus, once an EOP
is received in an opened port (input or output), this port is
closed. This mechanism ensures that the secure zone receives
only one packet for each request.

The procedure of sending and receiving I/O messages
opening specific ports, with specific directions is subject to
two main issues:

(a) from OSZ to I/O – the message hit other OSZ in the path
to the peripheral: this induces the discard of the message,
and an unreachable message (using the control NoC on
global mode) arrives at the source PE inside the OSZ.
The PE sends mask configuration messages to reestablish
the initial wrappers conditions and retransmit the message
using source routing;

(b) from I/O to OSZ – the message hit other OSZ before
arriving at the OSZ boundary: this induces the discard
of the message, and an unreachable message arrives at
the SP connected to the peripheral. This SP requests a
searchpath service and obtains the source routing path
to the target PE inside the OSZ. Then the SP sends a

configuration message to the peripheral to retransmit the
message using the source routing path received. At OSZ
side no action is needed.

A possible attack refers to a malicious peripheral sending a
spoofing message during the period that the input data port is
open to the I/O message. The prevention is associated to the
lightweight cryptography, where the message received by the
internal SP discards the message due to the wrong key used
to encode the message and re-open the input port to receive
the legitimate I/O message.

Currently, the support to I/O lightweight cryptography
is partially addressed. The peripheral authentication, key
management, and distribution are fully implemented. The
PRESENT encryption algorithm has a software implementa-
tion validated at the many-core system side, enabling to send
encrypted messages to the peripheral. For performance reasons
a hardware module still needs to be integrated into the DMNI
and peripheral.

VI. EVALUATION

This Section initially evaluates the two first steps of the
Application Admission, corresponding to the system setup and
mutual authentication. The evaluation goal is to show the
time saving due to the authentication process made before
the application admission. To execute this experiment, the
AppInj and GMP hardware architectures were described us-
ing OVPSim APIs [19], an instruction-set accurate simulator.
The cryptographic functions of this work use the TweetNaCl
[20], a compact and self-contained public-domain C library.
The library uses Curve25519 on the ECDH key exchange.

Table II shows the two first protocol steps and the number
of instructions of these actions in the MIPS and ARM pro-
cessors. The ARM processors use a SIMD ISA. The setup
and authentication step actions require for the MIPS/ARM
processor, 239.2M/83.9M and 2244.9M/ 841.4M instructions
respectively. The total amount of instructions for the two
first steps are 2,484.1M and 925.3M instructions, in MIPS
and ARM processors, respectively. Considering the processors
running at 500 MHz with a CPI equal 1, the time consumption
relative to the mutual authentication of the AppInj and the
many-core system corresponds to 4.96s for MIPS and 1.85s
for ARM.

TABLE II
SETUP AND AUTHENTICATION STEP EVALUATION.

Step
MIPS Instructions

(x106)

ARM Instructions

(x106)

Setup 239.2 83.9
Authent. 2244.9 841.4
TOTAL 2484.1 925.3

Although this overhead seems high, in the order of seconds,
only one execution of the mutual authentication process
occurs for each AppInj to ensure the authenticity of the parts
and does not impact the latency to start the applications.

The second experiment evaluates the wrappers’ behavior
at the OSZ boundary, as shown in Figure 4, under a DOS
attack campaign promoted by a malicious task located at
SP (3,3), including several periods with the wrapper opened.
The evaluation uses a clock-cycle accurate RTL SystemC
description of the many-core system presented in Figure 1
and Section IV-C.

475

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on October 01,2021 at 19:04:04 UTC from IEEE Xplore. Restrictions apply.

The experiment showed that no malicious task message
traversed the OZS boundary. This happens due to two mech-
anisms, (i) the selective opening of the wrapper, where the
opening direction discard all messages in a contrary direction
(i.e., if the wrapper is enabled to send an I/O message, it
discards any attempt to inject a message); (ii) the flag in
the header field (first flit of the packet) that differentiate the
messages from I/O API from the task communication API.

The third experiment evaluates the performance impact
using the proposed mechanism to communicate with I/O de-
vices. The experiment uses the same platform of the previous
experiment, a clock-cycle RTL description of the many-core
system. The experiment considers five scenarios (Figure 4):

(1) baseline: an application executing I/O communication without
OSZ;

(2) OSZ activated, SPs {(1,1), (2,1), (1,2), (2,2)}, enabling to
evaluate the impact of the wrappers’ configuration;

(3) OSZ activated with a second OSZ (SPs {(4,1),(4,2)}), block-
ing the output I/O messages from SP (1,1), requiring the
searchpath service and the reroute mechanism to retransmit the
output message;

(4) OSZ activated with a second OSZ (SPs {(4,2),(4,3)}), block-
ing the input I/O messages from the peripheral, requiring the
searchpath service and the reroute mechanism to enable the
peripheral to retransmit the message;

(5) OSZ activated with a second OSZ (SPs {(4,1),(4,2),(4,3)},
blocking both output and input I/O messages, requiring two
searchpath services and reroute mechanisms to correct delivery
the I/O message.

In all scenarios, SP (1,1) runs a task with 50 iterations,
communicating with the peripheral at each iteration. Table III
presents for each scenario the Appsec execution time in the
second column (in clock cycles), and the average overhead per
iteration in the third column (in clock cycles) according to the
simulated scenario.

TABLE III
OVERHEAD TO COMMUNICATE WITH I/O DEVICES.

Scenario
Clock

Cycles (CC)
Overhead

CC/iteration

(1) I/O 283709 -
(2) I/O + OSZ 317746 680.74
(3) I/O + OSZ + output rerouting 320933 744.48
(4) I/O + OSZ + input rerouting 321861 763.04
(5) I/O + OSZ + rerout. both dir. 326540 856.62

The total execution time increases from 12% up to 15%, an
expected result because the secure application is a synthetic
application, executing only I/O communication. The relevant
result is the one presented in the third column, the communi-
cation overhead. The overhead to configure the wrappers and
find new paths corresponds to less than 900 clock cycles per
I/O access. Once the path configured, it is used for the next
packets, without incurring additional overheads. Two main
reasons explain this remarkable result: (i) a simple wrapper
configuration mechanism; (ii) the adoption of a dedicated NoC
to find the paths when rerouting is required. Our proposal
leaves most of the overhead to the hardware, minimizing the
amount of required software. These results do not consider the
lightweight cryptography (LWC) latency. Additional overhead
is expected, but it will not impact the overall results. The
reason is that the LWC methods process flows in a pipeline
fashion, requiring an initial latency to process the data.

VII. CONCLUSIONS AND FUTURE WORK

This work showed the need to adopt security methods
covering the whole application lifetime, using mechanisms to
protect the application admission and then reduce the resource
sharing to avoid attacks. It also proposed an original proce-
dure to mitigate resource sharing, the OSZs. The rerouting
proposal avoids traffic from other applications to cross the
regions reserved for secure applications. Such method avoids
most of the attacks described in the literature. The hardware
overhead due to the adoption of OSZs is smaller than firewall-
and encryption-based methods due to the adoption of wrappers
and a small dedicated NoC to reroute packets. Finally, the
work proposed a robust method to enable OSZs to commu-
nicate with I/O devices. Future work includes: (i) generate
attack scenarios to identify security issues not covered by the
proposal; (ii) integrate an LWC hardware module to protect
the communication with peripherals.

VIII. ACKNOWLEDGEMENT

The authors would like to thank Imperas Software and Open
Virtual Platforms for their support and access to their models and
simulator. Luciano L. Caimi is supported by CAPES (184993/2018-
00). Fernando Gehm Moraes is supported by FAPERGS (17/2551-
0001196-1) and CNPq (302531/2016-5).

REFERENCES

[1] M. M. Real et al., “Application Deployment Strategies for Spatial
Isolation on Many-Core Accelerators,” ACM Transactions on Embedded
Computing Systems, vol. 17, no. 55, pp. 1–31, 2018.

[2] J. Sepulveda et al., “Efficient security zones implementation through
hierarchical group key management at NoC-based MPSoCs,” Micropro-
cessors and Microsystems, vol. 50, pp. 164 – 174, 2017.

[3] J. Rajesh et al., “Runtime Detection of a Bandwidth Denial Attack from
a Rogue Network-on-Chip,” in NOCS, 2015, pp. 8:1–8:8.

[4] N. Khernane et al., “BANZKP: a Secure Authentication Scheme Using
Zero Knowledge Proof for WBANs,” in MASS, 2016, pp. 307–315.

[5] L. Zhimeng and Z. Yanli, “Provable Secure Node Authentication Pro-
tocol for Wireless Sensor Networks,” in WISA, 2016, pp. 221–224.

[6] D. He, J. Chen, and Y. Chen, “A secure mutual authentication scheme for
session initiation protocol using elliptic curve cryptography,” Security
and Communication Networks, vol. 5, no. 12, pp. 1423–1429, 2012.

[7] D. M. Ancajas, K. Chakraborty, and S. Roy, “Fort-NoCs: Mitigating the
Threat of a Compromised NoC,” in DAC, 2014, pp. 1–6.

[8] B. Oliveira, R. Reusch, H. Medina, and F. G. Moraes, “Evaluating the
Cost to Cipher the NoC Communication,” in LASCAS, 2018, pp. 1–4.

[9] M. R. Silva and C. A. Zeferino, “Confidentiality and Authenticity in a
Platform Based on Network-on-Chip,” in SBESC, 2017, pp. 225–230.

[10] R. Fernandes et al., “A security Aware Routing Approach for NoC-based
MPSoCs,” in SBCCI, 2016, pp. 1–6.

[11] G. Sharma and other, “Secure Communication on NoC based MPSoC,”
in ATCS, 2018, pp. 1–6.

[12] M. D. Grammatikakis et al., “High-level security services based on a
hardware NoC Firewall module,” in WISES, 2015, pp. 73–78.

[13] C. Reinbrecht et al., “Timing attack on NoC-based systems:
Prime+Probe attack and NoC-based protection,” Microprocessors and
Microsystems, vol. 52, pp. 556–565, 2017.

[14] H. Isakovic and A. Wasicek, “Secure channels in an integrated MPSoC
architecture,” in IECON, 2013, pp. 4488–4493.

[15] L. L. Caimi, V. Fochi, E. Wächter, and F. G. Moraes, “Runtime
Creation of Continuous Secure Zones in Many-Core Systems for Secure
Applications,” in LASCAS, 2018, pp. 1–4.

[16] M. Ruaro, F. B. Lazzarotto, C. A. M. Marcon, and F. G. Moraes, “DMNI:
a Specialized Network Interface for NoC-based MPSoCs,” in ISCAS,
2016, pp. 1202–1205.

[17] E. Wachter, L. L. Caimi, V. Fochi, D. Munhoz, and F. G. Moraes,
“BrNoC: A broadcast NoC for control messages in many-core systems,”
Microelectronics Journal, vol. 68, pp. 69 – 77, 2017.

[18] J.-P. Aumasson and D. J. Bernstein, “A Fast Short-Input PRF,” in
INDOCRYPT, 2012, pp. 489–508.

[19] OVP, “Open virtual platform,” Access April 2019 2018. [Online].
Available: http://www.ovpworld.org/technology ovpsim

[20] D. J. Bernstein et al., “TweetNaCl: A Crypto Library in 100 Tweets,”
in LATINCRYPT, 2015, pp. 64–83.

476

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on October 01,2021 at 19:04:04 UTC from IEEE Xplore. Restrictions apply.

