
Lightweight Security Mechanisms for MPSoCs

Anderson Camargo Sant’Ana
PUCRS - Porto Alegre, Brazil

anderson.santana.001@acad.pucrs.br

Henrique Martins Medina
PUCRS - Porto Alegre, Brazil

henrique.medina@acad.pucrs.br

Kevin Boucinha Fiorentin
PUCRS - Porto Alegre, Brazil

kevin.fiorentin@acad.pucrs.br

Fernando Gehm Moraes
PUCRS - Porto Alegre, Brazil

fernando.moraes@pucrs.br

ABSTRACT

Computational systems tend to adopt parallel architectures, by

using multiprocessor systems-on-chip (MPSoCs). MPSoCs are vul-

nerable to software and hardware attacks, as infected applications

and Hardware Trojans respectively. These attacks may have the

purpose to gain access to sensitive data, interrupt a given applica-

tion or even damage the system physically. The literature presents

countermeasures using dedicated routing algorithms, cryptography,

firewalls and secure zones. These approaches present a significant

hardware cost (firewalls, cryptography) or are too restrictive re-

garding the use of MPSoC resources (secure zones). The goal of this

paper is to present lightweight security mechanisms for MPSoCs,

using four techniques: spatial isolation of applications; dedicated

network to send sensitive data; traffic blocking filter; lightweight

cryptography. These mechanisms protect the MPSoC against the

most common software attacks, as Denial of Service (DoS) and

spoofing (man-in-the-middle), and ensures confidentiality and in-

tegrity to applications. Results present low area and latency over-

head, as well as the effectiveness of using the mechanisms to block

malicious traffic.

CCS CONCEPTS

• Security and privacy→Hardware attacks and countermea-

sures;

KEYWORDS

MPSoC, attacks, security, spatial isolation, dedicated NOC, light-

weight cryptography.

ACM Reference format:

Anderson Camargo Sant’Ana, Henrique Martins Medina, Kevin Boucinha

Fiorentin, and Fernando Gehm Moraes. 2019. Lightweight Security Mecha-

nisms for MPSoCs. In Proceedings of 32nd Symposium on Integrated Circuits

and Systems Design, Sao Paulo, Brazil, August 26–30, 2019 (SBCCI ’19), 6 pages.

https://doi.org/10.1145/3338852.3339876

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

SBCCI ’19, August 26–30, 2019, Sao Paulo, Brazil

© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6844-5/19/08. . . $15.00
https://doi.org/10.1145/3338852.3339876

1 INTRODUCTION

Computational systems tend to adopt parallel architectures, by us-

ing multiprocessor systems-on-chip (MPSoCs) devices [22]. These

systems contain a large number of processing and storage elements,

which can be interconnected by a Network-on-Chip (NoC). This

trend in the semiconductor industry for using MPSoCs is mainly

applied to applications that require processing power or massive

interconnectivity of devices, e.g., the internet of things (IoT).

MPSoCs are vulnerable and can be attacked. According to Fiorin

et al. [10] security attacks to an embedded system can be classified

as software, physical or invasive, and side channel attacks (SCA).

Thus, the MPSoC design requires security techniques to prevent

potential attacks from intruders. These attacks compromise the

integrity of data processed by the MPSoCs. Intruders can have

different goals, from extracting information from the system to

even unconfiguring or damaging the system.

According to Sepúlveda et al. [18], software-based attacks ac-

count for about 80% of attacks on embedded systems. Software

attacks may come from infected applications or the operating sys-

tem. Examples of attacks made from software include, but are not

limited to: viruses, trojans, worms, denial of service (DoS), extrac-

tion of sensitive information, hijacking, and spyware.

Physical attacks also occur in MPSoC. An example of an attack

reported in the literature are those made by Hardware Trojans (HT)

[21] [14].

The attacks listed above, both software and hardware, may have

the purpose of finding an encryption key used in the MPSoC to

gain access to sensitive data. SCA obtain confidential information

indirectly. SCA techniques include, for example, evaluation of the

signature of the energy consumed in the system, the execution

time of a particular application, and the electromagnetic radiation

emitted by the system.

Due to the various types of attacks reported in the literature,

having a system resilient to attacks becomes increasingly necessary

for the electronics industry. As a consequence, several techniques

have appeared aiming to increase the security level of Integrated

Circuits (IC). Among the techniques used in hardware level are:

secure zones [7], encryption [13] and firewalls [9].

The goal of this paper is to present lightweight security mech-

anisms for MPSoCs. These mechanisms have a small impact on

the system performance and area, and protect the MPSoC against

the most common software attacks, as DoS and spoofing (man-in-

the-middle), and ensures to the applications confidentiality and

integrity.

This paper is organized as follows. Section 2 presents related

works in the field of security for MPSoC. Section 3 presents the

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on October 01,2021 at 19:03:23 UTC from IEEE Xplore. Restrictions apply.

SBCCI ’19, August 26–30, 2019, Sao Paulo, Brazil A. Sant’Ana; H. Medina; K. Fiorentin; F. Moraes

Table 1: Related works classification.

Proposal Attacks Countermeasures Cost

Sepúlveda [19] DoS and Timing Attack adaptive routing and random arbitration Power, Area and Performance

Caimi [7] DoS, Timing Attack and Spoofing Secure Zones Area and Performance

Fernandes [8] DoS and Timing Attack Secure Zones and Cryptography Performance

Ancajas [1] HT cryptography,package authentication, and task migration Power, Area and Performance

Reinbrecht [17] Distributed Timing Attack Traffic Monitor and routing adaptive Power and Area

Fernandes [9] DoS and Hijacking Firewalls Area

Azad [2] DoS and Spoofing Firewalls Area and Performance

This work Memory integrity, DoS, Spoofing Spatial isolation, filter and lightweight crypt. Area and Performance

vulnerabilities in MPSoCs and the threat model. Section 4 details the

reference architecture, without the security mechanisms. Section 5

details the main contribution of this paper, the lightweight security

mechanisms. Section 6 presents the results and Section 7 draws the

conclusions and directions for future work.

2 RELATEDWORKS

Previous works [1, 17, 19] show that MPSoCs can be attacked at the

software and hardware levels. These attacks are prevented using

countermeasure techniques. Many countermeasures are explored in

the state-of-the-art to add security to MPSoCs (Table 1). Most works

show the implementation of a specific attack and its impact on the

system, analyzing countermeasures’ cost. Further, they present the

area and power overhead to add safety to the system.

According to [7, 8, 20], secure zones is a technique that protects

applications by reserving communication resources, computing re-

sources, or both. At the computing level, processors are prevented

from running tasks from different applications, preventing mali-

cious applications from accessing local memory for information

extraction. At the communication level, two main techniques are

adopted. The first one is the creation of secure disjoint zones, where

communication is protected by encryption [8, 20]. The second one

is the creation of opaque secure (OZS) zones, where traffic not
belonging to the OZS is deviated using rerouting mechanisms [6].
Most works related to security for MPSoCs use cryptography

[1, 11, 15]. Encryption provides integrity, confidentiality, and au-

thentication for sensitive information. Thus, using cryptography,

secure communication channels are created [13]. Note that the

encrypted data shares the communication links with other data

flows. These flows can be malicious, seeking data through SCA.

SCA can be mitigated by random arbitration on the router and

adaptive routing of the NoC [19].

Another way to aggregate security in MPSoCs is to use firewalls

to filter incoming and outgoing data according to the implemented

security policy [2, 9]. These firewalls are strategically placed to

protect Processing Elements (PEs) from various forms of attacks.

The drawback of firewalls is the silicon area due to the memory

required to store security policies.

Table 1 summarizes the main related works cited in this Section,

positioning our proposal w.r.t. the state-of-the-art.

3 THREAT MODEL

The baseline architecture assumed in this work is a homogeneous

NoC-based many-core, named MPSoC along this work. Each PE

contains a 32-bit RISC processor, a NI (Network Interface) and a

local memory accessed by the processor and NI module.

The resource sharing in MPSoC introduces vulnerabilities to

applications running on it. It is possible to explore these vulnerabil-

ities in attacks, such as confidentiality and integrity; timing attack;

denial of service (DoS); spoofing; hijacking.

Confidentiality and integrity may be harmed when tasks belong-

ing to different applications execute in the same processor. This

is a common feature of systems where processors execute multi-

tasking operating systems (OS). If a given task, when scheduled by

the OS, has access to the memory contents of the processor, the

attack becomes feasible.

Timing attacks are classified as side-channel attacks (SCA). Ma-

licious applications may infer the contents of a given flow being

transmitted through the NoC by statistical evaluation of the switch-

ing activity in the links [17].

Denial of service (DoS) is the most common attack in NoC-based

MPSoCs, due to the shared links used to transmit the applications’

flows. DoS attack may block part of the NoC by sending packets

to destinations that are not able to consume the packets. Block

a given processor by sending unexpected messages to a task (e.g.

an interruption to deliver a message that was not expected by

the processor); or disturb the latency of applications through a

communicating intensive flow in the same path of an application

having quality-of-service constraints.

An example of spoofing attack is the man-in-the-middle attack.

For example, consider the scenario presented in Figure 1(a), where

TA sends messages to TB , and a malicious task TM is allocated. In
Figure 1(b) the attack starts, with TM sending a message to the
processor executing TA, which changes the address of TB . After
modifying the task location table,TA sends messages toTM instead
of TB , Figure 1(c). Consequently, TM may extract confidential data
by reading the message contents or send a different message to TB .
This attack was successfully performed on the reference platform

Figure 1: Example of man-in-the-middle attack. (a) TA com-
municates with TB . (b) TM starts the attack (c) TM has access

to the flow’s communication.

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on October 01,2021 at 19:03:23 UTC from IEEE Xplore. Restrictions apply.

Lightweight Security Mechanisms for MPSoCs SBCCI ’19, August 26–30, 2019, Sao Paulo, Brazil

described in the next section, demonstrating the vulnerability of

MPSoCs.

Another attack described in the literature is Hardware Trojans

(HTs). HTs may extract sensitive information. For example, Prasad

et al. [16] report an HT able to intercept packets, transmitting them

to malicious applications. HTs may also interfere with the NoC

performance, by injecting packets at a high injection rate to a given

task.

Our proposal includes lightweight security mechanisms target-

ing the protection against most of the attacks above mentioned. It is

out of the scope of this work to propose mechanisms protecting the

NOC against DoS that interfere with the applications’ performance

neither attacks generated from HTs.

4 REFERENCE ARCHITECTURE

Figure 2(a) presents a 6x6 MPSoC instance, and Figure 2(b) the main

components of the PE (Processing Element): a processor, a network

interface with Direct-Memory-Access capabilities (DMNI), local

memory and the NoC router.

Figure 2: Baseline MPSoC architecture.

All PEs have the same hardware, being the differentiation made

by software. Each PE may assume the following roles:

- Slave PE – SP : execute applications’ tasks.

- Manager PE – MP : manage the SPs, executing functions such

as application admission, mapping, remapping, DVFS control.

Manager PEs only execute management functions.

A multi-tasking OS runs at each SP. The communication mech-

anism between tasks is the message passing, and a round-robin

scheduler controls the execution time slice of each task. The OS

supports two communication APIs: serviced-oriented and raw. The

serviced-oriented mechanism leaves the charge of creating the

packet structure to the OS. For example, at the task level is pos-

sible to write SEND(∗msд, taskT), and the OS encapsulates the
message ∗msд into a packet with all required fields (for example,
taskT address, packet size, the function of the packet, the message
data). On the other side, the raw communication leaves the task

the function to create the packet. This mechanism is useful for, e.g.,

communicating with external devices, as shared memories.

Assumptions related to secure components of the system include:

- The OS of each SP is not modified during its loading (integrity

of the OS);

- The admission of new applications is also protected (integrity of

applications), without modification in the object code [5];

- Applications do not have access to theMP . The manager proces-
sor only exchange messages with the OSs running in the SPs;

- There is no HTs in the MPSoC.

5 LIGHTWEIGHT SECURITY MECHANISMS

The proposal of this work is based on four lightweight security

mechanisms:

a) spatial isolation of applications;

b) dedicated network for sending management messages re-

lated to the mapping and key distribution;

c) traffic blocking filter;

d) lightweight cryptography.

5.1 Spatial Isolation of Applications

The spatial isolation of applications avoids computation sharing

at the processor level. The goal is to restrict the task mapping in

such a way that tasks can only share the same PE iff they belong

to the same application, thus preventing a malicious task to access

a memory region reserved for another task or performing a DoS

attack on the sensitive task. This mechanism ensures the integrity

of the tasks memory contents.

Figure 3(a-b) shows different scenarios for mapping two applica-

tions and Figure 3(c) the applications’ task graphs. In Figure 3(a) we

have two distinct applications (app1 and app2) sharing the same SP
(0x1). In this scenario, the malicious task, TM , can access the local
memory, or access the router, so it can steal information and per-

form an attack. In Figure 3(b), app1 is mapped without sharing the
processors with other applications, ensuring the spatial isolation

of the application.

Figure 3:Mapping scenarios. (a) two applications are sharing the
same PE (0x1). (b) app1mappedwithout sharing the processors with

tasks belonging to other applications (c) applications’ task graph.

The mapping heuristic runs on the MP. The implemented coun-

termeasure has blocked the allocation of distinct applications in the

same PE, thus avoiding direct access to memory by malicious tasks.

A vector, where each index represents a processor of the MPSoC,

assigns the index of the application when the processor receives a

given task of an application. The mapping algorithm checks if the

processor is free, otherwise it checks if the task to be mapped is

different from the current application. If it is different, the mapping

chooses another PE, and if it is the same, it can map on this same

processor.

This countermeasure protects the integrity and confidentiality at

the PE level. However, it is still possible to execute attacks such as

DoS or man-in-the-middle. There is no hardware cost to implement

this countermeasure as it is implemented in software.

5.2 Dedicated Network for Secure Messages

If the transmission of sensitive data to the SPs shares the NoC

with flows belonging to general applications, the system security is

vulnerable. Thus, to provide security to sensitive data, this work

proposes the adoption of a simple dedicated NoC to send sensitive

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on October 01,2021 at 19:03:23 UTC from IEEE Xplore. Restrictions apply.

SBCCI ’19, August 26–30, 2019, Sao Paulo, Brazil A. Sant’Ana; H. Medina; K. Fiorentin; F. Moraes

data to SPs. The adoption of a dedicated NoC isolates sensitive data

from application data.

The dedicated network, named HNoC, is a serial Hamiltonian

path that runs through all PEs, and only the MP may inject data

into this NoC. Figure 4 illustrates the Hamiltonian path traversing

a 3x3 MPSoC. The reasons to adopt this topology include: (i) small

area footprint; 2 ports instead of 5 ports of a standard mesh; (ii) no

need to add input buffers; (iii) the amount of data to be transmitted

is small, justifying the serial path.

Figure 4: Hamiltonian path, in a 3x3 MPSoC. The

HNoC adopts 32-bit links. R: router; F: filter; PE’:

DMNI/processor/local memory.

In the context of this work, the HNoC router is named filter. Its

structure is discussed in subsection 5.3. It acts as a firewall, but

its structure is much simpler than a standard firewall because the

amount of information to store (secure policies) is small, reducing

the filter area.

TheMPmay insert into the HNoC packets to set security policies,

as cryptography keys and the applications’ ID. The communication

on HNoC is a two-step process. The first step is the injection of

configuration packets to a set of filters with the operation that will

be executed in the sequence. The second step is the payload data

injection, that will be consumed by all filters waiting for data. The

advantage of this multicast transmission comes from the fact that

configuration packets are smaller than data packets. Thus, data

packets are sent once to all filters waiting for the same data.

5.3 Traffic Blocking Filters

The filter is placed between the DMNI module and the router, as

shown in Figure 5. The bottom part of the Figure corresponds to

the Hamiltonian path. The incoming data is stored in a register

(reд_IN), and the control logic (CL) evaluates the data contents.
This data may be a configuration or a payload message. For a con-

figuration message, CL evaluates the local filter address with the
message contents. If they match, it means that next messages con-

tain data to be stored in the internal registers (AppID and Appkey).
The current filter implementation receives five payload messages:

4 to the 128-bit application key (Appkey), and one for the appli-
cation identifier (AppID). If the upstream filter has consumed the

previous message, the current message goes to the output register

(reд_OUT), notifying the presence of a new message.

DMNIROUTER

F
I
L
T
E
R

OF

IF
ClockTx

OUTPUT

Tx

CreditIn
dataOut

ClockRx

INPUT

Rx
CreditOut

dataIn

ClockRx

INPUT

Rx
DataIn
CreditOut

ClockTx

OUTPUT

Tx
CreditIn
dataOut

CRYPTO CORE

HNoC LinkHNoC Link

 App ID
 App KEY

reg_IN reg_OUT

CL

Figure 5: Filter used as HNoC router, to manage packet dis-

carding, and connection to a crypto core. OF : output filter;
IF : input filter; CL: control logic.

Both values, AppID and Appkey , are unique for each application.
When a new application enters into the system, the MP generates

unique AppID and Appkey values.
The top part of Figure 5 has two functions: block incoming or out-

coming traffic and encrypt/decrypt the messages (next subsection).

Any application, using the service-oriented or raw communica-

tion APIs must insert the AppID in a given flit of the packet. Thus,
two scenarios may arise. The first one is a task trying to forge the

AppID to execute an attack (as the previously described man-in-
the-middle). In this situation, the packet is discarded in the output

filter since the packet AppID does not match with the contents of
the AppID register, and the malicious flow does not enter into the
NoC. Note that the task that tried to inject the malicious packet

does not perceive that the packet was discarded, and continues to

act as the attack is happening. The second scenario corresponds

to discard incoming flows. It is possible, for example, that an IO

device tried to send packets to this filter. If the IO device forged

successfully the AppID , passing through the filter, the OS verifies
if the packet comes from an IO device and if the task expected it. If

not, it is discarded at the OS level and not at the filter level.

Coupling two simple mechanisms, spatial isolation of applica-

tions with traffic blocking filters, avoids DoS, spoofing and hijacking

attacks.

5.4 Lightweight Cryptography

The crypto core is decoupled from the filter implementation, en-

abling the user to adopt different encryption mechanisms. The cur-

rent work adopts two encryption methods: AES (IP core from [12],

with a parallel implementation of the rounds) and a lightweight

cryptography algorithm, SIMON [4], implemented according to

its specification. Encryption algorithms, like AES, seek to achieve

high levels of security, with little or no concern regarding power

consumption and silicon area. The area of lightweight cryptogra-

phy targets the security of devices where these features are limited.

Released in 2013 by the National Security Agency (NSA), the Simon

and Speck algorithm family aims to bring alternatives to the area of

lightweight cryptography. Speck implementations were designed

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on October 01,2021 at 19:03:23 UTC from IEEE Xplore. Restrictions apply.

Lightweight Security Mechanisms for MPSoCs SBCCI ’19, August 26–30, 2019, Sao Paulo, Brazil

clk

dataOut head payload service APPID Data

Tx

CreditIn

dataIn head payload service APPID Data

Rx

CreditOut

clk

dataOut head payload service APPID Data

Tx

CreditIn

dataIn

Rx

CreditOut

D
at
a_
O
ut
_R
ou
te
r

D
at
a_
In
_D
M
N
IFi
lte
r

D
at
a_
O
ut
_R
ou
te
r

D
at
a_
In
_D
M
N
IFi
lte
r

(a) message accepted by the filter

(b) message discarded by the filter

Figure 6: Waveform illustrating the operation of the filter blocking unwanted messages.

for better performance in software, while Simon is more efficient

for hardware implementations [3].

Table 2 compares the performance of both encryption methods,

by simulation and synthesis. Both IPs were implemented for a 128-

bit key and a 128-bit block to cipher. The Table presents the latency

to cipher one 128-bit block, the silicon area, and the dissipated

power. As expected there is a trade-off between performance and

area. The AES block is faster but presents a larger area. On the

other side, SIMON, presents a small area, being suitable to be used

in all filters without penalizing the PE area.

Table 2: Comparison between Simon and AES crypto cores -

65nm technology.

Simon AES

Latency (clock cycles) 140 19

Area (μm) 22,371 105,316

Power (μW) 16.033 399.233

According to the threat model Section, the use of cryptography

protects applications for confidentiality, integrity, and SCAs. Con-

fidentiality and integrity are served by the previous mechanisms,

spatial isolation and the filter with the application identification.

Thus, the main function of the cryptography is to protect the ap-

plication against SCA. If the latency penalty of packet transfers

can be accepted by the application, lightweight cryptography is the

mechanism to be adopted.

6 RESULTS

This Section presents initially the actuation of the filter to block

malicious traffic, then latency and area are evaluated. The MPSoC

is modeled in synthesizable VHDL, and clock-cycle accurate simu-

lation enables the performance evaluation using ModelSim tool.

6.1 Actuation of the Security Mechanisms

This section presents a scenario using three of the four security

mechanisms: (i) spatial isolation of applications; (ii) dedicated net-

work; (iii) traffic blocking filter.

Figure 6(a) presents a packet with a correct AppID entering in
the PE, while Figure 6(b) presents the action of the filter blocking a

malicious packet. The upper four signals in both figures correspond

to the router output port signals and the lower three signals to the

output filter ports (Figure 5).

The beggining of the simulation in both scenarios is the same,

the filter stores the first four flits (the fourth flit contains theAppID),
and the credit signal (CreditIn) goes to zero, interrupting the flits re-
ception. At this moment, theAppID is compared against theAppID
stored in the filter (sent through the HNoC during the mapping).

If a correctAppID is received, the following actions occur: (i) the
filter notifies valid data to the DMNI (signal RX = 1), and the first
four flits are consumed by the DMNI (dataIn bus); (ii) theCreditIn
goes to ′1′, and the remaining flits consumed.

If the AppID does not match, the action executed by the filter
is to assert the CreditIn signal, without notifying the DMNI. This
simple action corresponds to a virtual consumption, resulting in

discarding any flow not targeted to the AppID .
The filters block any attempt to inject packets with a wrong

AppID . However, as previously mentioned, peripherals attached to
the NoC (as shared memories or hardware accelerators) may gener-

ate a packet with forged identification. Our current mechanism to

discard such packets is a dedicated communication API, which is

responsible for exchanging data with peripherals.

6.2 Latency results

This section evaluates the impact of the security mechanisms in the

application latency, compared to the baseline MPSoC. The goal of

the simulated scenarios is to define worst-case and typical latency

overheads, using applications with a communication intensive pro-

file (prod_cons , two tasks) and a computation intensive application
(MPEG, five tasks).
The simulated scenario uses a 3x3 MPSoC, with a hop distance

between communicating tasks equal to one. Due to the software

stack to create and transmit the packets, and the corresponding

functions to receive them, the number of hops has a negligible

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on October 01,2021 at 19:03:23 UTC from IEEE Xplore. Restrictions apply.

SBCCI ’19, August 26–30, 2019, Sao Paulo, Brazil A. Sant’Ana; H. Medina; K. Fiorentin; F. Moraes

impact on the latency. Both applications run 50 iterations, and the

average iteration latency is obtained from the average values from

iteration 10 to 40, considering steady values.

Table 3 presents the average iteration latency for: (i) baseline

MPSoC; (ii) MPSoC with filter and encryption disabled; (iii) MPSoC

with AES encryption.

Results present distinct behaviors, according to the application

profile. For the synthetic application (prod_cons), the average la-
tency increased by 13.63% and 46.51% without and with the AES

encryption, respectively, compared to the baseline MPSoC. The

overheads in the average iteration latency of the real application

(MPEG) are 0.1% and 2.55%. The reason for explaining such small
overheads comes from the fact that most of the time the application

is computing the frame decoding tasks, and not transferring data.

Table 3: Average iteration latency, results in clock cycles.

baseline with Filter with AES

Prod_Cons 1,877 2,133 2,750

MPEG 220,660 220,883 226,288

These results expose the overhead of the proposal in terms of

performance. Using the filter mechanism without enabling the

encryption, the latency overhead varied between 0.1% (MPEG) and
13.63% (prod_cons), a small cost considering the increase of security
added to the system. The cryptography protects the system against

SCAs, and as shown for a real benchmark, the overhead was also

small, 2.55%.

6.3 Area results

Table 4 illustrates the required area for the router, filter and both

modules together. The filter corresponds to 16.33% of router area.

From Table 2, the SIMON and AES cores correspond to 37.75% and

177.73% of the router area, respectively.

Table 4: Area consumption, CORE65GPSVT library (μm2).

Instance #Cells Cell Area Total Area

Router Buffer 16 5,906 43,735 59,255

Filter 1,229 6,638 9,677

Router+Filter 7,593 53,324 73,154

Thus, considering the adoption of the SIMON core, the overhead

in the communication infrastructure is approximately 60%, a small

cost considering the benefits of the approach.

7 CONCLUSIONS

The work presented in this paper added security to MPSoCs in

a two-step process. During the application admission, the map-

ping heuristic applies spatial isolation, and a manager processor

generates a unique application identifier and a cryptography key,

transmitting them using a secure channel (dedicated NoC) to the

PEs that will execute the application. Then, at runtime, a filter

verifies the application identifier of all packets arriving or leaving

the PEs. Further, if necessary, packets are encrypted using AES or

lightweight cryptography (SIMON), protecting the traffic against

SCAs. The cost of the approach is a small area (≈60% in the com-

munication infrastructure) and a latency overhead smaller than 3%

for a real benchmark, with and without cryptography.

As future work we can enumerate: (i) evaluate the overheads

with real benchmarks; (ii) optimize the SIMON core to reduce its

latency; (iii) add a DOS detection mechanism at the OS level by

monitoring the reception latency; (iv) add new countermeasures

when communicating with peripherals.

ACKNOWLEDGMENTS

Author Fernando GehmMoraes is supported by FAPERGS (17/2551-

196-1) and CNPq (302531/2016-5), Brazilian funding agencies.This

paper was achieved in cooperation with Hewlett Packard Brasil

LTDA. using incentives of Brazilian Informatics Law (Law nº 8.2.48

of 1991).

REFERENCES
[1] Dean Michael Ancajas, Koushik Chakraborty, and Sanghamitra Roy. 2014. Fort-

NoCs: Mitigating the Threat of a Compromised NoC. In DAC. ACM, 158:1–158:6.
[2] Siavoosh Payandeh Azad, Behrad Niazmand, Gert Jervan, and Johanna Sepúlveda.

2018. Enabling Secure MPSoC Dynamic Operation through Protected Communi-
cation. In ICECS. IEEE, 481–484.

[3] Ray Beaulieu, Douglas Shors, Jason Smith, Stefan Treatman-Clark, Bryan Weeks,
and Louis Wingers. 2013. The SIMON and SPECK Families of Lightweight
Block Ciphers. Cryptology ePrint Archive, Report 2013/404. (2013). https:
//eprint.iacr.org/2013/404.

[4] Ray Beaulieu, Stefan Treatman-Clark, Douglas Shors, Bryan Weeks, Jason Smith,
and Louis Wingers. 2015. The SIMON and SPECK lightweight block ciphers. In
DAC. ACM, 1–6.

[5] Luciano L. Caimi, Vinicius Fochi, and Fernando Gehm Moraes. 2018. Secure
Admission of Applications in Many-cores. In ICECS. IEEE, 761–764.

[6] Luciano L. Caimi, Vinicius Fochi, Eduardo Wächter, and Fernando Gehm Moraes.
2018. Runtime creation of continuous secure zones in many-core systems for
secure applications. In LASCAS. IEEE, 1–4.

[7] Luciano L. Caimi, Vinicius Fochi, Eduardo Wächter, Daniel Munhoz, and Fer-
nando Gehm Moraes. 2017. Activation of secure zones in many-core systems
with dynamic rerouting. In ISCAS. IEEE, 1–4.

[8] Ramon Fernandes, César A. M. Marcon, Rodrigo Cataldo, Jarbas Silveira, Georg
Sigl, and Martha Johanna Sepúlveda. 2016. A security aware routing approach
for NoC-based MPSoCs. In SBCCI. IEEE, 1–6.

[9] Ramon Fernandes, Bruno S. Oliveira, Johanna Sepúlveda, César A. M. Marcon,
and Fernando Gehm Moraes. 2015. A non-intrusive and reconfigurable access
control to secure NoCs. In ICECS. IEEE, 316–319.

[10] Leandro Fiorin, Cristina Silvano, andMariagiovanna Sami. 2007. Security Aspects
in Networks-on-Chips: Overview and Proposals for Secure Implementations. In
DSD. IEEE Computer Society, 539–542.

[11] Catherine H. Gebotys and Robert J. Gebotys. 2003. A Framework for Security on
NoC Technologies. In ISVLSI. IEEE, 113–120.

[12] Hemanth. 2004. aes_crypto_core. https://opencores.org/project,aes_crypto_core
[13] H. Isakovic and A. Wasicek. 2013. Secure channels in an integrated MPSoC

architecture. In IECON. IEEE, 4488–4493.
[14] Paul C. Kocher, Joshua Jaffe, Benjamin Jun, and Pankaj Rohatgi. 2011. Introduction

to differential power analysis. J. Cryptographic Engineering 1, 1 (2011), 5–27.
[15] Bruno Scherer Oliveira, Henrique Martins Medina, Anderson C. Sant’Ana, and

Fernando Gehm Moraes. 2018. Secure Environment Architecture for MPSoCs. In
SBCCI. IEEE, 1–6.

[16] N. Prasad, Rajit Karmakar, Santanu Chattopadhyay, and Indrajit Chakrabarti.
2017. Runtime mitigation of illegal packet request attacks in Networks-on-Chip.
In ISCAS. IEEE, 1–4.

[17] Cezar Reinbrecht, Altamiro Amadeu Susin, Lilian Bossuet, and Johanna Sepúlveda.
2016. Gossip NoC - Avoiding Timin Side-Channel Attacks through Traffic Man-
agement. In ISVLSI. IEEE, 601–606.

[18] Johanna Sepúlveda, Guy Gogniat, Daniel Florez, Jean-Philippe Diguet, Cesar
Zeferino, and Marius Strum. 2014. Elastic security zones for NoC-based 3D-
MPSoCs. In ICECS. IEEE, 506–509.

[19] Martha Johanna Sepúlveda, Jean-PhilippeDiguet, Marius Strum, andGuyGogniat.
2015. NoC-Based Protection for SoC Time-Driven Attacks. Embedded Systems
Letters 7, 1 (2015), 7–10.

[20] Martha Johanna Sepúlveda, Daniel Flórez, Vincent Immler, Guy Gogniat, and
Georg Sigl. 2017. Efficient security zones implementation through hierarchical
group key management at NoC-based MPSoCs. Microprocessors and Microsystems
- Embedded Hardware Design 50 (2017), 164–174.

[21] Mohammad Tehranipoor and Farinaz Koushanfar. 2010. A Survey of Hardware
Trojan Taxonomy and Detection. IEEE Design & Test of Computers 27, 1 (2010),
10–25.

[22] Hassan M. G. Wassel, Ying Gao, Jason Oberg, Ted Huffmire, Ryan Kastner, Fred-
eric T. Chong, and Timothy Sherwood. 2013. SurfNoC: a low latency and provably
non-interfering approach to secure networks-on-chip. In ISCA. ACM, 583–594.

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on October 01,2021 at 19:03:23 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

