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Abstract— GPUs became the reference platform for both
training and inference phases of Convolutional Neural Net-
works (CNN) due to their tailored architecture to the CNN oper-
ators. However, GPUs are power-hungry architectures. A path
to enable the deployment of CNNs in energy-constrained devices
is adopting hardware accelerators for the inference phase. The
design space exploration of CNNs using standard approaches,
such as RTL, is limited due to their complexity. Thus, designers
need frameworks enabling design space exploration that delivers
accurate hardware estimation metrics to deploy CNNs. This work
proposes a framework to explore CNNs design space, providing
power, performance, and area (PPA) estimations. The heart of the
framework is a system simulator. The system simulator front-end
is TensorFlow, and the back-end is performance estimations
obtained from the physical synthesis of hardware accelerators,
not only from components like multipliers and adders. The
first set of results evaluate the CNN accuracy using integer
quantization, the accelerators PPA after physical synthesis, and
the benefits of using a system simulator. These results allow a
rich design space exploration, enabling selecting the best set of
CNN parameters to meet the design constraints.

Index Terms— CNN, convolution hardware accelerator, system
simulator, PPA, design space exploration.

I. INTRODUCTION

MACHINE Learning (ML) is a sub-area of artificial intel-
ligence with algorithms that can solve problems involv-

ing knowledge and “learning” characteristics from determined
patterns. This “learning” feature allows decision capability to
solve problems of classification and pattern recognition [1].
For these reasons, industrial applications adopt ML on their
products [2], [3].
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One of the most common ways to deliver ML is by using
Artificial Neural Networks (ANN). ANNs contain thousands
of interconnected neurons. Synapses have data input samples,
plus a weight that works similarly to a filter and activation
function, which creates an output used in synapses of subse-
quent neurons [1], [4].

Convolutional Neural Networks (CNNs) are a type of
ANNs. CNNs have the advantage of having sparse connec-
tions, which reduces the number of interconnected neurons [1].
A CNN contains four main layers: (i) convolutional layer,
which is the CNN core, and performs the synapses by mul-
tiplying and accumulating weights and input feature maps;
(ii) activation function, nonlinear transformation sent to the
next layer of neurons; (iii) pooling layer, reduces the amount
of data processed by the CNN; (iv) fully connected layer, used
in the classification result.

The deployment of CNNs comprises two phases: training
and inference [4]. The training phase defines the synapses
weight values. The inference phase uses the weights previously
computed to classify or predict output values using unknown
inputs. The success of CNNs led to the development of frame-
works that help developers to build their models by offering
mechanisms required for training and inference. Examples of
frameworks include Caffe [5], Pytorch [6] and TensorFlow [7].

Classically, CPUs have been a common approach to exe-
cute CNNs. Even with optimized instruction set architectures,
CPUs are inefficient in terms of performance and energy
(e.g., AlexNet from 2012 [8] requires billions of operations
to process a single input). Thus, GPUs became the reference
platform for both training and inference phases due to their
tailored architecture to the CNN operators. The main GPU
drawback is its considerable energy consumption. Consider-
ing energy-constrained applications, such as IoT, autonomous
driving, wearable devices, the adoption of hardware accelera-
tors became a trend for the inference phase [9]–[12].

Accelerators are hard to implement and verify using classic
design flows. The design of these blocks using register transfer
level (RTL) abstraction limits the design space exploration
(DSE). Despite the efforts to increase the abstraction level
for accelerators using high-level synthesis (HLS) [13], [14],
this approach also has challenges related to performance and
power estimation, once the goal of HLS is to generate an RTL
description as output.

System simulators [15], [16] are important tools for accel-
erators DSE. These simulators are typically described in
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high-level abstraction languages, as Python and C++, reduc-
ing the design time and providing power, performance, and
area (PPA) evaluation. The main drawback of system sim-
ulators is the PPA accuracy, typically estimated from the
number of executed operations, as multiplier–accumulator
(MAC) [15], [17].

The goal of the present work is to propose a framework
to estimate hardware metrics, using the advantages of the
TensorFlow regarding CNN modeling, and the benefits of
system simulators regarding design time and PPA evaluation.

This work brings three main contributions:

1) integration of TensorFlow into a system simulator to
evaluate accelerators in the inference phase;

2) proposal of two convolution accelerators at the RTL
level, detailing their memory accesses and internal archi-
tectures. These accelerators are synthesized to provide
PPA metrics;

3) integration of the two above contributions into a sys-
tem simulator resulting in a framework enabling design
space exploration from PPA estimations taken from the
physical synthesis of accelerators, leading to accurate
hardware estimations.

These contributions lead to the main original contribution:
the method to estimate the PPA trade-offs based on the
entire convolution and not on its basic components, such
as multipliers and adders. This approach allows generating
accurate results because it considers the convolutional accel-
erator with its arithmetic modules, buffers, and wire delays.
The related work section unveils this gap, fulfilled by this
work.

This article extends the authors’ previous work [18], which
shares the proposal of a framework for PPA evaluation of
CNNs. This work brings updated related work, refinement of
the framework description, use of two hardware accelerators
types (Section IV), and a set of new results, including the
synthesis of accelerators synthesis (Sections V-B and V-C),
and design space exploration (Section V-D), summarized
in Figure 8.

The remainder of this paper is organized as follows.
Section II presents related works related to simulators and
frameworks for CNNs. Section III details the proposed frame-
work. Section IV presents the descriptions of the proposed
accelerators, comprising a systolic 2D and a 1D array.
Section V presents 4 sets of results: (i ) evaluation of the CNN
accuracy using integer quantization; (i i ) the accelerators PPA
after physical synthesis; (i i i ) the benefits of using a system
simulator; (iv) design space exploration, enabling selecting the
best set of the CNN parameters to meet the design constraints.
Finally, Section VI concludes this paper, pointing out the
direction for future works.

II. RELATED WORK

This section describes works that generate PPA analyses
focused on simulators of CNNs and frameworks related to
our proposal. Estimation frameworks can use a simulator
to estimate PPA based on the hardware behavior or use
analytical methods to evaluate PPA quickly. The simulators are

commonly implemented using high-level program languages,
such as Python and C++, and simulate the CNN accelerator
faster than RTL approaches.

A. Frameworks and Simulators

MAESTRO [19] is a framework to describe and ana-
lyze Neural Network hardware, which allows obtaining the
hardware cost to implement a target architecture. It has
a domain-specific language (DSL) to describe the dataflow
that specifies the number of PEs, the memory size, and
NoC bandwidth parameters. The results generated by the
framework are focused on performance analyses. In recent
work [25], MAESTRO was used to estimates cost-benefit
tradeoffs between execution time and energy efficiency for
CNN models, such as VGG and AlexNet, and hardware
features, like buffer size. MAESTRO does not allow the accel-
erator simulation, which limits the performance evaluation.

SCALE-Sim (Systolic CNN Accelerator Simulator) [20]
is a cycle-accurate systolic array simulator. This simulator
allows configuring micro-architectural features such as array
size, array aspect ratio, scratchpad memory size, and dataflow
mapping strategy. SCALE-SIM simulates convolutions and
matrix multiplications, and it models the compute unit as a
systolic array. Also, it allows simulation in a system context
with CPU and DMA components. The authors show detailed
experiments to understand the design space and tradeoff
in designing a systolic array-based CNN accelerator. Also,
SCALE-Sim provides an analytic model to find the best
accelerator configuration based on parameters like DRAM
bandwidth. However, SCALE-Sim does not give power or
energy results.

Timeloop [15] is a DSE framework for CNNs which
emulates accelerators such as the NVDLA [26]. It focuses
on the convolution layer analyses. Timeloop uses as input
a workload description, such as input dimension and weight
values, a hardware architecture description, such as arithmetic
modules, and the hardware architecture constraints, such as
the computation partition. Instead of using a cycle-accurate
simulator, Timeloop uses data transfers deterministic behavior
to perform analytic analyses. As energy models, Timeloop has
memory, arithmetic units, and wire/network models based in
TSMC 16nm FinFET. Timeloop provides PPA based on basic
operations, such as adders and multipliers.

Accelergy [17] allows estimating the energy of accelerators
without a complete hardware description and fine-grained
analyses using a library of basic components. Accelergy uses
a high-level architectural description to capture the circuit
behavior characteristics, such as memory reads. The obtained
results are compared to post-layout results, showing an error
of 5% in the energy estimation for the Eyeriss accelerator.
Even considering the number of memory reads, Accelergy
does not take into account some important features of an
accelerator. Accelergy considers whether the memory access
pattern is random or whether it reads the same address
repetitively, but it does not take into account dataflow types
and data movement through the array. Besides, Accelergy does
not provide a simulation environment.
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TABLE I

STATE-OF-THE-ART SUMMARY (PPA: POWER, PERFORMANCE, AND AREA)

STONNE [16] is a cycle-accurate architecture simulator for
CNNs which allows end-to-end evaluation. It is connected with
Caffe framework [5] to generate the CNNs, and it models
the MAERI accelerator [27]. The results are focused on
performance and hardware utilization regarding the percentage
of multipliers.

SimuNN [21] is a neural network simulator that allows
pre-RTL verification and fast prototyping. It is compatible
with TensorFlow, allowing using software application values
to evaluate the hardware accelerator. The results generated
by SimuNN are based on a fixed accelerator proposed by
the authors. The accelerator comprises a micro-controller,
an instruction RAM, a DDR controller, a weight buffer,
a feature map buffer, a feeder controller, a collector unit, and
14 three-stage pipelines PEs with nine multipliers each. The
Authors show latency and energy results based on Altera
FPGAs and ASICs, although the ASIC technology node is
not mentioned.

STONNE and SimuNN are similar frameworks when com-
pared to our proposal. Both integrate a flow that starts with
frameworks to model CNNs, and both provide the accelerator
simulation. However, SimuNN uses a fixed 2D array style,
not comparing it with other styles like 1D (discussed in
Section IV). SimuNN has an energy estimation based on
basic elements, not considering data movement through the
accelerator. STONNE does not address power estimation, but
the authors discuss that it is possible to integrate STONNE
with Accelergy.

AccTLMSim [22] is a pre-RTL cycle-accurate CNN accel-
erator simulator based on SystemC transaction-level model-
ing (TLM). The simulator allows maximizing the throughput
performance for a given on-chip SRAM size. An accelerator
is proposed to validate the simulator, composed of a MAC
array of 12 units, a double buffer scheme to enable memory
read and MAC executions in parallel, and a DRAM controller.
Each of the hardware blocks is implemented as a SystemC
module using sockets, and the accelerator was also prototyped
in a Xilinx Zynq FPGA using High-Level Synthesis (HLS).
AccTLMSim is focused only on performance, not power or
area.

Heidorn et al. [23] propose an analytical model that esti-
mates throughput and energy to a given hardware constraint.

A DSE is proposed to determine the accelerator architecture
limits in terms of throughput, number of parallel opera-
tions, and memory. The Authors propose an accelerator to
evaluate the model with a tile-local memory, a bus, and
a coarse-grained reconfigurable array (CGRA). Each CGRA
presents a two-dimensional array of PEs, and the accelerator
can have more than one CGRA to parallelize the processing.
Compared to implementations that execute a CNN layer-
by-layer sequentially, results show that layer-parallel process-
ing can reduce energy consumption by 3.6 times, hardware
cost by 1.2 times, and increase throughput by 6.2 times for a
MobileNet.

Zhao et al. [24] propose an analytical performance predic-
tor to estimate energy, throughput, and latency for ASIC and
FPGA. The predictor uses DNN models, hardware architec-
ture, dataflows types, and hardware cost regarding a tech-
nology node. The results are generated with AlexNet and
SkyNet DNN models, with Eyeriss, an FPGA implementation
from [28], and synthesized results of a proposed accelerator.
They show that the error achieves a minimum of 0.25% and
a maximum of 17.66% for different DNN models, hardware
architectures, and dataflow types.

Works [23] and [24] show analytical results for power,
performance, and area. Also, [24] consider features like the
dataflow type, which can contribute to the power consumption.
However, both [23] and [24] do not support simulation neither
integration with CNN frameworks.

Specific-domain frameworks targeting commercial plat-
forms like Vitis AI from Xilinx [29] and TensorRT from
NVIDIA [30] aid in model hardware for CNNs. These frame-
works model the CNN using frameworks such as TensorFlow,
and using high-level synthesis, convert the model to the
hardware using custom IPs (Xilinx) or specific platforms
(e.g., Jetson). However, these frameworks use proprietary IPs,
limiting the design space exploration.

B. State-of-the-Art Summary

Table I summarizes the reviewed works. The 1th column
represents if the work has integration with high-level mod-
eling CNN frameworks, such as TensorFlow and Caffe. The
2th column shows if the work provides a simulation environ-
ment. The 3th and 4th columns are related to the evaluated
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Fig. 1. Convolution accelerator hardware metric extraction framework. Adapted from [18].

metrics. The 3th column represents evaluated metrics based
on basic components, such as MACs and register files. The
4th column shows the evaluated metrics regarding the entire
convolution.

Four of nine works present a PPA analysis. MAESTRO
focuses only on performance, while Acelergy on energy. These
works must be integrated with simulators to provide a PPA
analysis. Few works, as STONNE and SimuNN, integrate
a high-level framework to build a CNN, with a simulator
environment capable of validating the accelerator behavior
and a PPA analyses method. Methods relying on counting
operations, like SCALE-Sim and Accelergy, do not consider
how these operators are interconnected (e.g., 1D or 2D systolic
arrays or adder trees), resulting in imprecise hardware metrics,
such as power.

As shown in the last line of Table I, the proposed framework
has integration with TensorFlow and a system simulator. Our
proposal fulfills an important gap identified in the literature,
estimating the hardware metrics related to the CNN convolu-
tion operators considering the arithmetic modules, buffers, and
wire delays, and not only MAC counting.

III. PROPOSED FRAMEWORK

Figure 1 presents the proposed framework. TensorFlow
models the CNN, being responsible for training and inference
phases, resulting in capturing the weight and input feature
maps values.

This work adopts an integer quantization to avoid
floating-point operations in the accelerator by applying power
of two multiplications. The last action executed using Ten-
sorFlow is exporting a header file containing the weight and
feature values to be used by the system simulator.

The physical synthesis corresponds to the synthesis of the
CNN accelerators. For each one of the accelerators described
in Section IV, this step generates the layout of the CNN
operators, and a netlist with extracted parasitic capacitances.
The simulation of this netlist enables extracting the switching
activity to characterize the accelerator dynamic power. This
simulation uses weight and input feature map values generated
from TensorFlow, showed in Figure 1 as tensorflow.vhd. Thus,

Fig. 2. TensorFlow code example [18].

it is possible to measure the power of real CNN architectures
using actual inputs. The result of the physical synthesis is the
PPA report.

The URSA cycle-accurate system simulator [31] models
the hardware accelerator, integrated with the CNN model
generated by TensorFlow and the PPA reports generated by the
physical synthesis. The simulator captures information related
to the CNN execution, presenting a summary with accelerator
performance, area, and energy results. The next sections detail
the framework.

A. TensorFlow

TensorFlow [7] is a Google framework providing libraries to
implement ML applications. TensorFlow allows implementing
CNNs, including the training and inference phases. It is
possible to use CNN functions such as 2D convolution, max
pooling, and ReLU. This work uses the TensorFlow for:

1) Modeling the CNN and exploring its architecture;
2) Extracting the weight values of the selected network;
3) Extracting network output values to validate post-layout

simulation;
4) Evaluating the weights quantization from 32-bit

floating-point to 8-bits integer.
Figure 2 shows an example of a TensorFlow code, which

corresponds to the application.py in Figure 1. The environ-
ment allows exploring CNN architectures and their accuracy
regarding the network depth, stride dimension, activation
functions, and the number of filters. Thus, it is possible to
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tune the CNN architecture based on an target accuracy. The
example in Figure 2 shows a CNN with four convolution layers
with 16, 8, 3, and 1 filters, a fully connected layer, and strides
with dimensions 2 × 2 and 1 × 1.

TensorFlow also allows extracting the value of weights after
reaching the target accuracy – training phase. A post-extraction
quantization happens after the training phase by converting
the floating-point weights to 8-bit integers by multiplying the
weight values by a power of two. Adopting integer values
avoids floating-point arithmetic in the accelerator, reducing its
area and power consumption.

Two files are exported at the end of this step: (i ) a header
with the weight and feature map values to be imported
by the system simulator (tensorflow.h in Figure 1);
(i i ) a VHDL package that contains the weight, feature map,
and expected output values to simulate and validate the hard-
ware implementation (tensorflow.vhd in Figure 1). These files
are created directly by TensorFlow, given that this framework
is extensible using the Python language. These values come
from real datasets, such as MNIST and CIFAR10.

B. PPA Extraction

This step requires the CNN accelerator RTL description.
This work provides two distinct descriptions, described in
Section IV, to validate the proposed framework.

Cadence Genus and Innovus tools are used to execute
synthesis and place and route (P&R). The accelerator area
includes gates and wires, and not only cell counting. The
simulation of the post-P&R netlist provides the accelerator
performance (operating frequency) and the switching activity
(value change dump (VCD) file). The VCD file provides the
inputs for dynamic power estimation. This post-layout simu-
lation uses the tensorflow.vhd file exported from TensorFlow
to simulate and validate the hardware implementation using
real application values. The PPA metrics are exported to the
system simulator in a header format (tech.h in Figure 1).

C. URSA System Simulator

URSA [31] is a C++ API for system-level modeling and
simulation. It provides a set of language-related assets that
can be used to create system-level, cycle-accurate hardware
simulators, like SystemC. The URSA hardware models are
modeled as a set of finite state machines (FSM), and its under-
lying simulation is based on discrete-event simulation. A clock
cycle in URSA corresponds to the activation of the transition
function of the FSMs of the simulated system. This high-level
model brings the following advantages: (i) possibility to
describe hardware modules in an abstract way; (ii) generate
gold models for circuit verification; (iii) the object-oriented
approach allows reusing the hardware description, making it
easier to build new hardware models.

This work uses the URSA to:
1) Model and simulate the CNN;
2) Model and simulate the accelerator;
3) Validate the CNN accuracy;
4) Generate PPA evaluation of the CNN.

Fig. 3. URSA simulator code example.

Figure 3 shows how a CNN is modeled in URSA. One
layer of a CNN is simulated in this example, composed
of 16 filters with dimension 3 × 3, strides with dimension
2 × 2, and the input feature map (IFMAP) with dimension
28 × 28 × 1, same parameters of the first convolution layer
showed in Figure 2. The TBInit() function is responsible
for performing the memory read, feeding the accelerator, and
executing it. When the accelerator is done (signalized by
_array->GetEOP() == 1), the output value is stored in the
TBStore() function, which is also responsible for controlling
the end of the simulation.

The CNN application is simulated in URSA using the
header files generated in Section III-A (tensorflow.h),
the technology reports generated in Section III-B (tech.h),
and the accelerator array (accelerator.cpp in Figure 1). Thus,
it is possible to simulate a complete CNN faster than RTL
simulations (Section V-C). Also, the simulator reports the
CNN energy and performance estimation when the simulation
finishes, according to the number of executed convolutions.
Thus, the simulator performs analyses regarding the PPA
values extracted from the physical synthesis, and the captured
application information at the simulation, resulting in a fast
estimation.

IV. ACCELERATORS DESCRIPTION

This section introduces concepts related to CNN acceler-
ators and proposes two accelerators to validate the proposed
framework. According to [32], accelerators may be classified
according to the following criteria:

• Array style: 1D systolic [33], 2D systolic [34], 1D
array [35], and 2D matrix [36];

• Dataflow types: Weight Stationary (WS) [33], Output
Stationary (OS) [36], Input Stationary (IS) [10], No Local
Reuse (NLR) [35], and Row Stationary (RS) [37];

• External Memory.
The basic array component is the Processing Element (PE),

which contains the Arithmetic-logic Unit (ALU), the Control
Unit (CU), and the Register file (RF). The ALU includes
elements such as adders and multipliers. CU refers to the
logic to control the array. Finally, the RF contains the registers
and buffers where the computation is locally stored, including
IFMAP values, weight values, and partial outputs.

In the 1D systolic architecture, PEs are connected sequen-
tially, where each PE has a maximum of two neighbors,
with data transferred in a pipeline fashion. A systolic 2D is
similar but can have more than two neighbors, arranged as a
matrix. The 1D array is similar to the systolic 1D, but data is
transferred in broadcast to the PEs. Similarly, the 2D matrix
also transfers data in broadcast, but in a matrix arrangement.
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Fig. 4. Convolution 2D - memory accesses and processing flow.

The dataflow type refers to how the data to be processed is
mapped in a given accelerator array. The mapping determines
how to load and generate the data into the array. The dataflow
is characterized by parameters such as latency, throughput, and
data reuse.

Weight Stationary is a dataflow where the weight values
are stored in internal buffers, and the IFMAP values change
through the array. The weights values change when the com-
putation of the output finishes. As an advantage, the partition
can be done according to the filters, where each PE is a pair of
input feature value and weight value. As a disadvantage, it is
necessary to store the matrix filters, which can be expensive
regarding RFs [32].

Output Stationary is a dataflow where the partial outputs
are stored in internal buffers, and the weight values change
through the array. The partial values are transferred to the
neighbor PE to be reused. This approach improves the paral-
lelism if the array size is big enough to support more than one
iteration at the same time.

Input Stationary has the same approach that Output Station-
ary. However, instead of partial outputs, the IFMAP values
are stored in internal buffers. The weight values still change
through the array.

Row Stationary uses all types of reuses to process the output
feature map. It stores the weight values, IFMAPs and partial
outputs in internal buffers. Each PE processes a row of the
input feature map and the filter. Filter rows are horizontally
stored in the PE through the columns. The rows of the input
feature map are stored in the diagonal. The partial outputs are
computed vertically, making each column generate an output.

No Local Reuse has no storage in internal buffers for
weights, values, or partial output values. All the data can
be transferred through the array in a pipeline or broadcast
approach.

Finally, External Memory regards the off-chip memory,
which are memories that use DDR connectors, such as
DDR3 and DDR5, or High Bandwidth Memory (HBM).

We propose two accelerator architectures to validate this
work. The first one is a systolic 2D accelerator, with
two relevant features: memory accesses reduction with high

sustained throughput. The second one is a 1D array accelerator,
with the goal to reduce area and power consumption at the
cost of reduced performance. Both accelerators adopt weight
stationary dataflow, described in VHDL RTL, validated using
the CIFAR10 dataset.

A. Systolic 2D Accelerator

Systolic accelerators presented in the literature [34], [38]
have the data load through the matrix left and upper borders,
with the transfer and execution inside the matrix in a pipeline
fashion. This data load feature increases the data generation
latency and reduces throughput.

The proposed accelerator differs from these architectures
making a parallel data loading and reusing data already read
according to the stride size. These features lead to the follow-
ing advantages: (i) reduces memory accesses; (ii) sustained
high throughput.

With 3 × 3 weight filters and stride equal to 2, there is
a 33% memory reading reduction (6 readings instead 9) for
each convolution. According to [37], memory access can spend
100 times more energy compared to the accelerator array
in the convolution stage. The throughput is guaranteed by
parallelizing memory reading with computation. The proposal
accelerator requires 7 clock cycles for data reading and buffer-
ing. Thus, there is valid output data at every 7 clock cycles,
with a 7 clock cycles bubble at the end of each line.

Before introducing the accelerator architecture, we present
the data flow for executing the convolution. Figure 4 shows the
memory addresses related to the IFMAP data at the top, con-
sidering an IFMAP with 9 columns and stride equal to 2. Thus,
there are 4 convolutions per line, marked as conv(a) to conv(d).
The next convolutions correspond to conv(e) to conv(h). The
weight values reading occurs before the convolution starting,
characterizing this approach as a weight stationary.

The bottom part of the figure has 10 steps. Each step corre-
sponds to the memory reading, and in parallel, the arithmetic
operations execution. We use steps 1 to 5 to illustrate a single
convolution. At the end of the 3th step, the computation of the
first line (addresses 0/1/2) is stored in a register (A1a). At the
end of the 4th step, the result of the second line (addresses
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Fig. 5. Systolic 2D array accelerator architecture.

9/10/11) is added to A1a, stored in a register (A2a). At the end
of the 5th step, the result of the third line (addresses 18/19/20)
is added to A2a, stored in a register (A3a). The value of this
register corresponds to the output of the first convolution.

All steps make 6 memory accesses. The first four steps
read values that are not used, corresponding to the filling of
the matrix. Take, for example, step 5. In this step, 6 values
are read from memory, corresponding to the addresses of the
first 2 columns (8/7/15/14/22/21). The third column is filled
with data from the first column (once stride is equal to 2,
allowing to reuse these values), thus reducing memory access
(red numbers). Once the matrix is filled, 5 convolutions are
processed simultaneously, one on each matrix diagonal.

Note that there is a bubble step between lines (at step 9).
This is due to the load of the value in the last row column.
The reading process ends in the last column that generates
a valid convolution. This management is necessary because
the IFMAPs may have an extra column due to the absence of
padding.

Equation 1 computes the number of clock cycles required
to compute the convolution for a given IFMAP.

#conv X =
∣
∣
∣
∣

N − Wx

Sx
+ 1

∣
∣
∣
∣

#convY =
∣
∣
∣
∣

M − Wy

Sy
+ 1

∣
∣
∣
∣

conv_cycles = (F+#conv X ∗ #convY +#conv X) × C (1)

where: N × M – IFMAP size; Wx × Wy – weight filter size;
Sx × Sy – stride size; F – steps to fill the accelerator (5 in this
accelerator); C number of clock cycles to execute one step
(7 in this accelerator).

Thus, a 128 × 128 IFMAP, 3 × 3 weight matrix, and
stride equal to 2 require 28,259 clock cycles to compute a
convolution, which corresponds to 28.2us@1GHz, including
IFMAP reading and arithmetic processing.

Systolic 2D Architecture

Figure 5 illustrates the accelerator architecture, with its
external interfaces and the input memory connection, which
stores the bias value, weights, and IFMAP. This memory is
assumed pre-loaded before the convolution process, delivering
1 byte per clock cycle (8 Gbps@1GHz). The arithmetic core
contains a 3 × 3 matrix with 3 multipliers, 6 MACs, 3 adders,
and 12 registers. The accelerator presents a double buffer
approach for the feature reading (FB1/FB2), making it possible
to read the memory values and execute the arithmetic process
in parallel.

The initialization process occurs by loading the weight
values (weight_en) and the bias value (bias_en) in the
weight_buffer and bias_reg buffers. Next, the activation
of the start_conv signal starts the convolution process,
according to Figure 4.

The convolution execution follows a loop controlled by the
“control FSM”, until completing the IFMAP reading:

– cycle 0: transfer of the 6 values read from memory
from FB1 to FB2, reuse 3 values from FB2, update
FB1 addresses. Given the combinational implementations
of the arithmetic blocks (multipliers and adders) in the
“arithmetic core”, these start computing new values at
the end of this cycle.

– cycles 1 to 6: read the IFMAP values from the input mem-
ory to FB1, according to the sequence shown in Figure 4.

– cycle 5: at the end of the fifth cycle, the “control
FSM” activates signal en for all arithmetic core registers,
generating a new output value. This value goes through
two combinational blocks, SHIFT and ReLU.

– cycle 6: the “valid control” block activates the valid
signal according to the convolution being executed. This
block controls the bubbles at the end of the lines,
as described in Figure 4.
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Fig. 6. 1D array accelerator architecture (buffers and arithmetic core).

After convolution, the accelerator executes the activation
function. For the two accelerators, we adopted the ReLU, but
other nonlinear functions can be supported, like LeakyReLU
and PReLU [39]. The memory of the next convolution layer
receives the pixel output. We recommend an approach sim-
ilar to FB1/FB2, with two “input memories”, to parallelize
convolutions. The required throughput of the input memory is
achieved with static memories or DDR5 memories. Thus, it is
possible to use several memory and accelerator sets in parallel
to maximize the CNN performance.

B. 1D Array Accelerator

The second implementation, 1D array, has a straightforward
architecture to reduce area and consumption. Figure 6 illus-
trates the buffers and the arithmetic core of the 1D array. The
initialization process is the same as for the 2D architecture,
with the weights and bias load. The process of generating a
valid output comprises a loop repeated three times, requiring
six clock cycles at each interaction. The reading of three
IFMAP values occurs in the first three clock cycles. In the
subsequent three clock cycles, MACs compute new values.
At the end of the sixth cycle, registers store values generated
by each MAC (signal en). At the end of 3-column processing,
the MAC registers are reset (signal res), and the resulting
addition is stored in SUM REG by activating the load signal.
Note that the throughput is constant, without the generation
of bubbles at the end of each line.

Equation 2 computes the number of clock cycles required
to compute the convolution for a given IFMAP using the 1D
array accelerator.

conv_cycles = (#conv X ∗ #convY ) × C × 3 (2)

where: #conv X and #convY defined in Equation 1; C num-
ber of clock cycles to execute one integration (6 in this
accelerator).

Thus, a 128 × 128 IFMAP, 3 × 3 weight matrix, and
stride equal to 2 require 71,442 clock cycles to compute a
convolution, which corresponds to 71.441us@1GHz, including
IFMAP reading and arithmetic processing. The systolic 2D,
for the same IFMAP size, computes the convolution 2.3 times
faster than the 1D array.

TABLE II

COMPARISON BETWEEN TENSORFLOW ACCURACY AND HARDWARE
ACCURACY (URSA) FOR THE MNIST DATASET

V. RESULTS

This section contains 4 Subsections. Section V-A evalu-
ates the error introduced by the 8-bit integer quantization.
Section V-B details the PPA results for both accelerators
obtained from industrial EDA tools. Section V-C evaluates
the advantage of using URSA, i.e., simulation time, and its
accuracy to estimate power and energy. Finally, Section V-D
uses previous results to execute a design space exploration
varying the accelerator architecture and parallelism degree
using the PPA results.

A. Accuracy Results

The first set of results presented in this section corresponds
to the evaluation of the impact in the CNN accuracy of
the results due to the 8-bit integer quantization, described in
Section III-A. These results are related to the CNN architecture
and not to the hardware accelerator.

Three CNNs were generated by TensorFlow using convolu-
tion operations, varying the network depth from 2 to 4 layers,
with 4, 12, and 38 filters, respectively. All three CNNs were
trained using the MNIST dataset, with 3×3 filters with strides
between 1 × 1 and 2 × 2, ReLU as activation function, and
a fully-connected layer with a softmax activation function.
TensorFlow executed the training step for five epochs. URSA
executes the fully-connected layer, as it is not accelerated
in hardware. The reason to adopt the MNIST dataset is the
possibility of implementing CNNs that achieve a high accuracy
only using convolution layers.

Table II presents the accuracy results. The 1th and 2th
columns are TensorFlow parameters: number of convolution
layers and CNN accuracy. The 3th and 4th columns are cap-
tured from URSA, corresponding to the number of executed
convolutions and the accuracy using quantization.

Results show that the 8-bit integer quantization introduces a
decrease in the CNN accuracy compared to float-point values.
However, this decrease is 5% or less and is expected when
applied quantization techniques [40].

B. Synthesis Results

This section presents the PPA results of the accelerators
after physical synthesis. As depicted in Figure 1, the system
simulator uses these results to evaluate different CNN archi-
tectures. Table III shows the results varying the accelerator
architecture (2D/1D) and the technology node (65nm/28nm).
For both technologies, the frequency is obtained with a slack
time equal to or near zero.

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on October 01,2021 at 19:10:32 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

JURACY et al.: HIGH-LEVEL MODELING FRAMEWORK FOR ESTIMATING HARDWARE METRICS OF CNN ACCELERATORS 9

TABLE III

PPA RESULTS FOR ACCELERATORS AFTER PHYSICAL
SYNTHESIS (65nm@1GHz, 28nm@1.6GHz)

Fig. 7. Area-power results for 28nm as function of the frequency.

Cadence Genus and Innovus tools were used for logic and
physical synthesis. The power dissipation is obtained with
a value change dump (VCD) file generated with a post-
P&R netlist simulation and Cadence Voltus tool. The netlist
simulation input is a 32 ×32 ×3 feature map, 16 3 ×3 filters,
stride 2, generating a 15×15×16 output. This simulation setup
corresponds to the first convolutional layer of the CNN showed
in Figure 2, using the CIFAR10 dataset. CIFAR10 dataset was
chosen to evaluate power because it presents fewer zero values
than the MNIST dataset, increasing the switching activity of
the accelerators. That MNIST is a black and white dataset
while CIFAR10 is RGB. Thus, power values come from a
real dataset and not synthetic values.

Figure 7 presents the physical synthesis results for the 28nm
technological node for both accelerators as a function of the
frequency (0.25–1.6 GHz). As expected, the power increases
with the frequency. Note that the area rises for frequencies
higher than 1GHz, due to the synthesis tool effort to meet the
target frequency, mainly for the 1D array architecture. URSA
uses these points for design space exploration (DSE).

Results presented in Table III and Figure 7 are consistent
with the accelerator architectures since the 2D architecture has
nine MACs (in fact 6 MACs, 3 adders, 3 multipliers), and the
1D has three MACs in the arithmetic core.

TABLE IV

PPA NORMALIZED RESULTS PER MAC FROM THE LITERATURE
FOR CNN ACCELERATORS

TABLE V

COMPARISON OF NETLIST VERSUS SYSTEM SIMULATOR

(65nm@1GHz, 28nm@1.6GHz)

Normalizing values in Table III by the number of MACs,
enables a comparison with related works. Table IV presents
such normalization for our proposal and related works. The 1D
array values are higher than the 2D array due to the register
banks and control FSMs, common to both accelerators.

Table VI presents area and power values reported in the
literature. Swallow et al. [38] present a 2D accelerator with
256 16-bit MACs, resulting in 18,047 µm2 and 3,33 mW
per MAC. Even considering that the arithmetic blocks (named
NPEs in [38]) uses 16-bit MACs and additional modules as
DMA, the reported area (9.3×) and power (4.1×) are still
significantly higher than the proposed 2D accelerator. Hsiao
and Chang [12] present an 1D accelerator for a 28 nm node,
resulting in 15,548 µm2 (12.7× higher) and 0.94 mW (0.83×
smaller) per MAC.

Such results corroborate the hypothesis of smaller silicon
area and similar power footprint of the proposed accelerators
than related works.

C. Energy and Simulation Time Results

The two first results evaluated the accuracy using integer
quantization (Section V-A) and the PPA data (Section V-B).
This third set of results justifies the system simulator adoption
and evaluates the accuracy relative to the energy estimation.

Table V presents the simulation time and the con-
sumed energy, using the experimental setup of the previous
Section (32 × 32 × 3 feature map, 16 3 × 3 filters). The
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TABLE VI

PPA RESULTS FROM THE LITERATURE FOR CNN ACCELERATORS

simulation time using URSA is 77 (2D) and 370 (1D) times
faster than the netlist simulation (average values). Such results
justify adopting the system simulator to execute a fast design
space exploration using physical synthesis data. It is worth
mentioning that this experiment simulated a small input feature
map with a small number of filters. With the increase of the
input feature map size and the number of filters, the speed up
using URSA compared to the netlist simulation is expected to
increase.

The energy values related to the netlist simulation were
obtained from the power estimated by industry-standard
EDA (Voltus) multiplied by the simulation time, considering
the simulation with 16 filters. The energy values related to
the URSA simulation consider the pre-characterized power
obtained from the previous physical synthesis and the number
of clock cycles to execute a convolution (Equations 1 and 2).
The energy estimation using URSA introduced an average
error compared to the netlist simulation equal to 0.68%, being
the worst-case 1.8% (1D, 28nm). This energy estimation error
is smaller than, e.g., results presented by Accelergy work [17],
which is 5%.

Therefore, the adoption of the URSA system simulator
enables faster simulations with an accurate energy estimation,
showing that accurate analyses need to regard the entire con-
volution accelerator, and not only fundamental components,
as adders and multipliers.

D. URSA Design Space Exploration Results

This section presents the CNN design space exploration
(DSE), using the URSA system simulator, with data obtained
from the physical synthesis of accelerators.

URSA explores the design space using five parameters:
• Accelerators Architecture: 1D array and Systolic 2D.
• Parallelism: as presented in Table VI, accelerators avail-

able in the literature present from 128 to 256 MACs.
Our accelerators have 9/3 MACs (2D/1D), making it
possible to parallelize these accelerators to process sev-
eral channels simultaneously. The DSE explores from
1 to 16 accelerators in parallel, ranging from 9/3 to
144/48 MACs (2D/1D).

• Power, area: design parameters obtained from the physi-
cal synthesis for different frequencies.

• Performance: execution time to execute one 32 × 32 × 3
convolution, with 3 × 3 filters, stride 2 × 2, and 16 chan-
nels, according to Equations 1 and 2.

Graphs presented in Figure 8 summarize the obtained results
for 40 evaluated scenarios (two accelerators architectures, four

parallelism configurations, and five operating frequencies).
The graphs present the PPA for each scenario.

From the graphs, it is possible to observe, for example:
• 1D array is, as expected, indicated for smaller area

and power when compared to 2D systolic at the same
frequency and number of filters, as shown in the scenario
highlighted in red in both charts from Figure 8 (16 par-
allel accelerators@1.6GHz).

• systolic 2D is, as expected, indicated for higher perfor-
mance when compared to 1D array (also shown in the
scenario highlighted in red). Observe that the adoption
of 16 accelerators for 2D systolic is only justified at
frequencies higher than 1 GHz. For smaller frequen-
cies, eight accelerators deliver similar performance, with
smaller area and power.

• consider the 2D architecture, Figure 8(b), for a 6.4 mW
power budget (green rectangles). The candidate con-
figurations are 1 acc@1.6GHz, 4 acc@500MHz, and
8 acc@250MHz (acc stands for accelerator). The power
and performance data are similar for these scenarios,
but the area is much smaller using 1 accelerator. This
graph allows the user to select the optimum accelerator
configuration according to its constraints.

• others points can be observed through these charts.
For example, still considering 2D architecture
(Figure 8(b)). It is possible to note that it is preferable to
use 1 acc@1GHz than 4 acc@250MHz, once it presents
similar power and performance, but 4 times smaller area.
Similar behavior occurs with 4acc@1GHz compared to
8 acc@500MHz.

• comparing 1D with 2D architectures for a 3.2mW power
budget:

– 1D, 4 acc@500MHz: 9,276 µm2, and 97.2 ms;
– 2D, 4 acc@250MHz: 19,58 µm2, and 83.32 ms.

In this case, the 1D array is the choice since, despite 15%
lower performance (97.2 versus 82.32 ms), it presents
50% smaller area (9,276 versus 19,58 µm2).

The average energy consumption for the 1D array is 313 µJ
up to 1.25GHz, increasing to 380 µJ@1.6GHz. On the other
hand, the systolic 2D presents an average energy consumption
equal to 261 µJ, regardless the frequency. Thus, the systolic
2D presents a better energy efficiency than the 1D array due to
its performance. Such result reveals that one cannot consider
only the number of arithmetic cores for decision making since
a set of blocks are common to both architectures, as the
register files.

These examples show that the framework reached its goal,
making DSE using multiple design parameters. Note that the
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Fig. 8. DSE results obtained with URSA for 28nm for 1D array and systolic 2D (note that power is presented in µW ).

values shown in the graphs could be obtained analytically.
However, the URSA simulator allows to obtain the presented
data and simulate the CNN architecture with a reduced exe-
cution time (Table V).

To summarize, the framework enables the evaluation of the
CNN accelerator starting from TensorFlow. The framework
ensures accurate PPA results regarding a real CNN with real
dataset values, such as MNIST and CIFAR10, instead of esti-
mating a constant switching activity for the entire CNN. Thus,
the framework allows an evaluation, starting with a high-level
CNN modeling, ending with a fast and accurate DSE.

VI. CONCLUSION

This work proposed a framework to analyze hardware met-
rics regarding convolution accelerators. The framework allows
to: (i ) build CNNs with TensorFlow; (i i ) extract their weights;
(i i i ) execute the network using a high-level accelerator model
in a system simulator; (iv) estimate PPA results and to perform
design space exploration. Thus, it is possible to validate
hardware models using actual datasets.

This work proposed systolic 2D and 1D array accelerators,
detailing their hardware architecture, describing their memory

accesses, buffer utilization, and array style. The PPA data con-
sidered results obtained after physical synthesis, and switching
activity using actual datasets. Using physical synthesis data
differentiates our work from others that make estimations
based on the CNN architecture. While we consider data from
the accelerator that performs the convolution after physical
synthesis, many works perform high-level estimation based
on the number of MACs.

The framework allows analyzing trade-offs, such as
performance-area or area-power consumption. Besides, it is
possible to estimate hardware trends, varying the accelerator
architecture, the parallelism degree, the technological node,
and the operating frequency. It is worth mentioning that the
energy estimation error using the system simulator is smaller
than 2% compared to the netlist simulation.

At the hardware level, future works include:
• increase the parametrization of the hardware model in

terms of array size and word size;
• extend the framework to support other CNN operations,

like max-pooling and a fully-connected layer, to explore
different CNN configurations;
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• model and evaluate other array and dataflow types (such
as input stationary and output stationary);

• extend the PPA evaluation to explore synthesis results
regarding different transistors types (like regular and low
voltage threshold – RVT and LVT), and voltage levels;

• compare the proposed energy analysis method with meth-
ods that used basic components, a common technique
used in the literature.

At the front-end level (currently TensorFlow), future works
include:

• migrate functions currently assigned to the system sim-
ulator to frameworks as TensorFlow, including the PPA
analysis in these frameworks;

• explore the accelerators parameterization to make a
multi-dimensional design space exploration, using as
main performance goals power and energy;

• add in the front-end level the cost related to the external
memory, considering the required bandwidth to sustain
accelerators working at maximum speed, without bubbles.
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