
Journal of Integrated Circuits and Systems, vol. 16, n. 2, 2021 1

A Survey on Security Mechanisms for NoC-based Many-Core SoCs

Luciano Lores Caimi2, Rafael Faccenda1, Fernando Gehm Moraes1,

1PUCRS – School of Technology - Av. Ipiranga 6681, Porto Alegre, Brazil, USA
2UFFS, Federal University of Fronteira Sul, Av. Fernando Machado 108, Chapecó, Brazil

fernando.moraes@pucrs.br

Abstract— The adoption of many-cores systems introduces
the concern for data protection as a critical design requirement
due to the resource sharing and the simultaneous executions
of several applications on the platform. A secure application
that processes sensitive data may have its security harmed by
a malicious process. The literature contains several proposals
to protect many-cores against attacks, focusing on the protec-
tion of the application execution or the access to shared mem-
ories. However, there is a gap to be fulfilled: a solution cov-
ering the entire application lifetime, including its admission,
execution, and peripheral’s access. This survey discusses three
security-related issues: the secure admission of applications,
the prevention of resource sharing during their execution, and
the safe access to external devices. This survey concludes with
an evaluation of the studied methods, pointing out directions
and research opportunities.

Index Terms— NoC-based Many-core System; Security;
Application Admission; Secure Execution; Secure Zones;
Threats.

I. INTRODUCTION

Many-core SoCs (System on Chip) are platforms that pro-
vide high connectivity and massive parallelism for running
a wide variety of applications. The use of many-cores sys-
tems is continuously increasing due to the growing number
of integrated processing cores into one single chip and the
diversity of fields to where they have been applied to. A
many-core SoC contains PEs (Processing Element) and IPs
(Intellectual Property) modules interconnected by complex
communication infrastructures, such as hierarchical buses or
NoC (Network on Chip), that must be able to handle the high
communication demands [1].

In the context of this survey, the term MCSoC refers to
NoC-based many-core SoCs. MCSoCs are becoming the
solution to meet the high-performance demand of embed-
ded systems while maintaining the power consumption con-
straints during its execution. Examples of modern architec-
tures with a large number of processors interconnected by
NoC includes the Mellanox family TILE-Gx72 (72 cores)
[2], Intel Knights Landing [3] and Oracle M8 (32 cores) [4],
Kalray array (256 cores) [5], KiloCore chip (1,000 cores) [6],
and Esperanto with 1,100 RISC-V cores [7]. Recently, even
complex architectures are following the MCSoC trend,
such as Intel Xeon i9 (18 x86-processors) [8].

As the adoption and complexity of MCSoCs increases,
data protection’s concern appears as a new design require-
ment [9]. A MCSoC may be employed in scenarios where
availability is a critical factor and downtimes must be mini-
mized. Simultaneously, the system may also need to handle

sensitive information; thus, it is necessary to protect this data
from unauthorized access.

According to [10], not only data protection, unauthorized
access and availability are concerns onMCSoC design. The
following seven security principles are generally accepted
as the foundation of a good security solution being the first
three principles mandatory features:

• Confidentiality: the property of non-disclosure of infor-
mation to unauthorized processes, entities or users;

• Availability: the protection of assets from DoS (Denial-
of-Service) threats that might impact any of the system’s
resources availability;

• Integrity: the prevention of modification or destruction
of an asset by an unauthorized entity or user;

• Authentication: the process of establishment and valida-
tion of a claimed identity;

• Authorization: the process of determining whether a val-
idated entity is allowed to access a secured resource
based on attributes, predicates or context;

• Auditing: the property of logging sufficient system ac-
tivities to reconstruct events;

• Nonrepudiation: the prevention of any participant deny-
ing his role in the interaction once it is completed.

MCSoCs, beyond their inherent scalability, provide mas-
sive parallelism and high performance to the users. In such
systems, several applications execute simultaneously, shar-
ing computation (processors) and communication (routers
and links) resources. However, this resource sharing also
leads to security and trust problems, requiring the design of
solutions that prevent malicious entities from exploring vul-
nerabilities and breaking any of the security principles. Fur-
thermore, those malicious entities can damage the system
(hardware and Operating System) or the application at dif-
ferent moments of the application’s lifetime, compromising
their admission and execution through the resource sharing
feature of the MCSoC [11–13].

The application’s lifetime encompasses three main phases:
(a) before the execution we need to admit the application to
the MCSoC, mapping the tasks and reserving resources for
execution; (b) during the application execution the compu-
tation resources run the algorithms and use communication
resources to inter-task cooperation and peripherals access;
(c) finally, at the end of the execution, the resources release
must be provided to enable its use by another application.

Digital Object Identifier 10.29292/jics.v16i2.485

2 Caimi et al.: A Survey on Security Mechanisms for NoC-based Many-Core SoCs

The execution of an application with security constraints
comprises at least three assumptions. The first one is the
secure admission of the application, to guarantee the object
code integrity. The second assumption regards the applica-
tion execution in an runtime environment protected from at-
tacks. The third assumption is related to the protection of the
communication with peripherals and shared memories (Fig-
ure 1).

Protected
I/O and
Memory

Appsec
Execution

Secure
Admission

MCSoC/Peripheral
Mutual Authenti-
 cation

Object Code
 Integrity

Full runtime
protected
environment

Communication
and Computation
resources
availability

Data confidentiality

Authorization and
Authenticity of
communicating
parts

Fig. 1 Security constrains related to the secure application execution.

The application admission corresponds to the object code
transfer from an off-chip entity to theMCSoC. With respect
to security in this process, the many-core must trust on the
entity transmitting the application and the integrity of the ap-
plication must be verified to avoid the insertion of malicious
code. Examples of attacks in this phase are Trojan Horses,
man-in-the-middle and spoofing. While solutions to these
issues exist for the Internet, computer networks, and soft-
ware [14–16], few works are still applied to the MCSoC.

At execution time, a malicious attacker may have access to
sensitive computation or communication data. Therefore, a
secure application that processes sensitive data will have its
security harmed by a malicious process. Examples of attacks
that occur in this phase include DoS, timing attack, side-
channel attack and information leakage (snooping) [17–19].
The adoption of firewalls, encryption mechanisms, and re-
source isolation through secure zones are common strategies
to deal with those security threats.

Relative to the communication with external devices,
unauthorized access to instructions and data in shared mem-
ory and peripherals can compromise the applications’ execu-
tion, resulting in attacks of information tampering or infor-
mation leakage. Examples of such attacks include DoS and
timing attack [20, 21].

TheMCSoC research field is broad, with several research
groups working in this area. Concerns related to NoC secu-
rity is not a recent thread, with publications dating from the
beginning of the 2000’s, such as [22–25].

Table I details how this survey is organized. Emphasis
is given to mechanisms used to protect the system on the
different lifetime phases, considering the positioning of the
mechanisms: at the NoC level; at theMCSoC level; in other
systems or research areas.

Section II. presents the threat model, discussing the
MCSoC’s vulnerabilities for each security principle. Then,
still in this context, details attacks that can be carried-out by
exploring those vulnerabilities.

During the application admission phase, authentication
mechanisms are applied to the entities in order to ensure the
integrity of the application’s object code (Section III.). With

Table I.: Security mechanisms proposals to distinct application lifetime
phase with respective positioning level

App. lifetime
phase ↓ NoC MCSoC other area

Admission
Section III.

– –
[16]

Zero Knowledge Proof
[26]

MAC –
[27]

ECDH protocol

Execution
Section IV.

[28]
Packet Certification – –

[29]
Auditing and

Firewall

[30]
Secure Zones and
Sym. encryption

–

[31]
Routing Scheme

[32]
Sym. and Asym.

Encryption
–

[33]
Symmetric
Encryption

[34]
Symmetric
Encryption

–

I/O Access
Section V.

[20]
Firewall – –

[21]
Routing Scheme – –

respect to the application’s execution, the review focus on
the protection of the communication resources, the compu-
tation resources, and works that considers the protection of
both (Section IV.). The review of proposed mechanisms to
protect the access to peripherals (mainly shared memory) is
presented in Section V.. Each related work is summarized ac-
cording to the following structure: (i) the attacks employed
to obtain some advantage; (ii) the threats mitigation meth-
ods; (iii) the operation of the method; (iv) the cost regarding
the area, power or latency of the proposed mechanisms.

Section VI. concludes this survey, presenting a discussion,
alongside the issues and gaps found in the reviewed works.

II. THREAT MODEL

The resource sharing of MCSoCs components intro-
duces vulnerabilities to the applications running on it. These
vulnerabilities compromise the security principles through-
out the applications lifetime, by example:

• Integrity: a malicious entity can change the source code
of the tasks, at the application admission, inserting Tro-
jan Horses or backdoors causing a suspicious behavior
of the application during its execution.

• Confidentiality: unauthorized access to the data writ-
ing or reading. With different applications sharing the
MCSoCs, a malicious application can be loaded and
executed by a given processor, accessing the memory to
retrieve or leak critical data through malicious PEs or pe-
ripherals.

• Availability: disruption of the system by overloading re-
sources. A malicious application generating packets with
a high injection rate can produce this attack, overloading
the communication infrastructure.

• Authentication: before the application admission, the
MCSoC must have confidence that the entity that want
to run an application in the many-core system proofs its
identity.

• Authorization: the deployment of an malicious applica-
tion without authorization enables innumerable threats

Journal of Integrated Circuits and Systems, vol. 16, n. 2, 2021 3

in the system compromising its integrity, availability and
integrity.

In the MCSoCs context, it is possible to explore such
vulnerabilities with attacks that compromise the system by
using:

• Denial-of-Service - DoS: disruption of the system by
overloading resources, compromising its availability. A
malicious application task generating packets with a high
injection rate can produce this attack, overloading the
communication infrastructure.

• Distributed Denial-of-Service - DDoS: similar to DoS,
uses multiples tasks to attack and disrupt the system by
overloading resources, compromising its availability. A
malicious application running in distinct PEs can coor-
dinate an attack to a specific router overloading its com-
munication capacity.

• Timing attack: explores the communication collision be-
tween the sensitive traffic and the attacker traffic. The
latency interference induced by malicious traffic can pro-
vide to the attacker some information about the timing,
frequency, and volume of the secure communication.

• Hardware Trojans: a malicious modification of the sys-
tem’s hardware (e.g., inserted into the NoC) aiming to
sniff and leak sensitive data.

• Spoofing: a malicious application successfully falsifies
its identity to obtain unauthorized privileges.

• Hijacking: an attempt to alter the system configuration to
execute a set of abnormal tasks along with normal system
operation (e.g. during the load of the operating system or
an application).

• Man-in-the-Middle - MitM: an attack where the attacker
secretly relays and alters the communication between the
external entity and the MCSoC, in such way that each
one believes they are directly communicating with each
other. Enabling the attacker to send malicious data or
obtain secret information of the MCSoC.

• Trojan Horse and backdoor: the tampering of the task’s
source code during the admission of the application can
insert malicious code that, during the application exe-
cution, can compromise the availability of the MCSoC
and the confidentiality of the data.

III. PROTECTING THE APPLICATION ADMISSION

The application admission corresponds to the object code
transfer from an off-chip entity to the MCSoC. With re-
spect to security in this process, each actor (external entity
and MCSoC) must confirm the other part’s identity, and the
integrity of the application must be verified to avoid the tam-
pering of the application’s object code. Solutions to these is-
sues exist for the Internet, computer networks, and software
using techniques such as ZKP (Zero Knowledge Proof) [16],
DH (Diffie-Hellman) protocol based on ECC (Elliptic Curve
Cryptography) [27] and MAC [26]. Caimi et al. [35] present
a solution to the application admission in MCSoCs.

(i) Zero Knowledge Proof protocol

In [16], the Authors present a secure lightweight and en-
ergy efficient authentication scheme for WBAN (Wireless
Body Area Network) called BANZKP. The scheme is based
on a ZKP protocol and a commitment scheme to authenti-
cate the sensor nodes in the WBAN network. They used
ZKP to confirm the identity of the sensor nodes while the
commitment scheme deals with replay attacks. According
to the authors, after the authentication success, an encryp-
tion mechanism (not presented in the paper) provides the
message privacy protection. Evaluation uses the Omnet++
simulator. Authors claim that the proposed method reduces
the memory consumption by 56.13% and energy consump-
tion by 94.11% when compared with the alternative protocol
TiniZKP.

(ii) ECDH protocol

He et al. [27] present an authentication scheme for ses-
sion initiation protocol based on ECDH applied to multime-
dia services. The proposed scheme consists of three phases:
system setup; registration; and authentication. At the setup
phase, the system generates a point (P) over an elliptic curve
using a large prime number, an integer (Ks) as the secret
key, then calculate the Ppub = Ks x P as a public key (over
the finite field FP and modular arithmetic over P), and pub-
lish these parameters, except Ks. At registration phase, the
user becomes a new legal user sending the username and
password, and the server computes two secret values, the
first based on the user password and another based on Ks

value. Then the server calculates and stores a password au-
ditor based on these two values. At the authentication phase,
the user sends a request using the username and a value (R1),
calculated with Ppub; the server responds with a challenge
using (R1); the user validate the server’s challenge and, if it
holds, compute a response that involves the user password,
the R1, the server’s challenge, and the username. Finally, the
server validates the answer to accept the user’s request. After
the mutual authentication, a shared session key is calculated
in both sides using common values. The paper presents a se-
curity and performance analysis based on the number of el-
liptic curve scalar multiplications, modular multiplications,
modular inversions, and one-way hash functions operations
used on the scheme.

(iii) Message Authentication Code (MAC)

Sepúlveda et al. [26] propose a runtime mechanism based
on MAC and PUF (Physical Unclonable Function) to provide
memory integrity and authentication. The MAC uses the
SipHash algorithm. The proposed mechanism prevents code
injection and memory modification attacks, including spoof-
ing, reallocation and replay attacks to the off-chip compo-
nents. The mechanism is divided into three stages: key gen-
eration; MAC initialization and application installation; and
operation. At the key generation stage, one key for each ap-
plication is derived utilizing a challenge PUF and a random
number. These two are also utilized to compute the helper
data, which is part of the generation and reconstruction of the
key. Application identifier, PUF challenge, and helper data

4 Caimi et al.: A Survey on Security Mechanisms for NoC-based Many-Core SoCs

are utilized by the Authentication Controller module (Fig-
ure 2) to trigger the regeneration of the application-specific
key which is required for MAC initialization during applica-
tion installation as well as during the SoC operation.

Control Unit
Address
Data

Address
Data

PUF
KEY

SipHash

Address SessionData

KEY

CompareInterrupt

MAC

MAC loaded

Authentication Controller

CPU Memory

Fig. 2 The Authentication Controller module (adapted from [26]).

At the MAC Initialization and Application Installation
stage, before the normal system operation, the MAC for all
applications that are going to be executed are computed and
stored in the off-chip memory. During SoC operation phase,
code/data may be migrated to another IP core or wrote back
to the main memory. In such situations, MACs are computed
in the Authentication Controller and stored in the off-chip
memory. During a read access, the loaded data is used to
recompute the MAC, which is then compared with the MAC
previously stored in memory. For an authentic memory line
the computed MAC matches to the MAC stored in memory.
The Authors implement the mechanism using Xilinx Nexys4
FPGA (Field Programmable Gate Array) and the evaluation
FPGA resource utilization shows the following: overhead
of the modules when compared with the baseline system:
+132% of FFs (Flip-Flops) and +135% of LUTs to the entyre
secure PUF module; +19% of FFs (Flip-Flops) and +17% of
LUTs to the authentication Controller module. Performance
evaluation shows a low impact on the application degrada-
tion due to the mechanism: up to 25% (write intensive Qsort
application).

(iv) ECDH and MAC

Caimi et al. [35] propose a solution to authenticate ex-
ternal entities responsible by deploying secure applications
(Appsec) to MCSoC using an ECDH (Ellipt Curves Diffie-
Hellman) protocol. At the Appsec admission, a protocol us-
ing a MAC (based on the SipHash algorithm) verifies the
object code integrity of each application’s task. Only after
all Appsec tasks pass through the integrity validation the ap-
plication start.

The entity’s authentication evaluation shows an overhead
of 1.68 seconds using an ARM processor running at 500
MHz. The object code integrity verification using SipHash
costs 32K clock cycles per KB.

IV. PROTECTING THE APPLICATION EXECUTION

The literature presents a diversity of mechanisms used to
protect communication, computation and memory accesses
in MCSoCs. Mechanisms protecting the communication
include: (i) firewalls; (ii) secure zones; (iii) routing schemes;
(iv) temporal network partitioning; (v) cryptography; (vi)

packet certification. To protect computation, the main mech-
anism used is spatial and/or logical isolation. The mecha-
nism protecting memory accesses include routing schemes
and firewalls.

A. Protecting communication

Hardware Trojans (HT) or malicious processes are threats
that can be utilized to access sensitive information or break
the communication subsystem security. The most reported
attacks are DoS [17, 19, 36], HT [28, 29], timing side-
channel attack [31, 37], and attacks to confidentiality and
integrity [29, 38].

We describe in this Section works that use different mech-
anisms to specifically protect the communication subsystem.
However, in such cases, the computation is still exposed due
to resource sharing that is not directly addressed in the pro-
posed mechanisms.

(i) Firewalls

In the on-chip communication scope, a firewall is a hard-
ware barrier placed at the communication structure ports to
control the input and output of an element. This mechanism
is, in general, composed of a table to store the recognized
trusted sources and a controller, which allows the certified
traffic and blocks unauthorized traffic.

Rajesh et al. [29] propose a runtime latency auditor for
NoCs, called RLAN, to dynamically monitor the on-chip
resources availability and properly filter the malicious traf-
fic. The goal of the proposed method is to prevent HT and
mitigate attacks to the availability of the NoC. According
to the Authors, RLAN is a non-invasive technique that can
work without any modification with third part IP NoCs. The
method is implemented at the NI (Network Interface), as
shown in Figure 3.

Fig. 3 Block diagram of RLAN’s network interface [29].

The principle adopted by the RLAN design is that packets
traversing routes with significant overlap (spatial similarity)
around the same time (temporal similarity) have compara-
ble latencies. The method includes two major steps: (a) all
packets are tagged with a timestamp to enable latency com-
putation; (b) creation of Source/Destination traffic in RLAN.
The second step creates a control traffic to compute the ref-
erence latency, using it to detect attacks by HTs or malicious
processes. The authors use BooKSim 2.0 Simulator to evalu-
ate the performance of the method, and a 45nm TSMC stan-
dard cell library to evaluate power and area. Results show
that RLAN incurs an overhead of 12.73% in area, 9.84% in
power and 5.4% in terms of network latency when compared
to the baseline NI.

Journal of Integrated Circuits and Systems, vol. 16, n. 2, 2021 5

Hu et al. [17] propose a three-level firewall to provide ac-
cess control, authentication, and availability of the commu-
nication system, preventing information leakage and DoS at-
tack. The proposed method makes a design time analysis
of the traffic and the NoC architecture [39] applying Integer
Linear Programming (ILP) to select the levels and position of
the firewalls: (a) between a PE and a router or; (b) between
routers. Figure 4 illustrate the method in a smartphone ap-
plication.

Fig. 4: Example of optimized NoC topology for a smartphone application
[17].

The Authors’ goal is to reduce the communication over-
head required for security information in packets’ headers.
The authors do not present the area, power, or performance
costs. Results show a 30% to 63% overhead reduction in
header size of packets when the firewalls are positioned be-
tween routers over a standard solution, i.e., firewalls con-
nected to the NIs.

Azad et al. [40] propose a firewall to guarantee the plat-
form’s integrity and confidentiality. The firewall is placed at
the NI and has two tables: (i) initiator table, which checks if
the source has permission to send messages, and (ii) target
table, which verifies if the message is allowed to enter the
target unit. Another important aspect of this proposal is that
a Security Manager configures the firewalls, which send con-
figuration messages protected with MAC. There is an area
increase of 139% in the secure NI with a firewall with 15
entries. The critical path delay of the baseline NI increases
by 6.46% from 2.32ns to 2.47ns by adding the firewall. In-
tegration of SipHash (MAC algorithm) for reconfiguration
packets imposes an NI overhead of 17,105 µm2 (TSMC 40
nm technology).

Another proposal of Azad et al. [41], named CAESAR-
MCSoC, utilizes a group of firewalls to set an isolated clus-
ter of nodes in the platform, building a Secure Zone with
them. However, as the Firewalls are configurable, the focus
is to promote a secure configuration protocol with encrypted
and authenticated configuration packets. Implementation
puts two encryption and authentication modules (CAESAR-
AEGIS and CAESAR-ASCON) integrated into the Network
Interfaces (NIs). The evaluations show an area overhead of
277.6% when NI uses the CAESAR-AEGIS, and 18% when
uses CAESAR-ASCON (TSMC 40 nm technology). The
delay in the critical path increases 17,8% with CAESAR-
AEGIS and no additional delay with CAESAR-ASCON.

(ii) Routing Scheme

Sepúlveda et al. [36] present a runtime method to prevent
timing side-channel attacks and information leakage. The

work proposes two mechanisms: adaptive routing and ran-
dom arbitration. The proposed method assumes that a mali-
cious task in the path of a memory access may extract sensi-
tive data from the communication flow’s temporal behavior.
To prevent the temporal behavior extraction, the first mech-
anism implements a random arbitration in the routers to re-
move the temporal correlation of malicious injected traffic
and memory access. The second mechanism is the adaptive
West-First routing method, which allows, in some situations,
to make turns to escape from blocking conditions. Thus, the
secure traffic deviates from the malicious traffic in the path
automatically to get a free one. Results show that random ar-
bitration and adaptive routing maintain an average through-
put of 0.41 and 0.6 flits/cycle, respectively, to one secure
traffic flow with several malicious injection rates. The area
overhead due to the random arbitration and adaptive routing
is 11% and 5%, respectively. The power overhead due to
the random arbitration and adaptive routing is 9% and 8%,
respectively.

Charles et al. [42] propose a lightweight Anonymous
Routing (AR). This method inserts extra layers of protec-
tion that hide the source and target fields of the message and
utilizes a three-way handshake protocol to establish the com-
munication path (Route Initiation, Route Accept and Route
Confirmation). As a result, the message exchange becomes
untraceable for devices that do not access the key. AR results
present 70% (69% on average) delay increase and 34% (28%
on average) increase in execution time, both compared to the
No-AR implementation

Indrusiak et al. [43] propose the implementation of route
randomization in a many-core as a protection mechanism
against SCA. In this case, varying the routes taken by sen-
sitive traffic prevents the collision with malicious traffic pro-
voked by an SCA attacker, making the SCA information ex-
traction considerably harder since the timing measures are
not precise. Results show distinct latency overhead accord-
ing to the routing algorithm and the packet priority, present-
ing high dependency on traffic scenario, difficulting a perfor-
mance evaluation.

(iii) Secure Zones - Routing Scheme

Fernandes et al. [31] propose a design time method that
enables the creation of Secure Zones (SZ) based on the rout-
ing algorithm to mitigate DoS and timing side channel at-
tacks. The authors extend the Segment-based Routing (SBR)
to security purposes creating the SBR Security Zone Aware-
ness (SBR-SZA) that enables the creation of SZs. After
running the SBR-SZA, the Region-based Routing Algorithm
(RBR) creates routing restrictions avoiding shared paths be-
tween different applications and deadlock free paths.

Figure 5 shows two cases of segment computation for the
same six routers of the MCSoC. Depending on the NoC
segments computed by SBR, the communication path be-
tween S and D can be either PIZ (Partial intra-zone commu-
nication), as shown in Figure 5(a); or FIZ (Full intra-zone
communication), as shown in Figure 5(b).

The evaluation method uses two synthetic scenarios and
the Numerical Aerodynamic Simulation (NAS) benchmark
[44] to measure the routing tables size and the communica-

6 Caimi et al.: A Survey on Security Mechanisms for NoC-based Many-Core SoCs

S

D

S

D
(a) (b)

: Routing Path

: Segment
: Turn Restriction

: Router

: Link

: Security Zone 2

: Security Zone 1

Fig. 5: Example of two SBR segment computations: a) the path among S
and D goes through an insecure element due to a routing restriction; b) a set
of restrictions in the segments enables a secure path between S and D. [31]

tion latency. Results showed up to 16.56% overhead in the
routing tables size.

(iv) Secure Zones - Encryption

Sharma et al. [34] proposes an encryption mechanism for
zone-to-zone secure communication. The authors present
a runtime protocol (PF-ID-2PAKA) that generates pri-
vate/public par keys for each IP core of the SoC. The se-
cure zones are created dynamically having an anchor node
responsible by the secure communication with other zones.
The protocol enables dynamically creation of session keys
used to encrypt the message flow between the anchor nodes,
protecting the communication.

(v) Temporal Network Partitioning

Temporal network partitioning (TNP) employs explicit
flow separation to avoid interference of low-priority flows
in high priority flows. The goal of the approach is to miti-
gate DoS, timing side-channel attacks and information leak-
age [37, 38].

In [37, 45], the authors propose a design time method to
create domains of noninterference to prevent DoS and timing
attacks. Noninterference means that packet injection from
one domain can never have any effect on the packets de-
livered from other domains. The domains are implemented
using virtual channels, and the noninterference is obtained
through bounded priority arbitration, called surf scheduling
at each router port. In this schedule, a packet waits un-
til it can be forwarded in one dimension (e.g. X-direction)
and then does not experience any wait at any downstream
router in this dimension. After finishing the first dimension,
the packet might experience another wait until it can be for-
warded to the next dimension. The authors call this schedule
surf scheduling because a packet is like a surfer who waits to
ride a wave to some location and then waits to ride another
wave.

The proposed SurfNoC was implemented in BookSim 2.0,
a cycle accurate simulator. The latency evaluation shows
that the overhead of surf scheduling is almost independent
of network size (average number of hops), leading to a con-
stant overhead of 19 cycles (except for 16 nodes) because the
packet wait time depends only on the number of dimensions
and domains. The drawback of the proposed method is that
increasing the number of domains also increases the num-
ber of virtual channels, increasing the router area an power
consumption.

Wang et al. [38] propose a design time priority-based ar-

bitration and a static limit mechanism to provide protection
against information leakage and DoS. The idea is to assign
high-priority to low-security traffic, in such way that its be-
havior is not affected by high-security traffic. With this
scheme, when flows from two different security levels com-
pete for the router traversal, the low-security flow always
wins due to the arbitration police, avoiding a malicious task
to infer timing information over the high-security flow. Vir-
tual channels are statically allocated to each security domain
to remove interference in buffers. To prevent a possible DoS
attack due to this unfair arbitration scheme, the authors in-
clude an additional mechanism that monitors and limits the
amount of the low-security traffic regardless the amount of
high-security flows. The proposed method evaluation uses
the Darsim Simulator. As expected, results show that the
method increases the performance in low-security flow and
decreases the high-security flow.

(vi) Cryptography

Ancajas et al. [28] present a runtime method to protect in-
formation leakage from HTs. The authors propose the Fort-
NoC, a three-layer security mechanism. These security mea-
sures are introduced in the NI of the NoC. The first layer
is the Data Scrambling (DS), which makes the HT activa-
tion harder. This is done with XOR cipher encryption [46]
to encrypt the data before sending it to the NoC. The second
layer is the Packet Certification (PC) that attach an encrypted
tag at the end of the packet before injecting it into the NoC.
This is obtained creating a random lookup table dynamically
at the boot-time that creates a 16-bit unique identifier for
each node in the system. Based on the destination node of a
packet, each data packet embeds a tag containing the trans-
lated identifier of the destination node from the lookup table.
The third layer is the Node Obfuscation (NObf) that decou-
ples the source and destination nodes of a communication to
increase side-channel resilience. The NObf is obtained with
task migration. The evaluation of the area shows an overhead
of 0.34% and 9.57% to PC and DS respectively. The power
consumption evaluation shows no overhead to PC technique
and overhead of 5.8% to DS technique. According to the
authors, the performance evaluation shows an overhead of
5.9%.

Silva and Zeferino [47] propose the use of an AES block
and a KDC (Key Distribution Center), adding authenticity
and confidentiality in the message flow of the SoCIN NoC.
The KDC share different master keys with each node (the
authors do not explain how this is executed). During the
operation, when a node A wants to send a sensitive mes-
sage to node B, the node A send a session key request to the
KDC. This request inform the communicating nodes (A and
B) an is encrypted using his master key of node A. The KDC
decrypt the request and generate (using a LFSR) a session
key. The KDC sends the session key generated to node A
encrypted with its master key and another message with the
session key to node B encrypted with the note B’s master
key. At this point the two communicating nodes (A and B)
have a session key to encrypt the message at source node A
and decrypt message at target node B. Figure 6 illustrate the
process.

Journal of Integrated Circuits and Systems, vol. 16, n. 2, 2021 7

The remainder of this paper is organized into four
sections. Section II discusses related work, while Section III
describes the solution proposed in this work. Section IV
presents implementation and verification details, as well the
experimental results. Concluding, Section V presents the
final remarks.

II. RELATED WORK
Confidentiality and authenticity attacks on NoC-based

systems have already been addressed in other works. In [8],
the authors proposed a security framework that uses an
authenticated encryption method called GCM
(Galois/Counter Mode) and a hash function to ensure
confidentiality. In [9], the authors presented a framework in
which the NoC is divided into a region with secure cores,
communicating with the use of keys, and another with non-
secure cores. In [10], a partitioning architecture that uses a
secure channel to exchange keys between the cores is
described. Other works also applied the encryption
mechanism to ensure security in NoCs [11][12][13]. This
work is part of this context and seeks to protect an NoC
(SoCIN) against attacks of eavesdropping and spoofing by
means of hardware encryption using AES. The work also
seeks to identify the impact of this type of solution on the
costs and performance of a physical system.

III. SYSTEM ARCHITECTURE

A. System design
In order to guarantee the confidentiality and authenticity

security properties in SoCIN, we selected the AES
algorithm, which is one of the most used algorithms for
encryption of symmetric keys. It was chosen due to the fast
encryption/decryption process and low consumption of
silicon. In the AES algorithm, each step or round consists of
a number of operations that can be performed in parallel,
making it a high-speed implementation [14]. Encryption and
decryption operations are carried out inversely in relation to
each other.

For a correct operation of symmetric encryption in a
communication, it is necessary that the two communicating
entities share the same key, which is protected against third
party access. To ensure secure sharing of keys, a third
entity, known as a Key Distribution Center (KDC), is used.

Fig. 1 depicts the proposed platform, which includes a
crypto processor (KDC) and a set of Xilinx MicroBlazeTM
cores, each one with an embedded local memory. These
processing nodes are connected to the NoC through a secure
network interface (NI), in which an AES-based security
mechanism has been integrated.

As discussed in [14], the KDC must be based on the use
of a key hierarchy with at least two levels: (i) a temporary
session key, used for communication between two nodes;
and (ii) master keys shared between each node and the
KDC. In this work, the KDC is responsible for providing a
session key for each secure connection between two nodes.

This key is encrypted by means of a master key to protect it
from third parties.

A new key can be generated through a Linear Feedback
Shift Register (LFSR) and a combination of some LFSRs
can be used to generate a cipher [15]. In this work, we
implemented a key generator with four 32-bit LFSRs to
form a 128-bit key.

Fig. 1. MPSoC platform

B. Key distribution
To perform a secure exchange of messages between two

nodes, they must share a session key. The generation and
the distribution of this key for communication between the
nodes are illustrated in Fig. 2. When a node (A) needs to
send a message to another node (B), it must send a request
for a session key to the KDC. This request is encrypted
using the master key shared between it and the KDC. In
response, the KDC sends a new session key to the requester,
which is encrypted with the master key of node A. The
KDC also sends the session key to node B using the master
key it shares with node B to encrypt it.

Fig. 2. Establishment of a secure session

226226

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on April 09,2021 at 13:17:50 UTC from IEEE Xplore. Restrictions apply.

Fig. 6 Establishment of a secure session in [47].

In the paper, it is not clear if each message exchange needs
a new key session or the same key session is used by all
messages from node A to node B. The evaluation shows that
the communication using the security mechanism is from 7
to 17.6 times slower if the secure session was already es-
tablished or not, respectively. The hardware cost evaluation
using Xilinx ISE synthesis toll shows the additional costs in
LUTs, FFs and BRAMs equal 233.5%, 188.6%, and 687.5%,
respectively.

Oliveira et al. [33] propose an architecture that includes
a firewall capable of filtering incoming and outgoing NoC
traffic, an AES cipher block to encrypt the NoC flow and,
an auxiliary NoC that use a Hamiltonian path to configure
the firewall rules and distribute the keys. Figure 7 presents
the interfaces connected to the firewall. The router and the
NI signals are the same. Instead of changing the interfaces,
state machines in the firewall manage the flow control sig-
nals. The firewall may encrypt or not the packets according
to an identifier in the packet.

Fig. 7 Representation of the Firewall connections [33].

The firewall plus the AES module increases the router area
by 193.7% and latency increases (i) in the best-case sce-
nario (disturbing traffic in the path of the ciphered traffic)
by 126.3%; (ii) in the worst-case scenario (contention due to
the simultaneous need of encrypt and decrypt packets by the
same AES block) by 395.92%.

Santana et al. [48] extend the aforementioned work [33],
by adopting four security countermeasures: spatial isolation
of applications, a dedicated network to send sensitive data,
filters to block malicious traffic, lightweight cryptography.
This proposal is decoupled from the MCSoC architecture,
protecting the system from attacks, such as Denial of Ser-
vice and man-in-the-middle, ensuring confidentiality and in-

tegrity to applications. Performance evaluation present dis-
tinct behaviors, according to the application profile. For
a synthetic application, the average latency increased by
13.63% and 46.51% without and with the AES encryption,
respectively, compared to the baseline MCSoC. The over-
head in the average latency of a real application (MPEG) is
2.55%.

In Kinsy et al. [12], the authors introduced Hermes, a se-
cure multicore computing architecture framework. The pro-
posed scheme claims to prevent DoS, virtual channel and
physical memory attacks by creating a virtualization layer
that isolates computing threads based on system and user-
defined trust levels and security policies.

Hermes achieves both hardware and software views of se-
cure processing by grouping processors into physical zones
called wards and virtual logical zones called islands. The
wards have different secure level defined at design time and
each one have a anchor node responsible by its key manage-
ment. The environment protects the physical memory using
an MMU (Memory Management Unit) with access restric-
tions based on two tables that provide a firewall behavior to
the MMU. Hermes achieve communication protection using
several mechanisms: (i) DH protocol distributes public keys
to anchor nodes of the physical zones, with join and leave
operations to distribute the keys to the logical zones; (ii) a
AES module in the NI to encrypt the traffic flow when re-
quired; (iii) a key manager in the NI to select an appropri-
ate key during the operation; (iv) MAC and hash modules to
generate session keys. Beyond those mechanisms, the envi-
ronment provides a routing algorithm to prohibit or limit the
traversal of zones by non-member generated traffic. Accord-
ing to the Authors, the hardware overhead to fully implement
the security features of Hermes architecture is 17%. The per-
formance results on the SPLASH-2 benchmarks presents an
overhead of 1% to 9% across all the benchmarks when com-
pared to the non-secure baseline architecture.

(vii) Packet Validation

Boraten et al. [49] propose a runtime packet-security (P-
Sec) method, including a packet validation technique to pro-
tect compromised NoC architectures from fault injection side
channel attacks (potentially DoS) and HTs by merging two
error detection schemes, namely algebraic manipulation de-
tection (AMD) and cyclic redundancy check (CRC) codes.
According to the authors, in normal operating environments
(not under attack) CRC is capable of detecting faults in pack-
ets since the fault rates are low. For cores sending sensitive
data over the network, P-Sec is turned ON, switching CRC to
AMD mode, protecting sensitive packets from fault injection
attacks.

Figure 8 shows, at the top, the changing between normal
operation (CRC) and secure operation (AMD). In the same
Figure, at the middle, the logical arrangement of two mod-
ules and, at the bottom, the packet structures in the distinct
operation modes. In the AMD technique the number of re-
dundant bits is a function of the message length and the size
of a random number internally used.

The work uses CRC messages with 204 bits length and
CRC of 32 bits length; AMD messages with 204 bits

8 Caimi et al.: A Survey on Security Mechanisms for NoC-based Many-Core SoCsFig. 1. The vulnerable links of compromised NoC protected from an ideal
attacker by a (k,m,r) AMD encoder in the proposed P-Sec encoding scheme.

Fig. 2. The packet structure and end-to-end encoding states for CRC-32 and
each (k,m,r) AMD encoding mode we evaluate in the network interface of
each core. Encoding can be decided on-demand and on per application basis.

In this model, the attacker has control of inserting raw input
y into the AMD encoder and thereby generating the error
vectors es1,es2, and es3 on the target link. The HT triggering
method for this model is negligible, as well is the method for
controlling input y. With knowledge of different combination
of inputs, the attacker can select error vectors e1,e2, and e3,
in an attempt to eventually determine the sequence of errors
required to mask codewords into another valid codeword. As
encrypted communication is transmitted in MPSoC, an attacker
may use this technique over time to obtain enough knowledge
to decipher an encryption key by observing how the encoders
and decoders react to a side channel attack. Such a side channel
attack could be power [7], timing [8] or fault injection attacks
[9]. In this paper, we limit our evaluation to fault injection
due to HTs where the point of attack takes place within the
network as opposed to other side channel attacks where the
focus is on the encoding process itself.

B. Packet confidence with algebraic manipulation and detec-
tion codes

In our design we propose the use of algebraic manipulation
detection (AMD) codes [10], [11] to boost protection of

applications transmitting sensitive data between cores. AMD
codes were originally proposed in [10], and has been evaluated
in memory structures [11], but to our knowledge have not been
studied to protect vulnerable links in NoCs. In a scenario with
an ideal attacker, traditional codes such as SECDED, JTEC-
QED, and CRC do not provide the robustness required to with-
stand such an attack as their error detection capabilities are low.
Including CRC because the probability of detection diminishes
with high fault rates. Strong AMD codes by definition cannot
be masked into another valid codeword [12] for any error vec-
tors es1, es2, es3, which is a unique advantage that traditional
error correction and detection codes do not have, making them
vulnerable to fault injection attacks. The redundant bits in an
AMD code are a function of f(x, y) shown in Figure 1 where y
is the input data, x is a random number of size m, and y = bm
where b is chosen to lengthen y to a specific bit width. In our
implementation for packet AMD encoding m is 17 bits and
y is 204 bits, therefore b is 12. This translates to the packet
formation as shown in Figure 2. The encoding function f(y, x)
is computed as f(y, x) = y1x

⊕
y2x

2
⊕

...yix
i
⊕

xb+3 and
πy = y1

⊕
y2

⊕
...yi

⊕
x. The complete AMD codeword

forms the following structure, C = (y, πy, f(x, y)). If b is
even the degree of the last term in f(y, x) is xb+2 instead of
xb+3.

For applications working with sensitive or encrypted data,
AMD encoding should be used. For all other non-critical
traffic, packets will be encoded with CRC-32 to maintain
minimal fault tolerance. The encoding used is designated in
the header of each packet, along with the source, destination,
packet type, and signature. The packet header for all traffic is
then separately encoded using an AMD (23,7,7) codeword.
With the packet header always protected, we can ensure a
packet is always decoded correctly at the destination and that
it is in fact at the correct destination. Any malicious or random
alteration to the destination of other fields of the header will
be detected. To prevent a valid header from being used on a
maliciously crafted packet, after decoding, the packet signature
adds another layer of validation that ensures any duplication
of the packet will be caught. In the performance evaluation
section we will highlight the advantages and disadvantages of
each, along with a third option to encoded flits instead of entire
packets to minimize additional overhead.

Figure 2, shows the modules required in the network
interface for P-Sec and the packet makeup for both encoding
structures. We also show the state diagram for encoding modes
in each network interface. Network interfaces in P-Sec by
default will encode packets with CRC-32 to maintain minimal
fault coverage. In normal operating environments (not under
attack) CRC is well capable of detecting faults in packets since
the rate of faults naturally occurring are low. For cores sending
sensitive data over the network, P-Sec is turned ON and they
switch from CRC to AMD mode to protect sensitive packets
from fault injection attacks.

C. Case Studies

In the network diagram of Figure 3, we highlight three
scenarios a compromised NoC may encounter. In the first
scenario, a source and destination are transmitting data across
compromised links. The links in this scenario could be com-
promised by a simple HTs aiming to corrupt data or side
channel attack. Since this traffic is not considered critical and

2016 Design, Automation & Test in Europe Conference & Exhibition (DATE) 1137

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on April 09,2021 at 13:05:58 UTC from IEEE Xplore. Restrictions apply.

Fig. 8: Overview of P-sec architectural blocks and structure of packets [49].

length, random number of 17 bits and redundancy of 17
bits (204,17,17). The evaluation implements four methods
(AMD, CRC-32, JTEC-QED and SECDED). Compared to
SECDED, the smallest method, the power consumption is
2.68x and 8.36x greater to CRC-32 and AMD, respectively.
The evaluated area, in comparison with SECDEC is 3.5x and
16.1x greater to CRC-32 and AMD, respectively. Perfor-
mance results indicate P-Sec reduces overhead compared to
Fort-NoCs.

B. Protecting Computation
The computation protection encompass mechanisms to

avoid the processors sharing between distinct applications
or deeply embedded into the processor micro-architecture
mechanisms. The review shows that logical and spatial iso-
lation are adopted [19, 50]. When just processors or clusters
isolation is used, the communication system remain exposed
to attacks. Solutions based on processor micro-architecture
mechanisms such as obfuscated instruction execution [51] or
PUF-based authentication architecture [52] are not addressed
in this survey.

Real et al. [53] and their previous works [11, 19] pro-
pose a logical and spatial isolation of sensitive applications
through the dynamic creation of SZs to mitigate DoS and
cache SCA attacks at runtime. The architecture uses the MP-
SoCSim [54], a Mesh NoC where each router is connected
to a cluster with four processors (with local memory), one
shared memory and one shared bus (see Figure 9).

Fig. 9 Overview of architecture [53].

Only cluster resources are isolated by the SZ. If a task

needs to communicate with a task in another cluster the mes-
sage is sent through an insecure channel.

The evaluation focus on the creation of secure zones with
different deployment strategies (number of clusters in the
SZ) and execution scenarios (number of isolated application
and their priorities). According to the chosen deployment
and execution strategies, either the isolated applications per-
formance or the non-isolated applications performance can
be penalized. The performance overhead of the proposed
mechanisms increases with the number of required secure
zones. The worst-case shows an execution-time overhead up
to 35.86% over the baseline.

ARM processors provide the ARM TrustZone (ATZ) [50],
a hardware support for the creation at runtime of Trusted Ex-
ecution Environments (TEEs), isolating the applications in
the same processor. This feature creates two virtual proces-
sors and two Memory Management Units (MMU), allow-
ing to execute a secure and a non-secure application simul-
taneously. However, at any instant, only a single domain
in the system is secured. TEE allows the secure partition
of shared memory to control the accesses to avoid data ex-
traction and change (mitigating confidentiality and integrity
attacks). Nevertheless, in multicore and many-core archi-
tectures, applications running on different processors share
resources such as the communication infrastructure (NoC,
buses) and memory. Thereby, with TEE, applications run-
ning on different processors are not protected from each
other since sharing the communication infrastructure leads
to possible leakage of information.

C. Protecting Computation and Communication
This section includes works that protect both computation

and communication simultaneously [30, 32]. These works
use firewalls or encryption mechanisms along with isolation.

(i) Secure Zones - Partition and encryption

Isakovic et al. [30] obtain computation and communica-
tion protection using spatial isolation with encryption mech-
anisms. The proposal is an architectural partitioning of the
MCSoC resources at design time to provide availability,
confidentiality and integrity. This goal is reached by adopt-
ing security components like a secure microkernel and a se-
cure channel infrastructure that includes cryptography and
firewalls. The Authors also propose to migrate the security
functions from application components to the security com-
ponents. Furthermore, Spatial Isolation of applications and
secure channels (encryption) is used to obtain a secure en-
vironment for applications. The proposed method uses the
ACROSS MPSoC architecture [55], but does not detail the
implementation methods and how the protocols work. Fig-
ure 10 shows the block diagram of architecture (TISS means
Trusted Interface Subsystem). The authors also show a use-
case of the proposal on a Engine Control Unit (ECU) but
do not present results regarding area, power consumption or
latency.

(ii) Secure Zones - Spatial isolation and encryption

Sepúlveda et al. [32] also protect computation and com-
munication resources using spatial isolation with encryption

Journal of Integrated Circuits and Systems, vol. 16, n. 2, 2021 9

Fig. 10 Block diagram of Secure Communication Architecture [30].

mechanisms.The authors propose an NoC-based architecture
that implements runtime disrupted SZs using three crypto-
graphic techniques: Hierarchical Diffie-Hellman, Hierarchi-
cal Tree-based Diffie-Hellman and mapping key predistribu-
tion scheme. The method prevents attacks to availability,
confidentiality, and integrity of the system. The architec-
ture adopts two NoCs: (a) data NoC, used by the application
data; (b) service NoC used to exchange the security control
packets (key exchange, firewall rules, etc.). After mapping
the application, one of the key agreement protocol is exe-
cuted between the mapped PEs using the service NoC. The
encryption/decryption is obtained XORing the message with
the shared key. Figure 11 presents an example with one dis-
rupt SZ, two malicious routers and one infected IP.

Fig. 11: Security zones at MPSoCs interconnected through a two-level NoC
(Service and data NoC). [32]

The architecture was modeled in SystemC-TLM and RTL-
VHDL, and the evaluation uses the SHOC simulation envi-
ronment. Despite the use of cryptographic primitives like
Diffie-Hellmann, the authors show an area overhead of 20%
and a power consumption overhead of 12.7% over a baseline
implementation. The latency evaluation overhead shows a
dependency with the number PEs in the SZ, between 30%
and 55% over the baseline implementation.

(iii) Opaque Secure Zones

Caimi et al. [56] propose the method Opaque Secure
Zones (OSZ), enabling temporal and spatial isolation of ap-
plications, preventing the communication and computation
resource sharing. The execution mechanism includes: (i)
OSZ shape definition and positioning; (ii) wrapper activa-
tion; (iii) retransmission of lost packets in and out the OSZ
boundaries; and (iv) launch application. Figure 12 illus-
trates a simplified view of the approach. In Figure 12(a),
the MCSoC contains one application in execution, App1.
Next, the manager processor maps an App2, activating the
wrappers at the boundary of the OSZ. At this moment

(Figure12(b)), the App1 traffic is blocked by the OSZ. Fig-
ure 12(c) shows the App2 executing in the OSZ, and the
App1 traffic circumventing the region.

LMP

APP 1

T2

APP 1

T1

 (a) (b) (c)

LMP

APP 1

T2

APP 1

T1

APP 2

T2

APP 2

T1

W

W

W

W

WW

LMP

APP 1

T2

APP 1

T1

APP 2

T2

APP 2

T1

W

W

W

W

WW

Fig. 12 Secure zone and dynamic reconfiguration of routing paths.

This work [56] stands out from related works because it
covers all phases required to execute an application with se-
curity constraints using runtime mechanisms to tackle these
issues: application admission, execution, and peripheral ac-
cess. The protocol authenticates trustworthy entities and cre-
ates a shared key. The authenticated entities are enabled
to deploy applications on the MCSoC, with an attached
MAC (Message Authentication Code), which ensures both
integrity and authentication at the same time. Reserving and
isolating computation and communication resources inside
a region of the MCSoC guarantees the secure execution.
During the application execution, the protection to the pe-
ripherals access is obtained with a lightweight encryption
mechanism and packet integrity checking. After the appli-
cation execution, the resources are released, and the memory
is erased to avoid information leakage.

The performance evaluation considers the three phases.
The admission phase has the overheads presented in section
Section III..iv, where the authentication of external entities
occurs once by the device. The object code’s integrity verifi-
cation impacts an extra time of 32K clock cycles per KB of
the object code. Due to the isolation mechanism ofOSZ, the
execution phase does not have overhead in inter-task com-
munication or task computation. About peripheral access,
the communication overhead is up to 15% and depends on
the protocol to enable the I/O message to pass through the
OSZ and the encryption mechanism.

(iv) SDN (Software-Defined Networking

Most works adopt isolation in continuous regions, using
SZs. Ruaro et al. [57] propose an alternative to SZs, which is
the SDN-based management to implement the communica-
tion isolation at runtime. The method adopts two constraints.
The first one is the spatial isolation at the computation level:
secure tasks can only share a PE with tasks belonging to
the same application. The second one is the spatial isola-
tion at the communication level: map tasks in regions where
the SDN subnets utilization is low to increase the probabil-
ity of all applications’ tasks receiving a dedicated connec-
tion. The communication isolation is supported by the SDN
paradigm, which establishes exclusive paths for secure appli-
cations (circuit switching). Results show that the SDN-based
approach presents a negligible latency to admit and execute a
secure application, with a reduced hardware cost and higher
computational resources utilization compared to SZs.

(v) Obfuscation

Reinbrecht et al. [58] present Guard-NoC, a platform pro-

10 Caimi et al.: A Survey on Security Mechanisms for NoC-based Many-Core SoCs

tected against Side-Channel Attacks, specifically Timing At-
tacks. The protection is based on the Obfuscation Module
(Figure 13), placed between the Network Interface and the
local IC input. This module uses two processes to prevent
timing attacks: blinding and masking. The blinding strat-
egy implementation changes the response time of the ICs to
have a constant value. Masking is applied to insert delays
on the responses, operating as a noise source. Both strate-
gies are effective against the attempts to read or access time
measurements of that local IC. In addition to this obfusca-
tion mechanism, the Guard-NoC protects the system’s com-
munication via Switching Mechanism. This NoC has dual
switching, the packet switching is reserved to secure com-
munications. Consequently, the circuit switching is destined
to common packets transmission. The separation of secure
and common traffic prevents the attackers from injecting ma-
licious traffic directed to collide against secure traffic and in-
fer timing values about a protected communication.

paper. Thereafter, we describe the proposed NoC architecture.
Finally, the protection mechanisms are described.

A. Motivation
The Network-on-Chip is a central component of an MPSoC

architecture which handles all communication between the
nodes. MPSoCs usually integrate security features such as
cryptographic hardware cores for supporting confidentiality
and authentication services. However, during the operation of
a cryptographic core (trusted element), the secret key may
passively be revealed through LSCA. In case an MPSoC
application secures data by using the embedded cryptographic
core, both plaintext and ciphertext information is exchanged
through the NoC. Depending on the type of security function,
part of the execution of the cryptographic task (e.g., an
AES encryption) will use the NoC to accesses some valuable
information stored in the main memory (e.g., S-Box data).
In summary, the NoC is part of critical operations in the
system, from memory accesses by the elements to specialized
service requests/responses. Therefore, this work proposes an
NoC architecture that affects the relation between nodes to
hide potential timing leakages. We achieve this by applying
blinding and masking countermeasures in the router. In ad-
dition, we adopt dual switching to avoid attackers infering
timing information. In the following subsections, we provide
more details.

B. Threat Model
Guard-NoC considers the following threat model:
• There are trusted and non-trusted nodes in the system.
• Trusted nodes run inside a secure zone and have their own

isolated local resources (similar to ARM Trust zone [9]).
IPs 8, 9, 12 and 13 are used as trusted nodes (see Fig. 1),
but in general any other mapping is possible.

• Sensitive applications are only executed on trusted nodes.
Oppositely, external applications can only run on non-
trusted nodes, as they may contain malicious intentions.

• The last level cache is shared between the trusted and
non-trusted nodes and is the gateway to the main memory
of the system. Our target platform has level 2 as last level.

• System monitors and debug information contain sensitive
and therefore can only be accessed by trusted nodes.

C. Hardware Architecture
Fig. 1 shows the MPSoC platform considered in this paper.

It consists of 16 nodes interconnected by a 4x4 grid of routers.
Of those nodes, 14 contain a RISC-V processor (RI5CY core
from Pulpino platform [31]), one shared L2 cache (node
IP 0) and one UART for external communication (node IP
3). The NoC configuration follows the description given in
subsection II-A, with the only difference that Guard-NoC
routers can handle both circuit and packet switching (i.e.,
dual switching). In addition, they include an extra component
responsible for the security of the nodes called Obfuscation
Function (see Fig. 2).

D. Protecting Nodes
The protection of the nodes is provided by the obfuscation

module block which is shown in more details in Fig. 2. It is a
dedicated hardware unit that is included between the network
interface and local input channel (IC local) of each router

Fig. 2: Obfuscation Module.

that obfuscates the timing. By altering the delay of pack-
ets, different timing behavior of cache memories, hardware
accelerators or even applications running in processors will
be observed by the attacker, making the attacks much harder.
The obfuscation module has two strategies, which are blinding
and the masking. Blinding focuses on mitigating the leakage
behavior, while masking aims to hide it by adding random
noise. Each strategy is described in more details next.

1) Blinding Strategy: The blinding strategy manipulates the
response time of the node and tries to make this constant.
We propose three blinding techniques referred to as average,
bucket [32], and worst-case.
Average Blinding: This technique averages the response time
of the previous four responses (See t1 till t4 in Fig. 2). This
blinding strategy is composed of three phases: i) Initialization:
during this phase, an incoming packet asks for a service
identified by signal valid o (i.e., valid o signal is high at local
output channel of the router). This operation triggers the start
of a counter and forward the request to the node. ii) Update:
the response packet is ready to transmit when the encryption
is completed, i.e., valid ip from network interface is high. The
value of the counter will be stored and a new average response
time will be calculated based on the last 4 services, which are
the last four encryptions for this node. iii) Wait+Release: When
the counter reaches the average time the packet is released to
the network and the counter is reset, with the exception when
the operation time is higher than the average.
Bucket Blinding: Bucket blinding was initially proposed by
Kopf et al. in [32], but only a theoretical model has been
presented. Our solution is the first practical implementation
of such strategy. It defines a set of fixed time responses and
selects one as actual response time. For example, if eight
buckets are defined, the time behavior will vary only between
these eight possibilities. The drawback of this method is that
designers must know in advance which applications will run
on the node to have meaningful bucket values.
Worst-case Blinding: This method uses the worst case timing
as a fixed response time. Each time an encryption takes
longer than the worst execution time, the network interface
will update this as the new worst-case time. For applications
where the worst and best case timings are close, it can be an
interesting alternative.

2) Masking Strategy: The masking countermeasure delays
the responses by a random amount of time and hence can be
seen a noise source. One of the best sources to achieve ran-
domness is to use True Random Number Generators [33]. Due
to its high cost, we rather propose the usage of pseudo-random
generators in hardware. These pseudo-random algorithms can
be implemented by a Linear Feedback Shift Register (LFSR).
An LFSR circuit is composed of a cyclic shift register and

���

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on April 11,2021 at 15:38:03 UTC from IEEE Xplore. Restrictions apply.

Fig. 13 Obfuscation Module [58].

The evaluation shows a performance degradation of 12.6%
due to the blinding mechanism (worst-case) and 26.9% due
to the masking mechanism. The Guard-Noc router presents
an area and power overhead of 16% and 18%, respectively.

V. PROTECTING THE MEMORY ACCESS

When the MCSoC architecture has shared memories, it
is necessary to protect the memory accesses. The protection
must prevent unauthorized tasks to read or write sensitive
memory blocks and avoid information leakage in the com-
munication subsystem.

(i) Routing Scheme

Reinbrecht et al. [21] and their previous works [59, 60]
propose the improvement of the Prime + Probe (P + P) attack
introduced by Osvik [61], expanding it to the communication
structure of the MCSoC (i.e. the NoC). The (P + P) attack
is a timing side-channel attack that exploits the information
leakage through communication timing behavior. The attack
is executed over the interaction between the shared cache and
the victim IP that is reading the AES secret key.

The proposed attack has two variations: (i) (P + P) fire-
cracker; (ii) (P + P) arrow. The authors shows results to
both attacks. In the (P + P) firecracker technique, 14 cryp-
tographic tasks were needed to complete the attack, properly
recovering 12 of 16 bytes from AES key. The (P + P) ar-
row technique performed 256 encryptions in the attack and
recovered 9 of 16 bytes from AES key.

To mitigate the (P + P) attacks, the authors propose the
Gossip NoC. The Gossip NoC combines two strategies to

protect the MCSoC against timing side-channel attacks: (i)
detection, which includes a bandwidth monitoring and a gos-
sip message generation in the presence of an abnormal be-
havior that enables the second strategy; (ii) protection, trig-
gered when any gossip message is received and which is able
to modify the route of the packet (XY routing algorithm to
the YX).

The work Reinbrecht et al. [21] shows that the Gossip
router increases the logic area of the NoC about 21%. The
unprotected NoC represent 35% of the MCSoC, became
42.5%, meaning that the effective logic overhead in the sys-
tem was 7.5%. When calculating the same impact for power,
the authors obtain 16.2% of power overhead over the base-
line router and 1.18% of power overhead in the entire system.

Another cache collision attack in NoC-based SoC is pre-
sented in [13]. The authors show the attack efficacy to fully
recover an AES key. The paper does not propose a mecha-
nism to mitigate the attack in the work.

(ii) Firewall

Grammatikakis et al. [62] and their previous works [20,
63, 64] propose a source-side firewall at the NI which, by
checking the physical address against a set of rules, rejects
untrusted CPU requests to the on-chip memory. The Authors
claim that the proposed method protects against DDoS and
threats related to data leakage, confidentiality, integrity, and
availability. The firewall architecture has three modules: (a)
the operating mode controller (OMC), that accepts, decodes
and dispatches NoC firewall commands; (b) the segment-
level rule-checking (SLRC), that processes incoming mem-
ory accesses and configuration commands; (c) the interrupt
unit (INTU) that accepts interrupt requests from the OMC
and SLRC modules besides reporting interrupt contexts to
the CPU.

The evaluation environment uses the STNoC, a ring-based
NoC topology. First, a time-annotated RTL description was
implemented, then a set of GEM5 simulations are executed.
Results show a reduction on power consumption by 30% due
to the fact that malicious requests are prevented from enter-
ing the network, thus fewer packets are released, resulting in
lower network traffic and smaller queues and activities. For
the same reason, the delay of the packets to transverse the
STNoC was decreased by 20.47%.

VI. STATE-OF-THE-ART DISCUSSION

Proposals to provide mutual authentication of entities
(users, sensors, peripherals) and application deploy exists in
other computing areas (wireless sensor networks, WBAN,
multimedia services, cloud computing, etc.), however, ac-
cording to the literature review, these issues have scarce at-
tention in MCSoC research area.

The recent work Sepúlveda et al. [26] deals partially this
issue presenting a MAC mechanism based on PUF to pro-
tect the memory from data forgery. The application admis-
sion protection is not directly addressed since that the pa-
per doesn’t discuss the authentication of the entities and the
secure transfer of the object code to the memory, focusing
on the protection during the memory access provided by the
MAC scheme, that includes the tasks object code.

Journal of Integrated Circuits and Systems, vol. 16, n. 2, 2021 11

Table II. State-of-the-art summary.

Proposal Protection Method Prevent - Provide Design Time RuntimeComput. Comm.
Sepúlveda
(2018)
[26]

No Yes PUF and MAC
Access control;
Data integrity
and authenticity

–
Key regeneration
MAC verification

Rajesh
(2015)
[29]

No Yes Firewall
Access control;
Confidentiality –

Traffic monitoring
and rules activation

Hu
(2015)
[17]

No Yes Firewall
Access control;
Confidentiality

Application mapping;
Firewall positioning
and rules configuration

–

Sepúlveda
(2015)
[65]

No Yes
Routing Scheme
Random arbitration

Timming SCA ;
and DoS prevention –

arbitration obfuscation
traffic monitoring and
routing change

Fernandes
(2016)
[31]

No Yes
Secure Zone: table-
routing algorithm
(RBR/SBR)

Timing SCA and
DoS attacks miti-
gation;

Runs RBR and SBR algorithms
to mapping tasks, calculate
paths and router tables

–

Wassel
(2014)
[37]

No Yes
Temporal Network
Partition

Timing SCA and
DoS attacks miti-
gation;

Task mapping and configuration
of static schedule arbitration –

Ancajas
(2014)
[28]

No Yes
Encryption,
Authentication
Obsfucation

Hardware trojan at-
tack; Confidentiality
and authentication

–
Encryption, table-based
authentication, taks
migration

Boraten
(2016)
[49]

No Yes Packet validation Hardware trojan at-
tack; Data integrity –

Change operation mo-
de; generate and verify
coded packets

Silva
(2017)
[47]

No Yes Encryption Data Confidentiality;
Authentication –

Key distribution; Cipher
and decipher messages

Kinsy
(2017)
[12]

No Yes
Firewall;
Encryption

Memory access control;
Data leakage and
integrity; DoS

Secure wards arrangement
Key distribution; Cipher
and decipher messages

Oliveira
(2018)
[33]

No Yes
Firewall;
Encryption Data Confidentiality –

Key distribution; Cipher
and decipher messages

Real
(2018)
[53]

Yes No
Secure Zone: spatial
and temporal isolation

Data integrity;
Confidentiality
inside the Cluster

Application Priority levels
Application mapping;
SZ creation;

ARM
(2008)
[50]

Yes No
Secure Zone: spatial
and logical isolation

Access control;
Data integrity;

Application development
using ATZ API

Switch to TTE mode
and police execution

Isakovic
(2013)
[30]

Yes Yes
Secure Zone: Spatial
isolation and encryp-
tion

Access control;
Authentication;
Data integrity

Secure Kernel (keys and secure
channel management) and secure
mechanisms (protocols, algorithms)
provided

Secure channels creation;
key exchange;
Firewall rules execution

Sepúlveda
(2017)
[32]

Yes Yes
Discontinuous Secure
Zone: cryptography
and firewalls

Access control;
Authentication;
Confidentiality

–
Key exchange; cipher
and decipher messages

Caimi
(2019)
[56]

Yes Yes
ECDH; Opaque Secure
Zones; Rerouting;
Symmetric Encryption

DoS; Spoofing;
Data integrity;
Authentication; Tim-
ming attacks; MitM

Cluster size

Entities authentication;
Application admission;
Opaque Secure Zones;
Rerouting; Peripheral
data encryption

Ruaro
(2020)
[57]

Yes Yes
Spatial Isolation
SDN (circuit switching)

DoS; Spoofing;
Data integrity;
Authentication

Multiple-Physical NoC (MPN)
Entities authentication
Application admission;
SDN establishment

Reinbrecht
(2017)
[21]

No Yes Routing Scheme Timing SCA; –

Find baseline communi-
cation level; Communica-
tion monitoring; Change
routing police

Grammatikakis
(2015)
[62]

No Yes Firewall DDoS; Data leakage; –
Firewall rules configu-
ration and execution

The state-of-the art showed that during the application
execution phase, most works related to the security of
MCSoCs protect only the communication subsystem. The
main mechanisms used are firewalls, temporal network parti-
tion, routing schemes and secure zones. Table II summarizes
the characteristics of state-of-the-art proposals. The first col-
umn presents the primary author, year and reference paper
of proposed mechanism. The second and third columns indi-

cate if the proposed mechanism protects the communication
and/or computation. The fourth column presents the protec-
tion mechanism. The fifth column shows which attack or
malicious behavior is mitigated by the proposed mechanism.
The sixth and seventh columns summarize what happens at
design-time and runtime for each proposed mechanism. Ta-
ble II also has three blocks, each one presenting works re-
lated to the protection of different application lifetime phase

12 Caimi et al.: A Survey on Security Mechanisms for NoC-based Many-Core SoCs

(admission, execution, peripheral access).
Several works [17, 31, 37] adopt design time methods.

Methods deployed at design time enable the adoption of so-
phisticated and robust algorithms to provide solutions to the
security problem since they do not have limitations related
to the computation time of the heuristics. However, design
time methods are not applicable in dynamic workload sce-
narios. Thus, these methods are limited to scenarios where
the workload is known beforehand, without any change dur-
ing the life cycle of the system. In the review, only [37] ad-
dresses this issue suggesting that their proposed method can
be used in aerospace or medical devices. According to the
authors, these fields require high performance, security and
have static workloads.

The most common and intuitive approach to protect com-
munication refers to encryption mechanisms. The review
shows the use the AES modules incorporated to the NI, ci-
phering and deciphering the message flow in works such
as [12, 33, 47] or, less robust encryption modules using XOR
logic gates [28, 32]. This approach provides data confiden-
tiality but still expose the traffic to DoS and timing SCA at-
tacks. Firewall and TNP (Temporal Network Partition) try
mitigate this issues.

The use of firewalls [20, 27, 29] ensure access control to
the communication system, avoiding DoS attacks and mini-
mizing the possibility of data extraction by a malicious pro-
cess. Wassel et al. [37] and Wang et al. [38] use TNP to
provide temporal and logical traffic isolation avoiding the
interference on secure flows, enabling communication avail-
ability and timing SCA attacks protection.

The works offering protection to computation [19, 50] or
protecting computation and communication simultaneously
[30, 32] adopts temporal, logical or spacial isolation as main
mechanism.

The isolation enables the creation of secure zones. Ac-
cording to review, secure zones are defined at design time
[31] or at runtime [30, 32]. The techniques to create secure
zones include encryption [32], the routing algorithm [31],
firewalls [12] or, spatial isolation [53]. The proposed mecha-
nisms found in the literature implement secure zones provid-
ing logical [32, 34] or spatial isolation [31, 53], although still
sharing the communication resources, remaining vulnerable
to attacks such as, DoS, timing SCA, HT or data eavesdrop-
ping, depending on the mechanism used. The most compre-
hensive work [56] protects simultaneously computation and
communication, using opaque secure zones.

In the reviewed works, just Isakovic et al. [30] discuss the
needs of an explicit partitioning in the prevent resources. Ac-
cording to the Authors the application level don’t need to
implement mitigating resources directly. These mechanisms
must be implemented at hardware and microkernel level to
be used by the application level.

The protection of the application communication with pe-
ripherals and shared memories avoids unauthorized access
to instructions and data, which may also compromise the re-
sources availability, due to DoS attacks, cache-based SCA
attacks or tampering. Mechanisms to mitigate these threats
employ techniques such as firewalls [20], routing scheme
[21] and MAC [26].

Table III. Cost overhead of the proposals.

Proposal Overhead
area power latency other

Sepúlveda (2018)
[26] 152% – –

performance:
1% to 9%

Ancajas (2014)
[28] 9.9% 5.8% 5.8% –

Rajesh (2015)
[29] 12.7% 9.8% 5.4% –

Sepúlveda (2015)
[36] 11.0% 9.0% – –

Fernandes (2016)
[31] – – –

routing tables:
15.56%

Silva (2017)
[47] 233.0% – 700% to 1760% –

Kinsky (2017)
[12] 17.0% – 9.0% –

Real (2018)
[53] – – –

execution-time:
35.8%

Sepúlveda (2017)
[32] 20.0% 12.7% 30% to 55% –

Oliveira (2018)
[33] 193% – 126.3% to 395.9% –

Grammatikakis (2015)
[20] – -30% -20.5% –

Reinbrecht (2017)
[21] 21.0% 16.2% – –

Table III presents the overhead of distinct proposals (first
column) related to the area (second column), power con-
sumption (third column) and latency (fourth column). The
fifth column shows another overhead parameter eventually
presented by the schemes.

Even though all proposed mechanisms use MCSoC, ac-
cording to [66] a comparative cost analysis is hard to make.
This is the case for the performance, area, and power con-
sumption evaluation over distinct platforms and the compar-
ison only against a baseline architecture of one’s own work.
Also, the baseline system adopted for each work and the
workload varies. As an example, [32] uses encryption mech-
anisms to protect the communication and a dedicated service
NoC to key exchange and firewall rules configuration, pre-
senting area overhead of 20%, i.e. less than [21], which use
a router logic to generate and detect gossip messages, with
21% of area overhead. These works do not detail the baseline
system, making the comparison difficult and imprecise.

The area overheads are within the range of 9.9% up to
233% of the correspondent baseline implementation. In gen-
eral, methods that protect communication using AES mod-
ules present higher overhead, as Silva et al. [47] (233%)
and Oliveira et al. (193%). An initial expectation is that
adopting encryption methods would imply in highest area
and power costs. However, the reviewed proposed mecha-
nisms [28, 32], use only simple XOR-based methods to en-
crypt the communication. While such strategies imply good
results regarding area and power consumption, the papers do
not discuss how secure or how strong is this encryption tech-
nique.

The power consumption is strongly related to the work-
load and the method used to mitigate the threats. The eval-
uation in Grammatikakis et al. [62] show a power consump-
tion reduction of 30% when compared to the system un-
der attack. With the proposed method, several packets are
dropped by the firewall in the NI, saving power resources.
However, the impact of the firewall with normal operation is
not evaluated. Other works that evaluate the impact of the

Journal of Integrated Circuits and Systems, vol. 16, n. 2, 2021 13

proposed methods in power consumption shows an increase
between 5.8% with the packet certification presented in [28]
and 16.2% with the gossip method proposed in [21].

A. Final Remarks

As presented in Section I., we argue that the security con-
cerns to run a sensitive application must deal with the ap-
plication admission, the computational and communications
aspects of their execution, and the memory and I/O access.
The state-of-the-art review shows that few works present a
systemic solution that includes all these aspects.

Most works consider only one of these aspects, limited
to the application execution (computation or communica-
tion protection) and the memory access. The concern about
memory access is considered from the communication point
of view. Proposals regarding the application admission and
the access to peripherals are scarce in the MCSoC re-
search field. A low-cost protocol for secure application ad-
mission and communication with external devices targeting
MCSoCs is still an open research problem.

Two recent works present systemic solutions, opaque se-
cure zones (OSZ) [56] and the use of SDN to define paths
through circuit-switching [57].

The OSZ proposal is concerned with the three stages of
execution, presenting a proposal with lightweight encryption
for communication with peripherals. Future works for OSZ
include: (i) provide an open standard IO interface, such as
AMBA or Wishbone, at the borders of the MCSoC, en-
abling the isolation of internal NoC signals to the periph-
eral. This feature increases the MCSoC security once the
internal signaling used is hidden, the attacks started on ma-
licious peripherals are hindered; (ii) implement a peripheral
request manager with arbitration functionality, enabling si-
multaneous requests to devices, including the retransmission
of messages.

The SDN approach does not require the use of continu-
ous regions. Spatial isolation is controlled by mapping, and
isolation of data flows controlled by circuit switching. Future
work for SDN include: (i) protection of the packet switching
network to prevent DoS attacks, since this subnet is not pro-
tected; (ii) definition of a method for safely communication
with peripherals, since it occurs through packet switching
given the limitations of the number of SDN subnets.

ACKNOWLEDGEMENTS

This work was financed in part by CNPq (Conselho
Nacional de Desenvolvimento Cientı́fico e Tecnológico)
– grant 309605/2020-2; and CAPES (Coordenação de
Aperfeiçoamento de Pessoal de Nı́vel Superior), Finance
Code 001.

REFERENCES

[1] K. Popovici, F. Rousseau, A. A. Jerraya, and M. Wolf, Embedded Soft-
ware Design and Programming of Multiprocessor System-on-Chip:
Simulink and System C Case Studies. Springer Publishing Company,
Incorporated, 290p, 2010.

[2] Mellanox Tecnhlogies, “TILE-Gx72 Processor Overview,” Nov 2018,
source: http://www.mellanox.com, Nov. 2018.

[3] A. Sodani, R. Gramunt, J. Corbal, H. S. Kim, K. Vinod,
S. Chinthamani, S. Hutsell, R. Agarwal, and Y. C. Liu, “Knights Land-
ing: Second-Generation Intel Xeon Phi Product,” IEEE Micro, vol. 36,
no. 2, pp. 34–46, 2016.

[4] Oracle, “Oracle’s SPARC T8 and SPARC M8 Server Architecture,”
Oracle Corporation, Tech. Rep., 2017.

[5] B. D. D. Dinechin, D. V. Amstel, M. Poulhiès, and G. Lager, “Time-
critical computing on a single-chip massively parallel processor,” in
Design, Automation Test in Europe Conference (DATE), 2014, pp. 1–
6.

[6] B. Bohnenstiehl, A. Stillmaker, J. Pimentel, T. Andreas, B. Liu,
A. Tran, E. Adeagbo, and B. Bass, “A 5.8 pJ/Op 115 billion ops/sec, to
1.78 trillion ops/sec 32nm 1000-processor array,” in IEEE Symposium
on VLSI Circuits (VLSIC), 2016, pp. 1–2.

[7] O. Peckham, “Esperanto Unveils ML Chip with
Nearly 1,100 RISC-V Cores,” DEC 2020, source:
https://www.hpcwire.com/2020/12/08/esperanto-unveils-ml-chip-
with-nearly-1100-risc-v-cores.

[8] Intel, “Intel Core i9-7980XE Extreme
Edition Processor,” Nov 2018, source:
https://www.intel.com/content/www/us/en/products/processors/core/x-
series/i9-7980xe.html.

[9] S. Baron, M. S. Wangham, and C. A. Zeferino, “Security mechanisms
to improve the availability of a Network-on-Chip,” in IEEE Inter-
national Conference on Electronics, Circuits, and Systems (ICECS),
2013, pp. 609–612.

[10] J. Ramachandran, Designing Security Architecture Solutions. John
Wiley & Sons, Inc., 483p, 2002.

[11] M. M. Real, V. Migliore, V. Lapotre, and G. Gogniat, “ALMOS Many-
Core Operating System Extension with New Secure-Enable Mecha-
nisms for Dynamic Creation of Secure Zones,” in Euromicro Interna-
tional Conference on Parallel, Distributed, and Network-Based Pro-
cessing (PDP), 2016, pp. 820–824.

[12] M. A. Kinsy, S. Khadka, M. Isakov, and A. Farrukh, “Hermes: Secure
heterogeneous multicore architecture design,” in IEEE International
Symposium on Hardware Oriented Security and Trust (HOST), 2017,
pp. 14–20.

[13] C. Reinbrecht, B. Forlin, A. Zankl, and J. Sepúlveda, “Earthquake
— A NoC-based optimized differential cache-collision attack for MP-
SoCs,” in Design, Automation Test in Europe Conference (DATE),
2018, pp. 648–653.

[14] O. Hanka and H. Wippel, “Secure deployment of application-tailored
protocols in future networks,” in International Conference on the Net-
work of the Future (NoF), 2011, pp. 10–14.

[15] C. Kuntze, N.; Rudolph, “Secure deployment of SmartGrid equip-
ment,” in IEEE Power Energy Society General Meeting (PESGM),
2013, pp. 1–5.

[16] N. Khernane, M. Potop-Butucaru, and C. Chaudet, “BANZKP: a
Secure Authentication Scheme Using Zero Knowledge Proof for
WBANs,” in International Conference on Mobile Ad Hoc and Sensor
Systems (MASS), 2016, pp. 307–315.

[17] Y. Hu, D. Müller-Gritschneder, M. J. Sepulveda, G. Gogniat, and
U. Schlichtmann, “Automatic ILP-based Firewall Insertion for Secure
Application-Specific Networks-on-Chip,” in Workshop on Intercon-
nection Network Architectures: On-Chip, Multi-Chip (INA-OCMC),
2015, pp. 9–12.

[18] J. Sepúlveda, D. Flórez, and G. Gogniat, “Reconfigurable security
architecture for disrupted protection zones in NoC-based MPSoCs,”
in Symposium on Reconfigurable Communication-centric Systems-on-
Chip (ReCoSoC), 2015, pp. 1–8.

14 Caimi et al.: A Survey on Security Mechanisms for NoC-based Many-Core SoCs

[19] M. M. Real, P. Wehner, V. Migliore, V. Lapotre, D. Göhringert,
and G. Gogniat, “Dynamic spatially isolated secure zones for NoC-
based many-core accelerators,” in Symposium on Reconfigurable
Communication-centric Systems-on-Chip (ReCoSoC), 2016, pp. 1–6.

[20] M. D. Grammatikakis, P. Petrakis, A. Papagrigoriou, G. Kornaros, and
M. Coppola, “High-level security services based on a hardware NoC
Firewall module,” in Workshop on Intelligent Solutions in Embedded
Systems (WISES), 2015, pp. 73–78.

[21] C. Reinbrecht, A. Susin, L. Bossuet, G. Sigl, and J. Sepúlveda, “Tim-
ing attack on NoC-based systems: Prime+Probe attack and NoC-
based protection,” Microprocessors and Microsystems (MICPRO),
vol. 52, no. C, pp. 556–565, 2017.

[22] C. H. Gebotys and R. J. Gebotys, “A framework for security on NoC
technologies,” in IEEE Computer Society Annual Symposium on VLSI
(ISVLSI), 2003, pp. 113–117.

[23] A. Avizienis, J. C. Laprie, B. Randell, and C. Landwehr, “Basic
concepts and taxonomy of dependable and secure computing,” IEEE
Transactions on Dependable and Secure Computing, vol. 1, no. 1, pp.
11–33, 2004.

[24] J. Coburn, S. Ravi, A. Raghunathan, and S. Chakradhar, “SECA:
Security-enhanced Communication Architecture,” in IEEE Interna-
tional Conference on Compilers, Architectures and Synthesis for Em-
bedded Systems (CASES), 2005, pp. 78–89.

[25] S. Evain and J. P. Diguet, “From NoC security analysis to design so-
lutions,” in IEEE Workshop on Signal Processing Systems Design and
Implementation (SiPS), 2005, pp. 166–171.

[26] J. Sepúlveda, F. Willgerodt, and M. Pehl, “SEPUFSoC: Using PUFs
for Memory Integrity and Authentication in Multi-Processors System-
on-Chip,” in Great Lakes Symposium on VLSI (GLSVLSI), 2018, pp.
39–44.

[27] D. He, J. Chen, and Y. Chen, “A secure mutual authentication scheme
for session initiation protocol using elliptic curve cryptography,” Se-
curity and Communication Networks, vol. 5, no. 12, pp. 1423–1429,
2012.

[28] D. M. Ancajas, K. Chakraborty, and S. Roy, “Fort-NoCs: Mitigating
the threat of a compromised NoC,” in ACM/IEEE Design Automation
Conference (DAC), 2014, pp. 1–6.

[29] J. Rajesh, D. M. Ancajas, K. Chakraborty, and S. Roy, “Runtime
Detection of a Bandwidth Denial Attack from a Rogue Network-on-
Chip,” in IEEE/ACM International Symposium on Networks-on-Chip
(NOCS), 2015, pp. 8:1–8:8.

[30] H. Isakovic and A. Wasicek, “Secure channels in an integrated MP-
SoC architecture,” in Industrial Electronics Society (IECON), 2013,
pp. 4488–4493.

[31] R. Fernandes, C. Marcon, R. Cataldo, J. Silveira, G. Sigl, and
J. Sepúlveda, “A security aware routing approach for NoC-based
MPSoCs,” in Symposium on Integrated Circuits and Systems Design
(SBCCI), 2016, pp. 1–6.

[32] J. Sepúlveda, D. Flórez, V. Immler, G. G., and G. Sigl, “Efficient
security zones implementation through hierarchical group key man-
agement at NoC-based MPSoCs,” Microprocessors and Microsystems
(MICPRO), vol. 50, pp. 164 – 174, 2017.

[33] B. Oliveira, R. Reusch, H. Medina, and F. G. Moraes, “Evaluating the
Cost to Cipher the NoC Communication,” in IEEE Latin American
Symposium on Circuits and Systems (LASCAS), 2018, pp. 1–4.

[34] G. Sharma, . S. Ellinidou, R. Anand, V. Kuchta, O. Markowitch, and
J. Dricot, “Secure Communication on NoC based MPSoC,” in Inter-
national Conference on Security and Privacy in Communication Net-
works (SecureComm), 2018, p. 12.

[35] L. L. Caimi, V. Fochi, and F. G. Moraes, “Secure Admission of Appli-
cations in Many-Cores,” in IEEE International Conference on Elec-
tronics, Circuits and Systems (ICECS), 2018, pp. 761–764.

[36] J. Sepúlveda, J. P. Diguet, M. Strum, and G. Gogniat, “NoC-Based
Protection for SoC Time-Driven Attacks,” IEEE Embedded Systems
Letters (ESL), vol. 7, no. 1, pp. 7–10, 2015.

[37] H. M. G. Wassel, Y. Gao, J. K. Oberg, T. Huffmire, R. Kastner, F. T.
Chong, and T. Sherwood, “Networks on Chip with Provable Security
Properties,” IEEE Micro, vol. 34, no. 3, pp. 57–68, 2014.

[38] Y. Wang and G. E. Suh, “Efficient Timing Channel Protection
for On-Chip Networks,” in IEEE/ACM International Symposium on
Networks-on-Chip (NOCS), 2012, pp. 142–151.

[39] NaNoC, “The NaNoC project,” Nov 2018, source: http://www.nanoc-
project.eu/.

[40] S. Azad, B. Niazmand, G. Jervan, and J. Sepulveda, “Enabling Secure
MPSoC Dynamic Operation through Protected Communication,” in
ICECS, 2019, pp. 481–484.

[41] S. Payandeh Azad, G. Jervan, M. Tempelmeier, and J. Sepulveda,
“CAESAR-MPSoC: Dynamic and Efficient MPSoC Security Zones,”
in ISVLSI, 2019, pp. 477–482.

[42] S. Charles, M. Logan, and P. Mishra, “Lightweight Anonymous Rout-
ing in NoC based SoCs,” in DATE, 2020, pp. 334–337.

[43] L. Indrusiak, J. Harbin, C. Reinbrecht, and J. Sepúlveda, “Side-
channel protected MPSoC through secure real-time networks-on-
chip,” Microprocessors and Microsystems, vol. 68, pp. 34–46, 2019.

[44] NASA, “Numerical Aerodynamic Simulation - NAS,” Nov 2015,
source: http://www.nas.nasa.gov/publications/npb.htm, Nov. 2018.

[45] H. M. G. Wassel, Y. Gao, J. K. Oberg, T. Huffmire, R. Kastner, F. T.
Chong, and T. Sherwood, “SurfNoC: A Low Latency and Provably
Non-interfering Approach to Secure Networks-on-chip,” in Interna-
tional Symposium on Computer Architecture (ISCA), 2013, pp. 583–
594.

[46] R. Churchhouse, Codes and Ciphers: Julius Caesar, the Enigma, and
the Internet. Cambridge University Press, 240p, 2002.

[47] M. R. Silva and C. A. Zeferino, “Confidentiality and Authenticity in
a Platform Based on Network-on-Chip,” in Brazilian Symposium on
Computing Systems Engineering (SBESC), 2017, pp. 225–230.

[48] A. C. Sant’Ana, H. Medina, and F. G. Moraes, “Security
Vulnerabilities and Countermeasures in MPSoCs,” IEEE De-
sign Test, vol. preprint, pp. 1–7, 2021. [Online]. Available:
https://doi.org/10.1109/MDAT.2021.3049710

[49] T. Boraten and A. K. Kodi, “Packet security with path sensitization
for NoCs,” in Design, Automation Test in Europe Conference (DATE),
2016, pp. 1136–1139.

[50] ARM, “ARM Security Technology: Building a Secure System using
TrustZone Technology,” Nov 2018, source: http://infocenter.arm.com,
Nov. 2018.

[51] C. W. Fletcher, M. Dijk, and S. Devadas, “A Secure Processor Archi-
tecture for Encrypted Computation on Untrusted Programs,” in ACM
Workshop on Scalable Trusted Computing (WSTC), 2012, pp. 3–8.

[52] C. Hoffman, M. Cortes, D. F. Aranha, and G. Araujo, “Computer se-
curity by hardware-intrinsic authentication,” in Conference on Hard-
ware/Software Codesign and System Synthesis (CODES+ISSS), 2015,
pp. 143–152.

[53] M. M. Real, P. Wehner, V. Lapotre, D. Göhringer, and G. Gogniat,
“Application Deployment Strategies for Spatial Isolation on Many-
Core Accelerators,” ACM Transaction on Embedded Computing Sys-
tems, vol. 17, no. 2, pp. 55:1–55:31, 2018.

Journal of Integrated Circuits and Systems, vol. 16, n. 2, 2021 15

[54] P. Wehner, J. Rettkowski, T. Kleinschmidt, and D. Göhringer, “MP-
SoCSim: An extended OVP simulator for modeling and evaluation of
Network-on-Chip based heterogeneous MPSoCs,” in Conference on
Embedded Computer Systems: Architectures, Modeling, and Simula-
tion (SAMOS), 2015, pp. 390–395.

[55] C. E. Salloum, M. Elshuber, O. Höftberger, H. Isakovic, and A. Wa-
sicek, “The ACROSS MPSoC – A new generation of multi-core pro-
cessors designed for safety–critical embedded systems,” Microproces-
sors and Microsystems (MICPRO), vol. 37, no. 8, pp. 1020 – 1032,
2013.

[56] L. L. Caimi and F. G. Moraes, “Security in Many-Core SoCs
Leveraged by Opaque Secure Zones,” in ISVLSI, 2019, pp. 471–476.
[Online]. Available: https://doi.org/10.1109/ISVLSI.2019.00091

[57] M. Ruaro, L. L. Caimi, and F. G. Moraes, “SDN-Based Secure Ap-
plication Admission and Execution for Many-Cores,” IEEE Access,
vol. 8, pp. 177 296–177 306, 2020.

[58] C. Reinbrecht, A. Aljuffri, S. Hamdioui, M. Taouil, B. Forlin, and
J. Sepulveda, “Guard-NoC: A protection against side-channel attacks
for MPSoCs,” in ISVLSI, 2020, pp. 536–541.

[59] C. Reinbrecht, A. Susin, L. Bossuet, and J. Sepúlveda, “Gossip
NoC - Avoiding Timing Side-Channel Attacks through Traffic Man-
agement,” in IEEE Computer Society Annual Symposium on VLSI
(ISVLSI), 2016, pp. 601–606.

[60] C. Reinbrecht, A. Susin, L. Bossuet, G. Sigl, and J. Sepúlveda,
“Side channel attack on NoC-based MPSoCs are practical: NoC
Prime+Probe attack,” in Symposium on Integrated Circuits and Sys-
tems Design (SBCCI), 2016, pp. 1–6.

[61] D. A. Osvik, A. Shamir, and E. Tromer, “Cache Attacks and Coun-
termeasures: The Case of AES,” in Topics in Cryptology, 2006, pp.
1–20.

[62] M. D. Grammatikakis, K. Papadimitriou, P. Petrakis, A. Papagrigo-
riou, G. Kornaros, I. Christoforakis, O. Tomoutzoglou, G. Tsamis, and
M. Coppola, “Security in MPSoCs: A NoC Firewall and an Evalua-
tion Framework,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 34, no. 8, pp. 1344–1357, 2015.

[63] K. Papadimitriou, P. Petrakis, M. D. Grammatikakis, and M. Cop-
pola, “Security Enhancements for building saturation-free, low-power
NoC-based MPSoCs,” in IEEE Conference on Communications and
Network Security (CNS), 2015, pp. 594–600.

[64] M. D. Grammatikakis, K. Papadimitriou, P. Petrakis, A. Papagrigo-
riou, G. Kornaros, I. Christoforakis, and M. Coppola, “Security Ef-
fectiveness and a Hardware Firewall for MPSoCs,” in IEEE High Per-
formance Computing and Communications (HPCC), 2014, pp. 1032–
1039.

[65] J. Sepúlveda, G. Gogniat, D. Flórez, J. P. Diguet, R. Pires, and
M. Strum, “TSV protection: Towards secure 3D-MPSoC,” in IEEE
Latin American Symposium on Circuits Systems (LASCAS), 2015, pp.
1–4.

[66] T. Bjerregaard and S. Mahadevan, “A Survey of Research and Prac-
tices of Network-on-chip,” ACM Computing Surveys (CSUR), vol. 38,
no. 1, pp. 1–51, 2006.

