Self-Adaptive QoS Management of Computation
and Communication Resources in Many-Core SoCs

MARCELO RUARO, Pontifical Catholic University of Rio Grande do Sul, Brazil
AXEL JANTSCH, TU Wien, Austria
FERNANDO GEHM MORAES, Pontifical Catholic University of Rio Grande do Sul, Brazil

Providing quality of service (QoS) for many-core systems with dynamic application admission is challenging
due to the high amount of resources to manage and the unpredictability of computation and communica-
tion events. Related works propose a self-adaptive QoS mechanism concerned either in communication or
computation resources, lacking, however, a comprehensive QoS management of both. Assuming a many-core
system with QoS monitoring, runtime circuit-switching establishment, task migration, and a soft real-time
task scheduler, this work fills this gap by proposing a novel self-adaptive QoS management. The contribu-
tion of this proposal comes with the following features in the QoS management: (i) comprehensiveness, by
covering communication and computation resources; (ii) online, adopting the ODA (Observe, Decide, Act)
runtime closed-loop adaptation; and (iii) reactive and proactive decisions, by using a dynamic application
profile extraction technique, which enables the QoS management to be aware of the profile of running appli-
cations, allowing it to take proactive decisions based on a prediction analysis. The proposed QoS management
adopts a decentralized organization by partitioning the system in clusters, each one managed by a dedicated
processor, making the proposal scalable. Results show that the proactive feature accurately extracts the appli-
cations’ profile, and can prevent future QoS violations. The synergy of reactive and proactive decisions was
able to sustain QoS, reducing the deadline miss rate by 99.5% with a severe disturbance in communication
and computation levels, and avoiding deadline misses up to 70% of system utilization.

CCS Concepts: » Computer systems organization — Real-time system architecture; System on a chip;
Additional Key Words and Phrases: Quality of service, many-core, self-adaptation, prediction

ACM Reference format:

Marcelo Ruaro, Axel Jantsch, and Fernando Gehm Moraes. 2019. Self-Adaptive QoS Management of Compu-
tation and Communication Resources in Many-Core SoCs. ACM Trans. Embed. Comput. Syst. 18, 4, Article 37
(June 2019), 21 pages.

https://doi.org/10.1145/3328755

Author Fernando Gehm Moraes is supported by FAPERGS (17/2551-0001196-1) and CNPq (302531/2016-5), Brazilian fund-
ing agencies. Author Marcelo Ruaro is supported by FAPERGS (18/2551-000501-0).

Authors’ addresses: M. Ruaro, Pontifical Catholic University of Rio Grande do Sul, Av. Ipiranga, 6681, Porto Alegre, RS,
90619-900, Brazil; email: marcelo.ruaro@acad.pucrs.br; A. Jantsch, TU Wien, Gu3hausstrafle 27-29, Vienna, Austria; email:
axel.jantsch@tuwien.ac.at; F. G. Moraes (corresponding author), Pontifical Catholic University of Rio Grande do Sul, Av.
Ipiranga, 6681, Porto Alegre, RS, 90619-900, Brazil; email: fernando.moraes@pucrs.br.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2019 Association for Computing Machinery.

1539-9087/2019/06-ART37 $15.00

https://doi.org/10.1145/3328755

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 4, Article 37. Publication date: June 2019.

https://doi.org/10.1145/3328755
mailto:permissions@acm.org
https://doi.org/10.1145/3328755

37:2 M. Ruaro et al.

1 INTRODUCTION

Advances like the IBM’s 5nm silicon transistor [13] keep up Moore’s law, paving the way to cre-
ate even more densely integrated chips. Many-core systems with a dozen to hundreds of cores
are a reality and are the state-of-the-art regarding computing capacity in a single chip [3]. Many-
cores provide outstanding processing power, but also pose challenges for temperature manage-
ment (dark silicon), energy consumption, security, and quality of service (QoS).

Due to the number of resources to manage and the unpredictability that many-core systems
have, self-adaptive management becomes fundamental to address such challenges [6]. While in
an adaptive system the adaptation process may be triggered from the outside, e.g., by an applica-
tion management layer or a human operator, a self-adaptive system itself identifies the triggering
condition and initiates the adaptation process [9, 12]. Dutt et al. [6] present a self-adaptive hi-
erarchical management, with the goal to ensure scalability in large many-core systems. At the
lower level, monitors/sensors collect the system’s status (resources, applications, constraints) and
send it to a high-level management unit, which can make decisions according to the specified
requirements.

Many-core resources can be classified into two main groups: computation and communication.
Communication resources are concerned with transmitting data. Features as scalability and
parallelism on the communication flows make Networks-on-Chip (NoCs) the communication
infrastructure adopted in many-cores. Flow priority, Time Division Multiplexing (TDM), Spatial
Division Multiplexing (SDM), and Circuit-switching (CS) are examples of techniques to achieve
QoS at the communication level [2, 10, 14, 15]. Computation resources are related to data
processing, including processors and memory components. Many-cores adopt different memory
schemes, from distributed shared memories to local scratchpad memories. QoS techniques for
computation resources are centered on real-time task schedulers and memory schedulers in a
fine-grain level [17], and task mapping and task migration in a coarse-grain level [11].

The design of a many-core system with QoS support requires comprehensive and self-adaptive
features, including actuation at both computation and communication resources. An efficient dy-
namic task mapping that considers computation and communication [25] is the first step toward
QoS support in a many-core. Alone, task mapping cannot handle unpredictable events related to
variable workload and interference in the communication infrastructure. Related works [2, 10, 11,
14,17, 20-23, 26] on self-adaptive QoS mechanisms for many-cores focus on techniques addressing
either communication or computation resources. However, the literature lacks a comprehensive
framework that manages in an integrated way the resources of many-cores to meet QoS.

The goal of this work is to fulfill this gap by proposing a comprehensive self-adaptive QoS
management for soft real-time applications on many-core platforms.

The self-adaptive QoS management proposal is the original contribution, with the following
properties:

(a) comprehensiveness: the self-adaptive QoS management addresses communication and
computation resources;

(b) online: not requiring the knowledge of the applications set at design-time;

(c) proactive: besides reactive action, the QoS management also employs a dynamic appli-
cation profile extraction (DAPE) technique to profile tasks on-the-fly to direct resources
according to such profile.

To achieve the proposed goal, this works adopts the ODA (Observe-Decide-Act) closed-
loop management [8], a systematic and modular self-adaptation method, dividing the system
components in roles for Observation (monitoring), Decision heuristics, and Actuation. The

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 4, Article 37. Publication date: June 2019.

Self-Adaptive QoS Management of Comp. and Comm. Resources in Many-Core SoCs 37:3

Table 1. Related Works on Self-Adaptive QoS for Many-Cores

Work QoS focus Method QoS technique
[5]-2013 | Computation Online Task Scheduler Task Mapping
[11]-2014 | Computation aDg;%n;:arsnﬂiC;?;;E;%Behavwr Task Remapping
[17]-2014 | Computation Hierarchical Scheduler Task Migration
[18]-2015 | Computation Cluster Scheduler Task Mapping/Task Migration
[20]-2016 | Computation PDynz‘im.lc Mapping Based on Task Migration
rediction
[23]-2016 | Computation Dynamic Task Scheduler Task Migration/Task Scheduler
[14]-2010 | Communication | Bandwidth Self-Adaptation Flow Priority
[10]-2013 | Communication | Expose NoC QoS Services Flow Priority/CS
[2]-2013 | Communication | Proactive CS Establishment CS
[21]-2015 | Communication | Self-Adaptive Management Flow Priority/CS
[22]-2018 | Communication | Self-Adaptive Management CS

self-adaptation management receives QoS fulfillment monitoring data (deadline miss, latency
miss) and applications QoS feedback (notifications about runtime workload changes), enabling
the QoS management to act reactively according to the severity of the events. Additionally, due
to the DAPE technique, the QoS management continuously observes the tasks’ profile, aiming to
early improve the resource allocation and helping to avoid future QoS violations.

The scope of this work is to present the high-level self-adaptive QoS management. The low-
level adaptive QoS techniques, responsible for reconfiguring at runtime the system, use techniques
previously developed to meet QoS at a specific level: (i) communication QoS: circuit-switching
establishment and release [22]; (ii) computation QoS: real-time task scheduler with task migration
[23].

This article is organized as follows. Section 2 reviews related work, and Section 3 presents the
many-core architectural features and the application model. Section 4 introduces DAPE, and Sec-
tion 5 details the proposed self-adaptive management technique. Section 6 presents the experi-
mental results, and Section 7 concludes the article.

2 RELATED WORK

This section discusses related works according to the main goal of this work: self-adaptation
for QoS. Several proposals provide runtime QoS mechanisms for many-core systems, with self-
adaptive techniques, targeting resource management (dynamic mapping, task migration, task
scheduling, flow priority, and CS). Table 1 presents the self-adaptive QoS proposals most related
to this work. The second column in the table presents the QoS focus, i.e., if the proposed technique
is applied at the communication or computation levels. Next, the third column details the specific
method to meet the QoS constraints. The last column, QoS technique, refers to the mechanisms
and policies adopted to meet the QoS goals.

Several works [5, 11, 17, 18, 20, 23] adopt dynamic task remapping/migration to answer to
the workload changes or real-time violations, addressing QoS at the computation level. Some
of these works [11, 18, 20] adopt a hybrid task remapping heuristic, assuming that application
characteristics are known at design-time. In contrast, we assume the application set is unknown
at design-time. The proposed DAPE observes the running applications, creating an online profile.
In Ref. [11], applications can tune the workload at runtime by using an API. This feature provides

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 4, Article 37. Publication date: June 2019.

37:4 M. Ruaro et al.

high flexibility to an application to change its workload. Our work enables the workload recon-
figuration by an API, where each task can change its real-time constraints at runtime. Most works
assume a hierarchical management organization [17, 18, 20, 23], which distributes the management
load by adopting a cluster-based organization, with a set of cores managed by a cluster manager.
This work also adopts a hierarchical organization, with slave cores running the user’s applications
and sending monitored/feedback data to a cluster manager, which executes the QoS management.

The aforementioned works, while satisfying the computation constraints, also try to reduce
the communication cost by mapping tasks closer to each other [16]. However, these approaches
address communication QoS indirectly and are not able to handle unpredictable events that can
disturb the traffic in the network, e.g., a high-priority flow crossing the communication path be-
tween two RT tasks. To mitigate this disturbance, works focusing only on computation QoS have
to migrate the affected tasks to other processors, instead to act directly at the communication level.

The works in Refs [14] and [21] address QoS at the communication level. Several works develop
techniques to implement a QoS-driven infrastructure considering only the NoC (e.g., see Refs [2]
and [26]). Joven et al. [10] expose the communication QoS support to the software layer enabling
the developer to define the QoS constraints. Abousamra et al. [2] observe the message requests to
set proactive CS, which is used for future message deliveries. Authors in Ref. [14] propose a self-
adaptive mechanism that exposes the hardware through a set of registers, allowing to program the
QoS constraints for a bus-based SoC. The work in Ref. [21] proposes a self-adaptive flow priority
management and CS establishment based on latency and throughput constraints. The authors of
Ref. [22] propose a runtime CS based on a Software-Defined Networking (SDN) paradigm, enabling
to establish CS paths that remain during the whole application lifetime.

As also can be observed in related works, task scheduling/migration, and CS stand out as tech-
niques to provide QoS at computation and communication levels, respectively. The novelty of our
work is a unified self-adaptive QoS management addressing QoS of computation (task schedul-
ing/migration) and communication (CS) for soft real-time applications.

An important feature to leverage a fully autonomous system is the ability to extract the applica-
tion’s profile. References [11] and [20] obtain the applications’ task graph mixing design-time and
runtime steps. A dynamic mechanism has access to the application graph, using it to optimize run-
time decisions, such as application remapping. This approach simplifies the runtime techniques
because it provides a detailed application profile. However, it increases the complexity of the appli-
cation development because the developer is in charge to provide an accurate application profile at
design-time. Ganeshpure et al. [7] propose a runtime technique that extracts the communication
task graph of the applications. The operating system implements this extraction by observing the
execution phases for each task.

Our work adopts a more flexible approach. As in Ref. [7], the operating system extracts the
tasks’ behavior. However, Ref. [7] uses less than 200 iterations to profile the application while
our technique continuously extracts the application profile. This feature enables to support ap-
plications with dynamic behaviors, i.e., the workload changes at runtime (common in multime-
dia applications). Additionally, we are concerned with scalability since DAPE adopts a hierarchi-
cal organization with monitors at each core, sending the task level information to a high-level
manager.

3 BASELINE PLATFORM AND ASSUMPTIONS
3.1 Hardware and Software Platform

The baseline many-core architecture adopted in this work is an open-source project, available on-
line [19] and illustrated in Figure 1. The processing elements (PE) are interconnected through a

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 4, Article 37. Publication date: June 2019.

Self-Adaptive QoS Management of Comp. and Comm. Resources in Many-Core SoCs 37:5

Cluster: the cluster size is defined at design time. At runtime, the manager can borrow
resources from neighbor clusters increasing its size

Multiple Physical NoC: 1 PS
and n CS subnets

EHI Yo HsHsHs]
IlI IIl [T III*‘FIII+III+III+III Cluster Manager Processor

- Mpe

annannan st s
III+III+III+III*FIII [T [TT1
nnnnn&an
o — c— =

ﬂﬂﬂﬂ_ﬂﬂﬂﬂ
15inn’ ininE

——— —— . —— —

Fig. 1. (a) Overview of the baseline many-core system (four 4x4 clusters). (b) Overview of the PE architecture.

2D-mesh NoC network. Each PE contains a 32-bit processor (MIPS architecture), a local scratch-
pad memory, and a Network Interface (NI) connected to the packet-switching (PS) and circuit-
switching (CS) routers.

This work adopts a memory hierarchy, with scratchpad memories storing code and data. The
reasons for adopting such memory hierarchy are twofold. First, this model enables an easy under-
standing and reproduction of the QoS proposals. Second, it enables to capture accurate results, at
the clock-cycle level, due to the usage of an RTL platform model. Architecture and QoS mecha-
nisms are orthogonal concepts. Architectural features, like caches, out-of-order execution, or dif-
ferent hardware affect the communication at the processor level and the communication at the
NoC level. The proposed QoS mechanisms monitor the computation and communication loads,
firing a given action according to the processor load and NoC traffic.

At the software level, PEs assume two roles: slave PEs—Spg, and manager PEs—Mpg. Spgs ex-
ecute an in-house pkernel (small operating system) and user’s tasks. The pkernel executes task
scheduling, inter-task communication (message passing), multitasking, NoC interruptions, and
system calls. This pkernel can be easily customized according to specific goals (e.g., QoS, secu-
rity, fault-tolerance). Mpgs execute system management algorithms, as application admission, task
mapping, reclustering, and the proposed self-adaptive algorithms. This architecture can also run
Linux-based operating systems. Abich et al. [1] use an untimed model of the platform describing
it with Open Virtual Platform (OVP), replacing the pkernel by a Free Real-Time Operating System
(RTOS) Linux distribution.

Figure 1 presents the many-core organized with four clusters, each one having 1 Mpg and 15
Spes. The reason to adopt this hierarchical organization is to ensure scalability by distributing the
QoS management actions at different Mpgs. The cluster size is defined at design time. At execution
time, when the cluster has all its resources in use, an Mpg may borrow resources from neighboring
clusters, in a process named reclustering [4]. According to Ref. [4], a cluster size with 18 (6x3) or 16
(4x4) Spgs represents a good tradeoff between execution time optimization and resources reserved
for management.

The many-core supports Best-Effort (BE) and soft Real-Time (RT) applications. Task graphs de-
scribe the applications (Figure 2(a)), with nodes corresponding to tasks and edges denoting the

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 4, Article 37. Publication date: June 2019.

37:6 M. Ruaro et al.

Receive(&msg, TaskA)
Send(&msg, TaskD)

a .
Send(&msg, TaskB) (@ - period === ===
Send(&msg, TaskC) €--—-——-. deadline +=—==——=—=——=—ae
Receive(&msg, TaskB) e ton e D - — — slack time _ _ »
Receive(&msg, TaskC)
| —
Receive(&msg, TaskA) (b) time
Send(&m sg, TaskD) ready time

Fig. 2. (a) Application model. (b) RT task model.

communication between tasks. Each edge is a Communicating Task Pair (CTP) with a producer
task and a consumer task. Each RT task has timing constraints (Figure 2(b)) modeled as period,
deadline, execution time. BE tasks do not have timing bounds and explore the slack time of RT
tasks. All tasks communicate based on Message Passing Interface (MPI) with Send and Receive
primitives. Receive primitives block the consumer task execution and fire a request to a producer
task, which handles the request and delivers the data when ready, unblocking the consumer task.

3.2 Adaptive Quality of Service Techniques

This section reviews the adaptive QoS techniques used in the proposed high-level self-adaptive
QoS management. Those low-level techniques do not correspond to a new contribution since they
were previously proposed to ensure QoS at the communication or computation level.

3.2.1 Dynamic Circuit-Switching (CS)—[22]. The CS support employs a Multiple Physical Net-
work (MPN) architecture. The MPN contains one packet-switching (PS) sub-net (red wires in
Figure 1) and CS sub-nets (blue wires in Figure 1). The PS sub-net has a conventional PS router,
supporting XY routing and credit-based flow control. The CS sub-nets contain simple and pro-
grammable CS routers managed by software (Software-Defined Networking (SDN)). One CS router
corresponds to 20% of one PS router area. The SDN paradigm implies that the complex logic for run-
time CS establishment is removed from the routers’ level (hardware), assigned to a CS-Controller
that is software implemented. The CS-Controller is allocated as a real-time task in an Spg. Its role
is to handle CS requests from Mpgs, to search a path using a shortest-path algorithm, and to de-
fine a path by physically configuring the CS routers. The CS routers have the role of forwarding
packets from a given input port to an output port according to a look-up table configured by the
CS-Controller at runtime. The PS sub-net is used for best-effort flows and management traffic, and
CS sub-nets are used for real-time flows.

3.2.2 Dynamic Real-Time Task Scheduler—[23]. The dynamic task scheduler supports best-
effort and soft real-time tasks. It is hierarchically organized in two levels. At the lower level, a
task scheduler algorithm executes at each Spg. Its role is to schedule the Central Processing Unit
(CPU) time according the least slack time (LST) algorithm, which assigns a higher priority to tasks
with the least slack time to execute. Best-effort tasks explore the slack time left by the real-time
task execution. At the higher level, a cluster scheduler on the Mpg executes task mapping when
a given application enters the system and handles task migration. The task migration is triggered
according to the decisions made by the algorithms proposed in Section 5. The scheduler has an
important feature that enables a task to reconfigure its real-time constraints at runtime by calling
an API that allows tasks to change its period, execution time, and deadline.

3.2.3 Task Migration—[24]. The task migration protocol is a lightweight process optimized for
many-core systems with a distributed memory hierarchy. Relevant features of the protocol include:

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 4, Article 37. Publication date: June 2019.

Self-Adaptive QoS Management of Comp. and Comm. Resources in Many-Core SoCs 37:7

there is no need to replicate the code of the tasks; it is not necessary to modify the source code
neither to add checkpoints; support to simultaneous migrations; and inter-task synchronization
without migrating produced messages. The task migration is an operating system (OS) service,
triggered by the algorithms presented in Section 5. The OS handles this order by configuring the
NI to transfer first the text section to the target PE through a MIGRATION_CODE message. The
task continues its execution up to reach a safe state (ready to be scheduled, without waiting for
incoming messages). Reaching this state, the task stops, and the OS saves the task context, trans-
ferring the CPU registers and the data memory sections to the target PE by a DATA_MIGRATION
message. When the target PE receives the task data, its OS restores the task context, and the task
may be scheduled. The overhead of the task migration protocol comes mainly from the second
part of the process, where the task data is transferred. This task migration protocol presents a low
latency compared to the state-of-the-art [24].

3.24 QoS Fulfillment Monitoring—[21, 23]. QoS monitoring is supported by observing the com-
munication and computation parameters for real-time tasks. At the computation level, the mon-
itoring consists of deadline misses that are captured by the local scheduler at the Spg level, and
sent to the Mpg. At the communication level, the monitoring consists of a latency monitor imple-
mented in the pkernel. The latency monitor compares the current latency with a threshold value.
The threshold may be either configurable or computed by the monitor itself based on previous
observations. If the monitored latency is higher than the reference value, the monitor generates a
latency miss message to the Mpg.

4 DYNAMIC APPLICATION PROFILE EXTRACTION (DAPE)

This section details the dynamic application profile extraction (DAPE) technique. DAPE also takes
advantage of the hierarchical system organization. The lower level, implemented in the Spgs, and
the higher level, implemented in the Mpgs. The DAPE process comprises data extraction (within
Spgs) and data analysis (within Mpgs). The QoS management uses the results of this analysis to
perform its proactive decisions (described in Algorithm 3).

At each Spg, the pkernel monitors the tasks’ profile at runtime observing the following param-
eters for each real-time task # (i) computation, T, the portion of time where t is using the CPU;
(i1) communication, T,,, the portion of time where t is waiting for a requested message from a
producer task; (iii) idle time, T;.

The profile monitoring extracts the relative amount (percentage) of T,,,, Ty, and T;, for each task
periodically, over non-overlapping windows, where Ty, + T, + T; = 1. The task scheduler com-
putes T}, and T;. The communication API computes Ty,. T,, is computed from the perspective of the
consumer task, evaluating the time spent between the requisition of a message until its reception.
T, is a function of three factors: (i) the time spent by the producer task to generate the requested
message; (ii) the message size; (iii) the NoC congestion. Note that the communication percentage
is computed only for the received messages because the pkernel adopts a non-blocking send op-
eration (produced but not consumed messages are locally stored in a buffer). In scenarios with
congestion in the NoC, the observed communication time tends to increase when the consumer
task spends more time waiting for messages. This behavior helps to mitigate network congestion
because the management will pay more attention to affected communications since the task will
have a higher communication profile.

Each Spr sends the monitored profile periodically to its Mpg, which implements the DAPE data
analysis. The Mpg handles the received profile applying an accumulated mean of the received
profile with the past profiles. The resulting value is used by the QoS management to estimate the
profile of each task.

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 4, Article 37. Publication date: June 2019.

37:8 M. Ruaro et al.

% comm. % comp. w0 comm
=z 90 - S Expected Idle
| # N 80 . - Expected Comp. Expected Comm.

ET70 |3
% comm. % comp. —_—— %comm. %comp. g 60 |
r— TaskB r—— @ 50
LIPS F e
comm. '
| 6 com %comp. | 330 |/ expected
l___TaskA :- I___Task D g observed profile profile
I—P 10
—_ 0
TaskC 0 20 40 €0
Profilesamples
100 Comm. 100 - Idle Comm.
90 | | mmmmeComp. e Expected Idle %0 sComp. e Expected Idle
o 80 Expected Comp. Expected Comp. 80 - Expected Comp. Expected Comm.
£ 70 20
5 60 . g o L; 60
g 50 expected @ 50 expected
& i)
£ 40 observed profile profile gao |, observed profile profile
[PP ST NP PP NS P S g30 |}
a2 ’/J\M/\A/\/\/\/\/\M/\Nv\ 820 7 G Noentesssentestestes T
10 10
0 0

20 40 60
Profilesamples 0 2 profilesamples 0

Fig. 3. Overview of the dynamic application profile extraction (DAPE) method.

Manager Processor - Mpe l
z Cluster
T B < .
22 5 2 DAPE M roment Monitoring (DAPE)
I v

g' P Self-awareness < Feedback (RT change)
core X
o § QoS fulfillment monitoring
S > T (deadline/latency miss)
= @
toe®
o Task
S Mapping X
CS Paths

Fig. 4. Organization of the self-adaptive QoS management. A comprehensive dataset feeds the self-
awareness core: applications’ feedback, QoS fulfillment monitoring, DAPE, task mapping, and CS paths
(provided by the CS-Controller). In the figure: green arrows represent observation messages, red arrows
correspond to decision actions, and blue arrows correspond to the actuation messages.

Consider as an example the task graph of Figure 2(a) and assume that each task executes the
same computation load periodically. Figure 3 presents the profile graphs according to the DAPE
method. Task A does not receive packets from other tasks, thus T, = 0. Tasks B and C receive
packets from task A, resulting in a mixed profile with T, = 26% and T,,, = 15% (tasks B and C have
similar graphs). Finally, task D has two communication flows, receiving packets from tasks B and
C. In task D, the communication is higher, as depicted in the graph of Figure 3.

5 SELF-ADAPTIVE QOS MANAGEMENT

This section details mainly the contribution of this work. The self-adaptive QoS management is
implemented at each cluster’s Mpg. The QoS management adopts the Observe, Decide, Act (ODA)
method [8]. The ODA methodology describes a closed-loop that is constantly aware of the system
status and divides the role of each component into observation, decision, and actuation. It is generic
and can be adapted to different many-core architectures. Figure 4 presents an overview of the self-
adaptive QoS management implemented according to the ODA method.

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 4, Article 37. Publication date: June 2019.

Self-Adaptive QoS Management of Comp. and Comm. Resources in Many-Core SoCs 37:9

Observation: 11 change/Deadlinemiss Task's profile Latency miss
v Routine Overhaul | g GelfiamEe
quick_checkup L_{ ; quick_checkup Analysis
Decision: Computation i DAPE Communication
1
|—> complete_checkup <J
Actuation: r i Self-adaptation

Task Migration Circuit-Switching
Fig. 5. Self-adaptation QoS management flow, executed by the manager processors (Mpg).

Observation: There are three message classes sent by Spg’s to the Mpg:

— Feedback messages: provide performance figures related to the tasks. Feedback messages
comprise changes on RT constraints (period, deadline, task execution time). Tasks are al-
lowed to change their RT constraints at runtime through an API, enabling flexible work-
loads [11, 23]. When this RT change occurs, a message is sent to the Mpg with the new RT
constraints.

— Environment monitoring messages: allow the manager to gather periodic information about
the status of the resources and applications. These messages comprise the DAPE data with
the extracted profile of each task.

— QoS fulfillment monitoring messages: warn violations related to the QoS fulfillment. These
messages comprise packet latency miss (communication) and deadline miss (computation)
violations.

Decision: This work proposes a self-awareness core, achieving this awareness by accessing a
wide range of high-level information at runtime:

(1) observation messages;
(2) tasks’ location (provided by the task mapping heuristic);
(3) CS paths (provided by the SDN-based CS-Controller).

The self-awareness core acts as a trigger deciding which system component is the target of the
adaptation and when the adaptation occurs. The self-awareness core decides reactively as well as
proactively according to the algorithms presented in Sections 5.1 and 5.2.

Actuation: This work proposes an Adaptation Manager (AM) to work together with the self-
awareness core. Whereas the self-awareness core takes decisions, the AM is in charge to take the
actions based on the decisions. Thus, the AM manages the reconfiguration of the system resources
controlling the task migration protocol and CS configuration (establishment/releases) protocols,
according to decisions made by the self-awareness core. These protocols change the resources
of computation and communication physically. The AM also ensures that the resources will be
correctly updated after the adaptation to be used by the self-awareness core in future decisions.

Figure 5 presents the self-adaptation flow. The method is similar to a health checkup, with quick
and complete checkup.

— Quick-checkup: the quick checkup acts when a symptom appears, such as a feedback mes-
sage notifying a real-time constraint modification or a deadline/latency miss, leading to
reactive actions. According to Figure 5, there are two quick checkup functions, one to deal
with computation events (RT change and deadline miss) and the other one to deal with
communication events (latency miss).

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 4, Article 37. Publication date: June 2019.

37:10 M. Ruaro et al.

— Complete-checkup: the complete checkup enables to evaluate an application status in de-
tail, evaluating all application’s tasks. The complete-checkup is triggered in two situations:
(i) when the quick-checkup was not able to solve the violation responsible for invoking it;
(ii) periodically, by the routine overhaul trigger, which may lead to a proactive action.

The next sections detail the quick and complete checkup algorithms. They adopt the following
design-time parameters:

(1) cpu_TH: maximum allowed CPU utilization per processor.

(2) comp_profile_ TH: threshold defining a computation intensive task. Higher values reduce
the proactive actions at the computation level, and vice-versa.

(3) comm_profile TH: threshold defining a communication intensive task. Higher values
reduce the proactive actions at the communication level, and vice-versa.

(4) comp_profile_sum_TH: threshold used to fire a proactive adaptation at the computation
level when two or more tasks share the same PE, corresponding to the total computation
load of the tasks on a given processor. It corresponds to a tradeoff between time to react
(higher values delay proactive actions), and the number of proactive actions (lower values
trigger proactive actions too early).

(5) deadline_TH: maximum number of deadline misses in a sampling period.

(6) latency TH: maximum number of latency misses in a sampling period for a given com-
municating task pair.

5.1 QUICK-CHECKUP Algorithms

The feedback and QoS fulfillment monitoring messages fire the QUICK-CHECKUP algorithms, pre-
sented in Algorithms 1 and 2.

ALGORITHM 1: QUICK-CHECKUP-COMPUTATION

Input: Target task: task, and target task’s CPU address: task_cpu
Output: Void, the algorithm decide or not to call another function
cpu_util « get_cpu_utilization(task_cpu);

-

2 deadline_miss_rate « get_deadline_miss_rate(task);

3 if cpu_util > cpu_TH or deadline_miss_rate > deadline_TH then
4 if task_migration(task) = FALSE then

5 | COMPLETE-CHECKUP(task’s application)

6 end

7 end

The goal of the QUICK-CHECKUP-COMPUTATION algorithm (Algorithm 1) is to evaluate re-
actively when it is necessary to migrate a task due to a computation change caused by an RT
constraint change or by a deadline miss on the target task. The algorithm inputs are the task
identification (task) and the CPU address executing the task (task_cpu). Line 1 computes the CPU
utilization where the task is running, and line 2 calculates the deadline miss rate (percentage) for
the task. The deadline miss rate is the relationship between the number of missed deadlines di-
vided by the number of tasks’ periods since the last application adaptation. These two parameters
(cpu_util and deadline_miss_rate) are used to verify the status of the task (line 3). If the cpu_util
or the deadline_miss_rate is higher than the predefined thresholds (cpu_TH and deadline_TH), the
decision is to migrate the task. If the migration fails (no available processor in the whole system
with enough CPU utilization to receive the task), the COMPLETE-CHECKUP (line 5) is called with
the goal to try to migrate another critical task of the same application. If there is more than one

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 4, Article 37. Publication date: June 2019.

Self-Adaptive QoS Management of Comp. and Comm. Resources in Many-Core SoCs 37:11

ALGORITHM 2: QUICK-CHECKUP-COMMUNICATION
Input: An CTP: prod_task, cons_task
Output: Void, the algorithm decide or not to call another function
1 ctp_latency_count « get_ctp_latency_number(prod_task, cons_task);
2 if ctp_latency_count >2*latency_TH then
‘ COMPLETE-CHECKUP(tasks” application);
else

©w

4
5 if ctp_latency_count > latency_TH then

6 ‘ CS_configuration(prod_task, cons_task);
7 end

s end

available PE, the closest processor from the original position of the task is selected. Note that the
task migration of the most critical task may fail. In this case, it is not possible to recover the appli-
cation from the deadlines misses. This situation only occurs in systems with full utilization, i.e., all
processors executing tasks with an important load. The migration protocol does not consider the
NoC state since there is the communication level management that can establish CS if necessary.

The goal of the QUICK-CHECKUP-COMMUNICATION algorithm (Algorithm 2) is to evaluate
reactively when it is necessary to establish CS connection for a given CTP due to a communica-
tion interference inducing a latency miss. The algorithm receives as input a CTP, with a producer
(prod_task) and consumer (cons_task) task identifiers. Line 1 obtains the total number of latency
misses since the last application adaptation. When the latency misses exceed 2xlatency_TH (line 2),
the COMPLETE-CHECKUP is invoked. If the latency misses exceed latency TH (line 5), the algo-
rithm tries to establish a CS path between prod_task and cons_task. Note that while the CS is not
established (no available path), the CTP may continue generating latency misses, increasing the
number of latency misses, which can result in the fulfillment of condition at line 2 and the invo-
cation of the COMPLETE-CHECKUP algorithm. Thus, the COMPLETE-CHECKUP may act in the
penalized CTP by migrating the most critical task (line 5 of Algorithm 3).

5.2 COMPLETE-CHECKUP Algorithm

The main goal of the proposed self-adaptive QoS management is to reduce the reactive ac-
tions, acting proactively when possible to avoid future QoS violations. Algorithm 3 presents the
COMPLETE-CHECKUP algorithm, which receives as input an application identifier. This algo-
rithm has two operating modes, reactive and proactive.

The activation of the reactive mode occurs when a QUICK-CHECKUP algorithm fails and calls
the COMPLETE-CHECKUP from it, comprising the code lines 2 to 5. Line 2 ranks the application
tasks according to the QoS violation severity, using Equation (1).

rr =dm+ lm + 10.(uch > cpu_TH?l : 0), (1)

where: rr is the task rank, d,, is the number of deadline misses, /,,, is the number of latency misses,
and ucpy is the real-time CPU utilization where the task is executing.

According to Equation (1), the rank of a given task is higher when it is running on a CPU with a
utilization higher than cpu_TH. Line 4 selects the most critical task, (i.e., the one with the highest
rank), and the task migration is fired to selected_task (line 5). The decision to migrate the most
critical task is due to the fact that the QUICK-CHECKUP algorithms failed to define a CS connec-
tion or to migrate a task. Note that the reactive mode acts only on one task of the application.
As one single QoS adaptation can impact in the whole application performance, gradual steps are
preferable to simultaneous adaptations.

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 4, Article 37. Publication date: June 2019.

37:12 M. Ruaro et al.

ALGORITHM 3: COMPLETE-CHECKUP

Input: application

Output: Void, the algorithm decide or not to call another function
task_migration_list < @;

-

2 task_rank[] < computes_tasks_score(application);
3 if task_rank[] # EMPTY then

14 selected_task « get_high_task_score(task_rank[]);

5 task_migration(selected_task);

¢ else

7 for t; € application do

8 comp_task_num « get_num_comp_tasks(t;_cpu);

9 if comp_task_num > 1 and get_comp_sum(t;_cpu) > comp_profile_sum_TH then

10 task_migration(t;);

11 task_migration_list « tj;

12 end

13 end

14 for t; € application and t; ¢ task_migration_list do

15 if get_comm_profile(t;) > comm_profile TH or get_comm_profile(t;) > get_comp_profile
(t;) then

16 for ctp; € C which t; is consumer do

17 prod_task < get_producer(ctp;);

18 if prod_task ¢ task_migration_list and ctp; = PS then

19 ‘ CS_configuration(prod_task, t;);

20 end

21 end

22 end

23 end

24 end

The activation of the proactive mode occurs periodically (lines 7-23). The trigger to acti-
vate the COMPLETE-CHECKUP algorithm in this mode is the overhaul routine, which calls the
COMPLETE-CHECKUP at the end of 10 hyper-periods of the application. This number is a trade-
off, a higher value reduces the COMPLETE-CHECKUP calls, delaying the time to take proactive
actions; and smaller values increase the CPU usage of Mpg. Since the COMPLETE-CHECKUP func-
tion is the same for both modes, the proactive mode starts as in the reactive mode, ranking the
tasks according to Equation (1). As the COMPLETE-CHECKUP was invoked by the overhaul rou-
tine and not by QUICK-CHECKUP algorithms, it is expected that the task_rank[] set be empty, i.e.,
all application tasks are fulfilling their constraints, and the algorithms jump to line 7. The proactive
mode acts first on the computation (lines 7-13) and then on the communication (lines 14-23).

At the computation level, for each task ¢; of the application, the algorithm verifies if there are
more than one high computation task in t;’s core (tasks exceeding comp_profile_TH), and if the
sum of the computation profile of all tasks sharing t;’s core exceeds comp_profile_sum_TH (line 9).
If true, t; is migrated proactively to an available processor (line 10), and the task identifier is added
to the set task_migration_list. The goal is to proactively reduce the CPU sharing between high
computation tasks. Also, as tasks may change their RT constraints dynamically, this action can
prevent deadline misses when a given task increases the CPU utilization.

At the communication level, for each task t; of the application that is not in the
task_migration_list, the algorithm verifies if ¢;’s communication profile exceeds comm_profile_ TH

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 4, Article 37. Publication date: June 2019.

Self-Adaptive QoS Management of Comp. and Comm. Resources in Many-Core SoCs 37:13

or is higher than the computation profile (line 15). If true, ¢; is a candidate to have its communica-
tion mode changed to CS. The loop in lines 16-21 sets CS for each CTP that has ¢; as a consumer
task. Line 18 verifies if the producer task is not in task_migration_list and if CTP’s communication
is assigned to the PS network. If this condition is true, a CS is established proactively for the CTP.

In summary, the proactive QoS actions try to reduce the CPU sharing between high computation
tasks and to establish CS on tasks with a high communication profile.

6 EXPERIMENTAL RESULTS

The many-core used in the experiments has 64 PEs, with four 4x4 clusters. The MPN has one PS
and a set of four CS sub-nets. RTL-level descriptions (VHDL (VHSIC (Very High Speed Integrated
Circuit) Hardware Description Language) and SystemC) model the many-core system. Descrip-
tions in C language model the software components (ukernel and applications). The RT applica-
tions include the following benchmarks: Video Object Plan Decoder (VOPD), matrix multiplication
(MATRIX_MULTI), Multi-Window Display (MWD), Advanced Encryption Standard (AES), Dijk-
stra’s Shortest Path First algorithm (DIJKSTRA), Dynamic Time Warping (DTW), video decoding
(MPEG2), video decoding (MPEG4). Synthetic RT tasks run in parallel on the system with the
purpose to induce computation and communication disturbances.

The experiments adopt the following parameters: cpu_TH = 99%, comp_profile_TH = 50%,
comp_profile_sum_TH = 75%,comm_profile_TH = 10%, deadline_TH = 1, latency_TH = 2. The
selection of the threshold values is made according to the expected applications’ behavior. The cho-
sen parameters enable a high CPU utilization for soft RT (cpu_TH = 99%), with a high computation
profile per Spg (comp_profile_sum_TH = 75%). The deadline_TH = 1implies a very low tolerance
to deadline misses. The value of latency_TH = 2 safely estimates a latency deadline because it can
suppress random picks of latency while it keeps a high level of confidence in QoS at communica-
tion level [21]. We selected the value of comm_profile_TH = 10% empirically, achieving a good
tradeoff between proactive actions and CS path diversity.

This Results section has four subsections. Section 6.1 evaluates single-objective QoS managers
presented in the literature, highlighting the motivation for a comprehensive QoS method. As DAPE
is a key feature to enable proactive actions, Section 6.2 evaluates its overhead. Next, Section 6.3
evaluates the contribution of this work presenting its benefits in the execution time and the reduc-
tion of deadline misses using a set of benchmarks. Finally, Section 6.4 presents the tradeoff system
utilization versus deadline and latency misses.

6.1 Single Objective QoS Managers

The available proposals in the literature adopt different architectures, targeting only computa-
tion or communication self-adaptive techniques. This section provides a comparison at the com-
putation and communication levels using values presented in related works, which are put into
perspective with our results.

At the computation level, Petrucci et al. [18] propose a cluster scheduler that performs dynamic
resource allocation (dynamic task mapping). The scheduler uses a QoS monitor that collects per-
formance data at runtime. As our work, they assume thresholds to trigger adaptations during job
scheduling, accepting up to of 5% of QoS violations (we assume 1% of deadline misses). Results
show that the proposed QoS management meets 99.8% and 91% of the deadlines for memcached
and web-search benchmarks, respectively (we meet 99.5% of deadlines for all benchmarks with
severe interference). Delimitrou et al. [5] propose an online scheduler for large-scale data cen-
ters, which can also be employed for many-cores. Like our work, they also assume an unknown
application workload. The main goal of the scheduler is to achieve application composability max-
imizing system utilization. The proposal degrades performance by only 4% and guarantees QoS for

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 4, Article 37. Publication date: June 2019.

37:14 M. Ruaro et al.

100000
(a) 90000
80000 |-
70000 |-
60000 |-
50000 |-
40000 |
30000

(b) Run-time CS stablishmentfor the disturbed CTPs

[Task A Computation Disturbance

Iteration Latency (clock cycles)

20000 10% 10%
JAN Y, 10000 Flow df; Communication Disturbance
off L_on__ NN
0
0 20 40 60 80 100
Time (milliseconds)
100000 100000
90000 | (C) 90000 (d) /Proactive QoS adaptation points - covering
g 80000 | Run-time task migration of task A g 80000 - { the computation and communication levels
S 70000 | S 70000
S S Reactive QoS adaptation - CS
S 60000 - ! 60000 1 stablishment between disturbed CTPs
z 50000 |, | z 50000 U ,--E
& 40000 § a0000 i
2 E < 30000 |
s 30000 Fpagi A Computation Disturbance 5 Task A Computation Disturbance
% 20000 [10% 50% 10% % 20000 [10% 7 50% 10%
£ 10000 |[Flow df; Communication Disturbance £ 10000 (Flow df; Communication Disturbance -
o)
0 0
0 20 40 60 80 100 0 20 40 60 80 100
Time (milliseconds) Time (milliseconds)

Fig. 6. Comparison with Refs [21] and [23]: (a) scenario setup; (b) iteration latency of Ref. [21] with fo-
cus on communication adaptation; (c) iteration latency of Ref. [23] with focus on computation adaptation;
(d) iteration latency of the proposed work.

61% of workloads for high load. Our work does not present QoS degradation (see Figure 10) up to
70% of system utilization.

At the communication level, Abousamra et al. [2] propose a proactive CS allocation. The work
focus is on the evaluation of L2 cache hit latency, which directly impacts in the execution time of
the applications. The results show an execution time speedup of 12% in a scenario with disturbing
traffic when compared to an optimal scenario. Our work also evaluates the execution time using
scenarios with and without (optimal) interferences. Our experiments show that the execution time
increases, compared to the optimal scenario, by 13.8% using only reactive actions and 2.4% assum-
ing reactive and proactive actions. Mangano et al. [14] propose an adaptive QoS hardware that
is supported by a performance monitoring to establish CS at runtime. This work presents results
where the proposed techniques successfully fulfill all bandwidth requirements for two RT flows
considering a reduction in the NoC clock frequency of 25%. The authors do not consider congested
scenarios making it impossible to observe how bandwidth requirements are met in experiments
with congested traffic. In a previous work [22], we showed that the success rate of CS establish-
ment can reach values equal or near to 100% in experiments assuming large system sizes (up to
16X16 PEs), with each Spg supporting and executing two tasks (a stressed scenario, with full sys-
tem occupation), and assuming an MPN with four, six, and eight subnets. Joven et al. [10] propose
a hardware/software infrastructure with runtime QoS support by establishing CS based on the
packet header information. The proposed QoS policy was able to speed up the MPEG application
execution in a scenario with interference by 83%-87%. In a similar experiment, the MPEG appli-
cation of our work has an execution time speedup of 54% against the scenario with interference,
presenting an execution time of only 0.4% above the baseline execution time.

These comparisons show that related works consider QoS fulfillment only partially. The exper-
iment presented in Figure 6 compares the effect of communication QoS management [21], compu-
tation QoS management [23], and of comprehensive QoS management of this work. It shows the
importance to cover both computation and communication, and also, how proactive actions can
avoid future violations of QoS targets.

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 4, Article 37. Publication date: June 2019.

Self-Adaptive QoS Management of Comp. and Comm. Resources in Many-Core SoCs 37:15

350
@ 23 D1 Task/PE B2 Tasks/PE B 3 Tasks/PE M 4 Tasks/PE

—»—Total CPU load

% CPU load
=
n

Execution time (milliseconds)

DTW MPEG-2

(b) (©)

Fig. 7. (a) DTW and MPEG-2 application task graphs. (b) Rate of MPE CPU load with respect to the DAPE
monitoring window period. (c) Overhead evaluation of the dynamic application profile extraction.

05 -
(w{(1aps(o) :
@ e 0 0 0 30 40 0 DAPE Disabled DAPE Enabled | DAPE Disabled DAPE Enabled
@ 0 DAPE Monitoring Window Period (ms)
(a)

The experiment presented in this section uses the DTW application, a pattern recognition algo-
rithm with its task graph described in Figure 7(a). Figure 6(a) presents the DTW mapping, with the
hop distance between communicating tasks minimized. To evaluate the performance of computa-
tion and communication, we inserted a disturbing RT task A mapped at the same PE of task P1,
and a disturbing communication flow called d fi, which crosses some flows of DTW’s tasks. The
interference of computation occurs from 20ms to 55ms, where task A increases its CPU utilization
from 10% to 50%. The interference of communication occurs from 66ms to 90ms, which is the time
required for d fi flow to transmit its data stream. The y-axis of Figure 6(b)—(d) presents the latency
of each DTW’s iteration and the x-axis shows the simulation time. Bars below the x-axis represent
when computation and communication disturbances occur.

Figure 6(b) presents the results obtained by using a single objective QoS manager [21], which
targets self-adaptive QoS at the communication level by setting up CS connections. The work es-
tablishes CS connections at runtime for the disturbed CTPs, but it cannot mitigate the interference
induced by the execution of task A.

Figure 6(c) presents the results obtained by using a single objective QoS manager [23], which
targets self-adaptive QoS at the computation level by using task migration. The manager counter-
acts the computation disturbance by migrating task A to another processor, but the communication
interference remains.

Figure 6(d) shows the results of the proposed work, covering a comprehensive QoS support. The
QoS management mitigates both computation and communication interference using proactive
and reactive actions. The proactive action is triggered before the computation disturbance because
there is enough time for DAPE to extract the application profile and to the QoS management
decide the best proactive action. These results highlight that a QoS manager must act in both
computation and communication together, in such a way to mitigate disturbances that may occur
at runtime and are not possible to predict at design-time or to mitigate only using an effective
task—mapping algorithm.

6.2 Dynamic Application Profile Extraction (DAPE) Overhead

The DAPE implementation part, within Spgs, can penalize the tasks’ execution time due to the
monitoring process added on the task scheduler and the communication API. The pkernel adopts
two actions to minimize this overhead: (i) the monitored profile transmission occurs preferably in
idle periods of the Spg; (ii) each Spr uses a different counter to trigger the sending of the informa-
tion, thus distributing the monitoring load.

The experiment presented in Figure 7 aims to evaluate the DAPE overhead. It uses two applica-
tions with its communicating graph detailed in Figure 7(a): DTW (recognizing 2,500 patterns), and
MPEG-2 (decoding 500 frames/audio arrays). The functionality of the applications is not relevant

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 4, Article 37. Publication date: June 2019.

37:16 M. Ruaro et al.

130000

(b) All adaptations disabled
110000 |-

@ u N

g & 3 8

g8 8 8 8

8§ 8 8 8
T

Task D, Computation Disturbance
| 10% 28% 50% 10%
Fl dj

df; Communication Disturbance

(©
j 10000 WAl [WA
&

0 20 40 60 80 100
Time (milliseconds)

Iteration Latency (clock cycles)

130000

— df] (C) Proactive adaptations disabled
@ @ dfs E 110000 «—— Reactive QoS adaptation points
% - covering the computationand
< 90000 communication levels
s
3 70000 I o
§ |
3 50000
_§ Task D, Computation Disturbance
£ 30000 10%

10%
Flows df;, df;, df; Communication Disturbance

20000 AT [A

0 20 40 60 80 100
Time (milliseconds)

130000

(e) (d) Proactive QoS adaptation points - covering
(----/ the computation and communicationlevels
i H

- 110000 f
MPEG-2 DAPE at time of 15ms

Computation Communication

90000 [Reactive QoS adaptation - CS

3
S
9
N N]
Tasks profile profile 3 i stablishmentbetween SP -> AD
sp 2 0 > 70000 | |
w 70 3 e |
Q 9 1 3 so000 | 1
D 10 17 _§ Task D, Computation Disturbance
AD 60 2 © 30000 10% 10%
Fl 27 21 2 Flows df;, df;, df; Communication Disturbance
AT [[WUAT
Jo 3 43 10000

0 20 40 60 80 100
Time (milliseconds)

Fig. 8. Evaluation of the self-adaptive QoS management over the MPEG-2. (a) Application mapping. (b) No
adaptation, deadline miss = 20.3%. (c) Only reactive adaptations, deadline miss = 2.3%. (d) Proactive and
reactive adaptations, deadline miss = 0.5%. (e) DAPE for MPEG-2 at 15ms of simulation.

in this case, only the number of tasks per PE. More tasks per PE increase the interference due to the
application profile extraction since there are more data to be collected and sent to the Mpg. Another
important factor is the frequency that DAPE messages are transmitted from Spgs to Mpg. We define
a period of 10ms, which corresponds to a good tradeoff between communication volume and pro-
filing update (i.e., the Mpg load). Figure 7(b) displays the Mpg CPU load (MIPS-CPU@100MHz), ac-
cording to the frequency of the DAPE monitoring period. As shown in the figure, the Mpg reaches
a total CPU load lower than 0.5% with a 10ms period, which does not impact the Mpg performance.

Figure 7(c) compares the overhead of the DAPE on application’s execution time with a different
number of tasks running at the same PE. All tasks in the “DAPE Enabled” scenarios have the DAPE
monitoring enabled, with an expected overhead at each core increasing according to the number
of tasks per PE. However, the results show that the impact on the application execution time
is negligible. The worst-case overhead is achieved in the MPEG-2 scenario, with three tasks/PE,
corresponding to an increase of 0.0024% in the application execution time.

6.3 Self-Adaptive QoS Evaluation

This section evaluates the proposed self-adaptive QoS management. Figure 8(a) shows the
MPEG-2 task mapping, represented by blue circles. Tasks D; and D, share the CPU with tasks
SP and IV, respectively. They belong to another RT application, exemplifying a disturbance at the

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 4, Article 37. Publication date: June 2019.

Self-Adaptive QoS Management of Comp. and Comm. Resources in Many-Core SoCs 37:17

computation level. The red arrows denote disturbances of communication, other messages that
interfere with the application flows. On the y-axis of Figure 8(b)—-(d), the latency of one iteration
of the MPEG-2 application is shown, as measured at the task JO (joint). The QoS constraint is
58,000 clock cycles, corresponding to the time to decode one audio/image frame of 576 bytes. Bars
below the x-axis represent the CPU utilization of task D, (computation disturbance) and when
the disturbing flows occur (communication disturbance).

The first evaluated scenario has all QoS adaptations disabled—Figure 8(b). When the CPU utiliza-
tion of task D, increases, at 25 and 40ms, the latency increases due to the CPU sharing. In the same
way, disturbing flows affect the latency. Note that when flow d f; is active, the task D, presents
a low CPU utilization and the latency also increases. This result shows that the communication
disturbance also impacts the QoS constraint significantly.

The second evaluated scenario (Figure 8(c)) activates only reactive adaptations. When D, in-
creases its CPU utilization from 10% to 28%, the total Spg utilization reaches 98% (28% + 70% from
task IV). The task migration is not immediately triggered because the CPU utilization remains be-
low cpu_TH. Thus, task IV starts to generate deadline misses, and the QoS management decides to
migrate task IV to a free processor at 31.4ms. Also, flow df; induces latency misses in the flows
SP—IV and SP—AD, making the QoS management to decide to establish CS for these flows at
30.3 and 32ms. There is no impact on the latency when D, increases its utilization to 50% because
task IV was previously migrated. Flow d f, induces latency misses in the flow AD—FI, resulting
in a new CS establishment at 49.2ms. As the CS establishment for one CTP affects in average 150
clock cycles of the application’s latency, its effect is not perceptible in the graph. Finally, flow d f
starts, disturbing three MPEG-2 flows: IQ—ID, FI— JO, and ID— JO. The consequence is several
latency misses, and CSs are reactively established for all penalized pairs at 66.5, 67.4, and 68.5ms.

The third evaluated scenario activates proactive and reactive adaptations—Figure 8(d). The first
call to the COMPLETE-CHECKUP occurs at 15ms due to the overhaul routine, with the extracted
profile presented in Figure 8(e). The COMPLETE-CHECKUP decides to migrate proactively task IV
because it is sharing the CPU with D, and the sum of its computation profile is higher than
comp_profile_sum_TH (at 17.6ms). Additionally, according to the obtained profile, tasks ID, FI, JO,
and IQ have a high communication profile (higher than comm_profile TH). Therefore, the QoS
management proactively establishes CS for the flows: IQ—ID (18.5ms), AD—FI (18.6ms), ID— JO
(19.1ms), FI—>JO (19.7ms), and IV—IQ (23ms). This scenario also has a reactive QoS adaptation,
which is a CS establishment between SP—AD at 32ms due to the disturbance caused by d fi. The
QoS management did not establish CS’s previously since the DAPE revealed that AD has a com-
munication profile smaller than the comm_profile TH.

Comparing deadline miss rates in all three scenarios, we observe a miss rate of 20.3% when QoS
is disabled, 2.3% when only reactive adaption is used, and 0.5% with both proactive and reactive
adaptions.

While Figure 8 shows the MPEG-2 case in detail, Figure 9 summarizes results for eight
benchmarks. It compares execution time (a), and deadline miss rate (b), for: (i) baseline scenario
(best performance); (ii) DIST—disturbances and no QoS mechanism; (iii) REACT—disturbances and
only reactive QoS enabled; (iv) P+R—disturbances and both QoS mechanisms enabled (proactive
+ reactive). The disturbance setup consist of two tasks providing computation disturbance
(randomly mapped within PEs running benchmark’s tasks), and three disturbing communication
flows. Initially, the experiment simulated the P+R scenario varying the disturbance setup for each
benchmark, i.e., varying randomly the mapping of disturbance tasks and the position of the distur-
bance flows. The disturbance setup of each benchmark resulting in the largest number of deadline
misses is the one selected for comparison purposes. Next, the selected disturbance setup for each
benchmark was used to obtain the results of the baseline, DIST, and REACT scenarios, enabling

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 4, Article 37. Publication date: June 2019.

37:18 M. Ruaro et al.

@DIST OREACT ® P+R

Normalized Execution Time
(=]
”

Deadline miss rate (%)

o & o o v > 5
S S & § W \\5\@ Q@ @“é’ @Q& 4‘3?0
& - ¥ b) & N v
(a) « Application Benchmark ®) § Application Benchmark

Fig. 9. Benchmark evaluation: (a) Execution Time; (b) Deadline miss rate. Number of tasks of each bench-
mark: VOPD—13; MATRIX_MULTI—14; MWD—12; AES—11 tasks; DIJKSTRA—7; DTW—6; MPEG2—7 tasks;
MPEG4—12 tasks.

the comparison against the P+R scenario using the same interference. The mean of all scenarios
corresponds to the last columns of the graphs (Figure 9), showing the benefits of P+R over REACT.

Compared to the baseline execution time, the DIST increases the execution time, on average, by
224.7% (severe disturbance). Applying QoS management, the execution time is restored close to the
baseline: 13.8% for REACT and 2.4% for P+R above the baseline. Note that REACT exhibits a higher
average execution time than P+R, highlighting the benefit of proactive actions. As Figure 9(b)
shows, the deadline misses were reduced, on average, by 98% for REACT, and 99.5% for P+R, with
a rate below 0.6% for all P+R benchmarks.

The adaptive actions require task migrations and CS establishment, inducing an overhead over
the application iteration latency of 150 clock cycles for one CS establishment and 600 clock cycles
for one task migration. The P+R scenario can present a slight increase in the execution time over
the REACT in some benchmarks because the P+R scenario can require more adaptations than
REACT, explaining the behavior observed in the execution time of VOPD and MPEG2 benchmarks,
where the REACT execution time is lower than or equal to P+R. Despite the higher execution time
for these two benchmarks, the number of deadline misses for P+R is lower in VOPD and slightly
higher for MPEG2. Such phenomena occur because a deadline miss can be masked during the
adaptation process, mainly for task migration, since the task needs to stop in one processor and
restart on another one.

Those experiments demonstrate the synergy between proactive and reactive actions. The proac-
tive adaptation reconfigures the system according to the application profile extraction, preventing/
minimizing future deadline misses due to interference. Reactive adaptation deals with unpre-
dictable events to restore the applications’ performance.

6.4 Self-Adaptive QoS Tradeoff

Section 6.1 showed that the QoS manager must act in both computation and communication con-
jointly. Section 6.3 presented the effectiveness of the proposed method to provide QoS for a set
of benchmarks in the presence of disturbing events. This last evaluation stresses the proposed
method, with all PEs executing tasks with QoS constraints, and increasing the CPU utilization
gradually. This evaluation adopts as target three synthetic RT applications, with different profiles:
(i) COMP—computation intensive (66% comp., 10% comm.); (ij) COMM—communication intensive
(32% comp., 61% comm.); (iii) HY B—hybrid, a mix of computation and communication profile (45%
comp., 30% comm.).

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 4, Article 37. Publication date: June 2019.

Self-Adaptive QoS Management of Comp. and Comm. Resources in Many-Core SoCs 37:19

Time (milliseconds) Time (milliseconds)
10 20 30 40 50 60 70 80 90 100 10 20 30 40 50 60 70 80 90 100

o
ES

06 1| ——App 1- Hybrid
0,5 —=—App 2 - Hybrid

|| ——App 1- Hybrid

|| —=—App 2- Hybrid

—a— App 3 - Commun.
App 4 - Hybrid

I —x%—App 5- Comp.

I'| —e—App 6- Hybrid

SIS /
A— —a. -

01 02 03 04 05 06 07 08 09 1 01 02 03 04 05 06 07 08 09 1
Total CPU utilization of the cluster's SPE Total CPU utilization of the cluster's SPE

(a) (b)

Fig. 10. QoS provisioning tradeoff: (a) Deadline miss rate; (b) Latency miss rate.

o
w
@

o
w

04 —a—App 3 - Commun.
’ App 4 - Hybrid

03 ——App 5- Comp. /

02 —e—App 6 - Hybrid
0,1

0 L L Ly Ly L o B e

o
N~
&

o
[

o
°
&

Application's latency miss rate
°
~

Application's deadline miss rate

)

The simulated workload corresponds to six applications executing simultaneously: 1 COMM,
1 COMP, and 4 HY B. The applications were randomly mapped in a cluster with 16 PEs (1 Mpg and
15 Spgs). The Spgs were configured to run two tasks concurrently. To use all Spgs of the cluster, all
SpE received two tasks. With such configuration, task migration is disabled due to the full system
usage. All applications start their execution at the beginning of the simulation, with a warm-up
period of 10ms. After the warm-up period, each Spr has 10% of CPU utilization (5% from each
mapped task). As the simulation advances, all tasks increase their CPU utilization steadily. The
utilization increases by 5% for each task at each 10ms, resulting in a total CPU utilization increase
of 10% at each 10ms (two tasks per CPU).

Figure 10(a) presents the deadline miss rate for this experiment (y-axis: percentage of deadline
misses, x-axis: CPU utilization per Spg). Results correspond to the average of several runs for each
CPU utilization. The deadline miss rate remains 0 up to 70% of CPU utilization. After 70% of CPU
utilization, all applications start to miss deadlines. Due to the systems unpredictable behavior with
a higher CPU utilization, some applications miss more deadlines than others (Apps 3, 4, 6). As task
migration is not possible due the full system occupation, this result showed the effectiveness of
the task scheduler to ensure QoS at the computation level.

Figure 10(b) presents the latency miss rate. All applications start their execution communicating
through the PS NoC. As the simulation advances, the QoS management aided by DAPE identifies
the applications’ profile and sets CS to the COMM and HYB applications, reducing the latency
miss to less than to 0.5%. The exception is the COMP application (App 5), which continues using
the PS NoC because it does not satisfy the requirements for proactive CS. With the increase in the
CPU utilization, this application receives one latency miss at each 10ms, resulting in a latency miss
rate of 12.5%. As App 5 is computation intensive, this latency miss does not impact the deadline
misses, as can be observed in Figure 10(a), not justifying the establishment of CS.

This experiment enabled to observe the QoS provisioning tradeoff at the computation and com-
munication levels in a stressed scenario. The computation QoS starts to be affected after 70% of
CPU utilization. The method ensures communication QoS for all communication sensitive appli-
cations by establishing CS at runtime. The adoption of an MPN provides sufficient CS paths even
in a cluster with all Spgs running the allowed number of tasks.

7 CONCLUSION

This work proposes dynamic profiling and self-adaptive QoS management for soft real-time appli-
cations. A runtime application learning profiling (DAPE) technique allows the QoS management
system to take proactive actions, and when necessary, react to cope with the interference induced

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 4, Article 37. Publication date: June 2019.

37:20 M. Ruaro et al.

by the dynamic workload. The low overhead of DAPE demonstrates that runtime techniques can
be used to characterize applications. Our results lead to two conclusions. First, mechanisms for
managing both communication and computing are essential for overall QoS management. Second,
proactive techniques can avoid future deadline and latency misses.

While we have demonstrated the benefits of the proposed QoS management in a specific set-
ting, there is little in the NoC, the PEs, and the middleware that we require for our techniques to
work. Hence, we expect similar benefits on very different platforms, which, however, have to be
demonstrated in future work.

REFERENCES

(1]

(2]
(3]

(4]

(5]
(6]

(7]
(8]

(9]

[10]

(1]

[12]
(13]
(14]
(15]
[16]

(17]

(18]

Gean Abich, Marcelo Mandelli, Felipe R. Rosa, Fernando G. Moraes, Luciano Ost, and Ricardo Reis. 2016. Extend-
ing freeRTOS to support dynamic and distributed mapping in multiprocessor systems. In ICECS. IEEE, 712-715.
DOI: https://doi.org/10.1109/ICECS.2016.7841301

Ahmed Abousamra, Alex K. Jones, and Rami G. Melhem. 2013. Proactive circuit allocation in multiplane NoCs. In
DAC. ACM, 35:1-35:10. DOI : https://doi.org/10.1145/2463209.2488778

Brent Bohnenstiehl, Aaron Stillmaker, Jon Pimentel, Timothy Andreas, Bin Liu, Anh Tran, Emmanuel Adeagbo, and
Bevan Baas. 2017. KiloCore: A 32-nm 1000-processor computational array. . Solid-State Circuits 52, 4 (2017), 891-902.
DOI : https://doi.org/10.1109/JSSC.2016.2638459

Guilherme Castilhos, Marcelo Mandelli, Guilherme Madalozzo, and Fernando G. Moraes. 2013. Distributed resource
management in NoC-based MPSoCs with dynamic cluster sizes. In ISVLSL IEEE, 153-158. DOI : https://doi.org/10.
1109/ISVLSI.2013.6654651

Christina Delimitrou and Christos Kozyrakis. 2013. QoS-aware scheduling in heterogeneous datacenters with
paragon. ACM Trans. Comput. Syst. 31, 4 (Dec. 2013), 12:1-12:34. DOI : https://doi.org/10.1145/2556583

Nikil D. Dutt, Fadi J. Kurdahi, Rolf Ernst, and Andreas Herkersdorf. 2016. Conquering MPSoC complexity with prin-
ciples of a self-aware information processing factory. In CODES+ISSS. ACM, 37:1-37:4. DOI : https://doi.org/10.1145/
2968456.2973275

Kunal P. Ganeshpure and Sandip Kundu. 2013. On runtime task graph extraction in MPSoC. In ISVLSI IEEE, 171-176.
DOI:https://doi.org/10.1109/ISVLSIL.2013.6654654

Henry Hoffmann, Martina Maggio, Marco D. Santambrogio, Alberto Leva, and Anant Agarwal. 2013. A general-
ized software framework for accurate and efficient management of performance goals. In EMSOFT. IEEE, 19:1-19:10.
DOI: https://doi.org/10.1109/EMSOFT.2013.6658597

Axel Jantsch, Nikil D. Dutt, and Amir M. Rahmani. 2017. Self-awareness in systems on chip—A survey. IEEE Design
& Test 34, 6 (2017), 8-26. DOI : https://doi.org/10.1109/MDAT.2017.2757143

Jaume Joven, Andrea Marongiu, Federico Angiolini, Luca Benini, and Giovanni De Micheli. 2013. An integrated, pro-
gramming model-driven framework for NoC-QoS support in cluster-based embedded many-cores. Parallel Comput.
39,10 (2013), 549-566. DOI : https://doi.org/10.1016/j.parco.2013.06.002

Hanwoong Jung, Chanhee Lee, Shin-Haeng Kang, Sungchan Kim, Hyunok Oh, and Soonhoi Ha. 2014. Dynamic be-
havior specification and dynamic mapping for real-time embedded systems: HOPE approach. ACM Trans. Embedded
Comput. Syst. 13, 4s (2014), 135:1-135:26. DOI : https://doi.org/10.1145/2584658

Peter R. Lewis, Marco Platzner, Bernhard Rinner, Jim Trresen, and Xin Yao. 2016. Self~-aware Computing Systems: An
Engineering Approach (1st ed.). Springer.

N. Loubet et al. 2017. Stacked nanosheet gate-all-around transistor to enable scaling beyond FInFET. In Symposium
on VLSI Technology. IEEE, 230-231. DOI : https://doi.org/10.23919/VLSIT.2017.7998183

Daniele Mangano and Giovanni Strano. 2010. Enabling dynamic and programmable QoS in SoCs. In NoCArc. ACM,
17-22. DOI : https://doi.org/10.1145/1921249.1921255

Aline Mello, Leonel Tedesco, Ney Calazans, and Fernando Moraes. 2006. Evaluation of current QoS mechanisms in
networks on chip. In SOC. IEEE, 1-4. DOI : https://doi.org/10.1109/ISSOC.2006.321981

Luciano Ost et al. 2013. Power-aware dynamic mapping heuristics for NoC-based MPSoCs using a unified model-
based approach. ACM Trans. Embedded Comput. Syst. 12, 3 (2013), 75:1-75:22. DOI : https://doi.org/10.1145/2442116.
2442125

Sangsoo Park. 2014. Task-I/O Co-scheduling for pfair real-time scheduler in embedded multi-core systems. In EUC.
IEEE, 46-51. DOI : https://doi.org/10.1109/EUC.2014.16

Vinicius Petrucci, Michael A. Laurenzano, John Doherty, Yunqi Zhang, Daniel Mossé, Jason Mars, and Lingjia Tang.
2015. Octopus-Man: QoS-driven task management for heterogeneous multicores in warehouse-scale computers. In
HPCA. IEEE, 246-258. DOI : https://doi.org/10.1109/HPCA.2015.7056037

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 4, Article 37. Publication date: June 2019.

https://doi.org/10.1109/ICECS.2016.7841301
https://doi.org/10.1145/2463209.2488778
https://doi.org/10.1109/JSSC.2016.2638459
https://doi.org/10.1109/ISVLSI.2013.6654651
https://doi.org/10.1109/ISVLSI.2013.6654651
https://doi.org/10.1145/2556583
https://doi.org/10.1145/2968456.2973275
https://doi.org/10.1145/2968456.2973275
https://doi.org/10.1109/ISVLSI.2013.6654654
https://doi.org/10.1109/EMSOFT.2013.6658597
https://doi.org/10.1109/MDAT.2017.2757143
https://doi.org/10.1016/j.parco.2013.06.002
https://doi.org/10.1145/2584658
https://doi.org/10.23919/VLSIT.2017.7998183
https://doi.org/10.1145/1921249.1921255
https://doi.org/10.1109/ISSOC.2006.321981
https://doi.org/10.1145/2442116.2442125
https://doi.org/10.1145/2442116.2442125
https://doi.org/10.1109/EUC.2014.16
https://doi.org/10.1109/HPCA.2015.7056037

Self-Adaptive QoS Management of Comp. and Comm. Resources in Many-Core SoCs 37:21

(19]
[20]

[21]

[22]
(23]
[24]

[25]

[26]

GAPH PUCRS. 2018. Hermes Multiprocessor System-on-Chip. Retrieved from http://www.inf.pucrs.br/hemps/index.
html.

Wei Quan and Andy D. Pimentel. 2016. A hierarchical run-time adaptive resource allocation framework for large-scale
MPSoC systems. Design Autom. Emb. Sys. 20, 4 (2016), 311-339. DOI : https://doi.org/10.1007/s10617-016-9179-z
Marcelo Ruaro, Everton Carara, and Fernando G. Moraes. 2015. Runtime adaptive circuit switching and flow prior-
ity in NoC-based MPSoCs. IEEE Trans. VLSI Syst. 23, 6 (2015), 1077-1088. DOI : https://doi.org/10.1109/TVLSL2014.
2331135

Marcelo Ruaro, Henrique Medina, Alexandre Amory, and Fernando G. Moraes. 2018. Software-defined networking
architecture for NoC-based many-cores. In ISCAS. IEEE, 385-390. DOI : https://doi.org/10.1145/2881025.2889474
Marcelo Ruaro and Fernando G. Moraes. 2016. Dynamic real-time scheduler for large-scale MPSoCs. In GLSVLSL.
ACM, 341-346. DOI: https://doi.org/10.1145/2902961.2903027

Marcelo Ruaro and Fernando G. Moraes. 2017. Demystifying the cost of task migration in distributed memory many-
core systems. In ISCAS. IEEE, 1-4. DOI : https://doi.org/10.1109/ISCAS.2017.8050257

Amit Kumar Singh, Piotr Dziurzanski, Hashan Roshantha Mendis, and Leandro Soares Indrusiak. 2017. A survey and
comparative study of hard and soft real-time dynamic resource allocation strategies for multi-/many-core systems.
ACM Comput. Surv. 50, 2 (April 2017), 24:1-24:40. DOI : https://doi.org/10.1145/3057267

Markus Winter and Gerhard P. Fettweis. 2011. Guaranteed service virtual channel allocation in NoCs for run-time
task scheduling. In DATE. IEEE, 419-424. DOI : https://doi.org/10.1109/DATE.2011.5763073

Received December 2017; revised February 2019; accepted April 2019

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 4, Article 37. Publication date: June 2019.

http://www.inf.pucrs.br/hemps/index.html
http://www.inf.pucrs.br/hemps/index.html
https://doi.org/10.1007/s10617-016-9179-z
https://doi.org/10.1109/TVLSI.2014.2331135
https://doi.org/10.1109/TVLSI.2014.2331135
https://doi.org/10.1145/2881025.2889474
https://doi.org/10.1145/2902961.2903027
https://doi.org/10.1109/ISCAS.2017.8050257
https://doi.org/10.1145/3057267
https://doi.org/10.1109/DATE.2011.5763073

