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a b s t r a c t 

Many-core systems rely on the advantages of the latest Complementary Metal Oxide Semiconductor (CMOS) 
technologies to increase the number of cores. However, this improvement comes at the cost of higher power 
dissipation, which prevents full use of the chip. To continue improving performance on future many-core sys- 
tems, Resource Management (RM) becomes imperative to handle multi-objective and conflicting requirements 
such as power, performance, resilience, among others. In this task, RM can use both hardware (e.g., dynamic 
voltage and frequency scaling) and software actuators (e.g., task remapping). However, the complexity of syn- 
chronizing available actuators to follow a particular goal while avoiding actuation overlapping is a remaining 
challenge. This paper evaluates the power impact of each actuator and provides insights that will help engineers 
develop appropriate resource management heuristics to improve self-adaptable many-core systems. A state-of- 
the-art comparison shows that no related work provides or details the same comprehensiveness of actuation 
methods concerning power consumption. Our proposal is validated in a many-core system described in a true 
clock-cycle accurate model. Regarding hardware actuators, the results show the power profiling at the core level 
and detail the contribution of each hardware component. Furthermore, results of software actuators evidence 
that task events present a more significant power impact on the ratio of active and idle cores changes. 
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. Introduction 

Despite the countless advantages brought by many-core systems re-
arding performance increase, a certain number of cores must remain off
dark) or slowed (grey) during the applications’ execution due to power
onstraints [1] . These restrictions, known as Dark Silicon [1] and utiliza-
ion wall [2] , respectively, are more pronounced on recent technology
odes due to the higher number of integrated cores. Without respect-
ng the power capping , i.e., limiting how much electricity a system can
onsume, the system becomes vulnerable or unreliable to several prob-
ems such as cooling, faults from thermal issues, and fast aging effects
3] . This growing concern with power constraints motivates research
n the area of adaptive embedded systems [4] , i.e., systems endowed
ith decision-making capacity, capable of making online decisions for
etter energy efficiency. In this regard, Resource Management (RM) has
ained popularity thanks to its flexibility to handle power, performance,
nd other conflicting parameters to achieve system and application re-
uirements. 
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RM drives many-core systems to follow a given objective like en-
rgy and performance by configuring the available actuators set, also
alled as knobs. The cooperation of distinct actuators can bring advan-
ages to the system management [5] . However, the amount of possi-
le system settings increases exponentially as the number of actuators
rows. To further complicate, each core usually allows dynamic settings
f their control knobs. As a consequence, a comprehensive actuators set
ncreases the complexity of any RM design and makes the management
f a many-core system much more challenging due to the amount of
ossible operating points. 

Many-core systems that support RM must be hierarchically orga-
ized to properly distribute the actuators and allow scalability [6] . A
elf-adaptive RM employs a general framework for self-aware comput-
ng paradigm, such as autonomic computing [7] and observe, decide, act

ODA) [8] . Concerning ODA paradigm, observation is essential to pro-
ide an adequate measurement infrastructure by monitoring computa-
ion and communication resources, actuation adopts hardware and soft-
are mechanisms to meet the resource management goals. Lastly, de-
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Fig. 1. Classification of actuation methods adopted in this work. 
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Fig. 2. A 6x6 instance of the reference many-core platform, organized in four 
3x3 clusters. 
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isions adopt comprehensive algorithms to control the system actuators
ased on the observed data. 

The ODA paradigm requires self-awareness and self-configuration
rom the system to enable the adaptation policies [9,10] . In this work,
elf-awareness means that the system can observe itself through virtual
r physical sensors, and self-configuration is the ability to adjust the
vailable system actuators to update system settings. The biggest chal-
enge remains in how to control the actuators set of a many-core system
n a coordinated way to provide the required adaptability to improve its
nergy efficiency. Note that energy-efficient self-adaptive techniques are
lso a concern in other domains, such as High-Performance Computing
HPC) [10,11] . 

To pave the way for designing an energy-efficient many-core sys-
em, the objective of this paper is to reveal which actuators best fit for
 given scenario. This paper focuses on the actuation component of the
DA paradigm, and presents the following contributions: ( i ) provide a
rotocol for each actuation method; ( ii ) pinpoint the advantages and
isadvantages of each actuation method; and ( iii ) provide recommen-
ations for the use of each actuator according to its power impact. To
alidate our work, we model an actuation platform that includes sev-
ral hardware and software actuators to support RM decisions. The pro-
osed platform allows individual control of each layer by enabling the
ierarchical approach under the ODA paradigm. It provides insights for
uture RM designs take smart decisions according to heuristics that meet
he multi-objective purposes [12] . Further, no other work provides or
etails the same comprehensiveness of actuation methods concerning
ower consumption. 

The rest of this paper is organized as follows. Section 2 intro-
uces the actuation methods. Next, Section 3 presents the extended
eference many-core platform with support for actuation methods.
ection 4 shows the design and model of the hardware actuators.
ollowing, Section 5 presents the protocol of the software actua-
ors. Section 6 evaluates the power impact of the actuation meth-
ds, as well as revealing the benefits of combining some actuators.
ection 7 overviews related work regarding the RM comprehensiveness.
inally, Section 8 points out conclusions. 

. Actuation methods 

This section presents the actuation methods adopted in this work.
n the literature, several specific actuators are presented, such as
ause/unpause app, kill app, increase/reduce power cap , and set power cap

10] . However, our choice was based on their relevance and coverage.
mong the chosen ones, the actuation methods were classified based
n two properties: ( i ) the latency for enforcing an actuation; and ( ii )
he impact delivered by an actuator [5] . Further, actuators can fall into
wo implementation categories, as shown in Fig. 1 . Hardware actuators

re usually fast, although they usually have a limited overall impact
e.g., resources and power) at the system point of view due to inherent
ardware limitations. On the other hand, software actuators are slower
han the hardware ones to take effect. However, they usually are more
exible and enforce a higher impact on the system. 

The hardware actuation methods include: 

– Frequency Scaling (FS): technique used to increase or decrease the
frequency of a hardware component; 
43 
– Voltage Scaling (VS): technique used to increase or decrease the volt-
age of a hardware component; 

– Power Gating (PG): technique used to shutdown the power supply of
an idle block of a circuit [13] ; 

– Clock Gating (CG): technique used to disable the clock switching to
stop unnecessary gate activity [14] . 

On the other hand, software actuators are modeled using communi-
ation protocols. Any software actuation method includes a set of mes-
ages, each one related to a specific service to model the behavior of the
iven actuator. The software actuation methods include: 

– Application Admission (AA): protocol used to adapt the application
parallelism to the available resources on the system; 

– Task Mapping (TM): protocol used to assign a task of the incoming
application to the system, usually based on a mapping heuristic [15] ;

– Task Remapping (TR): protocol used to employ task migration. It
deals with the availability of resources dynamically. 

A demonstration of how these actuators can be used in conjunction is
s follows: at the application level, the manager evaluates if the system
as enough power and resources for new incoming applications [16] .
nce the manager allows the application to execute, TM finds the most

uitable area to place application tasks. Further, TR [17] , FS and VS
ay adapt the system and applications settings according to the system

tatus [18] or goal switching. To support adaptability, the RM controls
he knobs available in the system at runtime to meet the goals embedded
n the management algorithms. Therefore, comprehensive and adaptive
anagement for many-core systems should include not one or two, but

everal actuation methods. In this sense, this work seeks to cover this
hallenge by evaluating the power impact presented in such actuation
ethods and the best way to use them. 

. Many-core platform 

This section describes our many-core platform, which is used to
odel the actuation methods presented in the previous section. The

dopted reference many-core architecture is based on an open-source
roject, named HeMPS, which is available online [19] . The Processing
lements (PEs) are interconnected through a 2D-mesh Network-on-Chip
NoC). Each PE contains a 32-bit Reduced Instruction Set Computer
RISC) processor, a local scratchpad memory, a packet-switching router
nd a DMNI module [20] , which combines the functions of a Network
nterface (NI) with Direct Memory Access (DMA) capabilities. 

Fig. 2 illustrates a 6x6 HeMPS instance. Despite the same hardware
or all PEs, they have different roles in the system, i.e., a PE is either a
anager or a slave. Further, the system is hierarchically organized into

lusters . In this context, a cluster is a virtual region of the many-core
latform that contains a manager PE and a set of slave PEs. The cluster
ize is a design-time parameter, although a cluster can borrow resources
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Fig. 3. Hierarchical organization, where the GM manages the system, the CMs 
manage a set of SPs and SPs execute application tasks. 
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Fig. 4. (a) Original PE and (b) novel PE with FS support, which integrates a 
clock generator hardware and modifies the DMNI. 
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rom other clusters at runtime when there is no available slave PEs in
he cluster to execute a given application. 

This work extends the reference platform [19] by increasing the ca-
abilities of the manager PE to handle multiple actuators concurrently.
he Operating System (OS) running on top of each PE defines its role in
he hierarchical organization. A PE can assume the following roles: 

– Cluster Manager (CM): resource manager at the Cluster-level. It ex-
ecutes the decision management regarding hardware and software
actuators, such as task mapping and dynamic voltage and frequency
scaling (DVFS), i.e., a combination of VS and FS; 

– Global Manager (GM): resource manager at the System-level. It re-
ceives application execution requests via the external interface (ap-
plication repository) and decides which clusters execute the appli-
cations. The GM also acts as a CM, managing the PEs belonging to
its cluster; 

– Slave (SP): slave PEs that execute the applications tasks. Each SP
executes a multi-task OS, enabling the concurrent execution of tasks.

Fig. 3 overviews the hierarchical organization of the many-core sys-
em, highlighting the different levels and the communication pattern
etween PEs. The exchanged messages related to the system manage-
ent may be intra- or inter-cluster. SP belonging to a cluster com-
unicates with the manager PE of its cluster, which defines an intra-

luster communication. Similarly, the inter-cluster communication oc-
urs when CMs communicate with the GM. 

The actuators set is modeled to fit in the hierarchical organization
hown in Fig. 3 . The higher the actuation impact and latency, the higher
ts hierarchical level. Thus, the actuators set is organized as follows: 

– System-level : application admission; 
– Cluster-level : task mapping and task remapping; 
– PE-level : frequency scaling, voltage scaling, power gating and clock

gating, i.e., all hardware actuators. 

It is worth mentioning that the architecture and actuation methods
re orthogonal concepts. Architectural features, like caches, out-of-order
xecution, or different hardware affect the communication at both pro-
essor and NoC levels [21] . The actuators capture the computation and
ommunication loads, firing a given action according to the processor
oad and NoC traffic. Thus, the methodology presented in this work is
ndependent of the reference many-core platform chosen. The reason for
dopting this many-core platform is the easy reproducibility of our ex-
eriments by other research groups and the accurate validation of the
ower impact of the modeled actuators. 

. Hardware actuators 

This section details four hardware actuation methods evaluated in
his work, as shown in Fig. 1 . Although these hardware actuators are not
ew, the purpose of this section is to demonstrate how these methods
re implemented on a reference many-core platform, as well as to show
ts benefits and drawbacks. 

The model of the frequency scaling ( Section 4.1 ) requires modifi-
ations on the original PE structure to cope with different frequencies
nd keep the accuracy regarding the clock cycle. To guarantee realistic
44 
VFS support, the model of the voltage scaling ( Section 4.2 ) considers
he hardware overheads (e.g., latency and energy), standard cells library
haracterized for distinct supply voltages provided by the foundry, and
he delays inherent of the voltage scaling for establishing a correct DVFS
rotocol. The last two sections present actuators commonly found in RM
esigns to deal with power capping issues. While Section 4.3 describes
he PG model that follows the same assumption used by some works
22,23] ; Section 4.4 introduces the CG model, which is created through
ative features of the reference many-core platform. 

.1. Frequency scaling model 

Fig. 4 illustrates the hardware modifications on the PE for frequency
caling support. The frequency scaling actuates only on the processor,
emory, and DMNI module. The main goal is to enable processors to
ork at different frequencies while the NoC transmits the message by
sing the nominal frequency . The reason for transmitting messages at the
ominal frequency is to avoid PEs running at higher frequencies stall
ue to PEs running at lower frequencies. The novel PE includes a clock
enerator that creates the scaled frequency from the nominal frequency.
ig. 4 shows the frequency domain line that separates the hardware
locks running at the nominal frequency (blue color) and the ones at a
caled frequency (gold color). 

The DMNI synchronizes the hardware modules working at different
requencies. The original DMNI ( Fig. 4 a) has a Send module respon-
ible for reading the data from memory and converting it to a mes-
age for sending to the network. The Receive module reads the
essage from the NoC and copies them to the memory. The new ver-

ion of DMNI ( Fig. 4 b) has two bisynchronous buffers included in the
end/Receive modules to synchronize the DMNI. Both modules
re divided into two regions, one running at the nominal frequency and
he other one running at the scaled frequency. The Receive module
eads the message from the NoC at the nominal frequency, and then
rites the flits into the internal bisynchronous buffer. If this buffer is
ot empty and the memory is ready for writing, the receiver copies the
essage from the buffer to the memory by using the scaled frequency.
he sending process is similar to the receiving process, the difference is

n the opposite direction of the data flow, i.e., read from memory and
end to the network. 

Our many-core employs this FS model as one power knob to pro-
ide adaptability concerning power constraints. However, this actuator
as a drawback, the inherent hardware overhead brought by the imple-
entation of the clock generator and the bisynchronous buffer at the
MNI. Furthermore, the insertion of buffers in the DMNI penalizes the
xecution time of the applications on average at 6.55%. 
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Fig. 5. The DVFS protocol shows the valid voltage and frequency pairs. 
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.2. Voltage scaling model 

A voltage regulator is an analog circuit that allows voltage scaling in
 system. To model the voltage scaling, we characterized the reference
any-core platform with supply voltages of 1.1V, 1.0V and 0.9V con-

erning the standard cells provided by the foundry (65nm CMOS tech-
ology). Note that this methodology is technology agnostic, i.e, other
echnology nodes can be used and our purpose is to validate the con-
ept in order to produce meaningful results. First, the processor netlist
btained from a characterization flow (using the nominal vf-pair : 1.1 V–
 ns) is evaluated for 1.0V and 0.9V supply voltages. Then, it is verified
he delay for reading the memory. The minimum period to obtain a zero
r positive time slack concerning processor and memory is 4.479 ns and
.229 ns, for 1.0 V and 0.9 V, respectively. Finally, we evaluate the
outer netlist for the same supply voltages. The goal is to ensure that
he router can keep a positive slack at any supply voltage since the fre-
uency scaling does not affect the router. 

Fig. 5 defines the DVFS protocol by linking the minimum period for
caling the voltage safely with the frequency range generated by the
lock generator. The numbers in the yellow boxes define valid vf-pairs .
he ascending order establishes the protocol to scale the vf-pair down,
hile the descending order is the protocol to scale the vf-pair up. The

ystem always starts at the nominal vf-pair . 
In general, coarse-grain voltage regulators present latency in the or-

er of milliseconds while fine-grain latency is lower than hundreds of
anoseconds [24] . On the other hand, the power overhead from on-chip
oltage regulators to support fine-grain voltage scaling is non-negligible
25] . Due to the low latency of fine-grain voltage regulators and the
eature of frequency scaling at the PE-level, we model a fine-grain (PE-
evel) voltage scaling which assumes that the latency of a voltage scaling
up or down) is 100 ns (i.e., 25 clock cycles at the nominal frequency),
nd the power overhead from on-chip voltage regulators increase the
E power in 10%, as indicated by Choi et al. [26] . 

.3. Power gating 

Power gating is a power actuator widely employed in many-core sys-
ems, mainly to mitigate Dark Silicon [1] and utilization wall [2] prob-
ems. PG provides a more significant power impact than DVFS because
t is the only mechanism that eliminates leakage [13,27] . PG is usually
eployed when no tasks are running in the PE. However, the PE needs
o stay off long enough to compensate the time and power overheads
o wake it up back. For example, on x86 processors, the reported wake
p delay is in the order of a few microseconds [28] . As this proposal as-
umes applications can start at any moment, integrating the PG model
ould require predictions concerning how many time the PE will be on

active) or off (inactive). For this work, PG follows a standard assump-
ion found in the literature [23,29,30] : if the PE is running no tasks, it
s considered power-gated. 

Although the PG is presented as a PE-level actuation, the process
f shutting down a target PE may include another PE. In addition, the
f-pair settings can use another PE as well, so it is not wrong to see
he management of this hardware actuator as a Cluster-level problem
r even a System-level problem. For cases where two PEs are related
o perform a hardware actuation, a source PE decides when a target PE
s on and off, and its vf-pair. The source PE can be either a manager
E (i.e., GM or CM) or an SP running a task with power management
45 
apabilities. Therefore, a communication protocol between a source PE
nd a target PE [31] allows DVFS and PG decisions involving two or
ore PEs. In other words, the knob for performing a DVFS and a PG is

t PE-level, however, the order to set the knob can come from another
E. 

.4. Clock gating 

Clock gating is an actuator suitable for dealing with idle times when
he PE is executing tasks due to the common short duration of idle times.
lthough the power impact is smaller than PG, it is significant com-
ared to DVFS. The proposed CG model affects only the processor and
he memory. The processor supports clock hold, i.e., when the proces-
or is idle, the clock signal is disabled, saving dynamic power. Since the
haracterization computes dynamic power from the instructions coun-
ers, no changes are required to model CG for the processor. Similarly,
he dynamic memory power comes only from load and store operations.
herefore, when memory operations are not occurring, the memory is
onsidered in idle and no dynamic power is accumulated during idle pe-
iods. The router is continuously spending dynamic power, in the active
r the idle state. The timing overhead from CG is considered negligible,
nd it is not inserted into the model. 

Due to the hierarchical organization of the adopted many-core plat-
orm, the CG technique is more suitable to deal with the power consump-
ion within a cluster, e.g., we would have a negligible timing overhead
o map a new task. Instead, the PG technique is applied to clusters that
re not running an application. 

. Software actuators 

This section describes the communication protocol required to syn-
hronize the software actuators. It is important because software actu-
tors use message passing communication to invoke services. The com-
unication protocols satisfy the hierarchy sorting for the actuators set,

.e., the application admission ( Section 5.1 ) is a System-level actuator,
hile task mapping ( Section 5.2 ) and task remapping ( Section 5.3 ) are
luster-level actuators. Note that communication protocols that allow
ne-grain individual and independent hardware actuators [31] are re-
uired when a manager PE performs the decision on the PE-level set-
ings. 

In regard to software actuators, application admission and task map-
ing are correlated problems. Once the manager allows an application
dmission, the mapping of all tasks of this application is enabled as well.
s a task graph composes one application, then the task mapping is con-
idered as an inner problem of the application admission. This work dis-
inguishes application admission and task mapping as two instances of
he same problem, so the first is a System-level problem and the second
s a Cluster-level problem. Also, we have chosen to further detail these
oftware actuator protocols for two reasons. First, usually, these proto-
ols are not properly discussed in the literature. Second, the primary
oncern of the available proposals are the heuristics and not the proto-
ols. For example, Singh et al. [17] survey a broad set of task mapping
euristics for many-core systems, but not the protocols to deploy them.

Depending on the configuration chose (e.g., the number of PEs and
lusters), the hierarchical organization of the many-core platform (as
hown in Fig. 2 ) may result in clusters without enough resources to
eceive an entire application (as will be seen in Section 5.2 ) or the
eed to move an application to a free processor (as will be discussed
n Section 5.3 ). In both cases, the absence of resources in a given cluster
auses the OS of the cluster manager to have to request to the neighbor-
ng managers a processing element, and this process is called reclustering

32] . The reclustering process implies a set of messages exchanged be-
ween the manager processors in order to lend resources, allowing the
apping/remapping procedures. This process, if necessary, has a negli-

ible impact on the mapping/remapping procedures because it consists
f few messages exchanged between managers. 
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Fig. 6. Diagram of the application admission and task mapping protocols. 
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Fig. 7. Diagram of the task remapping protocol. 
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.1. Application admission 

The Application Admission assigns an application task graph to a
luster. The services to synchronize the AA are as follows: 

– NEW_APP : message sent from the GM to a CM for notifying that a
new application was assigned to the cluster. This message carries
the application task graph and design-time data. The CM maps all
applications’ tasks after receiving this message; 

– APP_MAPPING_REQUEST : message sent from a CM to the GM for
notifying that the cluster is ready to receive the tasks from the incom-
ing application and requires the TM protocol. This message carries
the position of each task of the incoming application. 

Fig. 6 presents a sequence diagram for admitting one application.
n application from the Application Repository can enter at any time

nto the system by setting a hardware interruption to indicate to the
M the admission request (step 1). Next, the GM runs an algorithm to
ecide if the system can admit the application and, in case of success,
elects the cluster to allocate the application. At step 2 the GM sends
 NEW_APP message to the chosen CM and blocks the interruption for
ew applications. After receiving the NEW_APP message, the CM trig-
ers the task mapping algorithm for the incoming application. Once the
M decides the mapping of all tasks of the application, the CM sends
PP_MAPPING_REQUEST message to the GM (step 3). After process-

ng the APP_MAPPING_REQUEST service, the GM unblocks the inter-
uption for new applications and starts the task mapping protocol (steps
rom 4 to 8 are presented in Section 5.2 ). 

.2. Task Mapping 

The Task Mapping protocol follows the Application Admission pro-
ocol. This protocol coordinates the assignment of all tasks to their SPs,
nce the mapping decision for all tasks was already defined. Because
he TM transmits the object code of all application tasks to the SPs of a
luster (i.e., a considerable communication load is about to start), any
ask remapping is temporarily blocked. The services to synchronize the
M are as follows: 

– TASK_MAPPING : it loads the task object code into the memory of
the SP (message direction: GM to SP); 

– TASK_MAPPED : it notifies the CM that a task was successfully
loaded into an SP (message direction: SP to CM); 

– TASK_RELEASE : it releases the mapped task (message direction:
CM to SP). 

Once the Application Admission finishes, a loop to map the tasks
egins ( Fig. 6 ). The GM reads a task from the Application Repository
46 
step 4) and sends a TASK_MAPPING message to an SP (step 5). The
M is aware of the task mapping because this information was embod-

ed in the APP_MAPPING_REQUEST message. Next, when the SP re-
eives the task to execute, it sends a TASK_MAPPED message to the
M to notify that the task was successfully mapped (step 6). When the
M receives all TASK_MAPPED messages, it sends TASK_RELEASE
essages to release the mapped tasks (step 7), i.e., the new application

tarts. Finally, after the last received TASK_RELEASE message, the CM
nblocks any task remapping to finish the TM protocol (step 8). 

Although the Task Mapping protocol is classified as a Cluster-level
ctuation, the GM plays a relevant role in the protocol due to the exclu-
ive access to the Application Repository. Furthermore, the GM sends
ASK_MAPPING messages directly to the SPs of any cluster. This de-
ign choice comes from two reasons: ( i ) to avoid the transmission of the
bject code first to the CM and then to the SPs; and ( ii ) due to the adop-
ion of XY routing, e.g., if all object codes were transmitted to the CM,
etwork congestion (hotspots) would occur. 

.3. Task Remapping 

The Task Remapping protocol, also know as task migration, is an
ssential feature to support adaptability because it allows remapping of
he application at runtime. The TR goal is to move a task from a source
P ( SP src ) to a target SP ( SP tgt ). TR employs a low latency protocol for
any-core systems with distributed memory, because it requires neither

heckpoints nor task code replication as well as allows task migrations
n parallel [33] . 

The typical layout of a memory page loaded with a task contains
ead-only and read-write sections. The read-only section is the task ob-
ect code ( text in Fig. 7 ). The read-write sections are global variables
 data and bss ) and the stack area ( Fig. 7 ). The TR protocol migrates
ll sections of the memory page. The services to synchronize the TR are
s follows: 

– TASK_MIGRATION : it notifies the SP src which task should migrate
to SP tgt to initialize task remapping (message direction: CM to SP src );

– MIGRATE_TEXT : it migrates the text section (message direction:
SP src to SP tgt ); 

– MIGRATE_STACK : it migrates the stack section (message direc-
tion: SP src to SP tgt ); 

– MIGRATE_BSS_DATA : it migrates the bss and data sections
( SP src to SP tgt ); 

– TASK_MIGRATED : it notifies the CM that a task was successfully
remapped from SP src to SP tgt (message direction: SP tgt to CM). 

A decision algorithm starts the TR protocol at a CM. The CM sends
he TASK_MIGRATION message to SP src and blocks both application
dmission and task mapping protocols while there are ongoing migra-
ions (step 1). Once the SP src is aware of the remapping request, SP src can
end a MIGRATE_TEXT message to migrate the read-only part of the
ask code, without blocking its execution (step 2). Next, SP chooses
src 
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Table 1 

Summary of the many-core evaluated in this work. 

Cluster sizes 3x3; 4x4; 6x6 

NoC 2D mesh topology, input buffering, round-robin arbitration, XY routing 
Communication Bidirectional 32-bit links 
CPU core 32 bit, 3-stage pipeline, MIPS ISA 
Operating Systen (OS) in-house OS, LST scheduling (soft RT), API for message exchange 
Tile local private RAM scratchpad memory model, 128kB – OS and tasks, true dual-port 
Memory characterization CACTI tool [34] 
Target technology 65 nm CMOS bulk 
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Fig. 8. Communication graphs of the chosen workloads. 
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2 Epoch : corresponds to a monitoring period, defined as a hardware interrup- 
tion. 
n appropriate moment to stop the task and save the context (step 3)
o enable the migration of the read-write memory segments (step 4).
fter sending the MIGRATE_STACK and MIGRATE_BSS_DATA mes-
ages, SP src updates the new task location for all communicating tasks if
hey exist (step 5). In parallel, SP tgt restores the context and can proceed
he task execution after reporting to the CM the successful finish of task
emapping (step 6). After receiving the TASK_MIGRATED message, the
M unblocks all task operations (step 7). 

The reason to block task mapping while remapping a task is the
ame: avoid unnecessary network congestion and ensure synchroniza-
ion. Although a concurrency between TR and TM requests is unlikely
o happen, the CM guarantees only one at a time running on the cluster.

. Results 

This section evaluates the power impact of hardware and software
ctuators on self-adaptable many-core systems. The purpose of the ex-
eriments is to reveal which actuators best fit for a given scenario. For
xample, hardware actuators, such as Clock Gating , take advantage of
he idle times of processors when they have tasks that are waiting for
ata from other PEs to reduce power consumption. On the other hand,
oftware actuators have a systemic action, e.g., consider an application
hat if admitted would violate the power cap, the Task Remapping can
e used to reduce the system power in order to accept the incoming
pplication by joining tasks in the same processor. In addition, we also
rovide recommendations for the use of each actuator according to its
ower impact, bringing insights to guide new heuristics that assist in
he adaptive decisions of RMs. In this regard, Section 6.1 summarizes
he many-core architecture set evaluated throughout all experiments.
ection 6.2 shows the first power results obtained from hardware actu-
tors. Next, Section 6.3 highlights the energy improvements brought by
oftware actuators. Finally, Section 6.4 provides insights into the best
t of each actuator and shows the results from combinations of some
ctuators. 

.1. Experimental setup 

Table 1 gives the details of the architecture set used throughout these
xperiments. These configurations were used in the extended reference
latform with support to the actuation methods. Further, we use conven-
ional technology (65 nm) to facilitate the replication of the experiments
y other researchers. 

For the power impact exploration, a critical step is the communi-
ation within a cluster in which the network topology selection has a
irect impact on the overall system power consumption. However, the
oC topology exploration results are out of the scope of this paper. In

his sense, we adopted 2D-mesh topology. Besides being one of the most
sed topologies in literature, routing in a 2D-mesh is easy, resulting in
otentially small area footprint routers, short clock cycle, and overall
calability [35] . Furthermore, 2D-mesh well matches the planar, regu-
ar layout of a cluster-based design, which can increase the scalability
f self-adaptable many-core systems. 

In this work, we consider both synthetic applications and a set
f workloads from scientific to multimedia computing domain. These
47 
orkloads were selected according to their profiles to deeply evaluate
he power impact of chosen actuators, e.g., AES, MPEG, Dijkstra, and
TW. 

Fig. 8 shows the communication graphs of the chosen workloads,
ighlighting the different characteristics of each task. While MPEG tasks
re interdependent, AES and Dijkstra workloads present bottlenecks as
hey are parallelized by centralizing responses into a single PE. Finally,
TW is dependent on 2 tasks, which work concomitantly. 

.2. Power impact of hardware actuators 

This section evaluates the power impact of the four designed hard-
are actuation methods. As all have been implemented at the PE-level,
 correct fine-grain tuning is essential to have an effective power con-
umption reduction. 

.2.1. DVFS actuator 

The first experiment illustrates the maximum and minimum power
onsumption at the PE-level using the DVFS actuator. Once the DVFS
rotocol is defined ( Fig. 5 ), the PE is characterized by each supply volt-
ge, considering the smallest periods ( vf-pairs 1, 3, 6). The router always
orks at the nominal frequency (i.e., 4 ns). The processor and the mem-
ry consider the power per instruction and per operation (read/write),
espectively. Therefore, it is not necessary to characterize the modules
or each frequency. As a result, each PE component has three look-up
ables (i.e., 1.1 V, 1.0 V, 0.9 V), obtained from the characterization flow.

Fig. 9 presents the experimental setup to determine upper and lower
ounds values related to the power consumption of the SPs. This experi-
ent uses a synthetic application. While the central SP (SP 4 ) executes a
PU-bound task, with a uniform distribution of instructions classes. The
P 4 neighbors execute communication-bound tasks, generating traffic
raversing SP 4 router. With this scenario, the consumption of SP 4 defines
he maximum power ( 𝑝 max ) value that an SP can consume in an epoch. 2 

n the contrary, SPs at the corners (2, 6, 8) spend mostly leakage power
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Fig. 9. A 3x3 many-core system executing synthetic tasks mapped to maximize 
the average power dissipation of the central SP, and minimize the power dissi- 
pation of the SPs at the corners. 

Fig. 10. Power profiling of the SP for all supply voltages. The total power (y- 
axis) corresponds to the power consumption in an epoch of 1 ms. 
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Fig. 11. Processor scheduling zooms in the task phases of two tasks running 
into two different PEs, highlighting the communication between tasks. 

Fig. 12. The power curves show the impact of CG relies on task phases, where 
“no task ” curve presents the power of an idle SP. 
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p  
ecause these PEs have no tasks to execute (processors in hold state),
nd there is no traffic traversing the routers of these SPs (routers in idle
ode). Note that these routers have only three ports so that the router

onsumption reduces. Therefore, the power consumption at these SPs
efines the minimum power ( 𝑝 min ) value that an SP can consume in one
poch. 

Fig. 10 details the power consumption for each SP component con-
idering the scenario presented in Fig. 9 . The histograms assume three
upply voltages for an epoch equal to 1 ms. The histograms show the
ontribution of the three modules in the power consumption, consider-
ng vf-pairs as 1, 3 and 6. The comparison of 𝑝 max and 𝑝 min highlights the
ffect of the leakage power. 

The 𝑝 max histograms (left part of the Figure – max power ) show the
ontribution of the three modules in the power consumption: 50% pro-
essor, 30% memory, and 20% router. As the voltage reduces, the por-
ion due to router power increases because only the processor and the
emory works on the scaled frequency. Therefore, in the epoch, the
umber of executed instructions and memory accesses reduces when
he frequency is scaled down. The 𝑝 min histograms present a distinct be-
avior, with an increased consumption by the routers due to the lack
f clock hold. 𝑝 min is approximately one-third of 𝑝 max when comparing
he bars of the same voltage. The comparison of 𝑝 min at 0.9 V (processor
xecuting CPU-bound tasks) and 𝑝 max at 1.1 V (processor in hold state)
vidences the effect of the leakage power. The 𝑝 max at 0.9 V is only 18%
igher than the 𝑝 min at 1.1 V. 

The evaluation of the PE power dissipation at Fig. 10 points out to the
eveloper of the adaptation heuristics how much a given PE can benefit
rom the DVFS technique. For example, if the application running on
48 
 particular PE can have its performance reduced, the dissipated power
an reduce by up to 50% using DVFS (the relationship between columns
 and A in Fig. 10 ). By placing a PE in an idle state, the consumption can
educe by up to 5 times (relation between columns A and F of Fig. 10 ).

.2.2. Power and clock gating actuators 

This section shows the power consumption variation regarding the
ask phases at the PE-level when CG is applied. Further, it reveals the
pportunities that PG actuators can bring for self-adaptable many-core
ystems. 

This experiment is also based on a synthetic application and consists
f running two tasks. Both tasks have distinct moments of computation
nd communication. In the communication period, the SP checks if the
rocessor is in idle mode and applies the clock gating actuator. Fig. 11
epicts the scheduling of these two tasks running at two distinct SPs. The
lue bars are the moments when the processor is busy, and the green
ars are idle periods. Task A corresponds to a computation-intensive
ask. At the end of an iteration, the results are sent to task B (between
000 and 2000 kticks in Fig. 11 ), where there is an alternation between
ctive and idle states. 

To analyze the effectiveness of the RM, Fig. 12 shows the power
rofile of tasks A and B including the CG model. At the beginning of the
xecution, from 0 to 1000 kticks, Task A is in a busy phase spending
round 14 mW and Task B stays mostly in idle state consuming around
.5 mW (this phase corresponds to the first one third of Fig. 11 ). After
his period, from 1000 to 2000 kticks, both tasks alternated busy and
dle states, exchanging messages (second third of Fig. 11 ). Note that the
dle phase of both tasks generates lower power due to the CG actuator,
hile the busy phase creates peaks of power consumption. 

The third curve (blue line points) at Fig. 12 illustrates the power of
n SP when no tasks are running (i.e., the minimum power of an idle SP,
.9 mW). If PG would be applied, this consumption could be eliminated,
t the cost of the latency to start the PE. 

This experiment shows that CG reduced the dynamic power con-
umption by 3.5 mW and 6 mW for tasks A and B, respectively. Thus, CG
s a fine-grain actuator, which can act during the different phases of a
ask execution by taking advantage of the idle periods of the processor.

The results so far presented by the hardware actuators are as ex-
ected, according to the literature [23,29,36] . However, the purpose
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Fig. 13. Snapshots taken to show the application mappings at important mo- 
ments explained by Fig. 14 . 

Fig. 14. Example of the power impact of software actuators in a 4x4 cluster. The 
top graph shows the power at the cluster level, and the bottom one illustrates 
the power in each PE. 
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f these experiments was to illustrate upper and lower consumption
ounds for a processing element, for a given technology. Thus, deci-
ion algorithms, using these values obtained from the characterization
rocess, can modify DVFS parameters so that the system reacts proac-
ively, respecting the power cap as a function of future actions, such as
he admission of a new application. 

.3. Power impact of software actuators 

As stated at the beginning of this work, software actuators usually
ave a larger impact than the hardware ones. Fig. 13 presents the sys-
em occupation for this experiment, using a 4x4 cluster, where each PE
ay execute up to two tasks. Fig. 14 illustrates the variation of power

nd resources for each software actuator. The bottom graph presents the
ndividual power consumption of each PE, and the top graph shows the
luster power. The simulation aims to highlight task events disturbing
he power and resources. For the sake of readability, the PEs running
o tasks are considered clock-gated in this example, because they are
ll part of an active cluster. The choice of the CG over the PG actua-
or is motivated by the latency brought by the latter, as discussed in
ection 4.4 . 

The simulation starts with six tasks running in four PEs (snapshot
). Due to an Application Admission, five new tasks occupy additional
our PEs and make the power increases around 80% (snapshot 2). In
49 
his sense, the bottom graph in Fig. 14 illustrates the power variation
elt by each PE due to the AA actuator. A TR is the second software
ctuator triggered by the RM. The bottom graph in Fig. 14 also show
he power impact caused by a task that migrates from a PE running two
asks (PE 2x1 - blue curve) to an idle PE (PE 0x1 - red curve) – snapshot
. Although the number of tasks and resources is still the same after the
ask remapping, the power in PE 2x1 increases because its utilization
ncreases. Finally, the end of an application execution decreases the PE
tilization and consequently the power as well (snapshot 4). 

In general, Application Admission and Task Mapping increase the
ower. However, the amount of this growth relies on the number of
asks, the number of PEs used to map the tasks and the task characteris-
ics (e.g., if the task is communication-bound or CPU-bound). Although
oth applications use the same number of PEs (four), Fig. 14 shows that
he first admitted application requires more power than the second one
ecause the former has more tasks (six versus five) and the average
ower of its tasks is higher, according to the power curves shown in the
ottom graph. Concerning task remapping, the power increases when
ccurring task remapping from a PE running multiple tasks to an idle
E, similar to the presented in Fig. 14 . As the opposite, the power de-
reases when a task remapping releases a PE and migrates to another
usy PE. Similarly to task mapping, the amount of the power variation
ue to a task remapping is variable and relies on the task characteristics.
f the number of idle and busy PEs does not change, the impact on the
ower consumption of a task remapping is small. Thus, task remapping
an be best used as a power knob in the following situations: ( i ) when
asks are divided to run in distinct PEs to make the application achieve
etter performance; or ( ii ) tasks are joined to share PEs while releasing
ther PEs to reduce power. 

Besides the power variation due to different software actuators,
ig. 14 also illustrates how the task phases affect the power consump-
ion. In the bottom graph, the power of some tasks exhibits a constant
ehavior while other tasks have a period behavior with peaks and val-
eys of power. As a consequence, the overall power (top graph) is not
onstant even though no actuation occurs. 

Given the impact on the power due to the admission of new applica-
ions, we suggest that RM policies should receive a design-time estima-
ion of the applications’ consumption, in such a way to avoid power cap-
ing violations. Knowing the impacts of the hardware actuators (DVFS,
G, PG), it is possible to admit a new application allowing a higher
ower than the cap. Thus, it is clear that hardware actuators should
ork together with software actuators, to manage the system power
issipation. 

.4. Combined actuator analysis 

This section discusses the advantages and disadvantages of each ac-
uation method, as well as providing an example of how to use the com-
ined actuators. 

Table 2 summarizes the best way to use each actuator. The hardware
ctuators act at the PE-level, with a local impact, i.e., restricted to the PE
here the actuation method is applied. On the other hand, the software
ctuators have a systemic action, i.e., at the application level. For ex-
mple, consider an application that if admitted would violate the power
ap. The decision heuristic may use TR to reduce the system power in
uch a way to accept the incoming application by joining tasks in the
ame processor. 

To evaluate the energy efficiency brought by the coordinated use
f hardware and software actuators, we created a test case consisting
f a 6x6 many-core system running four applications: MPEG ( A 1 - 5
asks), Dijkstra ( A 2 - 7 tasks), DTW ( A 3 - 6 tasks), and AES ( A 4 - 5 tasks).
ig. 15 shows the overall power consumption in different scenarios, and
ig. 16 shows the snapshots taken from the application mappings at
rucial moments shown in Fig. 15 . 

First, we present our baseline scenario with no actuator in Fig. 15 a.
ach application starts its execution at a given moment, highlighted by
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Table 2 

Advantages and disadvantages of each actuation method. 

Actuation Method Advantages Disadvantages Best way to use the actuator 

DVFS Fine control at the PE level Latency to switch the vf -pair; 
execution time overhead due to 
the synchronization process 

During the task mapping select the 
vf -pair to respect the power cap; 
change the vf -pair dynamically to 
follow the power cap 

Power Gating (PG) Leakage reduction Wake-up latency Apply to processors not executing 
tasks and even to entire clusters 

Clock Gating (CG) Fine control at the task 
level 

– Take advantage of the idle times of 
processors when they have tasks 
that are waiting for data from other 
PEs 

Application 
Admission (AA) 

Power coarse grain 
actuator 

New applications may be 
delayed to start 

Considering that applications are 
pre-characterized in terms of 
power, the AA should be used to 
allow the execution of new 

applications iff they do not exceed 
the power cap 

Task Mapping 
(TM) 

Workload distribution Complexity of the heuristics Evenly distribution of the workload 
using power-aware heuristics to 
select processors with smaller load 
or temperature 

Task Remapping 
(TR) 

Mechanism to tweak the 
power consumption 

Complexity of the heuristics 
and the communication 
synchronization 

To reduce power: migrate tasks 
freeing processors; to increase 
power (respecting the power cap): 
split the tasks in free processors 

Fig. 15. Overall power consumption for a 6x6 many-core system considering 
memory, router, and processor of all PEs. The three scenarios for the test case 
are as follows: (a) No actuation - open loop; (b) A PID control use DVFS as power 
knob to follow the cap; and (c) An example of how the same test case can follow 

the cap by using a combination of actuators. Note that S1 to S5 correspond to 
the moment the snapshots were taken to evaluate the system usage. 
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Fig. 16. Snapshots taken to show the application mappings at moments high- 
lighted in Fig. 15 . 

s  

n  

t  

T  
he vertical lines. When the four applications are running in the many-
ore system, the power reaches 200mW, since in this scenario the system
as no power management and all PEs are using the nominal vf-pair

vf1), as shown in Fig. 16 (Snapshot 1). 
Our second scenario is based on Rahmani et al. [30] work. They

ropose a multi-objective control approach managed by a Proportional-
ntegral-Derivative (PID) controller. In Fig. 15 b, we reproduce their ap-
roach using DVFS as the power knob - DVFS-only . In this experiment,
ll four applications start simultaneously. To keep power at moderate
evels, the power cap is set to 80 mW, roughly 40% of the applications’
ower running without actuation. The first vertical mark corresponds to
he actuation of the PID controller to avoid a power overshoot. The sec-
nd vertical mark highlights the beginning of the steady state. Note that
VFS-only cannot reach 80 mW (the power always stays above the cap)
ven when setting minimum vf-pair for all SPs, as shown in Fig. 16 (Snap-
50 
hot 2). Also, due to the adoption of only one actuator (i.e., DVFS), it is
o possible to admit new applications into the system neither to improve
he performance of a given application by using, e.g., task migration.
herefore, if on the one hand, it is possible to manage the system power
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Fig. 17. Comparative performance results for different actuators. 
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sing a single actuator. On the other hand, this approach does not have
he flexibility to modify an application behavior or open room to admit
ew applications into the system. 

To overcome the previous limitations, we propose to combine sev-
ral actuators. Fig. 15 c starts with no actuation, with the four applica-
ions starting simultaneously (as in Fig. 15 b), and the power reaching
00 mW. Next, the actuation of task migration releases some SPs to be-
ome idle by joining communicating tasks in the same SP, reducing the
ystem power consumption. The third mark represents the system power
fter setting all PEs executing tasks to the minimum vf-pair . Note that the
ystem power is below the cap by using task migration with DVFS. This
esulting scenario can be seen in Snapshot S3 in Fig. 16 . Note that some
Es are executing simultaneously two tasks, there are more power-gated
Es than snapshot S2, and the power is below the cap. Due to this power
lack, two actuation scenarios can be proposed, as shown in Fig. 16 . It is
ossible to speed up some applications (snapshot S4, observe the clearer
Es), or it is possible to admit a fifth application (snapshot S5). Such
exibility on using the power slack is only possible using different ac-
uators acting conjointly. In this example, we have chosen to relax the
onstraint and apply DVFS to an intermediate vf-pair ( vf(3) at Fig. 5 )
or two applications, still respecting the power cap (forth mark) and im-
roving the performance of these applications. This demonstrates that
ombining several actuators in a proper sequence allows the system to
ollow the power cap with flexibility. 

In order to assess the performance overhead arising from the use of
ombined actuators, we performed a test case with the three scenarios
resented in Fig. 15 . To create a baseline, applications have been cali-
rated to finish at approximately the same time when running at peak
erformance, i.e., vf(1) with one task per PE. In addition, the applica-
ions reach the system in the following order: DTW, MPEG, AES and
ijkstra. Note that due to calibration, applications end in the same or-
er of arrival. 

Fig. 17 shows the overall performance results (left bars) and perfor-
ance results per application (right bars). Results are normalized by the

o actuation scenario. The other actuators are DVFS-only and combined

ctuators . 
In regard to DVFS-only , as far as applications finish running, the

ext application has its vf-pair increased. In the end, all applications, as
ell as overall applications, finished their execution with similar per-

ormance losses (i.e., around 69%). Further, the DVFS-only runs above
he power cap ( Fig. 15 b), which in addition to worsening performance,
an not meet the imposed power cap. 

On the other hand, combined actuations (i.e., DVFS + task migra-
ions) commonly perform better than DVFS-only because it allows ap-
lications to speed up while respecting the power cap (similar to pre-
51 
ented in Fig. 16 - S4). However, PE sharing leads to performance losses
only communicating tasks are allocated together at the same PE) and
herefore applications with more parallel tasks are more likely to have
elevant performance losses. 

Concerning the combined actuation scenario, MPEG and AES are cho-
en to speed up by running at higher vf-pairs than the minimum, which
auses them to finish their execution only 26% after the ideal situation.
ext, Dijkstra is chosen to speed up its last iterations, so its performance

oss is mitigated to 60%. Meanwhile, DTW runs at a minimum vf-pair and
ith a minimum number of PEs at all times and has the higher perfor-
ance loss among all applications (i.e., 90%). 

To conclude, regarding performance, overall results show the com-

ined actuation scenario performs better than DVFS-only . However, ap-
lications may have bigger performance losses with combined actuation

f they are not able to speed up at the right times throughout their exe-
ution. 

. Related work 

This section discusses the related work, following two major themes.
amely “Available Actuators ” and “Actuators Improvements ”. The Avail-
ble Actuators theme addresses both the software and hardware actua-
ors commonly found in many-core systems and how they are being used
y different works. The Actuators Improvements theme describes how
his work can be used to guide and improve the adoption of actuators.
egarding software actuators, most of the works found in the literature
onsider Application Admission as a problem prior to the TM, which
akes AA the least employed. For example, authors [16,37–41] present

rameworks that focus directly on deciding the best number of tasks for a
iven application before the TM. In Rahmani et al. [30] , the application
nters the system only if there are available processors, although appli-
ations can also be killed suddenly if the power overcomes the capping.
n regard to TM, some works [16,37,38,42,43] assume one task per PE,
onsidering the PE as one resource. It leads to an under-utilization of the
ystem. On the other hand, other works admit to having two or more
asks per PE [5,22,39,44] , like this work. The advantage of addressing
ultiple tasks in a single PE is to evaluate more realistic systems, act-

ng at the early appearance of bottlenecks. To conclude the discussion
n software actuators, TR enables runtime adaptability for task mapping
nto RM. Although some authors decided to turn the migration off due to
he overhead costs and prefer to deal with the issues inherent to dynamic
orkloads using only DVFS [30] , or change the application parallelism

evel [16,37] instead of employing TR. However, we have shown that
R is a powerful mechanism to tweak the power consumption in order
o respect the power cap. 

Once the tasks are mapped, hardware actuators become relevant, and
VFS has become the de facto mechanism to deploy power management

n many-core systems. The granularity of DVFS varies between PE-level
5,16,23,29,36,43–45] and Cluster-level [22,46] . In this work, we sug-
est DVFS at the PE-level because it provides a fine-tuning of power
anagement. When no tasks are running, some works [22,29,30] as-

ume PG to avoid energy wasting and reduce the average power. How-
ver, we have seen that processors take a few microseconds to wake up,
hich is inappropriate for safety-critical applications. CG disables the

lock switching off at parts of the circuit to save dynamic power. Since
G is a widely used and can employ this power actuator, few works
ention CG explicitly [36] . In this context, we suggest that PG is the
ower actuator suitable for clusters with no tasks due to the latency to
ake-up the circuit, while CG is ideal for small periods of idle times

hroughout the execution of tasks. Further, the manager can use DVFS
t minimum levels plus CG when no tasks are running in case of absence
f PG, as stated in [36,44,46] . 

Usually, authors abstract the discussion and implementation of hard-
are and software actuators because the decision (i.e., mapping heuris-

ics) is the central focus of their work. However, some works consider
revious design-time steps to capture actuators properties, such as la-
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ency and power, to improve control and make more accurate decisions
ased on these properties [22,44,46] . Instead of focusing only on deci-
ion heuristics, our work details how actuators should be used, and their
onsequences. For example, a hierarchical adaptive multi-objective RM
or many-core systems is presented by [47] . This proposed work can
elp them by disclosing the benefits and overheads of each actuator,
aking better heuristics to be employed in the future. 

To the best of authors’ knowledge, this is the first work that imple-
ents and provide insights that will help engineers develop appropriate

esource management heuristics to improve self-adaptable many-core
ystems. 

. Final remarks 

Future many-core systems will be closely related to effective re-
ource management that addresses multi-objective and conflicting re-
uirements such as power, performance, resilience, among others. In
his work, we have extended a reference many-core platform to include
everal hardware and software actuators to support RM decisions and
ssessed the power impact brought by each of them. Further, a state-of-
he-art comparison shows that no related work provides or details the
ame comprehensiveness of actuation methods concerning power con-
umption. 

Regarding hardware actuators, we show how to implement DVFS,
G, and CG in a reference many-core system. Further, communication
rotocols illustrate how the hierarchical RM can coordinate software ac-
uators to avoid resources conflicts and network congestion. In this re-
ard, analyzing each knob individually allowed us to measure the power
mpact of each actuator. 

Results show that hardware actuators have a more significant im-
act at PE-level because it provides a fine-tuning of power manage-
ent. However, software actuators help in the adaptive decisions of
Ms. Therefore, the use of both hardware and software actuators to-
ether brings the ability to better manage the power consumption of
any-core systems. 
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