
Received May 22, 2020, accepted June 3, 2020, date of publication June 5, 2020, date of current version June 17, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3000457

A Systemic and Secure SDN Framework
for NoC-Based Many-Cores
MARCELO RUARO1, LUCIANO L. CAIMI2, (Member, IEEE),
AND FERNANDO GEHM MORAES 1, (Senior Member, IEEE)
1School of Technology, PUCRS, Porto Alegre 90619-900, Brazil
2Department of Computer Science, Federal University of Fronteira Sul (UFFS), Chapecó 89802-112, Brazil

Corresponding author: Fernando Gehm Moraes (fernando.moraes@pucrs.br)

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance
Code 001. The work of Fernando Gehm Moraes was supported in part by the Brazilian Funding Agency Fundação de Amparo a Pesquisa
do Estado do Rio Grande do Sul (FAPERGS) under Grant 17/2551-0001196-1, and in part by the Brazilian Funding Agency Conselho
Nacional de Desenvolvimento Científico e Tecnológico (CNPq) under Grant 302531/2016-5.

ABSTRACT Recent exploration of Software-Defined Networking (SDN) for Many-Core Systems-on-Chip
(MCSoCs) showed higher management flexibility and reduced physical complexity compared to other
runtime communication management. In SDN, there is a software SDN Controller (control layer) that
configures generic routers (data layer). The adoption of SDN makes the path establishment programmable
and straightforward, according to different network policies, such as low power, QoS, fault-tolerance. It is
also possible to change the path establishment policies at runtime without the need to redesign the NoC.
Current works focus on proposing SDN architectures, lacking a systemic framework that describes the
steps required to implement SDN into a Many-core environment. Security is an observed gap in SDN
designs. A malicious task could configure SDN routers and take control of the NoC. The contribution of
this work is to present a systemic and secure SDN framework (SDN-SS), detailing the steps required to
support SDN in MCSoCs. This work also describes the iteration between the hardware, operating system,
and user’s tasks. The SDN-SSmanages aMultiple-Physical NoC, with one packet-switching subnet and a set
of circuit-switching subnets. The originality of SDN-SS includes (i) a step-by-step framework description
addressing the phases required to support a secure SDNmanagement; (ii) a secure SDN router configuration
protocol; (iii) a protocol to change the subnet at runtime. Experimental results show the framework’s
capability to avoid DoS and Spoofing attacks while presents a low SDN router configuration overhead,
corresponding up to 2% of a related work delay and a small impact over the user’s task communication.

INDEX TERMS Software-defined networking (SDN), many-core, MPSoC, many-core system-on-
chip (MCSoC), network-on-chip (NoC).

I. INTRODUCTION
The Software-Defined Networking (SDN) paradigm is an
emerging communication management technique adopted in
computer networks [1]. The key benefit of SDN is to unify
and simplify the network devices’ management of different
vendors by removing the control logic from the devices (at
hardware) to an SDN controller (or simply Controller).
Recent researches have explored the pros and cons of

using the SDN paradigm in the integrated circuit (IC) design,
specifically for the management of the Many-core communi-
cation on Networks-on-Chip (NoC) [2]–[6]. The main bene-
fits for SDN on NoCs are the higher flexibility for runtime

The associate editor coordinating the review of this manuscript and

approving it for publication was Ting Wang .

and self-adaptive network management and reduced hard-
ware complexity. The reason for explaining such benefits
is that the NoC router is no longer overloaded with spe-
cific designs to support different features, like QoS, fault-
tolerance, and power management. The router becomes a
simple and configurable unity able to redirect NoC packets
according to the Controller rules. Due to its global knowledge
of NoC’s resources, the Controller may adopt policies to
mitigate faults, to balance the communication load, tomanage
the NoC power consumption [7], and to provide QoS for
real-time flows [3], [4]. Moreover, all such features can be
combined into the Controller, resulting in multi-objective
management.

Figure 1(a) shows the steps to establish a path in a
Many-Core System-on-Chip (MCSoC) that adopts the SDN

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 105997

https://orcid.org/0000-0001-6126-6847
https://orcid.org/0000-0002-7223-8849

M. Ruaro et al.: Systemic and Secure SDN Framework for NoC-Based Many-Cores

FIGURE 1. (a) SDN-based communication in an MCSoC. Step 1: path
request; step 2: path search; step 3: SDN routers’ configuration; step 4:
requisition reply; step 5: configuration for the user’s tasks to use the SDN
path. (b) Overview of the Processing Element.

paradigm. The Controller runs in a specific part of the
MCSoC. Some works assume a dedicated core [8], while
others implement it as a high priority task [9]. The Con-
troller abstracts the network management to the system
manager (M), that performs application admission and task
mapping. Due to such abstraction, when M needs a path
between a source (S) and a target (T) task, it performs a path
request to the Controller (step 1). The Controller searches
the path guided by the network status and its current policy
(step 2). The example in Figure 1(a) explores a scenario
where the Controller searches the shortest path between S
and T, avoiding hot-spots areas (in red) and faulty routers
(router 3 × 3). After finding a path, the Controller physi-
cally configures the path (step 3) by sending a configuration
packet to the respective SDN routers. When the configura-
tion ends, the Controller sends an acknowledgment packet
to M (step 4), which configures S and T to use the path
(step 5).

Note that the SDN paradigm differs from existing
software-based management techniques already explored in
NoCs, e.g., to manage dynamic Time Division Multiplexing
(TDM) [10] or Spatial Division Multiplexing (SDM) alloca-
tion for real-time guarantees [11]. Such techniques focus on
specific goals and do not assume the NoC routers as a generic
resource that can dynamically change its path search policy
according to runtime constraints.

Although several works describe SDN designs for
NoCs [7], [8], [12], [13], we identify the lack of SDN frame-
works detailing the protocols and methods to achieve secure
SDN management. Therefore, the work’s main contribution

is a systemic and secure SDN framework (SDN-SS) for the
design ofMCSoCs, with the following original contributions:

1) a step-by-step framework description addressing the
phases required to support a secure SDN management for
MCSoCs (steps 1 to 5 in Figure 1(a));

2) a secure SDN router configuration mechanism, step 3,
based on a hardware/software co-design;

3) a dynamic subnet change protocol allowing user’s tasks
to change at runtime its communicating network, without
losing packets (step 5).

The path search (step 2) is out of the scope of this work.
The path search consists of heuristics that vary according to
the communication policies required by the designer.

The rest of this paper is organized as follows. Section II
presents related work. Section III presents the reference
MCSoC architecture. Section IV presents the SDN-SS frame-
work. SectionV presents experimental results, and SectionVI
presents conclusions and direction for future works.

II. RELATED WORK
SDN is a paradigm rather than an implementation or design,
which drives to different proposals. Authors [3], [5], [6], [8],
[14] propose a solution based on a centralized Controller.
Authors in [7], [9], [13] address distributed approaches, aim-
ing to improve scalability. For the sake of simplicity, the
present proposal adopts a centralized Controller but also
supports the distributed organization as proposed in [9].

Authors [6], [9], [13], [14] propose generic SDN manage-
ment, without specializing the SDN architecture to a specific
constraint, focusing on investigating the pros and cons of the
SDN paradigm for intra-chip communication. On the other
hand, Scionti et al. [7] address SDN for power savings by
switching off links not used. Kostrzewa et al. [3] address
QoS by making the Controller manage the communication
demands by regulating the user’s task injection rate according
to the system resources and application’s constraints.

The main concern of previous proposals is the SDN archi-
tecture and Controller’s quality, e.g., path length and path
search overhead. The SDN research moves to the system
level, requiring SDN frameworks for Many-core systems,
covering the interaction between the Controller, the hardware,
the operating system (OS), and the impact on the user’s appli-
cations. The SDN-SS proposed in this work addresses such
gap, describing and evaluating actions involved in SDN-SS
and its security properties.

Previous SDN proposals for MCSoCs do not address secu-
rity, except for the work of Ellinidou et al. [8]. That work
assumes an architecture called Cloud of Chips, where mul-
tiple ICs are placed in a Printed Circuit Board (PCB). Each
IC has an SDN switch connected to other IC’s switches and
a Controller. The Controller runs in a dedicated off-chip
processor into the PCB and is in charge of controlling
the communication between ICs by configuring the SDN
switches. The proposal defines a secure communication pro-
tocol between the Controller and switches with three phases:

105998 VOLUME 8, 2020

M. Ruaro et al.: Systemic and Secure SDN Framework for NoC-Based Many-Cores

(i) definition of a private key from a trusty key generation
module; (ii) creation of a group of secure switches using a
group key agreement protocol between switches and Con-
troller; (iii) data transmission between switches and the Con-
troller using the OpenFlow protocol [1]. Only switches of the
group having the key can access the encrypted data. Authors
evaluate their proposal using the Mininet 3 emulator, with
groups having 2 up to 30 SDN routers. Results showed a Con-
troller delay varying from 100 milliseconds up to 6 seconds
for 6 and 30 switches, respectively. Regarding the Controller
memory footprint, it varies from 23.40 KB (5 SDN routers)
up to 32.70 KB (15 SDN routers).

This work and the Ellinidou et al. [8] proposal share
the same underlying security issue: how to make the Con-
troller securely configure SDN routers. Ellinidou et al. [8]
adopt a different target architecture based on a Chiplet
design, implementing the protocol entirely in software,
requiring few interactions between the Controller and
switches along with the execution of costly protocols
for group key agreement. We adopt a different approach
by targeting an intra-chip design, and exploiting a hard-
ware/software co-design, reducing the overhead to configure
SDN routers without compromise security, as addressed in
Section V.

III. REFERENCE MCSoC ARCHITECTURE
Figure 1(a) overviews the MCSoC architecture, with a set
of Processing Elements (PEs) connected to a 2D-mesh NoC.
Figure 1(b) shows the PE architecture. The PE computational
resources comprise a local memory and a CPU.

At the communication level, the NoC adopts a Multiple
Physical Network (MPN) design, with one Packet-Switching
(PS) router and a set of SDN routers (SR) transmitting data by
circuit-switching (CS). Best-effort flows and communication
management use PS subnet. Flows with constraints, as QoS
or security, use SDN subnets.

The adoption ofMPN comes from its advantages compared
to TDM and VC (Virtual Channels) [15], [16]: better scala-
bility and implementation simplicity. Each SDN router is a
simple hardware unit that connects an input port to an output
port, according to a configuration process. The SDN router
corresponds to 25% of the area and power of a PS router [4],
with the same flit width. The PS subnet adopts a 32-bit flit-
with, while the SDN subnets adopt 16-bit flit-with, reducing
the SDN area even more.

Each PE has a Network Interface (NI), which abstracts the
MPN NoC protocols to the PE. Due to the SDN paradigm,
the NI has a sub-module called SDN Configuration Logic
(NI-SCL), used to receive commands sent by the Controller
and configure SRs (Section IV further details this process).
The Controller configures a given SR by connecting an input
port to an output port. Data coming from the input port is
forwarded to the output with a delay of one clock cycle due
to the buffering process required to avoid long wires. Further
details related to the SR, the MPN, and the Controller designs
are available at [4], [5].

FIGURE 2. High-level messages of the SDN-SS framework.

At the management level, the MCSoC is partitioned
into clusters [17], each one having a manager PE (M
Figure in 1(a)) and a set of PEs that execute users’ tasks.
Although Figure 1(a) presents oneM PE, the system contains
several M PEs, being one the Global Manager PE (GM).
PEs that run the user’s tasks have a tiny OS (∼10KB),

which controls multi-task scheduling, interruptions, system
calls, memory management, and inter-task communication.

Manager and user’s task PEs have the same hardware and
differ from each one through operations performed by the
OS. Some actions, such as cryptographic key generation,
messages creation, messages authentication, among others,
are crucial to the security of the system. To ensure the cor-
rect behavior of the OS, a secure boot process must ensure
its integrity and authenticity. These features are obtained
through mechanisms like encryption and Message Authen-
tication Code (MAC). In this work, we assume the integrity
and authenticity of the OS bootload process, although it is out
of our scope. Works [18]–[20] describe methods enabling a
secure boot process.

The user’s tasks communicate through message passing,
assuming non-blocking transmission and blocking reception.
The source task (S) writes the packet to an OS memory
area and continues its execution. The target task (T) sends
a packet request, having its execution blocked. The PS sub-
net uses a request packet, while CS subnets use a dedi-
cated signal signalizing to S the requested packet. The S
task sends the requested massage once it has produced it.
The advantage of this method is that the network is not
blocked by packets waiting for its consumption, reducing
congestion.

Due to the MPN communication, the OS uses, for each
task, a data structure to control the subnet that a given task
send/receive its packets (detailed in Section IV-F).

IV. SYSTEMIC AND SECURE SDN FRAMEWORK (SDN-SS)
This Section details the SDN-SS framework, covering the
steps required to support secure SDN management over an
MCSoC system. Figure 2 presents the SDN-SS high-level
messages. The highlighted numbers (1 to 5) corresponds to
the steps presented in Figure 1. The framework includes the
following actors:

• S, T (software): source and target user’s tasks;
• M (software): cluster manager, does not execute user tasks,
is responsible for task mapping, requests for connections

VOLUME 8, 2020 105999

M. Ruaro et al.: Systemic and Secure SDN Framework for NoC-Based Many-Cores

FIGURE 3. Secure SR configuration: (a) initialization protocol, (b) configuration protocol. Finite state machines responsible for handling configuration
packets: (c) secure NI-SCL. (d) baseline NI-SCL.

to the Controller, takes self-adaptive actions, and manages
the dynamic subnet change protocol among S and T;

• Controller (software): responsible for the SDN manage-
ment, such as path search, and SR configuration;

• NI-SCL (hardware): SDN Configuration Logic, runs in
the NI, handling configuration packets sent from the Con-
troller and configuring SRs;

• GM (software): its role in the context of this proposal is
to initialize the Controller and NI-SCLs. Besides, it exe-
cutes the M PE functions and controls the admission of
new applications at runtime by interacting with off-chip
components.

At system startup, the GM randomly generates and trans-
mits a key tuple {k0, k ′0} for each NI-SCL. The adoption of
key tuples allows hiding the keys during their transmission.
Each NI-SCL stores its keys in internal registers. The GM
keeps in its memory all key tuples. After generating and
transmitting the key tuples, the GM initializes the Controller
and theNI-SCLs (Section IV-A) and releases the applications’
admission.

The next subsections detail the SDN-SS framework based
on the sequence diagram of Figure 2.

A. CONTROLLER AND NI-SCL INITIALIZATION
The Controller and NI-SCL initialization is the protocol
step 0 since its execution occurs after system startup or when
the Controller detects an attack in a givenNI-SCL. Figure 3(a)
details the Controller and NI-SCL initialization steps.

1) NI-SCL INITIALIZATION
All NI-SCLs, excepting the PE(s) running the Controller(s),
receives a 2-flit KEY_SET packet from the GM, with the
following contents:

1) ks (Equation 1), is a one-time key enabling the authenti-
cation between the GM and NI-SCL.

ks = k0 ⊕ k ′0 (1)

2) key-tuple (k1, k2), SRs uses these keys to authenti-
cate the configuration packet coming from the Con-
troller during the SR configuration step (Section IV-D).
The GM generates a different tuple for each NI-SCL.
To avoid exposing these keys during their transmission,
the second flit (F2) is encoded according to Equation 2.

F2 = (k1 || k2)⊕ k0 (2)

where: k1 and k2 are 16-bit keys; ||: concatenation; ⊕:
bitwise XOR operation.

The NI-SCL uses the 1st KEY_SET flit to check the packet
authenticity, retrieving k0 from ks, comparing it with the
stored k0. The packet is discarded if values do not match.
If they match, the NI-SCL extracts from the 2nd flit the key
tuple (k1, k2), storing it. The Controller receives the same
key tuple, enabling their synchronization.

Figure 3(c) shows the FSM responsible for handling con-
figuration packets. The initialization comprises the loop with
states H-PZ-CS-SK. Figure 4, cycles 2–6, shows the wave-
form corresponding to theKEY_SET packet reception, which
has four flits: H – header; PZ – payload size; ks (Equation 1);
k1 and k2 keys (Equation 2).

A packet arriving in the NI-SCL goes through states H and
PZ, with both flits stored in registers. Once in PZ state, the
FSM verifies if the 18th bit of the packet header (H) is equal
to one (flag to signalize a NI-SCL configuration, avoiding the
packet consumption by the PE), and PZ = 2. Meeting these
conditions, the FSMadvances to state CheckSrc (CS), retriev-
ing k0 from ks, which must be equal to the stored k0. If the
comparison returns true, the FSM advances to SetKey (SK)

106000 VOLUME 8, 2020

M. Ruaro et al.: Systemic and Secure SDN Framework for NoC-Based Many-Cores

FIGURE 4. Waveform at NI-SCL of key set and SR configuration.

state, extracting k1 and k2 from the packet, storing them in
key registers (values 111 and 222 in the Figure). Otherwise,
the packet is assumed malicious, and the FSM discards the
packet, advancing to the Consume state (C).

2) CONTROLLER INITIALIZATION
The PE executing the Controller receives from the
GM an INIT_CONTROLLER packet with the following
fields:

1) ks (Equation 1), is a one-time key enabling the authenti-
cation between the GM and the Controller.

2) key-tuple (k1, k2) (Equation 2), to initialize the NI-SCL
of the PE where the Controller is running.

3) list KL = {(k1, k2)1×0, (k1, k2)2×0, . . . , (k1, k2)nxm},
private keys tuples for all NI-SCLs. Each NI-SCL
received its key tuple in the NI-SCL initialization step.

4) list ML = {AM1,AM2, . . . ,AMn}, addresses of all
M PEs authorized to request SDN services to the
Controller.

As in the NI-SCL initialization, the NI-SCL uses the
1st flit (ks) to check the packet authenticity, discarding
the packet if k0 does not match with the stored one.
The 2nd flit, F2 (Equation 2), initializes the NI-SCL key
tuple, as previously explained, at state SK. Differently from
the KEY_SET packet, the FSM releases the consumption
of the remaining flits by the processor by verifying if
PZ > 2.

The packet enters into the Controller, where the remaining
packet flits containing the KL and ML lists are read and
stored. The KL flits are XORed with k0. This process avoids
exposing the keys during their transmission.

3) INITIALIZATION SECURITY MECHANISM
Authentication is the method preventing initialization packets
from being forged, based on the one-time key tuple {k0, k ′0},
initially defined at system startup. After the configuration
packets (KEY_SET and INIT_CONTROLLER), the GM and
the NI-SCLs update their key tuples, as follows: k0 ← k ′0
and k ′0 ← k1 || k2. If the protocol needs reinitialization, the
process uses new key tuples, with new k1 and k2 randomly
generated by the GM.
Such authentication process also provides flexibility to the

initialization process of the SDN-SS framework, allowing the
modification of KL and ML lists at runtime.

B. STEP 1 – PATH REQUEST
The M PEs decide when a communicating task pair needs
an SDN path. Examples of events triggering path requests
include: fault notification in a given subnet; the PS subnet is
no longer able to sustain QoS; a set of communicating flows
requires isolated communication channels to enforce security.
M requests an SDN path for a given communicating task

pair by sending to the Controller a PATH_REQUEST packet
(Figure 2). This packet contains the manager address (AM)
and the S and T addresses.
The Controller accepts the PATH_REQUEST packet iff

AM ∈ ML, avoiding unauthorized path requests. The Con-
troller rejects any packet whose address is not in ML.

It is possible to enforce the security of the AM transmission
using LFSRs (Linear Feedback Shift Register). In this case,
the LFSR value generated by the source PE (M) encodes
AM (XOR operations), and the LFSR value in the target
PE (Controller) decodes AM (XOR operations). The require-
ment enabling these operations is a common seed to maintain
both LFSRs synchronized.

C. STEP 2 – PATH SEARCH
After accepting the PATH_REQUEST packet, the Controller
executes a path search heuristic. It is possible to adopt differ-
ent routingmanagement policies, e.g., avoid hot-spot regions,
faulty routers, ensure QoS, isolate confidential communica-
tion. It is out of the scope of this work the proposal of an
SDN path search heuristic. In the experiments, we adopt the
Hadlock algorithm (shortest path [4], [21]), chosen due to its
advantages compared to similar routing algorithms [22].

D. STEP 3 – SDN ROUTER (SR) CONFIGURATION
Themajor SDN security vulnerability is the SR configuration,
made by configuration packets generated at the software
level [23]. Thus, the main security concern of this work con-
sists in securing the SR configuration, avoiding that malicious
tasks configure SRs at runtime taking control of the SDN
subnets.

In summary, the secure SR configuration uses two private
keys: k1 and k2. The protocol initialization ensures that both
NI-SCL and Controller have the same keys. When the Con-
troller needs to configure an SR, it sends an SR configuration
packet with two flits, {CF1,CF2}. Flit CF1 contains two
keys, derived from k1, k2, and knew, randomly generated. The
NI-SCL receives the SR configuration packet. If it retrieves the
correct keys, it configures the SR and updates its keys.
Using one key would be enough toNI-SCL authenticate the

Controller, but this also could expose the key to an attacker.
The adoption of two keys allows hiding the keys during
their transmission to the communicating pair. Additionally,
the new key, knew, updates the keys at each configuration,
avoiding the use of static keys and, consequently, replay
attacks.

Figure 3(b) overviews the proposed secure SR configura-
tion further detailed into the next Subsections.

VOLUME 8, 2020 106001

M. Ruaro et al.: Systemic and Secure SDN Framework for NoC-Based Many-Cores

FIGURE 5. (a) Configuration packet format. (b) Example showing a packet
composed of three sub-packets. The first two sub-packets configure SR
routers of PE 0 × 1 and 0 × 2. The last sub-packet contains the
CONFIG_SR_END packet that is sent back to Controller.

1) SR CONFIGURATION PACKET
When the path search step finishes, the Controllers sends a
configuration packet (CONFIG_SR) to configure the SRs in
the path using the PS subnet.

Figure 5(a) details the CONFIG_SR packet structure, and
Figure 5(b) shows an example of a packet configuring the SR
into PE 0 × 1 and 0 × 2. The Controller sends the packet
to the NI-SCL of the S PE. Arriving at the S PE, the packet
advances PE by PE in the path, entering into the NI-SCL
and configuring the respective SR. Reaching the T PE, the
packet returns to the Controller to acknowledge it that the
configuration process finished.

The SR packet contains a set of sub-packets (CP1, CP2,
and EP in Figure 5). Each sub-packet has four flits: header
(H), Payload Size (PZ), configuration flit 1 (CF1), configu-
ration flit 2 (CF2). The process to handle this packet requires
minimal changes to the router. When an input port detects a
header flit having the 17th bit equal to 1, the second flit is
replaced by the constant two. Thus, the packet is divided into
two packets, one consumed locally (flits CF1 and CF2), and
a second packet that is forward to the other PS routers in the
path.

The last sub-packet is the CONFIG_SR_END, which is
sent back to the Controller after configuring all SRs in
the path. It also contains two flits, being the first one
(CFc) an XOR operation among all knew embedded into the
CONFIG_SR packet. CFc enables the Controller to authen-
ticate the CONFIG_SR_END packet, discarding malicious
path notifications. The second one flit (status) notifies the
Controller of the path creation status (successful or fail).

The mechanism adopted to notify the Controller of a failed
configuration is the modification of the status flit. When a
key verification mismatch occurs on a given NI-SCL (CK
state in the FSM), it generates a signal to the PS router,
which activates an error bit in the status flit before the
CONFIG_SR_END packet leaves the router. The Controller
receiving the status flit with the error bit activated may ask to
GM to reinitialize the protocol as detailed in Section IV-A3.

The configuration packet is always transmitted using the
XY routing algorithm. When the packet reaches a router in
the path, it is broken into two packets. The NI-SCL consumes
the first one, which has 2 payload flits. The second part of

the packet advances to the next router in the SR path. The last
part of the packet returns to the Controller using XY routing.

The advantage of this transmission method is the simplifi-
cation of the software required for sending data since only one
packet is injected into the PS network. The cost in the router
is minimal, corresponding to the verification of one bit of the
header flit (one and gate), a multiplexer to allow the insertion
of the constant 2 (packet size locally consumed), and an or
gate to set the error bit in the status flit.

The Controller generates each configuration sub-packet
withCF1 andCF2 flits.CF1 contains the keys (k1, k2, knew),
and CF2 stores the SR configuration commands. Equation 3
presents CF1:

CF1 = (k1i ⊕ k2i) || (k2i ⊕ knew) (3)

where: i: PE address of the SR to configure; ||: concatenation;
⊕: bitwise XOR operation.

Equation 4 details CF2:

CF2 = PIN ||POUT || subnet (4)

where: PIN : input port; POUT : output port; subnet: SDN
subnet addressing the SR to configure.

2) NI-SCL CONFIGURATION
Figure 4 (cycles 7 – 11) shows thewaveform corresponding to
the reception of a CONFIG_SR sub-packet byNI-SCL. When
it detects the packet (17th bit of H and PZ = 2), the FSM
advances to the CheckKey (CK) state, where k2 is retrieved
from CF1, as depicted in Figure 3(b).
If the retrieved k2 matches with the stored k2, signal

key_valid rises (cycle 9 in Figure 4), allowing the transition
to the ConfigSR (CSR) state. If k2 does not match with
the stored k2, the FSM assumes that this is a malicious
configuration packet, transitioning to state C , which discards
the remaining flits of the packet and signalizing to set the
status bit of the EP sub-packet, indicating an error in SDN
configuration.

The CSR state reads the configuration parameters from
CF2: PIN , POUT , and subnet . These parameters configure
the SR internal crossbar specified on the subnet , connecting
port PIN to port POUT . A NI-SCL register receives the subnet
number. This register makes the hardware-software interface.
The OS reads this register at step 5 to certify that this subnet
was the most recently configured subnet.

After configuration, the NI-SCL updates its keys, with k1
receiving k2 and k2 receiving knew. The Controller proceeds
in the same way, allowing it always to be paired with each
NI-SCL, with new keys at each configuration.

3) SECURITY ATTRIBUTES OF THE SR CONFIGURATION
Mechanisms ensuring the secure SR configuration include:
1) The keys used in SR configuration never remains the

same. At each configuration the Controller generates a
random knew, updating k1 and k2 at both Controller and
NI-SCL;

106002 VOLUME 8, 2020

M. Ruaro et al.: Systemic and Secure SDN Framework for NoC-Based Many-Cores

FIGURE 6. (a) Dynamic subnet change protocol. (b) Dynamic subnet
change algorithms of the OS running S and T tasks.

2) Keys k1 and k2 are not exposed during their transmission
in the NoC, due to adoption of the procedures presented
in Equation 3.

Despite costly, a brute force attack could discover k1 or k2
from CF1 flit. This attack is unlikely to occur, as it would
be necessary to determine from 1 flit three distinct values
(k1, k2, and knew). Moreover, the keys are renewed at each
new configuration and are unique for each NI-SCL. If the
attack occurs, there will be a loss of synchronization between
the Controller and the compromised NI-SCL. The Controller
identifies this issue when it tries to establish a new path using
the attacked NI-SCL, and the countermeasure is the protocol
reinitialization (Section IV-A).

E. STEP 4 – PATH REQUEST ACKNOWLEDGMENT
After receiving the CONFIG_SR_END (end of step 3), the
Controller sends the PATH_REQUEST_ACK (or NACK)
to the M PE that requested the path. If the path was cre-
ated successfully, the acknowledgment packet also carries
the configured subnet number. Manager PEs only accept
CONFIG_SR_END packets from the PE where the Con-
troller is running.

As in the PATH_REQUEST packet (step 1), it is possible to
enforce the security of this step by using an LFSR to encode
the payload content (ACK/NACK).

F. STEP 5 – DYNAMIC SUBNET CHANGE
The dynamic subnet change is the process of configuring
the user’s tasks S and T to use the created SDN path.
The Controller starts this protocol once it receives the
PATH_REQUEST_ACK packet.

Figure 6(a) details the dynamic subnet change protocol.
This protocol enables the transition from any subnet to
another one without packet loss. Its implementation includes
the M PE and the operating systems of the communica-
tion task pair {S, T}, and it is no accessible at the task
level.

The M PE starts the protocol by sending to T a packet
having in its payload {sn, Saddress, Taddress}, where sn is the
subnet number transmitted by the PATH_REQUEST_ACK
packet. S and T performs a handshake protocol, executing the
algorithms detailed into Figure 6(b).

The goal of the algorithms is to ensure that both tasks
use the new subnet without losing packets transmitted on the
previous subnet. To achieve this goal, the algorithms control
the comm_str variables, ensuring inter-task communication
synchronization as follows:

• T executes the handle_SET_SUBNET () algorithmwhen
it is not blocked waiting for a packet from S.
The SET_SUBNET packet reception does not result
in the immediate execution of this algorithm. The
T task should not be waiting for packets, ensur-
ing that there are no packets to T traversing the
NoC.

• The handle_SET_SUBNET () algorithm execution
assigns sn to T, notifies S that it should use a new subnet
(SET_SUBNET_SRC packet), and blocks new packets’
requests.

• S receiving SET_SUBNET_SRC packet updates the
comm_str structure enabling the subnet use, and notifies
T the successful subnet change;

• T activates the new subnet (comm_str .enable ← 1),
releasing packets’ requests.

1) SECURITY ATTRIBUTES OF THE DYNAMIC SUBNET
CHANGE PROTOCOL
The PE receiving the SET_SUBNET packet ({sn, Saddress,
Taddress}) verifies the packet authentication through 3 com-
parisons: (i) the packet source must be a manager PE;
(ii) Taddress should correspond to the current PE address;
(iii) sn should correspond to the last configured SR (set on
the read-only mapped register during the SR configuration -
Section IV-D2).

G. OVERVIEW OF THE SECURITY MECHANISMS
The security mechanisms adopted at each stage of the
SDN-SS framework (original contribution 1) are summarized
below:

• System Startup
– GM generates a key tuple for each NI-SCL, (k0, k ′0),

before applications’ admission.
• Controller and NI-SCL Initialization
– initialization packets, INIT_CONTROLLER and

KEY_SET, authenticated with a one-time session ID
key, ks, derived from (k0, k ′0). Key ks changes at each
initialization, preventing replay attacks.

• Step 1 - Path Request
– requester (AM) should be in theML list of controllers;
– additional mechanism (not implemented) - encode
AM by using an LFSR.

• Step 2 - Path Search

VOLUME 8, 2020 106003

M. Ruaro et al.: Systemic and Secure SDN Framework for NoC-Based Many-Cores

– there is no need for security mechanisms since this
step is executed in the Controller.

• Step 3 - SDN Router (SR) Configuration (original con-
tribution 2)
– adoption of key tuple, (k1, k2), for each NI-SCL,

updated at every configuration;
– key obfuscation during its transmission through the

PS subnet;
– configured subnet number stored in a register, which

is read-only by the processor.
• Step 4 - Path Request Acknowledgment
– the M PE verifies if the packet comes from the con-
troller address.

– additional mechanism (not implemented) - encode the
packet payload by using an LFSR.

• Step 5 -Dynamic Subnet Change (original contribution
3)
– PE verifies if the packet comes from an M PE;
– PE verifies if subnet specified in the SET_SUBNET
packet matches with the value stored in a register at
step 3.

A final remark, all keys used in the SDN-SS framework are
dynamic, using key tuples ((k0, k ′0), (k1, k2)). This method
prevents replay attacks as well as obfuscate the packets’
payload.

V. EXPERIMENTAL RESULTS
The presentation of the results has three parts. The first
one (Subsection V-A), evaluates the performance of all
steps of the SDN-SS framework and the impact over the
user’s tasks communication performance. The second one
(Subsection V-B), evaluates the hardware/software co-design
costs and performance along with the secure SR configu-
ration. The last one (Subsection V-C) exploit examples of
attacks.

The MCSoC system and hardware architecture was mod-
eled using the Memphis MCSoC [24]. The baseline MPN,
SR router design, and Controller were previously proposed
in [4], [5], [9]. The design proposed in this work is public
available at [25]. The hardware components are implemented
using an RTL hardware description (SystemC and VHDL).
The CPU is a RISC processor [26]. The software (OS,
Controller, user’s tasks) is modeled in C code (mips-gcc
cross-compiler, version 4.1.1, optimizationO2). Table 1 sum-
marizes the main system setup parameters for experiments.

A. SDN-SS FRAMEWORK COSTS
Figure 7 details the average execution time (AET) of each
step of SDN-SS framework, and its impact on the user’s tasks
with different communication profiles. The methodology to
obtain these results consisted of instantiating two synthetic
tasks, S and T, with S sending packets to T with a payload
having 1024 32-bits flits. Tasks start communicating using
the PS subnet. At 10 ms and 15 ms, the M PE transmits

TABLE 1. System setup adopted in the experimental results.

FIGURE 7. Performance evaluation of the SDN framework.

PATH_REQUEST packets to the Controller, triggering the
execution of all steps of the SDN-SS framework.

Figure 7(a) details AET for each step. The SDN-SS
requires, on average, 13,586 clock cycles (cc) to concluded
all steps (135.8 µs@100MHz).

• Step 1 (path request) - 19.7% of the AET, measured from
the moment that M starts to create the PATH_REQUEST
packet up to the moment the Controller certifies that the
packet comes from a trusty M.

• Step 2 (path search) - 11.2% of the AET, measured from
the end of step 1 up to the moment the Controller starts to
generate the SR configuration packet. Although step 2 is
out of the work’s scope, we include its execution time in
Figure 7(a) to present the whole process’s cost. Factors as
network status, path establishment polices, and the path
search algorithm impact the path search overhead.

• Step 3 (SR configuration) - 21.0% of the AET, measured
from the end of step 3 until the reception of the CON-
FIG_SR_END packet by the Controller. The SR configu-
ration overhead is proportional to the path size (number of
SRs to configure). Next Subsection exploits the overhead
of step 3, evaluating different numbers of SRs in the path.

106004 VOLUME 8, 2020

M. Ruaro et al.: Systemic and Secure SDN Framework for NoC-Based Many-Cores

• Step 4 (path request ack.) - 14.3% of the AET, measured
from the end of step 3 until the moment M receives the
PATH_REQUEST_ACK packet. As in step 1, step 4 has a
constant execution time.

• Step 5 (dynamic subnet change) - 33.8% of the AET. Its
execution time does not increase with the system size,
because this step always involves two PEs, S and T tasks.
However, step 5 can impact the user’s task communication
latency since tasks need to synchronize to change its sub-
net at runtime.

Figures 7(b-d) present in the y-axis the average latency
to transmit packets from S to T in cc, and in the x-
axis, the simulation time (ms). The evaluation addressed
three communication profiles: (P1) communication-intensive
exploring the maximum throughput provided by the system
(624.25 Mbps); (P2) intermediate communication profile,
using 50% of the available throughput (321.12 Mbps); (P3)
low communication profile, using 10% of the available
throughput (64.2 Mbps).

The first SDN-SS actuation, in 10ms, changes the switch-
ing mode from PS to CS. As expected, we observe a latency
reduction in all scenarios. A latency peak was observed dur-
ing the actuation due to the execution of the dynamic subnet
change protocol (step 5), which is proportional to the traffic
profile. The evaluated scenarios presented a latency increase
during actuation of: 19.42% (+1456 cc), 7.1% (+ 642 cc),
and 0.9% (+468 cc) for P1, P2 and P3 respectively.
The second actuation, in 15 ms, only changes the CS sub-

net. Since the packet request mechanism is performed with
a dedicated signal, and not by a request packet, the latency
peak is noticeably lower.

Communicating tasks with low communication rates (as
in P3 scenario) are less susceptible to interference from
step 5 because the dynamic subnet change protocol can par-
tially or fully be executed in moments that tasks are comput-
ing or are in an idle state waiting for data.

Related works on SDN for MCSoCs lack a similar eval-
uation. For comparison purposes, task migration proto-
cols used to mitigate congestion effects takes on average
200,000 cc [27], while the SDN-SS required 13,586 cc (6.7%
of a task migration).

B. SECURE SR CONFIGURATION
This Subsection addressees the evaluation of the Controller
and NI-SCL design complexity, along with the evaluation of
the secure SR configuration.

1) HARDWARE COMPLEXITY
Experiments to obtain area and power results used Cadence
Genus tool, with a 28nm-FDSOI library, at 1 GHz. The
simulation generated switching activity reports, TCF (Tog-
gle Count Format) files, enabling the power estimation.
Test-benches explored worst-cases scenarios with the max-
imum possible switching activity.

FIGURE 8. NI and NI-SCL area and power evaluation.

Figure 8(a-b) presents the power and area for the NI and
NI-SCL, respectively. The NI-SCL hardware contains an
FSM, registers to store the two key tuples ({k1, k2}, {k0,
k ′0}), and registers to store the SR configuration. Figure 3(d)
presents the baseline NI-SCL [4], without security mecha-
nisms. The comparison of the proposed secure NI-SCL with
the baseline NI-SC shows an area and power increase of
96.8% on 77.3%, respectively. However, as the NI has other
modules in charge to receive and send packets, memory
interface, and interruption generation, the NI overhead for
supporting the secure SCL was, on average, 5.9% higher on
area, and 4% higher on power.

The SR memory size to store the configuration coming
from Controller has a small size. Each input has to keep the
output where it has to redirect incoming flows, as the number
of output ports is the same as inputs, the SR memory size is
equal to I ×Nbits, where I is the input port number, and Nbits
is the number of bits representing the number of output ports
plus the free status.

Such results demonstrate the small hardware overhead of
the proposed secure SR configuration mechanism. Work [8]
does not perform such analysis since its scope is exclusively
at the software level.

2) SOFTWARE COMPLEXITY (CONTROLLER)
The path search heuristic complexity dominates the Con-
troller computational complexity, which is our case O(HC).
HC is the Hadlock’s algorithm complexity: HC = SRN ∗ SN ,
where SRN is the number of routers managed by the Con-
troller, and SN is the number of SDN subnets.
The computational complexity related only to the security

features at Controller’s scope comprises the generation of
knew for each SR configuration packet. The generation of knew
uses a clock cycle counter to create a pseudo-random number.
Such operation has a fixed cost (a memory-mapped register),
with a complexity of O(n) to create the SR packet, where n is
the number of SR routers in the packet.

The storage complexity of the Controller is also dominated
by its search path heuristic. The Hadlock’s algorithm requires
a storage complexity of (in bytes):

HM = (SRN ∗ SN ∗ 5)+ (3 ∗ SRN) (5)

VOLUME 8, 2020 106005

M. Ruaro et al.: Systemic and Secure SDN Framework for NoC-Based Many-Cores

FIGURE 9. Performance evaluation of SR configuration. (a) Secure vs. not
secure (baseline). (b) Comparison with related work.

where: SRN is the total number of SRs of the sys-
tem, SN is the number of SDN subnets, and 5 is the
number of ports per router (east, west, north, south,
local).

Equation 6 presents the Controller’s storage complexity
related only to the security features (in bytes):

SECM = 4 ∗ n+ 2 ∗ m (6)

where: 4*n is the storage for keeping the 16-bit keys
k1 and k2 for n NI-SCLs managed by the Con-
troller (KL storage). 2*m corresponds to the m 2-bytes
address of each M PEs managed by the Controller
(ML storage).

For comparison purposes, [8] reports 32.7KB (Controller’s
memory) to support 15 switches. This work requires 2.1 KB
to manage 15 NI-SCLs, 5 SDN subnets, and 1 M, therefore,
resulting in 75 SRs.

3) SR CONFIGURATION PERFORMANCE
Figure 9 addresses the performance comparison of SR config-
uration, varying the number of SRs. The router configuration
delay (y-axis) comprises the time spent in step 3. Therefore,
it is embedded into such overhead the Controller and NI-SCL
delay. The evaluation exploits SR configurations from 5 up to
30 SRs.
Figure 9(a) compares the secure implementation with the

baseline (not secure). As expected, the addition of the security
mechanisms increased the delay to configure the SRs, from
34% to 136.8% for 5 to 30 SRs, respectively. Despite this
difference, the secure approach requires less than 10,000 cc
for 30 SRs, which can be considered a low configuration
overhead. Such overhead represents 0.1 ms@100 MHz (a
conservative frequency).

Figure 9(b) compares our approach to [8].
Ellinidou et al. [8] present the configuration delay in mil-
lisecondswithout specifying the clock frequency. The authors
mention that their results were obtained with Mininet 3 sim-
ulator. For the comparison, we adopted a conservative clock
frequency (100MHz) in our approach and selected the better
results achieved in [8], which is the delay using the Teng’s
group key agreement protocol. This comparison showed that
the proposed router configuration represents less than 2% of
the overhead achieved in [8].

FIGURE 10. Example of a flooding attack.

C. ATTACKS EXPERIMENTS
The assumed threat model comprises a malicious software
task able to perform the following attacks:

1) Denial-of-Service (DoS): generation of an incorrect SR
configuration packet, aiming to crash the NI-SCL;

2) Flooding: flood the NI-SCL with malicious SR configu-
ration packets;

3) Spoofing: malicious packet trying to assume the identity
of one actor of the framework (GM, Controller, M);

A malicious task (Mt) running in a given PE executes the
attacks in the SDN infrastructure.

1) DoS AND FLOODING
In a DoS attack, we assume thatMt can generate a malicious
SR configuration packet. The FSM responsible for handling
incoming configuration packets (Figure 3(c)) verifies if the
packet header has its 17th or 18th bit asserted, and the payload
size is greater than or equal to to 2. The FSM discards packest
not meeting both conditions. If the malicious packet meets
both conditions, Mt should try forge CF1, but as previously
mentioned, this condition is unlikely to occur due to the
scrambling keymechanisms contained in theCF1 field. Thus,
a DoS attack does not occur because the FSM responsible
for receiving incoming packets has protection barriers and
mechanisms to discard malicious packets.

Figure 10 shows a flooding attack, whereMt has a loop that
sends configuration packets continuously. The Figure details
the reception of two packets, with 7 cc between them due
to OS overheads, limiting the injection rate. The flooding
attack would occur if the FSM responsible for receiving the
configuration packages took too long to handle them. Due to
the hardware implementation of the discarding mechanism,
these malicious packets are discarded during their reception.
We observed that the Controller configuration latency is
slightly penalized.Without the flooding attack, the Controller
packet took 15 cc to arrive at the NI-SCL against 20 cc with
this attack.

The NI-SCL cannot avoid DoS and flooding attacks since
malicious tasks may run in the system. However, due to
the presence of hardware mechanisms to discard malicious
packets, DoS or flooding attacks do not stall the NI-SCL.
The flooding attack may increase the latency to receive the
configuration packet, but do not prevent the reception of the
correct configuration packets due to the arbitration logic in
the PS routers.

106006 VOLUME 8, 2020

M. Ruaro et al.: Systemic and Secure SDN Framework for NoC-Based Many-Cores

FIGURE 11. NI-Spoofing attacks example.

2) SPOOFING
Spoofing involves sending messages using a false source
address, which makes the receiver assume that the packet
comes from a trusted source (IP-like spoofing).

The NI-SCL avoids such attack in two ways:

• key set: the ks authenticates packets coming from a trusted
GM ;

• SR configuration: prevented by the key tuple {k1,k2}.

Figure 11(a) shows an SR configuration spoofing attempt
into NI-SCL. The CK state checks (cycle 4) the keys embed-
ded into CF1. As the keys do not match with NI-SCL’s key,
NI-SCL does not configure the SR router and moves to the C
state (cycle 5) that consumes the remaining flits of the packet.
Similar behavior occurs in the key set attack of Figure 11(b).
The ks embed into the third flit of Mt ’s packet allows the
NI-SCL to verify that the packet comes from a false GM,
which leads to the packet rejection by the consumption of its
remaining flits (cycles 4 and 5).
Mt may also try to forge the identity of anM PE, by sending

a malicious PATH_REQUEST to the Controller. A mali-
cious PATH_REQUEST sent by Mt can make the Controller
unavailable, working to define a false path. Such an attack is
avoided because the Controller receives the trusted manager
list (ML) (during system initialization) authenticated with
ks. At runtime, the Controller checks the src address of the
requester M PE, and only accepts the one coming from an
src that is in the list.Mt cannot forge the src address because
it is stamped by the OS NI driver just before the packet is
injected into the NoC. Therefore, this method avoids tasks to
forge a source address.

3) NOT SUPPORTED ATTACKS
The secure SR configuration does not support Hardware
Trojans (HT) attacks. For instance, a hardware monitor
can intercept an authentic SR configuration packet (man-in-
the-middle), and transmit a new packet, keeping the same
value of the CF1 flit, but changing the CF2 flit (configu-
ration command). As CF1 stores the keys used to authen-
ticate the packet, the NI-SCL will accept the configuration
and will use the tampered value of CF2 to configure the
SR router.
HTs have the power to perform several invasive attacks,

which require costly hardware designs to mitigate them.
As this work deals with SDN, our concern specially addresses

the software level by assuming threats coming from the user’s
tasks.

VI. CONCLUSION AND FUTURE WORK
This work proposed a systemic and secure SDN framework
running over an MPN architecture in MCSoCs, allowing that
only a trusted SDN Controller can define the communica-
tion path, a critical gap scarcely addressed in related works.
Using the systemic details provided by this work, design-
ers of MCSoC can implement a secure SDN management
paradigm for the communication resources and use their com-
munication management rules into step 2 (path search). The
presented framework steps are systemic because it covers
functional details from hardware modules up to the OS,
evaluating the impacts on the user’s task. Due to the hard-
ware/software co-design, the proposed techniques achieved
low overheads, overcoming related work, and being feasible
to the MCSoC design context.

Future works are towards the following subjects: (i) inte-
gration of the SDN-SS with techniques that support security
at computation and application admission levels; (ii) exploit
the runtime secure SR configuration features under faults or
successfully attacks of a given SR.

REFERENCES
[1] S. Singh and R. K. Jha, ‘‘A survey on software defined networking:

Architecture for next generation network,’’ J. Netw. Syst. Manage., vol. 25,
no. 2, pp. 321–374, Apr. 2017.

[2] R. Sandoval-Arechiga, R. Parra-Michel, J. L. Vazquez-Avila,
J. Flores-Troncoso, and S. Ibarra-Delgado, ‘‘Software defined networks-
on-chip for multi/many-core systems: A performance evaluation,’’ in
Proc. Symp. Archit. Netw. Commun. Syst. (ANCS), 2016, pp. 129–130.

[3] A. Kostrzewa, S. Tobuschat, and R. Ernst, ‘‘Self-aware network-on-chip
control in real-time systems,’’ IEEE Design Test, vol. 35, no. 5, pp. 19–27,
Oct. 2018.

[4] M. Ruaro, H.M.Medina, and F. G.Moraes, ‘‘SDN-based circuit-switching
for many-cores,’’ in Proc. IEEE Comput. Soc. Annu. Symp. VLSI (ISVLSI),
Jul. 2017, pp. 385–390.

[5] M. Ruaro, H. M. Medina, A. M. Amory, and F. G. Moraes,
‘‘Software-defined networking architecture for NoC-based many-
cores,’’ in Proc. IEEE Int. Symp. Circuits Syst. (ISCAS), May 2018,
pp. 385–390.

[6] K. Berestizshevsky, G. Even, Y. Fais, and J. Ostrometzky, ‘‘SDNoC:
Software defined network on a chip,’’Microprocessors Microsyst., vol. 50,
pp. 138–153, May 2017.

[7] A. Scionti, S. Mazumdar, and A. Portero, ‘‘Towards a scalable software
defined network-on-chip for next generation cloud,’’ Sensors, vol. 18,
no. 7, pp. 1–24, 2018.

[8] S. Ellinidou, G. Sharma, T. Rigas, T. Vanspouwen, O. Markowitch, and
J.-M. Dricot, ‘‘SSPSoC: A secure SDN-based protocol over MPSoC,’’
Secur. Commun. Netw., vol. 2019, pp. 1–11, Mar. 2019.

[9] M. Ruaro, N. Velloso, A. Jantsch, and F. G. Moraes, ‘‘Distributed SDN
architecture for NoC-based many-core SoCs,’’ in Proc. 13th IEEE/ACM
Int. Symp. Netw.-on-Chip, Oct. 2019, pp. 1–8.

[10] R. Stefan, A. B. Nejad, and K. Goossens, ‘‘Online allocation for
contention-free-routing NoCs,’’ in Proc. Interconnection Netw.
Archit. On-Chip, Multi-Chip Workshop (INA-OCMC), 2012,
pp. 13–16.

[11] A. Leroy, D. Milojevic, D. Verkest, F. Robert, and F. Catthoor,
‘‘Concepts and implementation of spatial division multiplexing for guar-
anteed throughput in networks-on-chip,’’ IEEE Trans. Comput., vol. 57,
no. 9, pp. 1182–1195, Sep. 2008.

[12] A. Abousamra, A. K. Jones, and R. Melhem, ‘‘Proactive circuit allocation
in multiplane NoCs,’’ in Proc. 50th Annu. Design Autom. Conf. (DAC),
2013, pp. 35:1–35:10.

VOLUME 8, 2020 106007

M. Ruaro et al.: Systemic and Secure SDN Framework for NoC-Based Many-Cores

[13] L. Cong, W. Wen, and W. Zhiying, ‘‘A configurable, programmable and
software-defined network on chip,’’ in Proc. IEEE Workshop Adv. Res.
Technol. Ind. Appl. (WARTIA), Sep. 2014, pp. 813–816.

[14] R. Sandoval-Arechiga, J. L. Vazquez-Avila, R. Parra-Michel,
J. Flores-Troncoso, and S. Ibarra-Delgado, ‘‘Shifting the network-
on-chip paradigm towards a software defined network architecture,’’
in Proc. Int. Conf. Comput. Sci. Comput. Intell. (CSCI), Dec. 2015,
pp. 869–870.

[15] Y. J. Yoon, N. Concer, M. Petracca, and L. P. Carloni, ‘‘Virtual channels
and multiple physical networks: Two alternatives to improve NoC perfor-
mance,’’ IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 32,
no. 12, pp. 1906–1919, Dec. 2013.

[16] S. Liu, A. Jantsch, and Z. Lu, ‘‘MultiCS: Circuit switched NoC with
multiple sub-networks and sub-channels,’’ J. Syst. Archit., vol. 61, no. 9,
pp. 423–434, Oct. 2015.

[17] W. Quan and A. D. Pimentel, ‘‘A hierarchical run-time adaptive resource
allocation framework for large-scale MPSoC systems,’’ Design Autom.
Embedded Syst., vol. 20, no. 4, pp. 311–339, Dec. 2016.

[18] T. Kai, X. Xin, and C. Guo, ‘‘The secure boot of embedded system based
on mobile trusted module,’’ in Proc. 2nd Int. Conf. Intell. Syst. Design Eng.
Appl., Jan. 2012, pp. 1331–1334.

[19] Y. Liu, J. Briones, R. Zhou, and N. Magotra, ‘‘Study of secure boot with a
FPGA-based IoT device,’’ in Proc. IEEE 60th Int. Midwest Symp. Circuits
Syst. (MWSCAS), Aug. 2017, pp. 1053–1056.

[20] J. Sepulveda, F. Willgerodt, and M. Pehl, ‘‘SEPUFSoC: Using PUFs for
memory integrity and authentication in multi-processors system-on-chip,’’
in Proc. Great Lakes Symp. VLSI, May 2018, pp. 39–44.

[21] F. O. Hadlock, ‘‘A shortest path algorithm for grid graphs,’’ Networks,
vol. 7, no. 4, pp. 323–334, 1977.

[22] H. Chen and Y.-W. Chang, Electronic Design Automation: Synthesis,
Verification, and Test. San Mateo, CA, USA: Morgan Kaufmann, 2009.

[23] Y. E. Oktian, S. Lee, H. Lee, and J. Lam, ‘‘Distributed SDN con-
troller system: A survey on design choice,’’ Comput. Netw., vol. 121,
pp. 100–111, Jul. 2017.

[24] M. Ruaro, L. L. Caimi, V. Fochi, and F. G. Moraes, ‘‘Memphis:
A framework for heterogeneous many-core SoCs generation and vali-
dation,’’ Design Autom. Embedded Syst., vol. 23, nos. 3–4, p. 103–122,
Aug. 2019.

[25] PUCRS GAPH Group. (2020). System and Secure Memphis-
GitHub. [Online]. Available: https://github.com/GaphGroup/
MMemphis/tree/secure-sdn

[26] S. Rhoads. (2016). Plasma-Most MIPS I(TM). Accessed: Mar. 3, 2020.
[Online]. Available: https://opencores.org/projects/plasma

[27] M. Ruaro and F. G. Moraes, ‘‘Demystifying the cost of task migration in
distributedmemorymany-core systems,’’ inProc. IEEE Int. Symp. Circuits
Syst. (ISCAS), May 2017, pp. 1–4.

MARCELO RUARO was born in Três de Maio,
Brazil, in 1988. He received the M.Sc. and Ph.D.
degrees in computer science from PUCRS Uni-
versity, Porto Alegre, Brazil, in 2014 and 2018,
respectively. He has eight years of research expe-
rience in the field of NoC and many-cores SoC
architectures and two years of experience in the
embedded system industry. He is currently a Post-
doctoral Researcher with PUCRS. His primary
research interests include software-defined net-

working and security for many-core systems.

LUCIANO L. CAIMI (Member, IEEE) received
theM.Sc. degree in electrical engineering from the
Federal University of Santa Catarina (UFSC), Flo-
rianopolis, Brazil, in 1998, and the Ph.D. degree in
computer science from PUCRS University, Porto
Alegre, Brazil, in 2019. He is currently an Adjunct
Professor with the Federal University of Fronteira
Sul (UFFS). His main research interests include
multiprocessor systems on chip (MPSoCs), and
security for embedded systems.

FERNANDO GEHM MORAES (Senior Mem-
ber, IEEE) received the Electrical Engineering
and M.Sc. degrees from the Universidade Federal
do Rio Grande do Sul (UFRGS), Porto Alegre,
Brazil, in 1987 and 1990, respectively, and the
Ph.D. degree from the Laboratoire d’Informatique,
Robotique et Microélectronique de Montpellier,
France, in 1994. He has been a Full Professor with
PUCRS, since 2002. He has authored or coau-
thored 38 peer-refereed journal articles in the field

of VLSI design. His primary research interests include microelectronics,
FPGAs, reconfigurable architectures, NoCs, and MPSoCs.

106008 VOLUME 8, 2020

	INTRODUCTION
	RELATED WORK
	REFERENCE MCSoC ARCHITECTURE
	SYSTEMIC AND SECURE SDN FRAMEWORK (SDN-SS)
	CONTROLLER AND NI-SCL INITIALIZATION
	NI-SCL INITIALIZATION
	CONTROLLER INITIALIZATION
	INITIALIZATION SECURITY MECHANISM

	STEP 1 – PATH REQUEST
	STEP 2 – PATH SEARCH
	STEP 3 – SDN ROUTER (SR) CONFIGURATION
	SR CONFIGURATION PACKET
	NI-SCL CONFIGURATION
	SECURITY ATTRIBUTES OF THE SR CONFIGURATION

	STEP 4 – PATH REQUEST ACKNOWLEDGMENT
	STEP 5 – DYNAMIC SUBNET CHANGE
	SECURITY ATTRIBUTES OF THE DYNAMIC SUBNET CHANGE PROTOCOL

	OVERVIEW OF THE SECURITY MECHANISMS

	EXPERIMENTAL RESULTS
	SDN-SS FRAMEWORK COSTS
	SECURE SR CONFIGURATION
	HARDWARE COMPLEXITY
	SOFTWARE COMPLEXITY (CONTROLLER)
	SR CONFIGURATION PERFORMANCE

	ATTACKS EXPERIMENTS
	DoS AND FLOODING
	SPOOFING
	NOT SUPPORTED ATTACKS

	CONCLUSION AND FUTURE WORK
	REFERENCES
	Biographies
	MARCELO RUARO
	LUCIANO L. CAIMI
	FERNANDO GEHM MORAES

