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Many-Core Systems-on-Chip increasingly require Dynamic Multi-objective Management (DMOM) of re-

sources. DMOM uses different management components for objectives and resources to implement com-

prehensive and self-adaptive system resource management. DMOMs are challenging because they require a

scalable and well-organized framework to make each component modular, allowing it to be instantiated or

redesigned with a limited impact on other components.

This work evaluates two state-of-the-art distributed management paradigms and, motivated by their draw-

backs, proposes a new one called Management Application (MA), along with a DMOM framework based on

MA. MA is a distributed application, specific for management, where each task implements a management

role. This paradigm favors scalability and modularity because the management design assumes different and

parallel modules, decoupled from the OS.

An experiment with a task mapping case study shows that MA reduces the overhead of management

resources (−61.5%), latency (−66%), and communication volume (−96%) compared to state-of-the-art per-

application management. Compared to cluster-based management (CBM) implemented directly as part of

the OS, MA is similar in resources and communication volume, increasing only the mapping latency (+16%).

Results targeting a complete DMOM control loop addressing up to three different objectives show the scala-

bility regarding system size and adaptation frequency compared to CBM, presenting an overall management

latency reduction of 17.2% and an overall monitoring messages’ latency reduction of 90.2%.
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1 INTRODUCTION

Technology advances allow increasing semiconductor integration levels enabling systems-on-chip

(SoCs) with dozens to hundreds of cores, herein named Many-core System-on-Chip (MCSoC). MC-

SoCs are state-of-the-art regarding processing power because they reach a high computational par-

allelism level in a small silicon area. Such processing power is fundamental to leverage real-time

applications, which can process a huge amount of data in parallel, such as artificial intelligence,

autonomous systems, health imaging processing, IoT, and cyber-physical systems.

For small systems with a homogeneous and known application set, the system’s management

can be performed statically, at design-time. This static management corresponds to select the cores

where applications will be mapped, establishing the appropriate communication level bandwidth

among tasks, and controlling the chip voltage and frequency. Larger systems, as MCSoCs, designed

to support applications with different profiles, workloads, and constraints, dynamic management

is essential.

Therefore, MCSoCs are evolving from fixed objective resource management to dynamic multi-

objective resource management (DMOM) [11]. Simultaneous and self-adaptive management of

conflicting objectives such as power, performance, and user experience [23] characterizes a DMOM.

While this is a considerable challenge, there are recent works in the literature addressing DMOM

[8, 10, 20, 23, 26]. The DMOM system can be seen and implemented as an Observe-Decide-Act

(ODA) control loop, requiring different management modules, each in charge of one specific role

and addressing different system resource categories. Naturally, any DMOM should adopt a scalable

and modular architecture.

Resources in an MCSoC comprise three levels: computation (CPU, memory), communication

(NoC, network interface), and physical (as, voltage and frequency). A comprehensive DMOM im-

plements the ODA phases addressing all three categories. These categories received considerable

attention from researchers, and the literature proposes solutions for individual self-adaptive man-

agement. Table 1 summarizes contributions for each level.

The design of a DMOM system becomes more challenging with the increase in the MCSoCs’

size [3]. The increase in the number of cores brings undesired features, as higher degrees of un-

predictability, process variation, and the utilization wall [21]. As a starting point, it is mandatory

to consider a scalable and flexible system organization where each component has its role well-

defined and decoupled from other components to promote scalability and modularity.

Related works addressing distributed DMOM systems are divided into Cluster-Based Manage-

ment (CBM), with one manager per cluster of cores, and Per-Application Management (PAM),

with one manager dynamically created for each running application. This work has two main

goals. First, evaluate existing DMOM approaches, identifying their drawbacks related to paral-

lelism, communication volume, management flexibility, and management latency. The second one

is to propose a new DMOM approach that fulfills the weakness of existing methods. We call

the proposed management paradigm Management Application (MA). Its essence consists of ex-

ploiting the parallel and flexible design environment used for user’s applications to implement

system resource management services at the user-level, decoupled from the Operating System

(OS), where each MA task is organized according to the ODA control loop. Additionally, we

present a detailed framework structure, describing the DMOM implementation based on the MA

paradigm.

The main contributions of this work are as follows:

(i) Proposition of the MA paradigm for MCSoC management;

(ii) DMOM framework based on the MA paradigm called DMOM-MA.
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Table 1. Self-adaptive techniques state-of-the-art

Level Resources Observation Decision/Actuation

Computation CPU, memory Task deadline Task migration and

[7, 24] Application heartbeats task scheduling

Communication NoC, NI Packet latency Flow priority, virtual-channel

[17, 19] Flow throughput circuit-switching

Physical Voltage, Power Dynamic DVFS adaptation,

[12, 29] frequency Energy power/clock gating

Fig. 1. Resource management organizations. M - Manager core, C - Cluster manager core, O1,2,3 - Observa-

tion tasks, A1,2,3 - Adaptation tasks, D - Decision task.

The management decision quality is a topic orthogonal to the management organization scheme

and thus outside the scope of this work. We focus on the DMOM organization and the interaction

between its components. Thus, ODA tasks are synthetically implemented, allowing a fair compar-

ison among management techniques.

The rest of this paper is organized as follows. Section 2 presents related work on resource man-

agement organization and the motivations to the MA proposition. Section 3 details the MA para-

digm. Section 4 presents DMOM-MA framework. Section 5 evaluates DMOM-MA in comparison

with other distributed state-of-the-art paradigms. Section 6 concludes this work.

2 RESOURCE MANAGEMENT ORGANIZATIONS

On-chip dynamic resource management has been studied extensively, as witnessed by recent com-

prehensive surveys of this area [11], but we focus more narrowly on system-level resource man-

agement schemes.

Figure 1(a-c) details existing resource management organizations: (i) centralized; (ii) CBM

(Cluster-based Management); (iii) PAM (Per-application Management). Centralized approaches

are feasible for a small number of cores but not suitable for large-scale systems with dozens of

cores since the manager core easily becomes a bottleneck.

CBM [1, 5, 6, 10, 13, 27, 28] stands out as the most widespread organization in the literature.

CBM divides the management into clusters, each one managed by a cluster manager (C) [1, 13],

implemented in a dedicated core. Authors in [5, 27, 28] assume two hierarchical management levels

with slave cores that execute user’s tasks and a system core assigned to the management of slave

clusters. Works [1, 10, 13] propose three hierarchical levels, with slave cores, cluster manager,

and one global manager. Such approaches are scalable since they divide the management load

among clusters. However, we identify the following drawbacks related to flexibility and resource

utilization: (i) the managers’ position and cluster bounds are defined at design-time, decreasing

the management flexibility since management services may require different cluster sizes; (ii) as

the management core is only used for management functions, its idle time is not used and could

ACM Transactions on Computer Systems, Vol. 38, No. 1-2, Article 1. Publication date: July 2021.



1:4 M. Ruaro et al.

be exploited to run low priority tasks; (iii) all services implemented in a manager core are tightly

coupled, making maintenance hard, and the addition of new services can easily interfere with

existing ones.

PAM [9, 25] assigns one manager core (M) per application. The manager is dynamically created

when an application is loaded. The M core is responsible for supervising the application execution

and distributing its workload at runtime. The works assume a cluster manager core (C), which is

design-time defined and keeps the resource usage records of a cluster of cores. The works also

assume that each application task runs on one single core. Overall results show that the proposed

scheme improves the management execution time from 17.5% up to 30% compared to related works

[2, 9].

PAM is fully distributed and conceptually more flexible than CBM since each manager is in

charge of one application. We identify the following drawbacks of this approach: (i) it is most

suitable for systems that assume applications with many tasks [25], which keeps the management

overhead per task low (i.e., applications having a small number of tasks will lead to an exces-

sive amount of resources dedicated to management); (ii) the dynamic creation of new managers

imposes complex synchronization protocols to take systemic actions since managers are more fo-

cused on the applications’ goals than system goals.

Figure 1(d) presents the MA approach proposed in this work. Each gray tile in the Figure is

a management task, with a specific role. Observation tasks (tasks O1,2,3) gather and abstract raw

monitoring data. They also support an interface for users’ commands. Decision task(s) (D) make

adaptation decisions based on the observed scenario using heuristics or learning techniques. Adap-

tation tasks (A1,2,3), manage adaptation protocols, such as DVFS (dynamic voltage and frequency

scaling) and task migration. Figure 1(d) shows how the system designer can split the DMOM roles

into several tasks. These tasks can be mapped at different positions of the system, and the number

of tasks can also be defined at runtime according to the workload requirements.

Limitations of MA include: (i) its tasks have the maximum scheduling priority over other user’s

tasks and, consequently, cannot share a CPU with real-time (RT) tasks; (ii) the system designer

needs to carefully choose when two or more MA tasks can share the same CPU since conflicting

tasks can reduce the overall management performance.

Advantages of the MA paradigm that motivate this work include:

• MA’s tasks do not require its execution on a dedicated core, as in CBM or PAM;

• MA’s tasks have no fixed core allocation. If a core exceeds its TDP or becomes faulty, an MA

task can migrate to another core with the same flexibility as user tasks;

• MA’s tasks can be created or killed at runtime according to the management demand;

• Improved programmability since the management algorithms become decoupled from the

OS level, with access to low-level resource abstracted through APIs. This also improves the

developing process since one design team can work at the management level by implement-

ing the MA’s tasks. Another team can work on the architectural level by implementing APIs

for MA tasks and their respective OS support.

3 MANAGEMENT APPLICATION PARADIGM

This Section details the MA paradigm. As Figure 2 illustrates, the MCSoC organization contains

three levels: hardware, OS, and applications. Based on this hierarchy, we introduce the Manage-

ment Application as a new type of application class focused on resource management.

Hardware: is orthogonal to our proposal. Figure 2 depicts a typical core architecture, with a

scratchpad paged memory to store the OS and tasks, a CPU, a Network Interface (NI), and multiple

physical NoCs, with one packet switching (PS) router for Best-effort and management flows, and
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Fig. 2. Overview of the MA paradigm. An MCSoC architecture has three levels: hardware, OS, and applica-

tion. The MA is implemented at the application level, requiring two modules inside the OS, which allows the

MA to access low-level system resources through the management task API.

a set of circuit switching (CS) routers used for real-time flows. Memory-mapped registers (MMR)

expose hardware functions to the OS, such as monitoring power consumption, the configuration

of interrupt masks, scheduler interrupt counters. MMR also allows the OS to configure a hardware

module, like changing the cores’ voltage and frequency cores, and sending a packet using a given

CS sub-network.

OS: the OS should provide the following components to support the MA paradigm (Section 4.1):

(i) Low-level Monitor (LLM) – a monitor that periodically pulls data from the hardware, user

tasks, and OS modules, sending them to the MA tasks. LLM does not execute any complex

computation.

(ii) Adaptation Enforcer (AE) – physically applies the adaptations coming from the MA tasks.

Some examples include the control of the core voltage and frequency and task migration.

(iii) Management Task API (MA API)– provides a set of customizable management functions

that allows the MA’s tasks to communicate with each other and send commands to AE.

Only authorized tasks access the management task API. The OS assigns a unique ID for each

application and task (user or MA tasks). The first application to be mapped is the MA application,

which receives the ID 0. Thus, the OS only allows access to the management task API from tasks

belonging to the application ID 0.

Application: the application level does not require changes. Each application (either management

or user) is modeled by a set of n tasks, described through a Communicating Task Graph (CTG).

The MA implementation in the userspace brings advantages related to modularity and porta-

bility. As shown in Figure 2, the OS receives a small number of modules (LLM, AE, MA API).

Therefore, the management technique may be applied to different systems, with slight changes in

ACM Transactions on Computer Systems, Vol. 38, No. 1-2, Article 1. Publication date: July 2021.
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Fig. 3. DMOM-MA Framework implementing the ODA control loop.

the original OS. Another advantage is that the OS of all cores is the same, without specializing a

given core, as in the CBM approach.

As the management techniques run in parallel with user’s applications, they should be designed

to create a minimum overhead. Such a feature differentiates the management in MCSoCs from the

management in other systems, as in server systems, since MCSoCs have resources’ constraints, as

power, performance, and area.

4 DMOM-MA FRAMEWORK

Figure 2 presents the MA components along with a typical MCSoC organization. This Section

details the MA-based DMOM framework (DMOM-MA). The framework covers all phases of the

ODA control loop and addresses three categories of resource management: communication, com-

putation, and physical.

Figure 3 depicts the framework model. In summary, the LLM running at the OS of each core

generates messages periodically. Observation tasks handle these messages, jointly with user com-

mands. The Observation tasks know the system and applications’ constraints, and, based on the

monitored data, can convert raw monitoring data to objectives. Objectives are sent periodically to

the Decision task, which converts the objectives into actions [23], implementing the algorithms

required to detect when and what resource needs adaptation. If necessary, the Decision task calls

an Adaptation task, which implements the protocols to dynamically change the resources by in-

teracting with the Adaptation Enforcer at the OS level.

4.1 OS Support

This Subsection presents the support required by the OS to implement the DMOM-MA framework,

detailing the Low-Level Monitor, Adaptation Enforcer, and the management API functions.

4.1.1 Low-Level Monitor–LLM. The LLM sends raw monitored data to the Observation Tasks

periodically. The LLM supports the monitoring of the following parameters:

• Task deadline: the OS scheduler detects when a given soft real-time task misses a deadline

(the LLM receives the task’s deadlines during the application loading).

• Task communication latency: tasks communicate by exchanging messages through the NoC.

Based on a timestamp embedded in the packets, the OS detects when a given packet exceeds

a threshold latency (the LLM receives the threshold latency during the application loading).

ACM Transactions on Computer Systems, Vol. 38, No. 1-2, Article 1. Publication date: July 2021.



Modular and Distributed Management of Many-Core SoCs 1:7

Table 2. API functions of DMOM-MA framework

API Call Description
Generic

ReceiveMsg(unsigned int * msg, int size) Wait for a message sent either by the LLM or a MA task
SendToMA(unsigned int * msg, int size, int taskMA) Sends a message to another MA task

DVFS
ApplyDVFS(int v, int f, int dest_core) Send a message to AE configuring a new VF-pair

Task Migration / Mapping
MigrateTask(int taskID, int dest_core) Send a message to AE ordering to start a task migration
LoadTask(int taskID, int dest_core) Send a message to an off-chip application loader, ordering

to load a given task to a core
Communication Switching

SetupCS(int subnet, int dest_core) Send a message to AE to configure CS in a given CS router
and subnet

SetSwitching (ctp = {prod, cons}, swtc = PS, CS) Send a message to AE, ordering a communicating task
pair (ctp) to assume the new
switching mode of communication

• Task profile: by combining the scheduling and task communication information, the LLM

traces the task profile, classifying it as computation-intensive, communication-intensive, or

hybrid [17].

• Application heartbeat: typical applications running in MCSoCs are cyclic, such as video pro-

cessing. The endpoint task of the CTG emits a pulse to identify the heartbeat of the applica-

tion [7], which characterizes the application hyper-period. The LLM records such pulse and

uses it to identify deadline misses at the application level.

• Power: the LLM monitors the power consumption and estimates the core’s temperature by

observing the CPU activity (power per instruction), the number of memory accesses, and

the number of flits transmitted by the router [10].

• Core’s utilization: the OS scheduler monitors the percentage of time that the core is in use.

4.1.2 Adaptation Enforcer–AE. The AE receives and enforces the following orders sent by the

Adaptation tasks:

• Task Migration: AE starts a task migration protocol based on task recreation [18], which

moves a task to another core, including its code and data memory.

• Task Mapping: AE allocates a new task to its core, initializing the task control block (TCB)

with parameters, such as task execution time, period, deadline, and communication latency.

• CS setup: the AE configures the task TCB to start sending and receiving messages using CS.

• PS setup: the AE configures the task TCB to send/receive messages using PS.

• DVFS: AE sets a memory-mapped register with the voltage-frequency pair embedded into

the message. The MMR configuration is acknowledged by the DVFS hardware that changes

the voltage and frequency of the core.

4.1.3 Management Task API. Table 2 details the Management Task API. The API functions are

called by MA tasks to receive messages from the LLM and AE, to communicate with each other,

and to send commands to the AE.

4.2 Exchanged Messages

Table 3 details the messages exchanged between the LLM and the Observation tasks, the Observa-

tion tasks and the Decision task, and the Decision task and the Adaptation tasks. As illustrated by

the vertical gray arrows in Figure 3 and detailed in Table 3, the exchanged messages are divided

into three classes: monitoring data, objectives, and actions.

ACM Transactions on Computer Systems, Vol. 38, No. 1-2, Article 1. Publication date: July 2021.
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Table 3. Message types of the DMOM-MA framework

Monitoring data: from LLM to Observation Tasks

TASK_MONITOR_DATA
Contains the user’s task constraints and real-time status:
{task profile, task deadlines miss, task latency miss,
application heart-beat}

SYS_MONITOR_DATA Contains the system status: {power and core utilization}
USER_MONITOR_DATA Contains the user request: {high performance, battery saving}
Objectives: from Observation Tasks to Decision Task

SYS_OBJECTIVE
Report a system objective:
{temp. = normal, high; core utilization = low, normal, high}

TASK_OBJECTIVE
Report a user’s task objective:
{communication QoS, computation QoS}

USER_OBJECTIVE Reports a user objective: {high performance, battery saving}
Actuation: from Decision Task to Adaptation Tasks
TASK_MAPPING_REQUEST Requests a task mapping adaptation
TASK_MIGRATION_REQUEST Requests a task migration adaptation
CIRCUIT_SWITCHING_REQUEST Requests a CS establishment between a communicating task pair (ctp)
PACKET_SWITCHING_REQUEST Requests a ctp to return to PS communication mode
POWER_SETUP_REQUEST Requests the power configuration of a given core

Monitoring messages are generated from the LLM to Observation tasks containing raw monitor-

ing data. As the LLM is implemented at the OS level, it does not use any Management Task API

functions.

The Observation tasks receive the LLM messages calling the ReceiveMsд() function and classify

the monitoring messages, converting them into objectives messages (Table 3). The objectives are

sent from the Observation to the Decision tasks using the SendToMA() function.

The Decision task receives the Observation messages calling the ReceiveMsд(), and can gener-

ate an action message. Action messages are sent using API calls as DVFS, Task Migration/Mapping

and Communication Switching of Table 3. The adaptation tasks and AE communicate during the

execution of a given adaptive protocol. Therefore, there are also messages involved in such pro-

tocols that physically change the system. Such messages are out of the scope of this work being

part of the adaptive protocols: DVFS [10], dynamic communication switching [4, 16], and task

migration and mapping [17].

4.3 Observation Tasks

The Observation tasks’ role is to convert raw monitoring data to objectives since they know the

system and application constraints. The Observation tasks generate objective messages periodically

to the Decision task, even when there is no constraint violation. These "normal" messages are also

important to endorse a past decision of the Decision task. Three classes of Observation tasks are

adopted: system, user’s task, and user’s commands.

System tasks transmit system performance figures, such as power, temperature, and CPU utiliza-

tion. Based on the power value, it is possible to detect when a given core reaches its thermal safe

power [12], classifying the temperature as normal or high (Table 3). Temperature values can trig-

ger a DVFS adaptation. Based on the core utilization, the system task classifies the utilization of a

core as low, normal, and high. The core utilization is used during task mapping and task migration

decisions, helping to distribute the system’s load.

User task observes the profile and performance of real-time tasks, by receiving deadlines/latency

misses, heartbeats, and profiling [7, 17]. The User task is concerned with the runtime QoS fulfill-

ment of real-time tasks (computation and communication). The task deadline miss and heartbeats

information can lead to task migrations, moving tasks of the affected application to cores with

more resources. A task latency miss can lead to a dynamic CS establishment. The task profile is
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used to generate objectives according to the profile of the task proactively. Computation-intensive

tasks can be early migrated to free cores. Communication-intensive tasks can early receive a CS

connection [17].

User commands handle user messages that are generated by external user commands. The user

can change the objective of the system dynamically, requesting for battery saving or higher per-

formance [23].

4.4 Decision Task

The decision task periodically executes algorithms (heuristics or learning-based techniques) to de-

cide when and which system resource will be the target of a runtime adaptation. This task hosts the

main intelligence of DMOM, which is based on the state awareness provided by observation tasks,

decides for a balance between application requirements, user experience, and physical budgets.

The objectives are converted to actions and receive different priorities [23] over time.

Here, ideas as proposed by the centralized management of Shamsa et al. [23] can be imple-

mented. In this work, decisions are taken by a learning-based algorithm (Q-learning) which access

the current status of the system, user’s task, and user’s commands together with a reward function

that can support or contest past adaptations. The method uses a state detector to gather all nec-

essary information. Following the MA paradigm, the state detector could be divided into different

observation tasks (as previously described), parallelizing system monitoring.

After making a decision, the decision task sends a message (detailed in Table 3) to the corre-

sponding actuation task to start the system’s adaptation.

4.5 Actuation Tasks

Actuation tasks manage the physical reconfiguration of the system handling the actuation mes-

sages and implementing the corresponding adaptive technique to change the system. Three classes

of actuation tasks are proposed to cover the three resource categories: Task Mapping/Migration

Manager (computation QoS), CS Manager (communication QoS), DVFS management (physical).

Actuation tasks interact with the adaptation enforcer (at the OS level), using the API calls detailed

in Table 2.

5 EXPERIMENTAL RESULTS

We compare the MA paradigm with state-of-the-art works that implement distributed manage-

ment approaches: cluster-based management (CBM) [10], and per-application management (PAM)

[25]. The first experiment (Section 5.1) compares the management approaches using task mapping

as case-study. We evaluate the following parameters: (i) resource utilization, how much system re-

sources each approach requires to work; (ii) mapping latency; how fast each approach executes the

resource management; and (iii) communication volume, data volume exchanged by each approach.

The second experiment (Section 5.2) evaluates CBM and MA approaches considering all phases of

the ODA loop to assess the scalability of both approaches.

The MA, CBM, and PAM distributed management uses the Memphis MCSoC platform [15]. The

platform is modeled in RTL (VHDL and SystemC-RTL), and adopts a homogeneous core architec-

ture shown in the hardware layer of Figure 2. The CPU at each core is a Plasma processor [14]

(MIPS processor), running at 100 MHz. The software is modeled in C code (mips-gcc cross-compiler,

version 4.1.1, optimization O2).

5.1 Case-Study: Task Mapping

The CBM approach in [10] supports a wide range of management roles, while the PAM work

[25] focuses on task mapping. This experiment addresses dynamic task mapping, allowing a fair

comparison between the three distributed management approaches.
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Fig. 4. Mapping overview of one random scenario. (a) list of applications, number of tasks, and the map-

ping sequence in one of the experiments. (b) CBM mapping [10]. (c) PAM mapping [25]. (d) MA mapping

(proposed).

The task mapping algorithm was proposed in [25] along with the PAM management organiza-

tion. In this experiment, we implemented the work of [25] leveraging the PAM-based task mapping

model. As the task mapping is a distributed algorithm, in CBM, we implemented it in eachC core

(four in total), and for MA, we implemented it with five tasks, four to execute the task mapping for

a cluster of cores, and one to manage the application admission from an external peripheral that

contains the tasks’ code (app_injector). The application admission management is also executed in

CBM and PAM. One cluster manager C (usually the one closest to the external interface) includes

the methods to interface with the app_injector. For fairness of comparison, the MA’s tasks run on

different cores since CBM and PAM assume their managers running on dedicated cores.

The experiment adopts a 10x10 MCSoC, partitioned into four 5x5 clusters, with eight applica-

tions requesting to be sequentially mapped into the system. Note that the goal is not to evaluate

the quality of the task mapping heuristic but the management protocol cost. Therefore, the task

mapping heuristic is the same for all approaches, consisting of: (i) select one core to map the first

task of the application based on the maximum average distance from other applications [25]; and,

(ii) starting from this core, mapping each application task based on a diamond search between the

free cores.

Figure 4(a) presents the applications’ list used in the experiment. The application set comprises

78 tasks for a 100-core system (78% of nominal utilization). Since we are using task mapping as

a case-study, two criteria affect the management protocol performance: (i) the number of tasks

per application; (ii) application admission order. We adopt a heterogeneous set of applications

regarding the number of tasks, varying from 5 up to 15 tasks. Regarding the application order, we

evaluate 10 different scenarios with the application admission order randomly selected. Figure 4(a)

depicts the mapping order of one of the random scenarios.

5.1.1 Resource Utilization. Figure 4(b, c, d) shows the final task mapping for CBM, PAM, and

MA, respectively. The mapping order scenario corresponds to the one presented in Figure 4(a)

(other scenarios have identical results regarding resource utilization). The goal is to evaluate how

many management resources each technique requires. CBM requires one manager core (C) per

cluster. Assuming a 5x5 cluster, the resulted resource utilization (allocated cores) required for man-

agement was 4% of the total number of cores.

PAM requires one C per cluster, one manager per application (M), and one initial core (i) per

application. Initial cores (i) are temporary managers that are created for each application to map its

tasks to free cores. During task mapping, the i core communicates with C and M cores to achieve

ACM Transactions on Computer Systems, Vol. 38, No. 1-2, Article 1. Publication date: July 2021.



Modular and Distributed Management of Many-Core SoCs 1:11

Fig. 5. Average mapping latency for all scenarios (bars). Lines represent standard error.

a consistent and temporary global view of the system resources. We optimize the PAM resource

utilization by reusing core i after it finishes the application mapping, allocating to this core one

task of its application. Despite this optimization, PAM needs a higher number of management

resources, corresponding to 13% of the total number of cores.

With five MA tasks, the resources required for management are 5% of the total cores (61.5% fewer

resources than PAM). MA could be implemented with four tasks, resulting in the same resource

utilization as CBM.

Note that in Figure 4(d), MA’s tasks are statically mapped in neighbors cores and not distributed

over the system. However, the designer can choose to map a given MA task in a specific place, for

instance, place a monitoring task close to an application that produces monitoring traffic with an

intensive rate, or map a decision task in a region with faster cores. As the MA’s tasks communicate

with each other according to the messages previously presented, mapping them closer to each other

brings two main benefits:

• Reducing the Manhattan distance among management tasks helps to reduce the communi-

cation latency among them and also reduce communication energy into the chip (the same

rule valid for mapping the user’s tasks [25]);

• Grouping management tasks helps to open space in the many-core to map users’ tasks with

less fragmentation than when the managers are spread over the system (like CBM).

The flexibility to map management tasks is the same as to map users’ applications, enabling the

computational load distribution among several tasks.

5.1.2 Mapping Latency. Figure 5 shows the average mapping latency in kilo clock-cycles (Kcy-

cles) for all scenarios. The mapping latency comprises the time from the beginning of the mapping

for the first task until the end of the mapping for the last task, measured in the manager proces-

sor. As each approach uses the same task mapping heuristic, this result reflects the protocol cost

between different management components.

MA exhibits an average latency 66% lower than PAM and 16% higher than CBM. The difference

to CBM is due to the implementation of the MA management at the application level, which incurs

in context saving (due to the system calls) and scheduling overheads.

PAM has a higher overhead, being 3.4 times more costly than CBM and 2.9 times more costly

than MA. While PAM has a scalable and modular design (assuming one manager per application),

it leads to more heterogeneous management with three different managers, requiring higher syn-

chronization among managers, increasing the mapping latency.
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5.1.3 Communication Volume. The communication volume of the approaches corresponds to:

PAM = 14.7 KB, CBM = 0.33 KB, and MA = 0.55 KB. MA presents a reduction of 96% compared to

PAM. The communication volume between CBM and MA has a low difference because they adopt

a similar management protocol, with one mapping manager (either a dedicated core or a MA task)

in charge of a cluster of cores. PAM produces more messages due to the synchronization among

three different managers.

5.1.4 Distributed Management Approaches - Results Overview. This first evaluation of the man-

agement approaches, using task mapping as a case-study, showed that PAM imposes a high man-

agement overhead compared to MA and CBM. MA and CBM are similar related to communication

volume, resource utilization, and slightly different in mapping latency. The advantage of the pro-

posed MA approach, compared to CBM and PAM, is flexibility and modularity. The next Subsection

evaluates the CBM and MA approaches considering all phases of the ODA loop.

5.2 DMOM Management Latency

This Subsection evaluates the DMOM-MA framework presented in Section 4, using MA and CBM

implementations. Definitions presented below are required to create a fair comparison between

both approaches.

• Each core sends a set of monitoring messages mt ,mu ,ms ; where: mt , corresponds to the

task monitored data (TASK_MONITOR_DATA in Table 3); ms , contains the system status

(SYS_MONITOR_DATA);mu , contains the user commands (USER_MONITOR_DATA).

• M: set of monitoring messages defined according to the number of objectives to meet: M =
{mt } for 1 objective – 1-OBJ, M = {mt ,ms } for 2-OBJ, M = {mt ,ms ,mu } for 3-OBJ.

• OW: observation window in which the monitoring messages are sent. In the MA approach,

m messages are sent to the corresponding Observation task. In CBM, M messages are sent

to the manager core C . OW is assumed as 1 ms in the experiments, which corresponds to

monitoring periods typically found in literature, especially for power management [10, 22];

• The time to handle one monitoring message is on average 1,000 clock cycles, a value obtained

from the RTL simulation;

• t(DT): execution time of the decision task, assumed as t (DT ) = 0.01∗NC ∗NO ms, where NC

is the number of cores in a cluster, and NO is the number of objectives to meet. The choice

of this equation comes from the fact that the execution time of a decision heuristic increases

according to the number of cores and the objectives to meet;

• t(AT): execution time of an adaptation task, assumed as t (AT ) = 1ms , which roughly corre-

sponds to a switching modification, or task migration or task mapping [17];

• AR: the execution of the decision task triggers an adaption when occurs a violation in an

objective. Experiments adopt AR = {10%, 25%, 50%}. An AR = 10% is a typical rate observed

in experiments related to QoS actuation [17], and an AR = 50% is a pessimistic scenario,

where half of the decision executions triggers an adaptation, representing a system that is

constantly adapting its resources due to constraints violations.

The observation, decision, and actuation have a synthetic behavior to create controllable and

reproducible experiments, i.e., OW , t (DT ), and t (AT ) control each step’s latency. Additionally, the

adaptation execution is a function of the adaptation rate – AR . An AR = 50% means that for two

decision executions, one adaptation is triggered. In practice, AR will vary at runtime according to
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Fig. 6. ODA management latency (ML) and observation window (OW ) for CBM and MA approaches. In

CBM ML corresponds to the summation of the O/D/A latencies, while in MA the O and D/A latencies are

parallelized.

the system’s resource availability and constraints violation, leading to a higher or lower adaptation

rate.

The main performance figure to evaluate is the ODA management latency – ML . Figure 6

presents the ODA execution behavior for both CBM and MA approaches, where OT corresponds

to an observation task, DT to a decision task, and AT to an actuation task.

In CBM, M arrives from the cores to the C core periodically. The C core waits to receive all

expected monitoring messages within OW . Once M is received, occurs the execution of DT and

AT . Note that DT may start before the end of OW if all M messages arrive before OW ends. At the

end of AT , the C core sends a monitoring release message to the cores allowing them to transmit

new monitoring messages. The release message is required to avoid cores sending monitoring

messages while C core executes DT or AT . Note that according to AR , AT may not run.

In MA, cores transmit m monitoring messages to the respective OT (step 1). Each OT sends an

objective message to DT after receiving all monitoring messages within OW . Once DT receives all

objective messages (up to three),DT effectively starts (step 2). If the decision requires an adaptation,

an actuation message is sent to the respective AT . The AT sends an acknowledging message to DT

when it finishes (step 3). The DT informs theOT s that they can send new objective messages (step

4). There is no need for a monitoring release message becauseOT s executes in parallel, not stalling

due to DT or AT execution, as in CBM.

Due to the parallel execution of OT s with DT and AT , ML (MA) may be expressed according to

Equation 1. In Equation 1(a), ML (MA) corresponds to the execution time of DT andAT . Otherwise,

Equation 1(b), ML (MA) corresponds to OW .

ML (MA) =

{
t (DT +AT ), t (DT +AT ) > OW (a)

OW , t (DT +AT ) ≤ OW (b)
(1)

Figure 7 evaluatesML and the communication latency (time to handle the monitoring messages),

varying the cluster size, AR , and the number of objectives to meet. The goal of this experiment is

to evaluate the scalability of both approaches.

Figure 7(a) presents ML for AR equal to 10%, 25%, and 50%. Considering all results, ML (MA) is,

on average, 17.2% lower than ML (CBM ).
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Fig. 7. Comparison of MA and CBM average monitoring latency (ML) implementing the DMOM framework

proposed in Section 4, considering four cluster sizes (3x3, 4x4, 5x5, 6x6). (a) Management Latency ML . (b)

Average communication latency per OW .

Consider the first plot of Figure 7(a), with AR = 10%, a typical adaptation rate. The ML (MA)
follows Equation 1(b) for 1 and 2 objectives for all cluster sizes. Only for a 6x6 cluster, with 3

objectives to meet, ML (MA) follows Equation 1(a), due to the increase on the t (DT ). The CBM

approach meetsOW for small cluster sizes (up to 4x4), with a significant increase in ML (CBM ) for

2 and 3 objectives to meet. As OW defines the monitored data sampling period, it is expected that

the adaptation occurs within this period. This graph demonstrates the CBM approach’s limitation to

deal with multiple objectives, even considering a small AR .

AR evaluation. ML (CBM ) is 18.6%, 19.4%, and 23.9% higher than ML (MA) for an AR equal to 10%,

25%, and 50%, respectively. The reason explaining why ML (CBM ) increases with AR comes from

the sequential execution of the ODA loop. In CBM, the execution of an adaption stops the moni-

toring message reception, while in MA the OT s continue to receive monitoring messages, even if

an adaptation is executing.

Number of objectives to meet. The number of objectives impacts ML with CBM increasing at a rate

of 21.6% to each added objective, while MA presents an increasing rate of 6.6%. ML (CBM ) is 4.1%,

20.6%, and 35.5% higher than ML (MA) to meet 1, 2, and 3 objectives, respectively. These results

show that the MA is suited to meet several objectives simultaneously, while ML (CBM ) increases

rapidly with their increase.

Cluster size evaluation: CBM presents an average increase rate of 19.1% to each added XY dimen-

sion, while MA increases at a rate of 5.4%. Considering the simultaneous fulfillment of two objec-

tives, it is possible to observe the rapid increase of ML (CBM ) with the increase in the cluster size,

while ML (MA) is only penalized for AR = 50%. On the other hand, the simultaneous fulfillment

of three objectives, both approaches are penalized, with a smaller impact on the proposed MA

approach. These results show that OW must be adjusted according to the cluster size, and a given

AR .
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Figure 7(b) evaluates the average communication latency of the monitoring messages. This la-

tency is measured within anOW , comprising the time from the generation of a monitoring message

by LLM until its respective handling by anOT or by aC core. The MA communication latency fol-

lowsOW , being on average 90.2% lower than CBM. By using multiple and dedicatedOT s to handle

the large amount of monitoring data generated by multi-objective management, the monitoring

messages are handled in parallel (see Figure 6) avoiding being stalled during decision and actuation

and reducing the bottlenecks in the NoC.

6 CONCLUSION

We proposed the Management Application (MA) and a framework of multi-objective management

(DMOM) based on the MA, and evaluate it in comparison to two other distributed resource man-

agement paradigms for MCSoCs (CBM, PAM). A core aspect of MA is its implementation as a

distributed management application (at the user’s application level), decoupling several manage-

ment components from the operating system, and bringing properties of flexibility, modularity,

and parallelism.

We presented two experiments on resource management, one focused on task mapping, and

the other one focused on the complete DMOM framework. The task mapping case-study showed

that MA and CBM have a significant improvement compared to PAM in all performance aspects

(latency, resource utilization, and communication volume). MA and CBM presented similar com-

munication volume and resource utilization, with MA achieving a management latency 16% higher

than a CBM, which occurs due to the overheads of context saving and scheduling of MA task, which

CBM does not have due to its implementation at the OS level. The second experiment compares

CBM and MA in a DMOM framework and shows that MA can reduce the management latency on

average by 17.2% and message latency by 90.2%. The advantage of MA for multi-objective manage-

ment is the flexibility allowing the system developer to split the management tasks, which favors

the scalability of the management system regarding cluster size and the ability to manage several

objectives simultaneously.

Directions for future words include: (i) evaluate the impact of the decision algorithms in the

management techniques; (ii) assess methods to allocate ODA tasks according to the system load

dynamically.
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