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Abstract
State machine replication (SMR) is a well-known approach

to implementing fault-tolerant services, providing high avail-

ability and strong consistency. To boost the performance of

SMR, some proposals execute independent commands con-

currently, while dependent commands execute sequentially

in the total delivery order. The most general approach to han-

dling command dependencies resorts to a directed acyclic

graph (DAG), where nodes represent commands and edges

represent dependencies. In this paper we show that due to the

command arrival and multithreaded execution rates of SMR,

a highly concurrent implementation of a DAG is needed. We

show that a typical coarse-grained DAG implementation,

where the whole graph is a critical section, results in a bot-

tleneck in the replica. We propose two improvements to the

coarse-grained DAG approach: fine-grained algorithms, us-

ing lock-coupling, and lock-free algorithms. Our fine-grain

algorithms lock individual vertices in the DAG. The lock-free

algorithms use nonblocking synchronization, with atomic

operations, and lazy synchronization to postpone physical

removal of nodes. All algorithms were integrated in a parallel

SMR prototype. Experimental evaluation revealed that the

fine-grained algorithms are also subject to a bottleneck. The

lock-free implementation, however, sports linear speedup

with the number of working threads, in some cases scaling

up to 64 threads.
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1 Introduction
Designing applications that tolerate failures and scale per-

formance is important but challenging. One way to face this

challenge is to rely on fundamental abstractions. Classic state

machine replication (SMR) is a simple, yet effective approach

to fault tolerant and strongly consistent applications [22, 29].

The idea is to replicate the application server and execute

client commands at the replicas in the same order and de-

terministically. By starting in the same initial state and exe-

cuting the same sequence of commands, replicas transition

through the same sequence of states and produce the same

responses for each command. SMR has been successfully

used in many online services (e.g., [5, 17]).

Classic SMR, however, provides limited performance. This

happens because every replica executes all commands se-

quentially, to ensure determinism. Sequential command exe-

cution at a replica is detrimental to performance and a poor

use of modern hardware. To boost performance, replicas

must execute commands concurrently and thereby benefit

from modern multi-processor servers. Parallel SMR tech-

niques are based on the observation that independent com-

mands can execute concurrently while only dependent com-

mands must be serialized and executed in the same order by

the replicas [29]. Two commands are dependent (or conflict) if
they access common state and at least one of the commands

changes the state, and independent otherwise. Executing de-

pendent commands concurrently may result in inconsistent

states across replicas. Although the performance of a parallel

SMR technique depends on specifics of the technique and the

workload mix of independent and dependent commands, it

has been shown that parallel approaches result in substantial

improvements in performance (e.g., [2, 19, 21, 23, 24]).
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This paper considers a class of parallel SMR protocols that

rely on a scheduler thread to assign commands to worker

threads at each replica. For example, CBASE, a protocol in

this category, uses a dependency graph (in fact, a directed

acyclic graph or DAG) at each replica to encapsulate depen-

dencies [21]. For each new incoming command at a replica,

the replica scheduler includes the command and its depen-

dencies in the graph; worker threads remove commands from

the graph respecting these dependencies and execute the

commands. There is an edge from command ri to command

r j in the DAG if ri is ordered before r j , and both commands

conflict. Intuitively, an edge from ri to r j means that ri must

be executed before r j .
Modeling and tracking command dependencies using a de-

pendency graph is an elegant solution to the problem of com-

mand scheduling in parallel SMR. It poses a new challenge,

however: as we show in this paper, under high load (e.g., hun-

dreds of thousands of commands per second), dependency

tracking may become itself the performance bottleneck. This

is particularly the case if the scheduler and worker threads

access the graph using coarse-grain locks in exclusive mode

(e.g., in CBASE there is a single exclusive lock on the whole

graph) and the cost of executing application commands is

low, compared to the cost of executing graph operations to

include and remove nodes and edges.

In this paper, we explore efficient implementations of the

scheduler-workers approach. We capture fundamental re-

quirements of parallel SMR with a new abstract data type,

the Conflict-Ordered Set (COS). COS generalizes dependency
graph-based techniques: the scheduler includes new com-

mands in the COS (i.e., insert operation), respecting their

incoming order; worker threads select commands in the COS

for execution (i.e., get operation), according to command de-

pendencies, and then remove the commands from the COS

once executed (i.e., remove operation). From this perspective,

CBASE is a simple implementation of COS: it essentially

serializes the execution of COS operations.

We present in the paper three implementations of COS op-

erations. The first implementation, our baseline, uses coarse-

grain locking, as CBASE’s single-lock approach. The second

implementation uses fine-grain locking, at the granularity

of graph nodes, instead of a lock on the whole dependency

graph. Even though there are a few concurrent graph propos-

als in the literature [7, 18, 28], this is a relatively unexplored

topic [7]. We use the hand-over-hand locking (or lock cou-

pling) technique [3, 26] to ensure that concurrent operations

do not violate SMR ordering constraints and do not corrupt

the graph structure.

Our third implementation introduces lock-free DAG oper-

ations. We use both nonblocking synchronization and lazy

synchronization to implement lock-free operations. Non-

blocking synchronization relies on atomic operations; it is

used to include nodes in the graph and reserve nodes for

execution. Lazy synchronization postpones graph remove

operations. In more detail, nodes in the graph are first log-

ically removed while physical node removal is performed

during the insert operation, using a helping approach. The

technique simplifies the coordination of the remove oper-

ation with other operations, at the cost of a slightly more

complex insert operation.

We implemented all three techniques and assessed their

performance in two environments. In the first environment,

we consider the performance and scalability of the tech-

niques using a shared dependency graph in a single node. In

the second environment, we use BFT-SMaRt [4], a state ma-

chine replication framework, to compare the techniques in a

deployment with three replicas. While the first two blocking

algorithms impose important throughput bottlenecks both

in the standalone dependency graph and in BFT-SMaRt de-

ployements, the third algorithm has shown linear speedup

with the number of working threads, outperforming the first

algorithms in all scenarios investigated, showing more than

2.5× performance increase in some cases.

This paper makes the following contributions: (a) we iden-

tify the requirements of parallel SMR as the COS abstract

data type; (b) we propose fine-grained locking and lock-

free algorithms to implement COS; (c) we experimentally

evaluate the performance and scalability of the proposed

algorithms on the dependency graph data structure alone

and in BFT-SMaRt.

2 System model and definitions
We assume a distributed system composed of interconnected

processes. There is an unbounded set of client processes and

a bounded set of n server processes (replicas). The system is

asynchronous: there is no bound on message delays and on

relative process speeds. We assume the crash failure model

and exclude malicious and arbitrary behavior. A process is

correct if it does not fail, or faulty otherwise. There are up

to f faulty replicas, out of n = 2f + 1 replicas.
Processes communicate by message passing, using one-to-

one or one-to-many communication. One-to-one communi-

cation uses primitives send (m) and receive (m), wherem is a

message. If a sender sends a message enough times, a correct

receiver will eventually receive the message. One-to-many

communication uses atomic broadcast, defined by primitives

broadcast (m) and deliver (m), wherem is a message. Atomic

broadcast ensures the following properties [9, 13]
1
:

• Validity: If a correct process broadcasts a messagem,

then it eventually deliversm.

• Uniform Agreement: If a process delivers a messagem,

then all correct processes eventually deliverm.

1
Atomic broadcast needs additional synchrony assumptions to be imple-

mented [6, 10]. These assumptions are not explicitly used by the protocols

proposed in this paper.
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• Uniform Integrity: For any messagem, every process

deliversm at most once, and only ifm was previously

broadcast by a process.

• Uniform Total Order : If both processes p and q deliver

messagesm andm′, then p deliversm beforem′, if and
only if q deliversm beforem′.

Our consistency criterion is linearizability [16]. An execu-

tion is linearizable if there is a way to total order the oper-

ations such that (a) it respects the semantics of the objects

accessed by the operations, as expressed in their sequential

specifications; and (b) it respects the real-time ordering of

the operations in the execution. (There exists a real-time

order among two operations if one operation finishes at a

client before the other operation starts at a client.)

3 Parallel state machine replication
3.1 Background
State Machine Replication (SMR) renders a service fault-

tolerant by replicating the server and coordinating the exe-

cution of client commands among the replicas [22, 29]. The

service is defined by a state machine and consists of state
variables that encode the state machine’s state and a set of

commands that change the state (i.e., the input). The execu-
tion of a command may (i) read state variables, (ii) modify

state variables, and (iii) produce a response for the command

(i.e., the output). Commands are deterministic: the changes
to the state and response of a command are a function of the

state variables the command reads and the command itself.

SMR provides clients with the abstraction of a highly avail-

able service while hiding the existence of multiple replicas.

This last aspect is captured by linearizability (defined in §2).

In classical SMR, linearizability can be achieved by having

clients atomically broadcast commands and replicas execute

commands sequentially in the same delivery order (see Fig-

ure 1(a)). Since commands are deterministic, replicas will

produce the same state changes and responses after the exe-

cution of the same sequence of commands.

Classic SMR makes poor use of multi-processor architec-

tures since deterministic execution normally translates into

(single-processor) sequential execution of commands. Al-

though (multi-processor) concurrent command execution

may result in non-determinism, independent commands (i.e.,

those that are neither directly nor indirectly dependent) can

be executed concurrently without violating consistency [29].

Two commands are independent (or non-conflicting) if they
either access different variables or only read variables com-

monly accessed; conversely, two commands are dependent
(or conflicting) if they access one common variable v and

at least one of the commands changes the value of v . For
example, two read commands are independent, while a read

and an update command on the same variable are dependent.

Replica

Replica

(a) Classical SMR

Atomic
Broadcast

Application

(b) Parallel SMR

RequestResponse

Client

Service
Execution

Service
Execution

Parallelizer

Atomic
Broadcast

Application

Request

Client

Response

Workers

Figure 1. Classical versus parallel state machine replication

3.2 The basics of parallel execution
A few approaches have been suggested in the literature to

execute independent commands concurrently with the goal

of improving performance (e.g., [2, 19, 21, 23, 24]). In this

section, we describe CBASE, the approach proposed in [21]

and the motivation for the techniques proposed in this paper.

We recall other approaches to parallel SMR in §8.

To parallelize the execution of independent commands,

CBASE adds a deterministic scheduler, also known as par-

allelizer, to each replica (see Figure 1(b)). Clients atomically

broadcast commands for execution. The parallelizer at each

replica delivers commands in total order, examines command

dependencies, and includes delivered commands in a depen-

dency graph to maintain a partial order across all pending

commands, where vertices represent commands and directed

edges represent dependencies. While dependent commands

are ordered according to their delivery order, independent

commands are not directly connected in the graph. Worker

threads get independent commands from the graph (i.e., ver-

tices with no incoming edges) to be concurrently executed.

When a worker thread completes the execution of a com-

mand, it removes the command from the graph (together

with the edges that represent its dependencies) and responds

to the client that submitted the command.

3.3 Fundamental requirements
We can generalize the requirements for parallel execution

of commands with an abstract data type that keeps track of

the order among conflicting commands. We call this data

structure a Conflict-Ordered Set (COS). This data structure
is defined by three primitives with sequential specifications

as follows. We assume C to be the set of possible commands

and #C ⊆ C ×C the conflict relation between commands.
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• insert (c ∈ C ) inserts command c in the data structure;

• c ∈ C : дet () returns c if and only if:

– c is in the data structure,

– no previous дet () has returned c , and
– there is no c ′ in the data structure inserted before c
such that (c, c ′) ∈ #C ;

• remove (c ∈ C ) removes c from the data structure.

3.4 Generic P-SMR algorithm
In Algorithm 1 we detail the behavior of the scheduler and

worker threads based on COS.When a command is delivered,

it is inserted in the data structure (line 10). A varying number

of worker threads get free commands to execute (line 13).

When executed (line 14), commands are removed from the

structure (line 15).

Algorithm 1 Scheduler and worker threads

1: constants and data structures
2: T : number of working threads

3: COS : the conflict-ordered set

4: procedure Init()
5: for all id ∈ 1..T do {for each worker thread...}
6: startworkinдThread tid
7: start scheduler

8: scheduler works as follows:
9: when deliver(c ) {when a new command arrives}
10: COS .insert (c ) {insert it in the stucture}

11: workinдThread tid executes as follows:
12: loop {forever...}
13: c ← COS .дet () {get a command with do dependencies}
14: execute (c ) {execute c and then}
15: COS .remove (c ) {remove c from the structure}

In the next three sections, we present different implemen-

tations of the COS abstract data type.

4 Scheduling based on a sequential graph
Algorithm 2 uses a directed acyclic graph (DAG) to imple-

ment the COS primitives. In the DAG, we represent com-

mands as nodes and command dependencies as edges. Edge

(ci , c j ) indicates that ci has to execute before c j . The DAG is

shared by the scheduler and worker threads, which access

the graph in mutual exclusion. The algorithm relies on a

monitor for synchronization among these primitives, using

public procedures and condition variables. The same graph

structures and synchronization technique are used both in

[21] and [25].

Procedure insert inserts a node in the DAG with bounded

number of nodes (lines 12–12). During the insertion of a new

node ci , insert considers all previous nodes in the graph for

conflict and inserts edges from conflicting nodes to ci (lines
13–15). Finally, the status of ci is set to indicate it is waiting

(line 16), ci is included in the graph (line 17) and checked if

Algorithm 2 Coarse-grained DAG - COS primitives

1: constants and data structures
2: DG = (N ,E) ← (∅, ∅) {the shared DAG}
3: condition nFull , hasReady {monitor condition variables}
4: maxN ← desired graph size {maximum number of nodes}
5: st (n ∈ N ) ∈ {wtд, exe} {state is waiting or executing}

6: private procedure boolean : conflict(ci , c j )
7: returns (ci , c j ) ∈ #C

8: private procedure testReady(ci )
9: if {c j ∈ N |(c j , ci ) ∈ E} = ∅ then {has no dependencies}
10: siдnal (hasReady)

11: public procedure insert(ci ) {i in ci denotes the order}
12: if |N | =maxN then {if full, then wait}
13: wait (nFull )
14: ∀c j ∈ N {any command in the graph that conflicts}
15: if conf lict (ci , c j ) then {with the one being inserted}
16: E ← E ∪ {(c j , ci )} {should be processed first}
17: st (ci ) ← wtд {no worker thread took it}
18: N ← N ∪ {ci } {command is inserted in the graph}
19: testReady (ci ) {check if ready to be executed}

20: public procedure command : get()
21: while true do {find node waiting, with no dependencies}
22: let rdySet = {ci ∈ N |st(ci )=wtg∧∀c j ∈ N , (c j , ci ) < E}
23: if |rdySet| , 0 then
24: let ck ∈ rdySet|∀cl ∈ N ,k < l {take the oldest one}
25: st (ck ) ← exe {mark it}
26: return ck
27: else {if there is no ready node ...}
28: wait (hasReady) {... wait}

29: public procedure remove(ci ) {ci assumed to be in N }
30: ∀c j ∈ N {any node in the graph that}
31: if (ci , c j ) ∈ E then {... depends on this}
32: E ← E \ {(ci , c j )} {has this dependency removed}
33: testReady (c j ) {check if became ready}
34: N ← N \ {ci } {remove processed node}
35: siдnal (nFull ) {signal there is space for new nodes}

ready for execution (lines 18, 7–9). If ci has no dependencies,
then condition hasReady is signaled to release a possible

worker waiting for a ready command (line 28).

Procedure дet retrieves ready commands, that is, com-

mands that neither have dependencies nor are under exe-

cution (lines 21–22). More precisely, it returns the oldest

ready command ck and marks ck as in execution. If no com-

mand is ready, it waits for an insertion (line 18) or a removal

(line 33) that modifies the DAG, possibly freeing a command

for execution.

In order to remove a command ci from the DAG, all outgo-

ing edges (dependencies) from ci are first removed. During

this process, other commands may become ready (lines 30–

33). Then ci is removed from the set of nodes (N ), thus freeing

space and allowing a waiting insertion operation to continue

(line 35).

231



Boosting Concurrency in P-SMR Middleware ’19, December 8–13, 2019, Davis, CA, USA

Correctness of the algorithm follows from the fact that all

operations in the graph are serialized (more details can be

found in [21, 25]). Progress derives mainly from the fact that

dependencies form a directed acyclic graph and therefore

inductively there is always one command that can execute

and free other commands to be executed.

5 Scheduling based on a fine-grained
locking concurrent graph

A natural way to enhance concurrency during access to the

dependency graph is to implement locking at node level

instead of graph level. This opens the possibility of simulta-

neous operations in different nodes of the graph. To allow

concurrent access to the graph, we use hand-over-hand lock-

ing (also known as lock coupling) [15, 26]. This technique

is based on a total ordering of the nodes, which in our case

is induced by the delivery order of atomic broadcast. We

keep the same basic structure of nodes and directed edges

as in the coarse-grained graph, and include additional edges

to capture delivery order. According to the hand-over-hand

locking strategy, an operation first has to lock the lowest

node in the graph. Then, to traverse the ordered set, the

operation will step-by-step lock the successor node before

unlocking the previous one.

Algorithm 3 Fine-grained DAG - Preliminaries

1: data type
2: Node{c : Command, mx : Mutex ,
3: st : {wtд, exe}} {state is waiting or executing}

4: procedure Node createNode(c : Command )
5: return new Node{c,new Mutex (),wtд}

6: data structures and variables initialized
7: Ordered set o f Node : N , initially empty
8: E = N × N , initially empty {set of Edges}
9: DG = (N ,E) {the directed graph}
10: space ← new Semaphore (maxSize ) {graph space}
11: ready ← new Semaphore (0) {free commands to execute}
12: head = createNode (⊥,null ) {lowest element and}
13: tail = createNode (⊤,null ) {highest element}

14: procedure private boolean : conflict(ni ,nj : Node )
15: returns (ni .c,nj .c ) ∈ #C

16: procedure private boolean : isFree(n : Node )
17: returns ({nj ∈ N |(nj ,n) ∈ E} = ∅) {no one referring to n}

18: procedure private testReady(n : Node )
19: if isFree(n) then {has no dependencies}
20: ready.up ()

We now detail the algorithms for the scheduler and the

working threads. The main structure is the ordered set of

nodes (see Algorithm 3), each node having its own lock.

There is a known lowest and highest element in this set that

are special control nodes.

Algorithm 4 Fine-grained DAG - COS primitives

1: procedure insert(c:Command)

2: space .down() {wait for space available}
3: n ← createNode (c ) {create node structure}
4: n.lock () {locks node being inserted}
5: head .lock () {locks lowest element in N}
6: aux ← head {aux starts in lowest node}
7: ∀nj ∈ N , in order {consider each node, in order}
8: nj .lock () {next nj and previous are locked}
9: aux .unlock () {unlocks previous: no overtake}
10: if conf lict (n,nj ) then
11: E ← E ∪ {(nj ,n)} {n depends of nj }
12: aux ← nj {keeps previous with aux }
13: N ← N ∪ {n} {becomes a visible node of the graph}
14: testReady (n) {signal if n is free}
15: aux .unlock () {release node locks}
16: n.unlock ()

17: procedure Node : get()
18: ready.down() {wait free nodes to execute}
19: head .lock () {locks lowest element in N}
20: aux ← head {aux starts in lowest node}
21: ∀ni ∈ N , in order {consider each node, in order}
22: ni .lock () {next nj and previous are locked}
23: aux .unlock () {unlocks previous: no overtake}
24: if isFree (ni ) ∧ (ni .st = wtд) then
25: ni .st ← exe {mark it to execute}
26: ni .unlock ()
27: return ni {deliver it for execution}
28: aux ← ni {not found, try next one}

29: procedure remove(n : Node ) {n assumed in the graph}
30: head .lock () {locks lowest element in N}
31: aux ← head {aux starts in lowest node}
32: ∀ni ∈ N , in order {consider each other node, in order}
33: ni .lock () {next nj and previous are locked}
34: if aux , n then {keeps lock in the node to be deleted}
35: aux .unlock () {unlocks previous: no overtake}
36: if (n,ni ) ∈ E then {ni depends on n being removed}
37: E ← E \ {(n,ni )} {delete dependency edges}
38: testReady (ni ) {signal if ni became free}
39: aux ← ni {keeps previous with aux }
40: ni .unlock () {unlocks last node of the walk}
41: N ← N \ {n} {and finally remove n from the graph}
42: n.unlock (), n.delete ()
43: space .up () {there is one more place in the graph}

The insert procedure (see Algorithm 4) is called sequen-

tially upon total delivery of commands (see Algorithm 1).

While traversing the nodes in order, conflicts from each exist-

ing node with the new node are checked and corresponding

edges from the existing nodes to the new one added if needed

(lines 7 to 12). Both the new node and each visited existing

node are locked when edges among them are added (see line

11). After traversing all existing nodes (line 7), the node is

added to the ordered set. At this point, all edges involving the

new node and previous nodes have been already inserted.
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The дet procedure simply hand-over-hand traverses the

list of nodes from lowest (oldest) to highest, checking if

a node is free to execute. When a free node is found, it is

marked so that no other thread chooses the node. The chosen

node is then returned to the demanding worker thread.

The remove procedure is requested to remove an existing

node from the graph, previously returned by дet . For each
visited node, the procedure checks whether there is an edge

between the requested node and the visited node. When the

node to be removed is found in the graph (line 34), it is left

locked. From then on, edges from the node being removed

to newer nodes can be found and deleted, possibly freeing

other nodes for execution (lines 36 to 38). At the end the

node is deleted.

Correctness stems from the fact that (a) nodes in the graph

are visited in the order in which they are delivered (i.e.,

total order), (b) every visited node is first locked, and (c) a

visited node is only unlocked after the next node is locked.

Essentially, the first node in the graph, with respect to the

delivery order, serializes operations. Multiple operations may

execute concurrently, however, if they do not access common

nodes in the graph. Finally, since operations only lock nodes

following the total order, there is no deadlock.

6 Scheduling based on a lock-free
concurrent graph

To maximize concurrency, in this section we present non-

blocking algorithms to implement COS. COS primitive дet is
naturally blocking since it depends on the existence of com-

mands to be executed in the graph (ready nodes). Also, the

presented algorithms consider the realistic situation where

the memory space is limited and thus insert may block if the

graph is “full” (i.e., reaches a configurable maximum size).

For clarity, in the following we separate the handling of these

blocking conditions in one layer of operations and propose

an underlying layer with lock-free operations. This is both to

exploit maximum concurrency and to state clearly that the

concurrent graph operations (when enabled) are lock-free.

6.1 Algorithms - blocking layer
The blocking layer deals with full graph and lack of ready

node conditions. A full graph blocks insert operations, while
absence of ready nodes in the graph blocks дet operations.
When these conditions are satisfied, the underlying layer

with lock-free algorithms can be used. We measure graph

space in number of “node slots” and use two counting sema-

phores to record the number of free slots in the graph and

the number of nodes ready to execute (see lines 2 and 3 in

Algorithm 5). Inserts need one free slot in the graph; remove
increments the number of free slots in the graph.

Algorithm 5 Blocking layer - COS primitives

1: variables initialized
2: space ← new Semaphore (maxSize ) {graph space}
3: ready ← new Semaphore (0) {ready nodes}

4: public procedure insert(c : Command ) {invoked in arrival order}
5: space .down() {wait for space available}
6: rdyNodes = lfInsert(c) {insert a node and inform if c is ready}
7: ready.up(rdyNodes) {allow get to retrieve c if it is ready}

8: public procedure NodeRef : get()
9: ready.down() {wait free nodes to execute}
10: return lfGet()

11: procedure remove(n : NodeRe f )
12: rdyNodes = lfRemove(n) {assumed: n .st = exe }
13: ready.up(rdyNodes) {allow get to retrieve ready nodes}
14: space .up ()

6.2 Algorithms - lock-free layer
As in the previous techniques, we assume that inserts are
called sequentially (see Algorithm 1). This order is impor-

tant since it must be followed by conflicting commands to

keep replicas consistent. While lfInsert operations are se-

quential (among themselves), lfGet and lfRemove operations
are concurrent with any operations.

Another important aspect is that when a node is inserted,

all edges representing dependencies involving this node and

previous nodes have to be inserted too. If this restriction fails,

a node could be wrongly considered ready for execution due

to missing dependencies under insertion.

In Algorithm 6, line 2, a Node of the graph holds the re-

spective command c and has an atomic field with its state,

which may be:wtд waiting, meaning there are dependencies

to be solved before executing this command; rdy the com-

mand is ready to execute; exe executing; rmd the node has

been logically removed. Each node traverses these states in

this order. The list of references to other nodes that depend

on this node isdepMe and the list of references to nodes it de-
pends on isdepOn. The node list is defined in line 11. Thenxt
field in line 7 represents the total order among commands.

Algorithm 6 has five private procedures used in three main

operations of Algorithm 7, lfInsert, lfGet, and lfRemove. In
the first three, we use atomic constructions to explicitly state

the expected semantics of the procedures compareAndSet ,
atomicAssiдn and atomicRead , as well as to make clear in

the algorithms were atomic structures are accessed.

The lfRemove operation to remove a node (Algorithm

7, line 33) marks the node as logically removed by atom-

ically assigning rmd to its state. It uses testReady, line 1, to
check wether nodes that depend on the one removed (line

36) became ready to execute, marking them (line 2). List

modifications due to removal are performed using a help-

ing approach during insertion (see line 20). The number of
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nodes that turned ready is returned. This allows the block-

ing layer to free дet operations that want to visit the graph.

An l f Remove (n) operation is only started when n was first

taken for execution with lfGet and therefore it is always true
that n.st = exe .
The lfGet operation (Algorithm 7, line 27) is in charge of

returning a node ready to execute from the graph. When

this operation is called, a ready node in the graph must exist.

The fist node atomically tested to be equal to rdy (i.e., ready)

is set to exe (i.e., executing), returning the search.

Algorithm 6 Lock-Free DAG - Preliminaries

1: data type
2: Node{
3: c : Command, { may be waiting, ready, executing, removed}
4: atomic st : {wtд, rdy, exe, rmd }
5: depOn : set of NodeRe f {nodes this one depends on}
6: depMe : set of NodeRe f {nodes that depend on this}
7: nxt : NodeRe f {next node in arrival order}
8: }

9: NodeRe f : atomic reference to Node

10: data structures and variables initialized
11: N : NodeRe f , initially ⊥ {the list of nodes in the graph}

12: procedure private boolean : compareAndSet(a,b, c )
13: atomic { if a = b then a ← c ; r ← true else r ← f alse }
14: return r

15: private procedure atomicAssing(a,b)
16: atomic { a ← b }

17: private procedure anyType: atomicRead(a)
18: atomic { x ← a }
19: returns x

20: private procedure Node createNode(c : Command )
21: return new Node{c,wtд, ∅, ∅,⊥} {waiting by default}

22: private procedure boolean : conflict(ni ,nj : Node )
23: return (ni .c,nj .c ) ∈ #C

Finally, the lfInsert operation (Algorithm 7, line 12) as-

sumes there is room in the graph to create a node. The new

node is created with command c . The ordered list of nodes is
then visited from the oldest to the newest node in the graph

(line 18). Each node is tested if it was logically removed (line

19); in such a case, private procedure helpedRemove is used.
Otherwise, if the visited node conflicts with the new node,

a dependency edge among them is added (lines 21 and 22).

At the end, the new node is inserted in the set of nodes and

tested if ready (lines 25 and 26). During helpedRemove of

a node, edges from other nodes waiting for this one (line

6) are removed (line 7). The logically removed node is then

excluded from the graph (see lines 8 to 11).

6.2.1 Correctness
We start discussing COS semantics with concurrent opera-

tions. The fact that the graph topological structure is modi-

fied sequentially is central to the correctness of our algorithm.

This stems from the following properties of the algorithm.

Algorithm 7 Lock-Free DAG - Operations

1: private function int: testReady(n : NodeRe f )
2: if {ni ∈ n.depOn |ni .st , rmd} = ∅ ∧

compareAndSet (n.st ,wtд, rdy) then
3: return 1

4: return 0

5: private procedure helpedRemove(n′,n : NodeRe f )
6: ∀ni ∈ n

′.depMe
7: ni .depOn ← ni .depOn \ {n

′} {free dependents node from n}
8: if n = N then {removing first element}
9: atomicAssiдn(N ,n′.nxt ) {LPrmv}
10: else {for any other, bypass n′}
11: atomicAssiдn(n.nxt ,n′.nxt ) {LPrmv}

12: public function int: lfInsert(c : Command )
13: nn ← createNode (c ) {create new node structure}
14: if N = ⊥ then {empty graph}
15: atomicAssiдn(N ,nn ) {insert the only node, finish ; LPins}
16: else {let us find dependencies }
17: n′ ← N ;n ← N
18: while n′ , ⊥ {consider each node, in order}
19: if atomicRead (n′.st ) = rmd then {n′ logically removed}
20: helpedRemove (n′,n) {remove it}
21: else if conf lict (n′,nn ) then {n′ is valid, they conflict?}
22: n′.depMe ← n′.depMe ∪ {nn } {nn depends on n′}
23: nn .depOn ← nn .depOn ∪ {n

′} {reference count in nn }
24: n ← n′;n′ ← atomicRead (n′.nxt ) {consider the next}
25: atomicAssiдn(n.nxt ,nn ) {a visible node of the graph ; LPins}
26: return testReady (nn ) {informs if nn is ready}

27: public procedure NodeRef : lfGet()
28: n ← N {there is a ready node! start search}
29: while n , ⊥ {consider each node, in arrival order}
30: if compareAndSet (n.st , rdy, exe ) then {LPget}
31: return n {found ready, mark it, deliver for execution}
32: n ← atomicRead (n.nxt )

33: public function int: lfRemove(n : NodeRe f )
34: atomicAssiдn(n.st , rmd ) {logic removal ; LPlogicRmv}
35: rdys ← 0 {assumes n exists and has n .st = exe }
36: ∀ni ∈ n.depMe
37: rdys ← rdys + testReady (ni ) {check if ni is ready, count}
38: return rdys

(i) l f Insert operations are invoked sequentially.

(ii) The l f Remove operation marks a node as removed (log-

ical remove) while actual removal from the graph takes

place within l f Insert during helpedRemove .
(iii) Concurrent operations read the graph topology and

may only modify the node state st .
(iii.a) l f Get operations traverse the node list to find a ready
(rdy) node to execute, i.e., they read a node’s nxt field and

may mark its state atomically as executing.
(iii.b) An l f Remove operation directly marks a given node’s

state as rmd and uses testReady to calculate nodes that

became free. This is done by only reading the topological
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information to calculate if nodes became ready, accordingly

marking their state to rdy.

Therefore, topological modifications are sequential, easing

the task of keeping the graph structure consistent.

Interference freedom from lfInsertw.r.t. lfGet and lfRe-
move. With respect to the correctness of topological inser-

tions and removals, besides concurrent operations being able

only to read the topology, it remains to observe that any of

these operations are able only to make the following atomic

modifications to a node’s state: fromwtд to rdy (testReady),
from rdy to exe (l f Get ), and from exe to rmd (l f Remove).
The only node state modification that could affect l f Insert
is when it becomes removed (rmd). Consider a node that is
being visited (lines 18 to 24). Its state is either not rmd or

rmd . In the first case, dependencies may be added to the node.

Even if immediately after line 19 the node is concurrently

set to rmd , node topological removal will happen sequen-

tially, only after finishing the current insertion and during

the next one, when helpedRemove is used. This is the case
when l f Remove and l f Insert are concurrent and l f Remove
is linearized after l f Insert . Analogously, l f Insert could be

linearized after l f Remove when the node is found with state

rmd . It is simply not considered for dependencies with the

new one, and is removed.

The above arguments care for the correctness of l f Insert
when l f Get and l f Remove are concurrent, showing that

they do not interfere. Now we have to argue the other way,

that l f Insert does not interfere with l f Get and l f Remove .

Interference freedom from lfGet w.r.t. lfInsert. To argue
for l f Get , first we claim that the traversal is safe during

topological insertions and removals. This is based on:

(i) a total order of nodes, represented by the node nxt field;
(ii) node topological insertion is done at the end of the list,

when the new node has all needed information, using an

atomic assignment of the last node’s nxt field (which is ⊥)

to the new node; and

(iii) node removal is done by by-passing the removed node,

which may be any one in the list, atomically assigning the

nxt field of the previous node to the next one.

Due to (i) and (ii) immediately above, whenever an oper-

ation l f Get is traversing the list and a node is being con-

currently inserted, either l f Get will visit the node, meaning

that l f Insert was linearized before l f Get , or not, meaning

the other way around. In any case, the traversal is safe due

to the atomic reference assignment. The same applies to a

removal. Due to (iii), either the traversal will not visit the

node being concurrently removed, continuing the traver-

sal, or it will. For the last case, garbage collection ensures

that the by-passed node during helpedRemove will still be
valid in memory since l f Get holds a reference to it. Also, it

still holds a valid nxt reference to the next node, which is

used by l f Get to advance in the traversal. Notice that this is

inductively true if the next valid node is also concurrently

removed, since it will be referenced by the first removed one

and will still hold a reference to the next.

Concerning l f Get semantics concurrently with either in-

sertions or removals, our algorithms at the blocking layer

ensure that when a l f Get enters the graph, there is a rdy
node to execute. With the above traversal guarantees, it will

be returned by l f Get .

Interference freedom from lfRemove w.r.t. lfInsert. No-
tice that l f Remove has as argument an assumedly valid node

which is in state exe since it was taken by a previous l f Get
operation. It remains tomark the node atomically as removed

(rmd). Since the end of execution of a node will free possibly

dependent nodes to execute, it remains to check if every

dependent node is free, which is to check if all the nodes it

depends on are removed. This is done with testReady which,

given a node, will check if all nodes it depends on (depOn)
are removed (rmd) and the state can be changed from wtд
to rdy, see line 2.
Notice that while testReady, during l f Remove , is read-

ing the node’s dependency set depOn, helpedRemove during
f lInsert may subtract references from this set. This is not

a problem because testReady is checking if existing depen-

dencies are from nodes not yet logically removed (line 2). In

case such dependencies from logically removed nodes were

already removed, their absence has the same effect.

Interference freedomamong lfGetand lfRemove. l f Get
and l f Remove can take place concurrently since they leave

the graph topology unchanged and operate on separate

nodes, i.e. nodes respectively with state wtд and exe . Any
order of concurrent l f Get and l f Remove is valid.

Interference freedom among lfGets. The atomic compare

and set of a node’s state (st ) ensures only one operation

l f Get will return a given node. Any node ready to execute

is valid for l f Get . Any order of concurrent l f Gets is valid.

Interference freedomamong lfRemoves. Since l f Remove
assumes a valid node as argument, any order is valid. No-

tice that during concurrent l f Remove we have concurrent
testReady. Concurrent testReady will check if new nodes

became ready to execute. Interference could take place if two

nodes being removed had one common dependent node. In

such case both testReady operations on the same node could

result in a double signaling of ready node to the blocking

layer. To avoid that, line 2 uses a compare and set operation

to signal ready node in the first operation only.

Now we discuss the COS semantics for real-time ordered

operations. We have to argue that, considering any two op-

erations, if one operation returns before the other, then the

effects of the first are observable before the other.

This is straightforward for operations l f Get and l f Insert .
Any operation after l f Get will find the element returned
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by l f Get in state exe . As any operation after l f Insert will
traverse the list with the inserted element.

The remove operation logically removes a node, that af-

terwards is removed from the graph during an insertion.

The effects of a remove, which may affect the semantics of

other operations, are all caused during the logical remove

(l f Remove). The logically removed node is not considered by

l f Get neither by l f Insert . Likewise, the switching of nodes

from wtд to rdy due to a removal take place within the

l f Remove . Therefore, any operation real-time ordered after

l f Remove will accordingly consider the graph without the

removed element and with new ready ones as appropriate.

6.2.2 Progress
The progress argument is the same as in the coarse-grained

solution. Since commands can only depend on previous con-

flicting ones, according to a total order, dependencies will

never build a cycle (i.e., the graph is acyclic). Therefore, there

is always at least one command in the graph that is free to

execute. When a free command executes, it will inductively

free other commands assuring that there is at least a next

one free to execute, or no command left.

7 Experiments
In order to compare the performance of the solutions pro-

posed to implement the COS primitives, we implemented the

three techniques studied in this paper and conducted several

experiments. These techniques, as presented in the paper, are

referred as coarse-grained, fine-grained and lock-free. Firstly,
we assessed the performance of the data structures alone

without integration in a SMR (§7.3) and then we compared

their performance also when used for command scheduling

in a parallel SMR (§7.4).

7.1 Environment
We implemented a scheduler that uses each of the graphs

for command scheduling in Bft-SMaRt [4], which is a SMR

library that can be configured to use protocols optimized to

tolerate crash failures only or Byzantine failures. In all exper-

iments, we configured Bft-SMaRt to tolerate crash failures.

Bft-SMaRt was developed in Java and its atomic broadcast

protocol executes a sequence of consensus instances, where

each instance orders a batch of commands. To further im-

prove the performance of Bft-SMaRt ordering protocol,

we implemented interfaces to enable clients to send a batch

of commands inside the same message. The experimental

environment was configured with 7 machines connected in

a 1Gbps switched network. The machines were configured

with the Ubuntu Linux 18.04 operating system and a 64-bit

Java virtual machine version 10.0.2. Bft-SMaRt was con-

figured with 3 replicas hosted in separate machines (Dell

PowerEdge R815 nodes equipped with four 16-core AMD

Opteron 6366HE processors running at 1.8 GHz and 128 GB

of RAM) to tolerate up to 1 replica crash. Up to 200 clients

were distributed uniformly across another 4 machines (HP

SE1102 nodes equipped with two quad-core Intel Xeon L5420

processors running at 2.5 GHz and 8 GB of RAM). The experi-

ments with the data structures alone without integration in a

SMR were executed in one of the Dell PowerEdge machines.

7.2 Application
We used a linked list application with operations to check

whether an entry (i.e., an integer) is in the list (contains) and
to include an entry in the list (add), representing a readers-
and-writers service. Operation contains (i ) returns true if

entry i is in the list, otherwise it returns false; operation
add (i ) includes i in the list and returns true if i is not in the

list, otherwise it returns false. Notice that in the concurrency

model for this application, contains commands do not con-

flict with each other but conflict with add commands, which

conflict with all commands.

Hereafter, we refer to operations that check whether an

entry is in the list and to operations that include an entry

in the list as read and write operations, respectively. Each
list was initialized with 1k , 10k and 100k entries at each

replica (ranging from 0 to list size - 1) representing operations
with light, moderate, and heavy execution costs, respectively.

The integer parameter used in an entry in a read and write

operations was a randomly chosen position in the list.

In the experiments, we configured the maximum size of

the dependency graphwith 150 entries for all approaches.We

measured the throughput of the system at the servers and the

latency of each command at the clients. In the experiments

with the data structures alone, we measured only the overall

throughput obtained by the worker threads since it does not

make sense to compute the latency in this case. A warm-up

phase preceded each experiment.

7.3 Data structures performance
This section reports the performance results for the data

structures alone (i.e., without integration in a SMR). To re-

semble the scheduler presented in Algorithm 1, one thread

looped without waiting interval over a list of pre-created

requests (to spare creation times), and invoked the insert
operation. Moreover, each worker thread is as presented in

Algorithm 1, looping to дet , execute and remove a command.

7.3.1 Results for different degree of parallelism
Fig. 2 shows the throughput presented by each approach

for different execution costs and number of worker threads,

considering 0% of writes (i.e., only read operations). This

workload allows maximum parallelism and is useful to define

performance upper bounds for each technique.

In general, we can observe that the lock-free algorithm

performs best in all scenarios and scales with the number of

threads until it achieves peak throughput. In the experiments

with light and moderate execution costs, the thread inserting
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Figure 2. Throughput for different execution costs and number of workers (0% of writes).
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Figure 3. Throughput for different percentage of writes and execution costs.

requests in the graph eventually becomes a bottleneck. We

identified that after the peak throughput is reached, the

graph mean population is close to zero, indicating that the

insert thread is at its performance limit. For heavy operations,

the time to execute operations is predominant in the system.

The other approaches presented much lower through-

put, where performance is limited by the synchronization

and contention in the dependency graph. Interestingly, the

coarse-grained algorithm outperforms the fine-grained in

most cases. This happens because, on the one hand, in the

coarse-grained solution, removing a node with an indepen-

dent operation needs little processing (only lines 34–35 of

Alg. 2 are executed). On the other hand, to allow concurrent

accesses to the graph, the fine-grained approach always re-

moves a node bywalking through the nodes of the graph (Alg.

4). Finally, notice that the performance gains in the lock-free

solution are higher for the light and moderate workloads:

as operations become more expensive, their execution cost

dominate overall performance, and the time spent in syn-

chronization becomes less important.

7.3.2 Results for different percentage of writes
Having established the peak throughput of each technique

with 0% of writes (i.e., workload that allows maximum con-

currency), we picked for each technique the best performing

number of threads for light, moderate and heavy loads. We

then conducted a second set of experiments to understand

the impact of dependencies in each technique, leading to

the results in Fig. 3. The percentage of writes represents the

number of write operations with respect to all operations in

a workload. For example, 15% of writes represents a work-

load with 15% of writes and 85% of reads. These operations

were uniformly generated and inserted in the graphs.

The scenario with light requests shows that the lock-free

algorithm outperforms the others in the range from 0% to 15%

of writes while the fine-grained algorithm shows less impact

as writes rise. This is because the best performing configura-

tion of the fine-grained algorithm is with one worker thread,

leading to a sequential execution. In such case, the concur-

rency enabled by the fine-grained technique outperforms

the coarse-grained one. As dependencies tend to 100%, the

fine-grained technique loses performance since it has to pro-

portionally add and remove dependency edges in the graph.

But under high percentage of writes, it outperforms the other

techniques since the workload becomes more sequential and

it is configured with just one worker thread.

For moderate and heavy workloads, the scheduling cost

is less impacting and the parallel request processing more

important. In such cases, the lock-free algorithm clearly out-

performs the others because it scales to a higher number of

worker threads. This behavior is clearly visible in workloads

with few writes, which allow a high degree of parallelism.

A final remark is about the considered lock granularity.

Locking the complete graph (i.e., the coarse-grain approach)

and individual graph nodes (i.e., the fine-grain approach)

represent two ends of a “lock granularity spectrum”. Alterna-

tively, one could experiment with other granularities of locks

(e.g., granular locks [11]), trading concurrency for overhead.
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Figure 4. Throughput for different execution costs and number of workers (0% of writes), linear scale in the inset graphs.
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Figure 5. Throughput for different percentage of writes and execution costs.

7.4 Parallel SMR Performance
This section compares the performance of the techniques

when integrated in a parallel SMR. For completeness, we

also present the results for a traditional sequential SMR.

7.4.1 Results for different degree of parallelism
Fig. 4 shows the throughput presented by each approach

for different execution costs and number of worker threads,

considering a workload with 0% of writes. In general, the be-

havior was similar to the ones presented in the experiments

with the data structures only. However, the performance

values are smaller in these experiments since there is the

overhead imposed by the SMR protocols and, moreover, the

execution of these protocols also uses the machines compu-

tational power (see the BFT-SMaRt paper [4] for an expla-

nation about the number of threads and the staged message

processing used in the system).

Fig. 4 shows that the lock-free solution outperforms the

other approaches for all configurations. Additionally, the

lock-free technique scales linearlywith the number ofworker

threads, as evidenced in the inset graphs, which show through-

put values in a linear scale. Moreover, the parallel solutions

outperform the sequential SMR for all configurations with

more than one worker thread, which represents the case that

leads to sequential execution for all techniques.

7.4.2 Results for different percentage of writes
Fig. 5 shows the throughput presented by each technique for

different execution costs and percentage of writes. Read and

write operations were uniformly distributed among clients,

respecting the defined percentage of writes. Again, we con-

figured each solution with the number of worker threads that

presented the best performance in the previous experiment.

These results show that the free-lock solution outperforms

the other approaches for parallel execution in all cases. Fig. 5

also presents values for a sequential SMR, allowing us to

observe the percentage of writes from where a sequential

SMR outperforms the approaches that allow concurrent exe-

cution. For light and moderate loads, the lock-free solution

outperforms a sequential SMR until up to 25% of writes. The

time demanded to execute a request is more relevant for

heavy loads, consequently in this case the solutions with

parallelism outperform a sequential SMR for almost all cases.

Although it is well known that sequential execution out-

performs parallel techniques for high degrees of conflicting

operations [1, 23], empirical evidence suggests that low con-

flict rates, between 0.3% and 2%, are the most realistic [5, 27].

For workloads with 5% and 10% of writes and moderate

execution costs, Fig. 6 also shows latency versus throughput

results. In the approaches for parallel SMR, reads and writes

have similar latency because they have similar execution

costs and the synchronization of writes impacts the perfor-

mance of reads ordered after a write. Obviously, the same

behavior occurs in the sequential SMR. Consequently, Fig. 6

presents the average latency considering both operations. It

is possible to observe that all approaches presented similar

latency until near system saturation and from this point la-

tency increases abruptly. Since the same behavior occurs for
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the other configurations and workloads, we opted to present

only these cases as examples.
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Figure 6. Latency versus throughput for moderate cost.

8 Related work
This paper is at the intersection of two areas of research:

concurrent graph structures and state machine replication.

8.1 Concurrent graph structures
In [28], a concurrent graph is proposed to calculate serializ-

able executions. Nodes and edges represent transactions and

their conflicts, respectively. Whenever a transaction is added,

edges are included to represent conflicts. In case of cycles,

vertices and edges are removed to keep the graph acyclic.

The graph is implemented as a linked list. Nodes and edges

can be created individually and concurrently. The node list

is ordered according to a key. The synchronization strategy

is lazy [15], or optimistic: In a first step, the list is searched

without locks. Once the right position to operate on the list

is found, locks are acquired on needed nodes. Once locks are

obtained, a validation is performed to check if the conditions

during search are still valid for those nodes. If not, the op-

eration is repeated. Upon deletion, the node is first marked

as logically deleted, then locking and actual removal take

place. Nodes and edges are manipulated independently. The

strategy allows wait-free operations to traverse the graph to

check if a node is in the list as well as to detect cycles.

In [18], authors propose a concurrent graph without a

specific application. An adjacency matrix is used for repre-

sentation. It contains a fixed vertex set and allows concurrent

operations to insert, remove or modify weights of edges. A

dynamic traversal is proposed to obtain a consistent view,

i.e., the weights of all edges visited have co-existed at some

point in time despite concurrent modifications. Operations

are wait-free [26], which is achieved using a helping mecha-

nism [14]. Operations concurrent to updates help updates to

carry out edge modifications.

A concurrent, unbounded and directed graph is proposed

in [7]. Addition, removal and lookup on the sets of vertices

and edges are supported on a lock-free basis, while a reacha-

bility query is obstruction-free. It also uses a helping strategy

to achieve lock-freedom.

Both our lock-free graph algorithm and the ones described

above build on basic principles to allow concurrent access

to a shared data structure. However, while our algorithm

implements a Conflict-Ordered Set (COS), the ones above

implement operations on a single node or a single edge. It is

unclear how to implement COS using these approaches.

8.2 State machine replication
It has been early observed that independent commands can

be executed concurrently in SMR [29]. Previous works have

shown that many workloads are dominated by independent

commands, which justifies strategies for concurrent execu-

tion (e.g., [21, 23, 24]).

Existing proposals that introduce parallel execution in

state machine replication differ in the strategy and architec-

ture to detect and handle conflicts. We can classify related

work in techniques that: (i) use application knowledge to

deterministically process parallel commands [1, 2, 21, 23];

(ii) are oblivious to application knowledge [8, 12]; and (iii) em-

ploy optimistic strategies to parallelize commands [19, 24].

A scheduler that serializes the execution of dependent com-

mands and dispatches independent commands to be pro-

cessed in parallel by a pool of worker threads is an example

of technique that exploits application knowledge (i.e., in

the form of dependent and independent commands). This

idea has been explored in transactional systems, where in-

formation about data items accessed by transactions can be

inferred a priori (e.g., [20, 30]). Techniques that are oblivious

to application knowledge resort to more complex runtime

architectures to coordinate replicas to lead to compatible

parallel executions. In the third case, replicas optimistically

execute commands in parallel, as they arrive, and then check

after execution if consistency is violated.

9 Conclusion
Parallel state machine replication techniques allow indepen-

dent commands to be executed concurrently in a replica. To

keep replicas consistent, each replica has to carefully han-

dle and respect dependencies among commands. This is a

non-trivial task since it requires dependency detection on a

possibly high volume of commands. In this paper, we have

identified the fundamental problem that a scheduler-worker-

based implementation of parallel state machine replication

must face.We have also proposed an implementation that sig-

nificantly improves the performance of existing approaches.
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