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ABSTRACT
State Machine Replication is a well-known approach to develop
fault-tolerant application. Although it seems conceptually simple,
building replicated state machines is not a trivial task. The devel-
oper has to be acquainted with aspects of the inner working of the
specific agreement protocol to correctly develop and deploy the
replicated service (and auxiliary processes – e.g. Paxos roles), in-
stead of focusing on the specific service. In this work we propose a
replication library that facilitates the development and deployment
of fault-tolerant services, and provides replication transparency to
service builders. This library allows to deploy a base SMR on top of
which new services can be registered at runtime. A service builder
focuses on service implementation and registers the service with
the base SMR to enjoy the benefits of replication. Besides separating
the complexity of providing a replicated infrastructure from service
implementation, multiple services share the same consensus and
replication infrastructure, allowing cost amortization. According
to our evaluation, this approach leads to higher overall throughput
compared to the separate deployment of different SMRs over the
same resources.
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1 INTRODUCTION
High availability has become a typical requirement in software
development and replication plays a key role to keep applications
running despite the occurrence of partial failures. A successful
approach for services1 replication is State Machine Replication
(SMR) [18, 26]. According to SMR, every service replica receives
and executes the same sequence of commands. Since replicas start
with the same initial state and command execution is deterministic,
every replica will traverse the same sequence of states and produce
the same outputs.

State Machine Replication (SMR) has been widely used by both
the industry and research community. Some notable examples of
practical implementations of SMR are Google’s Chubby [6] and
Apache Zookeeper [13]. Chubby is used by Borg [28], Google’s
cluster manager, Google File System (GFS) [11], and Bigtable [8], a
distributed storage system. Apache’s Zookeeper is a popular ser-
vice, offering a simple interface to support group messaging and
distributed locking. It is used by HDFS [27], a Facebook file system
[5], to implement a key-value store service, server replication, and
concurrency control. Cassandra [17], a distributed data store, relies
on Zookeeper for leader election and metadata management.

Although the SMR model seems conceptually simple, developing
a SMR application is not a trivial task. To ensure that replicas
will receive the same sequence of commands, atomic broadcast
[10] or a consensus protocol is required (e.g. Paxos [18] and its
variations [19, 21, 23], Raft [25], among others). The integration
between a consensus protocol and the application logic usually
requires knowledge about fault-tolerance, the specific consensus
protocol and its implementation under use. Furthermore, converting
fault-tolerant algorithms into a practical, production-ready system
involves implementation of many features and optimization[7, 15].

To address the complexity of developing and deploying SMR, in
this paper we propose a library that separates service logic from
replication techniques and deployment aspects. Our first goal is to
allow programmers to be concerned with the application while it
is transparently replicated following the SMR approach. A second
objective is to improve resources usage by allowing multiple appli-
cations to share a single consensus protocol. Besides sharing the
same agreement protocol, service applications can be registered
or unregistered at runtime. Thus, the deployment of new services
does not require system restarts, and there is no need of previous
knowledge on service deployment configuration.

Service programming is made replication transparent using mod-
ules, that abstract specific consensus protocol and implementation

1The words ’service’ and ’application’ are used with the same meaning in this paper.
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details, and annotations to declare/export the metadata needed to
register the service with a replication service. This replication ser-
vice provided with the library is responsible to serve registration,
operation, update and removal of user services, which are the ones
of interest. The replication service is itself implemented as a SMR:
its state is composed by the set of specific user services registered
and their states. Managing the replication service one would take
care of the aggregate of services registered.

This paper is organized as follows. Section 2 describes the system
model. Section 3 discusses SMR. Section 4 presents our library for
transparent replication. Section 5 demonstrates the experimental
evaluation. Related work is presented in Section 6 and Section 7
concludes the paper.

2 SYSTEM MODEL
We assume a distributed system composed of interconnected pro-
cesses. There is an unbounded setC = {c1, c2, ...} of client processes
and a bounded set S = {s1, s2, ..., sn } of server processes. We as-
sume the crash failure model and exclude malicious and arbitrary
behavior (e.g., no Byzantine failures). A process is correct if it does
not crash or faulty otherwise. We assume f faulty servers, out of
n = 2f + 1 servers, i.e., f is the maximum number of server failures
that can be tolerated.

We follow a traditional SMR model [26]. Client processes in-
voke service commands, which are implemented by service replicas.
Commands are executed in the same order by all replicas and com-
mands are assumed to be deterministic. Therefore, if servers start
from the same state and execute commands in the same order, they
will produce the same state changes and results after the execution
of each command.

Total order of commands across replicas is provided by an atomic
broadcast protocol [10] which ensures that (i) if a correct process
broadcasts a message m, then it eventually delivers m (validity);
(ii) if a process delivers a message m, then all correct processes
eventually deliverm (uniform agreement); (iii) for any messagem,
every process delivers m at most once, and only if m was previ-
ously broadcast by sender (m) (uniform integrity); and (iv) if both
processes p and q deliver messages m and m′, then p delivers m
beforem′, if and only if q deliversm beforem′ (uniform total order).

We implement atomic broadcast using Paxos [18], a consensus
protocol. Paxos assumes a partially synchronous network, relying
on eventual synchrony to guarantee progress. Messages can be lost
or arbitrarily delayed. However, eventually all messages between
correct processes are delivered within some bounded delay.

3 STATE MACHINE REPLICATION
State Machine Replication (SMR) is a general approach to imple-
menting fault-tolerant services by replicating servers and coordi-
nating client interactions with server replicas [18, 26]. The service
is defined by a state machine and consists of state variables that
encode the state machine state and a set of commands that change
the state. The execution of a command may (i) read state variables,
(ii) modify state variables, and (iii) produce a response for the com-
mand (i.e., the output). To ensure that the execution of a command
will result in the same state changes and responses at different
replicas, each command must be deterministic: the state change and

response are a function of the state variables the command reads
and the command itself. With the above, once replicas start in the
same initial state, to keep replicas consistent they have to process
the same commands in the same order. This is achieved by hav-
ing clients atomically broadcast commands and replicas executing
client commands sequentially. With this, SMR provides strong con-
sistency (e.g. linearizability [2, 12]), an intuitive service behavior
that hides from the clients the existence of multiple replicas.

The total order delivery needed by SMR is usually provided by an
agreement layer, which can be implemented using Paxos or other
consensus protocol, such as Raft [25] and Zab [14]. We assume
Paxos for more detailed discussion. In a consensus protocol, a set
of participants have to decide on exactly one proposed value. With
Paxos, participants act as proposers, acceptors or learners. To get
chosen, a value has to be proposed by a proposer and accepted by a
majority of the acceptors. Only one value may be chosen and every
learner learns the decided value. State machine replicas thus rely
on Paxos to deliver client requests: for every new request, a new
Paxos instance is started. Paxos instances carry a request number
i , which indicates the ith instance in a total order of requests. A
replica executes instance i only if it is the next in the totally ordered
sequence of requests and has learned the ith via the Paxos protocol.

Figure 1 shows a SMR architecture. Communication is ensured by
an agreement layer, which is responsible for implementing atomic
broadcast (e.g. through a Paxos protocol). Both client application
and replicated service are implemented atop a Paxos library. To use
Paxos, developers must explicitly configure the quorum of accep-
tors, the logging strategy to keep instances decided by acceptors,
log trimming policy, among other parameters [7]. APIs provided
by Paxos libraries may broadly differ on how to proceed this.

Figure 1: Replicated service using Paxos.

Besides the particularities of Paxos libraries regarding API and
general settings, practical Paxos implementations can follow dif-
ferent architectural styles and communication patterns. As illus-
trated in Figure 2, in S-Paxos [4] and Ring Paxos [22], the leader2
role is assumed by one of the acceptors. In OpenReplica and Lib-
paxos, a separate process is elected as the leader. In Ring Paxos
[22], however, any node that receives requests from clients and
forwards them to other processes are proposers. OpenReplica and
RingPaxos implement a client proxy, which is a separate module
in the client application. This module batches client requests and
send the batches to the leader. In RingPaxos batches are sent to an

2The leader is a selected proposer, which is in charge of proposing values. In case of
leader failure, another process among proposers is elected as the new leader. The leader
role minimizes collisions among proposed values.
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(a) S-Paxos (b) OpenReplica (c) RingPaxos (d) LibPaxos

Figure 2: The communication architectural differences among Paxos libraries. This figure is adapted from [20].

acceptor that also plays the role of proposer. LibPaxos clients send
requests to a single proposer while S-Paxos randomly chooses a
replica for sending client requests.

Therefore, to build SMRs developers must be experienced with
complex communication protocols [7], such as Paxos, different
(under-specified) APIs and deal with a non trivial set of configura-
tion parameters.

4 REPLICATION LIBRARY
This section presents our library for transparent replication. The
library supports the client/server model. At client side, the library
offers primitives to invoke the service. At server side, it supports
transparent replication following the SMR approach.

Next, we introduce the key features of the library; followed by its
architecture; and then the API (Application Programming Interface)
is presented in order to instruct how to use the library.

4.1 Overview
The R3Lib3 (i.e., Reliable Runtime Replication Library) provides
replication transparency for system builders. It allows a simple
deployment and easy to configure approach. Next, we outline the
main design decisions and concepts adopted.

Decoupling between service and agreement protocol. In
order to simplify the development of replicated services, our library
decouples the agreement protocol from the application develop-
ment. The replication library provides an interface between the
application and the delivery module. This enables developers to
focus on writing the service code without having to worry about
replicas coordination or specific details of Paxos or any other re-
liable broadcast protocol. By separating the delivery of requests
from the application logic, developers can choose which agreement
protocol they want to use without affecting the application. Al-
ternatively, developers can implement their own delivery module,
favoring maintenance, extensibility and reuse.

Sharing of agreement protocol by multiple services. The
replication library allows multiple applications to share the same
delivery protocol under use. This strategy provides flexibility and
better use of resources. While multiple applications execute, a deliv-
ery module is responsible for ordering client requests into a single

3https://bitbucket.org/paolampereira/r3lib

totally ordered sequence of commands. To ensure consistency and
service isolation, the library dispatches client requests only to the
target applications and in the same order they were delivered. This
approach avoids the instantiation of multiple consensus or atomic
broadcast protocols. This design decision becomes important since
practical consensus or atomic broadcast libraries may consume a
non-negligible amount of resources. For instance, besides requir-
ing a quorum of distributed processes, reliable broadcast libraries
normally implement failure detection, reconfiguration, logging and
specific optimization strategies (e.g. batching [1, 22] and parallelism
[23]). As presented in Section 5, the cost of keeping multiple de-
livery protocol instances can be drastically reduced when a single
protocol is shared by applications.

Register and unregister of services at runtime In order to al-
low the addition, removal or update of services without suspending
other services, the replication system is designed as state machine
replica where only the basic commands to register and unregister
applications are initially available. New applications are registered
into the state machine replicas through a SMR command invocation.
Analogously, by invoking the unregister command, the application
is removed from state machine replicas. This approach facilitates
service changes, such as service maintenance or updates.

4.2 Architecture
The replication library implements the client/server model and
its architecture is illustrated in Figure 3. The modules in the left
of the figure represent the client while the set of modules to the
right represents the structure of the replicas. Both client and repli-
cas communicate through a consensus layer. In the following we
describe each of the modules composing the solution:

Client: Represents the client program which makes use of one or
more replicated services, sending command requests and receiving
respective responses, according to the library API. Clients may also
request the addition, update and removal of service instances using
the same interface;

Consensus Proxy: This module is in charge offering transparency
w.r.t. the underlying agreement protocol. It offers a standard con-
sensus API while the implementation is agreement protocol specific.
Besides bringing transparency, its function is to broadcast client
requests sent through the standard interface and receive their re-
spective responses, returning them to the client.
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Figure 3: Replication Library Architecture.

Consensus Delivery: Just as Consensus Proxy communicates with
the consensus layer on behalf of a client, Consensus Delivery per-
forms this communication at replicas on behalf of the services.
It receives the client commands ordered by the consensus layer
and triggers a generic delivery event at server side. This event is
forwarded to the SMR Manager (which is agreement protocol inde-
pendent) that listens to those events, processes them, and returns
their respective responses. Finally, this response is then forwarded
by Consensus Delivery to the consensus layer.

Because specific agreement protocols do not follow a standard
API, both the client-side Consensus Proxy and the Consensus De-
livery on the replicas side are abstract and must be specialized.
Figure 4 exemplifies three existing implementations for each of the
abstract modules: Modules BFTProxy and BFTDelivery work with
BFT-SMaRt[3], while SProxy and SDelivery with S-Paxos[4] and
RingProxy and RingDelivery with RingPaxos[22]. Further consen-
sus implementations may be plugged to the solution.

SMR Manager: Manages the SMR execution receiving and exe-
cuting the events triggered by Consensus Delivery. Upon receiving a
command, it is in charge of correctly invoke the respective Service
Instance module or, if appropriate, invoke the SMR Loader to create
a new replicated Service Instance module.

SMR Loader: In charge of loading, instantiating new services
into the replica system, and starting their provision. In case of a
request for loading an unknown service, the source code of the
service is loaded (using a run-time class loader) and analyzed (us-
ing reflection), discovering which classes and methods it has, the
signatures of such methods, and other relevant information (which
will be detailed in the Section 4.3). From the analysis performed, the
service definition is stored in the form of a Service Code Base, which
stores the service code plus metadata. Be it a request for a new
service or a known one, the next step is to create a new instance of
the service, out of the Service Code Base definition, in the form of a
Service Instance which is in charge of executing requests addressed
to this new service.

Service Code Base: Every service subscribed to the state machine
replica is represented as a Service Code Base module, as above.

Service Instance: After registering a service in the Single State
Machine, it is possible to instantiate it several times, generating SMR
applications completely independent of each other, that is, with
identical initial states but distinct states evolution. As in the Object

Oriented Programming paradigm, where an object is described
following a set of rules and standards and can later be instantiated
several times, this approach makes it possible to instantiate several
distinct replicated applications from the same Service code base.

Consistency: The overall state of the SMR is composed by the
state about services under provision (metadata) and the state of
each service being provisioned.

SMR commands are ordered across replicas by the consensus
protocol. This guarantees that the execution of commands follows
the same total order in all replicas. The state of the SMRManager is
replicated across replicas and is updated following the SMR rules.
Therefore, replicas will have consistent states regarding the set of
services under provisioning.

Since service provisioning commands are broadcast using the
same consensus protocol as commands for user services, from the
moment a new service starts operating to the moment it ceases
operation the set of commands delivered specifically for that service
is exactly the same and follows the same total order in all replicas.
We assume that each command execution is atomic. Therefore a
service request will only be processed after service deployment has
completed.

According to the above, from the consistency properties of SMR,
both the state about services being provided and the state of each
service are consistently replicated, thus the overall consistency is
assured.

(a)

(b)

Figure 4: Generalization of specific consensus protocol func-
tionality: (a) client side; (b) replica side.

4.3 Application Programming Interface
Our replication library is implemented in Java and is available
through the package r3lib. The main resources to software de-
velopers, provided by library API, are a set of custom annotations,
made available by the package r3lib.annotations, and methods
for registering and excluding applications, made available by the
package r3lib.communication.

The specification of methods that are visible to SMR clients
(i.e., the state-machine commands) is done through annotations.
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An annotation is a syntactic metadata that can be added to the
source code. Annotations are embedded to the compiled code and
interpreted by the virtual machine at run-time via reflection. This
design decision aims to facilitate the implementation of replicated
applications, since developers do not need to redesign the code
structure. Thus, the application code remains unchanged, except
by the inclusion of annotations.

The SmrMethod annotation identifies which methods are SMR
methods. A SMRmethod can be invoked through a unique identifier,
the commandID. Only these methods can be viewed and invoked
by clients. Classes that have at least one SMR method are called
SMR Classes. Descriptions of SMR methods and their parameters
can be added by developers through SmrArg annotation. The Sm-
rArg can be used to detail SMR method parameters, naming and
describing them. Although descriptions are optional, they can be
used to document method’s details and instructions for use. The
commandID field associates a command name to a given method. If
the commandID is not explicitly defined by the developer, a unique
command name is generated by the library.

A simple annotation example is given in Listing 1. A helloWorld
method is annotated with @SmrMethod and a command name hello
is associated to it. By simply adding this annotation, helloWorld
method becomes available for remote invocation from clients through
the command identifier hello.

@SmrMethod(commandID = "hello")
public String helloWorld() {
return new String("Hello world");

}

Listing 1: Annotation Example

Once application methods are annotated, applications should be
registered and instantiated on the replicated service. Firstly, the
application code is registered on the replicated system as a new
Service Code Base through the method newService. This method
will pack the whole application into a JAR file and associate it to a
unique identifier. Once a new application is registered in the repli-
cated system, it can be instantiated one or several times through the
method newService. Every time newServiceInstance is invoked,
it generates a new Service instance, with its own state. Thus, each
service instance has a unique identifier, a set of classes provided by
a Service code base, and its own state.

Listing 2 describes the methods implemented by the Consen-
susProxy class. Every proxy is associated to a single client, then
the constructor receives the client identifier as argument. This
class implements methods for creating new libraries with a JAR
file and the library name as parameters, and new applications with
the library and application names as parameters. Clients invoke
methods through the method invokeMethod, passing the command
identifier and a list of Objects as parameters. A directory service
is offered through methods getAvailableServices, getService-
Doc, getAvailableInstances, and getAvailableCommands. By
executing these methods, clients can discover which services or
service instances are available, check the documentation of a ser-
vice, and get references to the commands made available by a given
service instance. Finally, methods updateService and removeSer-
vice are responsible for updating or removing services, andmethod

removeInstance for removing service instances. Because the li-
brary does not support state retrieval yet, the updateService prim-
itive has not yet been implemented.
public class ConsensusProxy {

public ConsensusProxy(int clientId);
public void newService(java.nio.file.Path jarFilePath, String servName);
public void newServiceInstance(String servName, String instName);
public Object invokeMethod(String commandID, Object... params);
public List<String> getAvailableServices();
public String getServiceDoc(String servName);
public List<String> getAvailableInstances();
public List<String> getAvailableCommands(String instName);
public void updateService(java.nio.file.Path jarFilePath, String

servName);
public void removeService(String servName);
public void removeInstance(String instName);

}

Listing 2: Methods implemented by ConsensusProxy class

As discussed in Section 4.2, Consensus Proxies and Consensus De-
liveries are concrete implementations of agreement protocols. Then,
application developers can opt by different protocols by choosing
a given consensus proxy. The consensus proxy and the addresses
of replicas that make part of the system are indicated by system
parameters presented in a setup file.

5 EVALUATION
In this section we evaluate the impact of using our replication
library. Our first goal is to identify the overhead caused by the
library. Despite the ease of use and high abstraction provided by
our library, we expect a reduction in the throughput and a higher
latency to the overall performance. A second aspect to consider is
the performance of multiple replicated applications executing in
the same infrastructure. Since our library allows multiple applica-
tions to share the same Paxos instance, we conjecture that with
better use of resources, a better performance in each individual
application will be experienced. Finally, we calculate the impact
caused by registration of new applications at runtime. The goal
of this experiment is to observe how the addition of new services
affects the performance of other applications under execution.

We empirically compare the performance of a key-value store
application implemented with our library against key-value store
applications implemented directly using both BFT-SMaRt and S-
Paxos libraries. Load is generated by client nodes. In each node,
multiple threads simulate clients accessing the application. Every
client thread invokes methods repeatedly, but a new invocation is
executed only after receiving the reply to the previous one.

5.1 Test environment
The environment used in our experiments was the Emulab4 [29],
a collaborative infrastructure with scientific purposes. Our exper-
imental setup was composed by 45 computer nodes with 3 GHz
64-bits Pentium Xeon and 2GB of main memory, 1 core and network
interface gigabit, interconnected by a 1Gb switch. Computers run
CentOS 6.9 operating system. Each replica executed in a dedicated
4https://www.emulab.net/
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node and clients were uniformly distributed among the remaining
nodes. In the experiments the replication factor was set to one, i.e.,
a total of three replicas were executed. In each replica heap size of
Java virtual machine was set to 512MB.

5.2 Performance results
Our first set of experiments aims to analyze the overall performance
and saturation point of applications implemented with and without
the replication library. We start experiments by generating load
from a single client node and gradually increasing the number of
clients up to a maximum of 42 nodes.

Figure 5 presents a latency versus throughput graph for the
four versions of key-value store application: using BFT-SMaRt, S-
Paxos, the replication library with BFT-SMaRt consensus delivery
implementation, and the replication library with S-Paxos consensus
delivery implementation. Throughput was measured in the server
side, while latency was computed by clients. Latency is given by
the 90th percentile. This way, outliers are discarded.

As expected, a performance decrease is observed when using
the replication library. Both BFT-SMaRt and S-Paxos versions can
process more than 6000 commands/s before saturating, while ver-
sions using our library process between 2700 and 3500 commands/s
depending on the consensus delivery implemented. When light
workloads are applied to service versions using the library, the
throughput reduction is imperceptible. Latency is influenced by the
consensus protocol in use. S-Paxos and library with S-Paxos con-
sensus delivery versions latency stays around 0.015s before their
saturation point, and BFT-SMaRt and and library with BFT-SMaRt
consensus delivery versions latency stays around 0.005s before
saturating.

Figure 5: Latency versus throughput for key-value store im-
plementations.

This overhead is caused by the level of abstraction and trans-
parency provided by our library. The execution of a general pur-
pose SMR results in larger messages (extra control information is

attached to client requests), additional local invocations to coor-
dinate execution of library components, and additional cost for
loading and execute dynamic code. Since reflection involves types
that are dynamically resolved, certain Java virtual machine opti-
mization cannot be performed. Consequently, reflective operations
have slower performance than their non-reflective counterparts.

As future work, we intend to reduce the costs with serialization
and reflection by using alternative implementations. For instance,
Kryo5 and Skyway [24] implement serialization libraries. Studies
performed in [24] indicated a considerable performance increase
of these libraries over traditional Java mechanisms.

Although our library presents a lower performance for a sin-
gle application, it makes better use of resources when multiple
applications share the same computational nodes. Therefore, we
investigated the performance impact caused by the addition of ap-
plications under execution in the same infrastructure. We devised
scenarios with one, two and three instances of key-value store
application. The number of clients per application instance was
equally distributed and it corresponds approximately to 80% of the
maximum load.

Figure 6 shows the throughput obtained by key-value store im-
plementations with 1, 2 and 3 running instances. In the test scenario
with a single instance, the higher throughput is achieved without
using our replication library, as expected. Application running the
BFT-SMaRt version processes approximately 5400 commands/s,
while the version implemented with our library and BFT-SMaRt
consensus proxy processes 3500 commands/s. However, as appli-
cation instances are added, the throughput achieved by applica-
tion without our library reduces drastically while the throughput
achieved by instances using our library remains unchanged. In both
scenarios with 2 and 3 running instances of key-value store we can
observe a better performance with our library. For 3 instances, for
example, our library using BFT-SMaRt consensus proxy remains
around 3400 commands/s while BFT-SMaRt throughput drops to
2400 commands/s and S-Paxos drops to 1300 commands/s.

The reason for keeping performance levels despite the number
of running applications when using our library is the sharing of
the same consensus instance. Replicas do not need to instantiate
additional Paxos processes. This is advantageous, since Paxos com-
ponents demand processing power and especially storage access for
logging accepted values. Although less impacting, the management
of resources in the system level is also alleviated. For instance, a
smaller amount of memory is allocated, fewer context switches and
interruptions are handled.

The next experiment aims to identify how the registration of
new applications impacts other applications under execution. To-
wards this end, a key-value store application was registered and
subjected to a constant load of clients. Then, 3 extra applications
were registered at different instants. The new applications were
composed by (i) 277 classes and 3801 methods; (ii) 230 classes and
3299 methods; and (iii) 629 classes and 12354 methods.

Figure 7 shows the throughput of the key-value store application
while the new applications are registered. As observed, there is a
throughput drop when applications are being registered (around
110s, 210s, and 260s). This effect is caused by the creation of class

5https://github.com/EsotericSoftware/kryo
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Figure 6: Multiple instances throughput

loaders for each new application. The class loader is responsible for
updating the directory service with new methods and load the ap-
plication classes into the Java virtual machine. Notice, though, that
the throughput drop lasts for a very short period, which represents
a minor prejudice to the application.

Figure 7: Performance impact caused by registration of new
application.

6 RELATED WORK
There is a substantial body of work on State Machine Replication
approach. Associated to these works, there is a long literature about
consensus protocols, such as Paxos. However, as observed in a
recent literature, building practical systems using SMR concepts
normally requires experience and a solid knowledge about fault-
tolerance and distributed systems [1, 7, 9, 16].

In [7] authors implement a fault-tolerant database using the
SMR approach. They mention it was significantly harder to build
the database. They attribute the difficulties encountered to gaps
between the description of the consensus algorithm and the needs

of a real-world system. According to authors report, converting the
algorithm into a practical, production-ready system involved imple-
menting many features and optimizations. Some of them published
in the literature and some not. In addition, they emphasize that
changes in specification during software development is common.
Then, an implementation should be malleable. However, promoting
changes to intricate code designed for particular fault-tolerant ap-
plications is cumbersome. In another work [16], authors mention
that technical details, which are usually looked at as engineering
considerations, actually have large liveness implications and can
dramatically impact performance.

In order to reduce the complexity of developing and deploying
replicated systems, different strategies have been proposed. Next
we discuss other approaches for transparent replication and discuss
how they differ from our replication library.

CRANE [9] is a parallel SMR system that transparently replicates
general multi-threaded programs. Within each replica, CRANE in-
tercepts POSIX socket and the Pthreads synchronization interface
and implement deterministic versions of such synchronizing op-
erations. To ensure total order delivery of synchronization com-
mands across replicas, for each incoming socket call (e.g., accept()
or recv()), CRANE runs a distributed consensus protocol, so that
correct replicas see exactly the same sequence of calls. CRANE
schedules synchronization commands using deterministic multi-
threading (DMT). This technique maintains a logical time that ad-
vances deterministically on each thread’s synchronization.

In [30] authors propose a middleware for fault-tolerance in
cloud computing environments. Similarly to CRANE, applications
programmed using TCP socket API can be replicated by it. Fault-
tolerance is achieved by implementing a leader/follower replication
approach.

OpenReplica [1] provides transparent object replication, then
clients need not be aware that certain components have been repli-
cated. The OpenReplica implementation is based on the Paxos pro-
tocol. For performance reasons, they implement a light-weight
version of Paxos built on asynchronous events. Binary rewriting is
used to guarantee that clients invoke their replicated objects in the
same way they invoke local objects. In OpenReplica it is possible
to change the location and number of replicas at runtime. To en-
sure consistency upon reconfiguration, a view change protocol is
implemented.

Similar to our work, CRANE andOpenReplica provide high trans-
parency when developing fault-tolerant services. CRANE rewrites
the standard APIs for process communication and threads synchro-
nization. Thus, distributed applications developed with such basic
primitives can easily migrate from standard libraries to CRANE
without changing the application logic. One disadvantage, however,
is that developers have to master distributed systems programming.
OpenReplica provides transparency by replicating objects. This
level of abstraction does not require explicit implementation of
sockets or threads to establish processes communication.

The operation mode of OpenReplica is very similar to the one
proposed in this paper. Both provide a very simple way to imple-
ment methods that can be replicated and made available to SMR
clients. However, every new application initialized by OpenReplica
launches a new set of replicas. In our approach, new applications
can share the same consensus protocol, which has demonstrated a
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great advantage for applications running in shared infrastructure.
In addition, OpenReplica replicates objects, while our library allows
replication of large projects, composed by many classes organized
in a given name space.

7 FINAL REMARKS
This paper presents a library that supports the development of fault-
tolerant applications by making replication transparent to software
developers. By using the library, developers can focus mainly in
the application logic, with no need to configure the underlying
replication system. Applications deployed with our library run into
general purpose state machine replicas, which allow the addition
or exclusion of service commands at runtime. New application in-
stances can also be added to the state machine at runtime. This way,
different applications can share the same replication environment.

This paper describes the overall architecture of the replication
environment provided by our library. From a programming per-
spective, the greatest advantage of this library is its simple and
compact API. By just using annotations, software developers can
add class methods to the state machine and use them as SMR com-
mands. This simplicity does not restrict flexibility. To emphasize
this, we developed a key-value store application adopting design
patterns, exploiting the use of non native data types and organized
the software structure in different packages.

We experimentally assessed the performance of our library.While
additional costs are inevitably added by the replication library, re-
sults have demonstrated that the efficient use of resources translates
into higher throughput rates when multiple applications execute
in a shared infrastructure.

Future steps in this work include the optimization of commands
execution. To allow execution of commands loaded at runtime, our
library uses reflection. The cost with reflection is the main cause
for performance degradation in our library. Thus, alternative imple-
mentations of serialization and reflection should be investigated.

The extension of our replication library to the Byzantine domain
should be challenging. To enforce isolation between applications
running in a shared replication environment a security module
would be needed. In addition, durability strategies, such as logging
and checkpointing would require further investigation.
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