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Abstract—State machine replication (SMR) is a established
approach to building fault-tolerant services. In search for high
SMR throughput, approaches that exploit semantic information
in the ordering and execution of commands have emerged.
Generalized consensus and parallel state machine replication
are two representative examples, respectively. Although both
approaches have been proved effective in isolation, no study in
the literature has considered their integration. In this paper,
we investigate the integration of generalized consensus and
parallel SMR. We derive algorithms to parallelize the execution
of commands based on the ordering of commands provided by
consensus. As a prototype, we extended Egalitarian Paxos and
conducted many experiments varying conflict rates, command
computational costs, and number of cores at replicas. Compared
to Egalitarian Paxos, the integrated approach (a) results in
important throughput gains, as command independency and
computational cost increase, and (b) converges to the same
performance with high conflict rates or reduced number of cores.

Index Terms—State Machine Replication, Generalized Consen-
sus, Distributed Algorithms

I. INTRODUCTION

State machine replication (SMR) is a conceptually simple,

yet effective approach to rendering systems fault tolerant.

The basic idea is that server replicas execute client requests

deterministically and sequentially, in the same order [1], [2].

Consequently, replicas transition through the same sequence of

states and produce the same output. State machine replication

enables application programmers to focus on the inherent

complexity of the application, while avoiding the difficulty

of handling replica failures [3]. Not surprisingly, the approach

has been successfully used in many contexts (e.g., [4]–[6]).

Different strategies have been proposed to enhance SMR’s

throughput. A large category of solutions introduce concur-

rency in the ordering and execution of commands by taking ad-

vantage of application semantics information. More precisely,

two commands conflict if they access common state and at

least one of them updates the state; otherwise the commands

are independent. When commands are independent, their order

is irrelevant and expedite decisions can be taken to order and

execute commands.

Leaderless consensus protocols exploit application seman-

tics to optimize command ordering. Since conflicts may arise

if different replicas propose commands concurrently, protocols

such as Generalized Paxos [7], Generic Broadcast [8] and

Egalitarian Paxos [9] use application semantics information to

decide on the order of conflicting commands—we call these

generalized consensus protocols.

Regarding command execution, a number of techniques

have been proposed to overcome the limitation of sequential

execution and allow parallel execution of non-conflicting com-

mands. This is specially important considering modern multi-

processor architectures. The main challenge is to ensure the

same deterministic replica behavior out of parallel command

execution. In [10], [11] replicas execute optimistically and

then agree on the results, maybe having to re-execute some

commands. In [12] one replica executes, logs dependencies

among commands, and then uses consensus to replicate its

trace of dependencies such that other replicas follow the same

trace. In several approaches [13]–[17], consensus totally orders

commands and then replicas identify conflicts to introduce

concurrency in the execution of independent commands.

Although both the ordering and execution of commands

exploit common aspects, namely, application semantics, there

are no studies considering the integration of the approaches.

In this paper, we investigate if and how far the partial order

resulting from generalized consensus can be beneficial for

parallel command execution at replicas. Our contributions are:

(i) we devise algorithms for a parallel command execution that

use conflict information from generalized consensus; (ii) we

implement a prototype using Egalitarian Paxos (ePaxos) as

consensus protocol; (iii) we assess performance implications

under several parameters, such as conflict rates, command

execution costs and number of available cores.

The experimental evaluation revealed that the integrated

approach results in important performance gains, as command

independency and computational cost increase. The integrated

approach and ePaxos have similar performance under high

conflict rates or reduced number of cores. The results corrobo-

rate our argument for integration, since no significant overhead

is introduced in conflict detection by parallel execution.

The paper is organized as follows. Section II presents main

assumptions and background on consensus. Section III de-

tails our proposal of using generalized consensus dependency

information to the parallel execution of SMR commands.

Section IV details our system prototype, the evaluation results.

Sections V and VI survey related work and conclude the paper.
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II. BACKGROUND

We assume a distributed system composed of interconnected

processes that communicate by exchanging messages. There

is an unbounded set of client processes and a bounded set

of replica processes. The system is asynchronous: there is no

bound on message delays and on relative process speeds. We

assume the crash failure model and exclude arbitrary behavior.

A process is correct if it does not fail, or faulty otherwise.

There are up to f faulty replicas, out of 2f + 1 replicas.

To implement a total order, we assume servers use a consen-

sus protocol. Consensus is defined by primitives propose(v)
and decide(v), the first primitive is used to propose values and

the second primitive to decide on a proposed value., Consensus

ensures the properties of Termination, Validity, Integrity, and

Agreement [18]. Since we are interested in a sequence of

decisions, we define primitive decide(i, v) where i is the

consensus instance number, a natural number that associates

an increasing order, without gaps, to decisions. Each decision

has a unique number across replicas and enjoys the consensus

properties above. Consensus requires additional synchronous

assumptions but our protocols do not explicitly need these

assumptions [3].

Our consistency criterion is linearizability [19]. An exe-

cution is linearizable if there is a way to total order the

operations such that (a) it respects the semantics of the objects

accessed by the operations, as expressed in their sequential

specifications; and (b) it respects the real-time ordering of

the operations in the execution. There exists a real-time order

among two operations if one operation finishes at a client

before the other operation starts at a client.

A. State Machine Replication

State Machine Replication (SMR) renders a service fault-

tolerant by replicating the server and coordinating the exe-

cution of client commands among the replicas [1], [2]. The

service is defined by a state machine and consists of state
variables that encode the state machine’s state and a set of

commands that change the state (i.e., the input). The execution

of a command may (i) read state variables, (ii) modify state

variables, and (iii) produce a response for the command (i.e.,

the output). Commands are deterministic: the changes to the

state and the response of a command are a function of the

state variables the command reads and the command itself.

SMR requires replicas to execute commands in the same

order. Therefore, before commands are executed by the repli-

cas, the execution order must be agreed. This is achieved

using consensus. Whenever a command is issued to an SMR

replica, it is proposed in consensus. SMR is implemented

having replicas execute commands according to the consensus

order, as shown in Algorithm 1.

State machine replication provides strong consistency.

Clients work with the illusion of a non-replicated service, that

is, replication is transparent. Differently from a non-replicated

service, clients remain oblivious to failures, as the service is

operational despite the failure of some of its replicas (i.e., up

to f faulty replicas).

Algorithm 1 SMR Replica Execution

1: constants and data structures
2: i : 0 {next expected decision}
3: Replica works as follows:
4: upon decide(i, c) {consensus sequence}
5: executeAndReplyToClient(c)
6: i← i+ 1

B. Generalized Consensus

The Paxos [20] consensus protocol is widely used in differ-

ent SMR deployments. Paxos and derived protocols are based

on a distinguished process or leader to coordinate consensus.

The use of a single process for this task may limit throughput

and therefore alternatives have emerged to allow more than

one process to coordinate consensus. Lamport’s Fast Paxos

[21] introduces the possibility that a coordinator may delegate

the right to other proposers to directly address acceptors,

and acceptors to accept proposals from other proposers. This

both reduces one message delay and has the potential to

increase throughput by avoiding a single point through which

all proposals should flow. The drawback of this design is the

possibility of proposal collisions.

Generalized Paxos [7] extends Fast Paxos to cope with

this aspect. It generalizes the state-machine approach to allow

agreement on a partially ordered set of consensus instances.

Lamport proposes generalized consensus to be applied in

different situations by defining suitable structures, called c-

structs, for each case. C-structs define if consensus instances

conflict or not. If not, their relative order is not important

and in case of collision they can be delivered in two message

delays, in any order, at replicas.

The case of interest here is consensus for command histo-

ries. A command history is a partial order of commands that

relates conflicting commands only. In the following, we define

the notion of conflict.

Definition 1 (Commands, read and write sets, conflict). Let

C be the set of commands available in a service (i.e., all the

commands that a client can issue). A command can be any

deterministic computation involving objects that are part of

the application state. We denote the sets of application objects

that replicas read and write when executing a command c as

c’s readset and writeset, or RS(c) and WS(c), respectively.

The conflict relation #C ⊆ C × C among commands is:

(ci, cj) ∈ #C iff

⎛
⎝

RS(ci) ∩WS(cj) �= ∅ ∨
WS(ci) ∩RS(cj) �= ∅ ∨
WS(ci) ∩WS(cj) �= ∅

⎞
⎠

Commands ci and cj conflict (depend or interfere) if

(ci, cj) ∈ #C . Pairs of commands not in #C are non-
conflicting (independent or non-interferring).

Generic broadcast [8] also delivers a partial order of com-

mands, being equivalent to Lamport’s generalized consensus

for command histories [7]. Likewise, command semantics is

modeled with a conflict relation and a broadcast algorithm that

works with any conflict relation.
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Generalized Paxos (for command histories) and Generic

Broadcast deliver sequences of commands, which are com-

patible with the partial order built from their dependencies.

SMR replicas that build on these protocols would behave as

in Algorithm 1. Replicas may observe different but equivalent

orders that commute non-conflicting commands. Executing

commands according to the observed order will not compro-

mise linearizability.

C. Egalitarian Paxos

Egalitarian Paxos (ePaxos) [9] is another protocol that uses

command semantics to avoid collisions during consensus.

Different replicas concurrently coordinate consensus for dif-

ferent commands. If commands do not conflict, then they

are delivered independently. ePaxos however is organized

differently at the service interface, allowing one to access

command dependency information gathered during consensus.

a) Overview of EPaxos consensus phase: A command

in ePaxos is a consensus instance. Clients send commands to

replicas, which then propose instances concurrently. A replica

takes care of coordinating consensus (i.e., it acts as command

leader) for the instances it proposes. During coordination, the

presence or absence of conflicts with pending instances in

other replicas are identified and accordingly registered in a set

of conflicts for each instance. More concretely, this takes place

at Phase 1 when a command leader sends an instance to other

replicas, which evaluate the proposed instance against their

locally registered instances to identify a set of conflicting ones.

The command leader gathers the conflict sets from different

replicas. If all have the same set, possibly empty (i.a., no

interference), replicas have the same view and the fast path

succeeds. If not, then the command leader is in charge of

synchronizing the complete conflict set across replicas using

the slow path.

A replica keeps a set of instances that evolve through con-

sensus, set I in Algorithm 2, line 2. An instance information is

composed of: (i) the command; (ii) the set of other instances

it conflicts with; (iii) a sequence number to be used in case

of solving cycles; (iv) its state, which can be, in order: Pre-

Accepted, Accepted, Committed, and Executed (see lines 3 to

6). An instance is in state Committed when its information is

complete and replicated across replicas. From the perspective

of consensus, a committed instance is delivered.

b) Overview of EPaxos execution phase: Committed

instances are registered in the instances set I and build a

partial order of conflicting commands. The ePaxos execution

phase builds a total order compatible with this partial order

and sequentially executes according to this order. Algorithm

2 summarizes the execution phase. The execution algorithm

periodically visits the instances set to detect a committed (see

line 27). Whenever an instance is Committed, the dependency

graph of that instance is recursively built (lines 11 to 17). All

instances in the resulting graph are committed (line 19). Figure

1 (a) depicts a possible dependency graph for node 1, where

instances are depicted as circles with sequence numbers, and

edges are dependencies. If instances were independent, their
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Fig. 1: Instances and strongly connected components (SCCs).

respective dependency graphs would return a single instance

each. When instances conflict, they will be connected in the

dependency graph. If they conflict and collide during consen-

sus, then strongly connected components are configured.

Figure 1 (b) shows strongly connected components (SCCs)

in gray boxes. The SCCs in the dependency graph are iden-

tified, resulting in a list of SCCs (see line 18), which can be

computed using Tarjan’s algorithm [22]. We assume SCCs are

returned in reverse topological order (i.e., deepest elements

first), as mentioned in lines 18 and 21. Figure 1 (d) illustrates

an inverse topological order. Within each SCC, instances are

ordered according to the sequence number provided during

ePaxos consensus (e.g., see Figure 1 (c)), as in line 19, and

then executed in that order, if not yet executed (lines 23 to

25). With this, the same total execution order is followed at

each replica.

III. PARALLEL SMR FROM GENERALIZED CONSENSUS

Generalized consensus protocols avoid consensus collisions

using semantic conflict information. This same information

can be used to exploit intra-replica parallelism for independent

commands and thus enhance the replica execution throughput

in workloads dominated by independent commands. In this

section, we delve into this aspect.

Figure 2 compares classic SMR and generalized consensus-

based approaches, cases (a) and (b), to our proposal, case

(c). We leverage generalized consensus to reduce latency

and improve throughput, by exploiting consensus conflict

identification to schedule concurrent instances for parallel
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Algorithm 2 ePaxos Execution Phase

1: data structures
2: I : {c× deps× seq × state |
3: c ∈ C, {the command}
4: deps ∈ I, {other instances from which this one depends}
5: seq ∈ N, {to solve cycles if needed}
6: state ∈ {PreAccepted, Accepted, Committed, Executed}
7: }
8: G : (N,E)| {dependency graph}
9: N ⊆ I, {nodes are consensus instances}

10: E ∈ N ×N {edges are dependencies}
11: procedure G : buildDepGrapg(i,(N,E))
12: for all j ∈ i.deps|j.state �= Executed do {i depends on j}
13: wait until j.state = Committed
14: N ← N ∪ {j}
15: E ← E ∪ {(i, j)}
16: (N,E)← buildDepGraph(j, (N,E))
17: return (N,E) {a graph where all instances are committed}
18: procedure sccList : findSCCs((N,E))

{sccList is a list of SCCs in G=(N,E) in reverse topological order}
{reverse order is olders first in sccList}

19: procedure instList : sort((N,E))
{instList is a list with all instances i ∈ N in i.seq increasing order}

{this solves cycles deterministically across replicas}
20: procedure execList(sccList)
21: for all scc ∈ sccList, in reverse topological order do
22: instList← sort(scc) {solves cycles}
23: for all inst ∈ instList, in order do
24: execute(inst.c)
25: inst.status← Executed

26: Replica’s execution works as follows:
27: upon i = [r, dep, seq, Committed] ∈ I {committed instance i}
28: dg ← buildDepGraph(i, ({i}, ∅)) {graph starts with i only}
29: sccList← findSCCs(dg)
30: execList(sccList)

execution. Parallel approaches to SMR identify independent

commands and process them concurrently, thereby enhanc-

ing the replicas execution throughput (see §V for a survey

on existing approaches). Using conflict information provided

by generalized consensus spares the cost of identifying and

representing conflicts among pending instances at replicas.

A. Dependency-based instance scheduling

Figure 1 (a) shows committed instances and their dependen-

cies, while Figure 1 (b) depicts their corresponding identified

SCCs. Any two SCCs not directly or transitively linked by the

directed dependency edges could execute concurrently, such as

SCCs C, D and F in Figure 1 (c).

Using ePaxos as consensus protocol, we propose the con-

current execution of committed instances. More precisely, we

introduce Algorithm 3, which is derived from Algorithm 2

(see Section II-C0b). Algorithm 3 shows in cyan (or gray)

non-modified parts from Algorithm 2 and in black the modi-

fications to concurrently execute SCCs whenever possible.

Like in Algorithm 2, in Algorithm 3 periodically and

sequentially instances are checked if committed (line 39). The
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Fig. 2: SMR and Parallel SMR architectures.

dependency graph starting at an instance is built (lines 16

to 23), and SCCs are identified (line 41). Algorithm 3 thus

preserves the sequential visit to the instances set to build the

dependency graph.

Differently from Algorithm 2, however, SCCs identified are

launched for concurrent execution (line 37). Now we have the

sequential visit to find committed instances in parallel with

execution of commands. To avoid an instance to be taken twice

for execution, it is marked as Executing when included in a

dependency graph (line 17). Executing is a new instance state

defined for this purpose (line 7). This step was not needed in

the original algorithm since instances would switch directly

from Committed to Executed, assuredly executing exactly

once because SCC execution and the visit to instance sets was

sequential.

To limit the population of dynamically created worker

threads to a maximum number of threads (constant nWT
in line 13), we use a counting semaphore (line 14). The

semaphore is initialized with the maximum number of worker

threads and is decremented whenever a thread is created (line

36) and incremented when the worker thread finishes (line 33).

Like in Algorithm 2, findSCCs is used with the depen-

dency graph (line 41) to generate a list of SCCs. Each SCC

in this list is then launched for concurrent execution (line 37).

While SCCs can execute concurrently if dependencies allow,

the internal instances of each SCC have a total order (line

27). For each instance belonging to an SCC, in the total order,

its dependencies with respect to instances belonging to other

SCCs have to be resolved (lines 29 and 30), and then the

instance can be executed.

During execution of each SCC, dependencies for each

instance are enforced in line 29. It states that to execute
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Algorithm 3 Parallel ePaxos Execution Phase

1: data structures
2: I : { c× deps× seq × state |
3: c ∈ C,
4: deps ∈ I,
5: seq ∈ N,
6: state ∈ {PreAccepted, Accepted, Committed,
7: Executing {new added state to instance}
8: Executed}
9: }

10: G : (N,E)| {dependency graph}
11: N ⊆ I, {nodes are consensus instances}
12: E ∈ N ×N {edges are dependencies}
13: nWT : maximum number of worker threads
14: avWT : countingSemaphore(nWT )
15: {credit of worker threads that can be launched}
16: procedure G : buildDepGrapg(i,(N,E))
17: i.state← Executing {take for execution}
18: for all j ∈ i.deps|j.state �∈ {Executing,Executed} do
19: wait until j.state = Committed
20: N ← N ∪ {j}
21: E ← E ∪ {(i, j)}
22: (N,E)← buildDepGraph(j, (N,E))
23: return (N,E) {all instances are marked Executing}
24: procedure sccList : findSCCs((N,E))

{sccList is the list of SCCs in G=(N,E)}
25: procedure instList : sort((N,E))

{instList is a list with all instances i ∈ N in i.seq increasing order}
{this solves cycles deterministically across replicas}

26: procedure concExec(scc) dynamically created thread
27: instList← sort(scc)
28: for all i ∈ instList, in order do {for each instance in order}
29: for all j ∈ i.deps \ instList do {dependencies to other...}
30: wait j.state = Executed {...scc’s should be resolved}
31: execute(i.c)
32: i.state← Executed
33: avWT.up() {increments or unblocks}
34: procedure concExecList(sccList)
35: for all scc ∈ sccList do
36: avWT.down() {decrements or blocks if 0}
37: start concurrent thread to concExec(scc)

38: Replica’s execution works as follows:
39: upon i = [r, dep, seq, Committed] ∈ I {committed instance i}
40: dg ← buildDepGraph(i, ({i}, ∅)) {graph starts with i only}
41: sccList← findSCCs(dg)
42: concExecList(sccList)

an instance, all instances it depends on from other SCCs

(therefore excluding instList, which is the nodes of the scc)

have to be resolved.

B. Correctness

We now argue that Algorithm 3 ensures that conflicting

commands are executed in the same order across replicas.

We recall that ePaxos ensures that all replicas have the same

instance dependency and sequence number information.

Algorithm 3 preserves the periodic sequential recursive visit

to the instances set to build the dependency graph. The recur-

sion stops when: no dependencies are found, or the instance

being visited has already been executed or taken for execution.

Since instances cannot depend on future instances, the set of

dependencies considered while building a dependency graph

is finite. Moreover, eventually all instances (that one specific

instance depends) either are Committed and can be taken for

execution or were executed and are resolved. Therefore, in-

stances are progressively taken for execution whenever ePaxos

commits them.

Regarding execution, each SCC can be executed as soon

as its dependencies with respect to other SCCs are solved.

SCCs have a topological order, i.e., by definition there are no

cycles among SCCs. Therefore there is no deadlock. Within

an SCC, instances are totally ordered by sequential number,

which disambiguates cycles homogeneously across replicas.

Then, it suffices to follow the order within the SCC to ensure

that for each instance, the dependencies to other SCCs are

respected. This enforces the same order among SCCs since all

replicas have the same conflict information for each instance.

IV. EXPERIMENTS

In this section, we discuss topics related to PePaxos, our

parallel ePaxos prototype, and present the results of our

experimental evaluation.

A. Implementation of PePaxos

The proposed concurrent scheduling algorithm was devel-

oped and integrated into Egalitarian Paxos. Our prototype

is based on the ePaxos implementation,1 written in the Go

programming language version 1.13.1 and publicly available.2

Each SCC is launched in a separate goRoutine for concurrent

execution, following Algorithm 3, line 37. Lines 29 and

30 are implemented with a busy-wait strategy to check if

the specific instances in other SCCs were Executed. The

counting semaphore is implemented by a channel with the

size of the number of worker threads, initially full, where

down operations are reads (a read removes one item) and up

operations are writes of items from/to the channel.

B. Application

When evaluating the performance of semantic-aware pro-

tocols, one important aspect to consider is the rate of non-

conflicting commands in the workload. For example, according

to [23], in 10-minute traces, Chubby experienced less than

1% of commands that could possibly generate conflicts; [24]

reports that fewer than 0.3% of all operations in Google’s

advertising back-end (F1) may generate conflict; and according

to [9], conflict probabilities between 0% and 2% are the most

realistic.

Another relevant aspect to consider is the execution cost

of a command. The execution cost of a command depends

essentially on the nature of the application. Parallel SMR

approaches have considered a range of applications, from

1https://github.com/efficient/epaxos
2https://github.com/tarcisiocjr/pepaxos
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social networks [25], to key-value stores [9], [26], and file

systems [26].

Instead of considering one specific application, we evaluate

PePaxos with a linked list whose command costs and conflict

rate can be naturally configurable. Different list sizes allow us

to easily configure and evaluate different command execution

costs. The list has the following operations:

• contains(int): checks whether an entry (i.e., an integer)

is in the list; it returns true if entry i is in the list,

otherwise it returns false;

• add(int) and remove(int): add or remove an entry; they

return true, respectively false, if the item is not in the list

and false, respectively true, otherwise.

Hereafter, we refer to operations that check whether an

entry is in the list and to operations that add/remove an entry

in the list as read and write operations, respectively. In the

concurrency model for this application, read commands do not

conflict with each other but conflict with write commands,

which conflict with all commands. Write operations block

the whole list. We use conflict probability as the probability

of write operations. The integer parameter used in a read

operation is randomly chosen. To keep the execution cost

stable and experiments more controllable, we fixed the list

population to the desired values (1, 10k, 100k and 1M) during

the entire experiment. Otherwise we would have to run the

experiments to reach a steady population and present the

results according to it. Therefore, for the experiments we

start with a populated list and write operations just replace

elements, keeping the population.

C. Methodology and environment

All experiments were run in a local-area network (LAN).

ePaxos and PePaxos were configured with three replica nodes,

to tolerate up to one crash. Between 3 and 3000 clients were

distributed uniformly across 10 nodes. Nodes were hosted

in separate machines, each machine with four 16-core AMD

Opteron 6366HE processors running at 1.8 GHz, 128 GB of

RAM, SATA SDD disks, and 1Gbps ethernet card. Client

nodes are equipped with a four-core AMD Opteron 2212

processor at 2.0GHz, 4GB of memory and 1Gbps ethernet

card. The machines were configured with Ubuntu Linux 18.04

64bits operating system. The RTT between nodes is around

0.1ms.

The state of each replica is kept in main memory. Replicas

reply to the client only after executing the command. Our ex-

periments use 16-byte messages. We use batching to increase

the throughput, every 5ms (or 1000 commands) each proposer

batches all requests in its queue.

In our prototype, we varied the concurrency level, allowing

from 1 to 64 parallel goRoutines to execute (parameter nWT ,

line 13 in Algorithm 3). Experiments with list size 1, 10k,

100k and 1M entries were conducted, representing operations

with different execution costs. The conflict probability is

varied in 0, 1, 2, 25 and 100%, meaning the share of write

operations. ePaxos (and consequently PePaxos) serializes two

batches of commands if they both contain conflicting com-

mands. In our experiments, batch sizes decrease as execution

costs increase; with large execution costs, a batch contains

approximately one command. We run a warm-up phase of 30

sec and collect throughput of the system and the latency of

each command at the clients for the next 60 sec.

We measured maximum throughput, and latency and

throughput for the highest power point. The highest power
is the point where the ratio of throughput divided by latency

is at its maximum. It indicates the inflection point where the

system reaches its peak throughput before latencies start to

increase due to queueing effects. This point can be regarded

as a possible working situation before system saturation.

D. Results

In Figures 3, 4, 5 and 6 we present throughput and latency

achieved by PePaxos, respectively, for applications with list

population of 1, 10K, 100K and 1M elements. In each figure

the results are for configurations in the cartesian product

of conflict probabilities and maximum number of threads.

Graphs on the left side of the figures (a) depict the maximum

throughput. Graphs on the right side of the figures (b) show

throughput and latency for the highest power point achieved in

each configuration. They do not correspond to values for the

same workload. In Figure 7, we show latency and throughput

for the same workload for list sizes 10 and 100k.

Very light cost operations

Figure 3 depicts the results for executions with very light

cost operations. At this side of the spectrum of command

execution times, parallel execution does not make up for the

overhead of scheduling multiple threads. In Figure 3 (a), we

observe that ePaxos throughput is slightly better than PePaxos

with one thread: ∼290K ops/sec vs. ∼275K ops/sec. We

observe in Figure 3 (a) that as we add threads, throughput

is gradually impacted. Also, we observe that lower conflict

rates do not lead to better throughput.

Recall that the algorithm has a sequential part, to identify

SCCs to be executed and then launch them for parallel

execution. The observations above let us conclude that the

sequential part of the algorithm becomes a bottleneck for these

very light command execution times. The overhead of creating

threads per command is higher than executing the commands,

the sequential execution is faster in this case and therefore

conflicts do not affect throughput.

In Figure 3 (b) we observe latency and throughput associ-

ated to the highest power point for each of the configurations.

All latencies fall in a narrow range, as well as the throughput.

This effect is expected: as discussed, since the addition of

threads does not help in this case, the behavior approaches

the sequential one.

Moderate cost operations

Figure 4 shows results when the application handles a

population of 10K elements. Here we observe that it is worth

using the technique proposed. From Figure 4 (a) we observe
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(b) Highest power point: latency and throughput

Fig. 3: Throughput and latency for varying number of threads and conflicts, for very light cost operations (list size 1).
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(b) Highest power point: latency and throughput

Fig. 4: Throughput and latency for varying number of threads and conflicts, for moderate cost operations (list size 10K).

that throughput increases as we add up to 8 worker threads.

For 0%, 1%, 2% and 25% conflict, PePaxos with 8 threads

performs respectively ∼ 5×, ∼ 3×, ∼ 2.7× and ∼ 1.2×
faster than ePaxos. PePaxos with 1 thread and 100% conflicts

performs as well as ePaxos, but slightly loses performance

with more threads due to additional overhead with a sequential

workload. After 8 threads we observe the same throughput

values, indicating that the sequential part of the algorithm

prevents throughput from further scaling with the number of

threads.

In Figure 4 (b) we have the highest power points for each

of the configurations. For 0% conflict we notice an increase

in latency as the number of threads increase. This is because

for each number of threads the highest power ratio chosen had

increased throughput, generated by different workloads.

Heavy cost operations

Figure 5 shows results when the application handles a

population of 100K elements, i.e. 10× the moderate costs

population. Accordingly, in this scenario ePaxos shows a

throughput loss from 20K ops/sec to ∼2K ops/sec and an

increase in latency from ∼5 to ∼50 ms if compared to the

moderate case. From Figure 5 (a), again PePaxos with 1 thread

shows throughput and latency results compatible with ePaxos.

With up to 64 threads PePaxos scales throughput. For 0%,

1%, 2% and 25% conflict, PePaxos with 64 threads performs

respectively ∼ 18×, ∼ 9×, ∼ 7.2× and ∼ 1.5× faster than

ePaxos. With 100% conflicts PePaxos performs as well as

ePaxos, for any number of threads.

The highest power points, Figure 5 (b), show that throughput

scales with the number of threads also for the points before
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(b) Highest power point: latency and throughput

Fig. 5: Throughput and latency for varying number of threads and conflicts, for heavy cost operations (list size 100K).

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

ePaxos 1 2 4 8 16 32 64

T
h

ro
u

g
h

p
u

t 
x

 1
0

0
0

 (
o

p
s/

s)

Worker Threads

List  Size:  1000000

0%
1%
2%

25%
100%

(a) Maximum throughput

�
#�

���
�#�
���
�#�
���
�#�
���
�#�

�	
�� � � � � �� �� ��

�

��

��
�

��
�

��
� � ��� ����� ������� � ����� � 	� �����!� "#$

�$
�$
�$

�#$
���$

�

�,�

�,�

�,�

�,�

�,#

�,�

�	
�� � � � � �� �� ��

%�
 �

&'
�(

&�
�

��
��

��
(

)
�

�� �� %� �
*

�$
�$
�$

�#$
���$

(b) Highest power point: latency and throughput

Fig. 6: Throughput and latency for varying number of threads and conflicts, for very heavy cost operations (list size 1M).

saturation, in each configuration. For these points, in gen-

eral latencies follow the throughput, being associated to the

population of commands being handled at a replica by the

sequential part of the algorithm. In the interval from 16 to 64

threads, for 0% conflicts, where considerable throughput gains

are observed, this latency behavior is quite pronounced.

Very heavy cost operations

Figure 6 shows results when the application handles a

population of 1M elements. In Figure 6 (a) we observe the

same throughput behavior as in Figure 5 (a), however in a

different interval due to the list size 10× higher which implies

in increased command execution times.

Differently from Figure 5 (b), however, in Figure 6 (b) we

observe a different behavior of latencies for the highest power

points. Here latencies generally decrease as throughput raises.

This reveals that the augmented command execution times

play a more important role compared to the sequential part

of the algorithm.

Results for the same workload

In the experiments reported before, workloads varied for

each bar since we selected either the maximum throughput or

the highest power point achieved for each configuration. Now

we fix the workload and observe the behavior with different

configurations. The results are depicted in Figure 7.

As we add threads to the experiment, for the same conflict

rate we have increasing throughput and decreasing latency. For

the same number of threads configuration, and for increasing

conflict rates, we have decreasing throughput and increasing

latency. These observations generalize to different list sizes,

but here we show the 10K and 100K configurations, with 500
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(b) Latency and throughput for list size 100K

Fig. 7: Throughput and latency with the same workload, list sizes 10K and 100K.

clients in each case. This behavior is followed, with variations,

for different workloads (number of clients).

V. RELATED WORK

As it has been early observed [2], independent commands

can be executed concurrently in SMR. Previous works have

shown that many workloads are dominated by independent

commands, which justifies strategies for parallel command

execution (e.g., [25]–[30]). We organize the main approaches

to parallel SMR into four classes, surveyed next.

One approach, which we call (i) late scheduling deals with

these aspects exclusively at the replica side. A total order

of commands is delivered at replicas which then, instead

of sequentially executing them, detect conflicts among pend-

ing commands to schedule independent ones in parallel. In

CBASE [13], replicas are augmented with a deterministic

scheduler to accomplish this. Decided commands are inserted

in a directed acyclic dependency graph. During command

(node) insertion, dependencies with previously inserted com-

mands are detected and included in the graph, as directed

edges. Commands without dependencies are processed by

a pool of threads. The execution of a command leads to

the exclusion of its node from the graph, which removes

dependencies. When multiple cores (threads) are used, the

dependency graph introduces contention. Therefore in [14]

the authors propose faster mechanisms to detect dependencies,

however at the price of false positives, introducing a trade-off

between scheduling overhead and concurrency level. The same

problem is tackled in [17] from a different perspective. Here,

algorithms and structures for a lock-free dependency graph are

proposed, considerably reducing contention.

In [16], a technique called (ii) early scheduling is pro-

posed to avoid contention at a synchronizing data structure

(e.g., DAG). The idea is that scheduling decisions at replicas

should be as expedite as possible. Therefore, clients classify

commands into classes. Replicas have an a priori calculated

mapping from classes to threads, derived from a definition of

conflicts among command classes and expected workload per

class. At replicas, the class information is used to dispatch the

respective command to the input queue of one or more threads,

according to the mapping already decided. The execution

model and the thread mapping ensure the sequential execution

of conflicting commands. This technique can lead to increased

throughput, but performance can be penalized if the workload

deviates from the expected when elaborating the threads to

classes mapping. P-SMR [26] also avoids a central parallelizer

or scheduler. This is achieved by mapping commands to dif-

ferent multicast groups at clients. Non-conflicting commands

are propagated through different multicast groups that partially

order commands across replicas. Commands are delivered by

multiple worker threads according to the multicast group. This

approach imposes a choice of destination group at the client

side, based on command information which is application

specific. Non-conflicting commands can be sent to distinct

groups, while conflicting ones are sent to the same group(s). At

the replica side, each worker thread is associated to a multicast

group and processes commands as they arrive.

Instead of dealing with conflicts prior to command execu-

tion, as previously reported, (iii) optimistic techniques intro-

duce an a posteriori approach. In Eve [10], replicas optimisti-

cally execute batched commands in parallel, as they arrive, and

then check after execution if consistency is violated through

agreement among replicas. In case of a consistency violation,

replicas roll-back and re-execute the commands sequentially.

While roll-back is expected to be rare, it impacts performance.

In Storyboard [11], a forecasting mechanism predicts the same

ordered sequence of locks across replicas. When forecasts are

correct, commands can be executed in parallel. Otherwise,

replicas stop command processing and use agreement to

recompute the command’s execution path. In [30], P-SMR [26]

is extended with optimistic execution to increase concurrency

among commands. Instead of conservatively assuming that two
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commands conflict when not enough information is available

at the clients, it is optimistically assumed that commands do

not conflict. If a conflict happens (detected upon execution),

the involved commands must be re-executed in conflict mode.

Finally, some techniques employ (iv) runtime coordination
mechanisms to ensure deterministic execution at replicas. Rex

[12] uses an execute-agree-follow strategy. A single server,

called primary, receives requests and processes them in parallel

in different threads. While executing, the primary logs a

trace of dependencies among requests based on the shared

variables accessed (locked and unlocked) by each thread.

Then, it periodically proposes a consistent cut of the trace for

agreement to the pool of replicas. The other replicas receive

the traces and replay the execution respecting the partial order

of commands, following the causality on lock and unlock

operations. Trace synchronization may result in high net-

work bandwidth consumption and performance overhead [31].

CRANE [31] uses another strategy to solve non-determinism

during command execution. The socket interface is augmented

to perform agreement (using an underlying Paxos implementa-

tion) on the sequence of incoming calls across replicas. Thread

synchronization uses deterministic multithreading (DMT) [32].

Additionally, CRANE introduces a time bubbling technique

to enforce deterministic logical times for request bursts. The

runtime overhead is non-negligible. Besides agreeing on each

socket event, the DMT system incurs 12.7 % of overhead.

Among the four surveyed classes above, our architecture is

close to late scheduling approaches since scheduling decisions

are all at the server side, before execution. Even though there

has been considerable effort on exploring parallelism in state

machine replication, no approach to date has used generalized

consensus conflict information to favor concurrent command

processing at replicas, the main contribution of this paper.

VI. CONCLUSION

This paper proposes an approach that benefits from general-

ized consensus to schedule parallel execution of independent

SMR commands. This is a natural approach since the same

conflict information from consensus is used during execution.

Contrasting to architectures for parallel SMR that impose a

total order with typical consensus, and then compute command

dependencies for execution, the proposed approach favors both

ordering and execution in an integrated fashion. A detailed

performance evaluation leads us to conclude that using de-

pendency information from consensus to favor the parallel

execution of SMR commands is not only feasible, but also

results in important performance gains.
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