
SMaRtTrie: Reducing Checkpoint’s Impact in SMR Systems
with a CTrie Data Structure
Erick Pintor1, Fernando Luı́s Dotti1

1Pontifical Catholic University of Rio Grande do Sul (PUCRS)
Porto Alegre, RS – Brazil

erick.pintor@edu.pucrs.br, fernando.dotti@pucrs.br

Abstract. State Machine Replication (SMR) is a well-established approach for
the development of fault tolerant systems through replication. Durable SMR sys-
tems rely on command logging and checkpoints for fast recovery upon failures.
However, checkpoints are known to impact service’s throughput as traditional
SMR architectures stop serving requests in order to ensure checkpoint consis-
tency. In this paper, we present SMaRtTrie: a simple in-memory key-value stor-
age built on a concurrent trie data structure that supports the creation of consis-
tent checkpoints in parallel with command execution. Experimental evaluation
shows that SMaRtTrie can reach the same throughput as other commonly used
solution while sustaining 78% throughput during checkpoints.

1. Introduction
State Machine Replication (SMR) [Lamport 1978, Schneider 1990] is a well-established
approach for the development of fault-tolerant systems. In an SMR system, its state is
replicated in multiple machines called replicas. Replicas receive commands from clients
and determine their total order of execution via a consensus protocol. Commands are
deterministically executed in the order agreed upon consensus. Starting from a same
initial state, replicas apply the same sequence of commands and therefore traverse the
same sequence of states. An SMR system can tolerate a number of faulty replicas without
losing state consistency, making it an important technique to sustain high availability in
large distributed systems.

It is often required that an SMR system is made durable so that it can survive
the crash or shutdown of all its replicas without losing its state. Furthermore, upon a
failed replica a replacement has to be introduced with the same state in order to maintain
the availability level. Traditionally, durability in SMR systems is achieved by logging
commands into durable storage in the consensus order. A recovering replica can rebuilt
its state by re-executing all commands in the log. To improve resource utilization and
recovery performance on large data sets, checkpoints of the in-memory state are stored
periodically into a durable storage. In a checkpoint enabled system, a recovering replica
can restore its state by loading the last checkpoint created and re-executing only com-
mands logged after its creation.

While recovery is mandatory for most highly-available systems, and checkpoints
are thus needed for practical use-cases, they are known to impact replica’s throughput
with collateral effects throughout the system. Traditional SMR applications stop execut-
ing commands while creating checkpoints in order to preserve their consistency, which
effectively drops the replica’s throughput to zero [Bessani et al. 2013] and might create



an unavailability window if occurring in a majority of replicas at the same time. Alterna-
tive approaches [Bessani et al. 2013, Zheng et al. 2014] include cross node coordination
to prevent replicas taking checkpoints at the same time, and the usage of non-consistent
snapshots that can be taken in parallel with command execution. However, both solutions
add considerable overall complexity.

In “Concurrent tries with efficient non-blocking snapshots” [Prokopec et al. 2012]
a concurrent trie is proposed (a.k.a.: CTrie) that allows for consistent snapshots to be taken
in constant time (O(1)). In this paper, we investigate the benefit of using this kind of data
structure as the base for state management in an SMR system. We propose SMaRtTrie:
a simple in-memory key-value store based on a concurrent trie. Our experiments show
that SMaRtTrie reaches the same throughput without checkpoints as other commonly
used data structure, and sustain 78% throughput during checkpoint execution (Fig. 5).
Additionally, this paper presents an orthogonal discussion about the impact of garbage
collection algorithms in checkpoint enabled applications on the underlying distribution
platform (BFTSMaRt [Bessani et al. 2014]).

In Section 2 we present the underlying system model and assumptions. Section 3
presents background information on the systems and techniques discussed as well as a dis-
cussion on the checkpoint’s performance impact in SMR applications along with related
work. SMaRtTrie’s implementation details are presented in Section 4 and its evaluation
in Section 5. We conclude this paper by presenting final considerations in Section 6.

2. System Model and Assumptions
We assume a distributed system composed by interconnected processes: there is a
bounded set R = {r1, r2, ...rn} with n replica processes and an unbounded set C =
{c1, c2, ...} of client processes. We assume the crash failure model, excluding arbitrary or
malicious behavior. After crashing, a process may recover. A process is said correct if it
eventually remains up forever, or faulty otherwise. To sustain agreement, and thus service
availability, n >= 2f + 1 replicas are needed, being f the number of tolerated crashes.
Violating this assumption could cause data loss ([Bessani et al. 2013]). Moreover, recov-
ery should be possible in the event of all replicas being compromised. In such cases, to
keep state consistency, we assume standard durability mechanisms.

Processes communicate exclusively by message passing, assuming fair-loss links:
if a sender sends a message enough times it is eventually delivered to correct receivers.
Communication may be both one-to-one and one-to-many. In the later, communication
assumes atomic broadcast properties [Défago et al. 2004]. Additional synchrony assump-
tions for atomic broadcast [Fischer et al. 1985] are not discussed in this paper. We extend
the atomic broadcast deliver(m) primitive to deliver(i,m), where m is the delivered
message and i is the consensus instance, thus allowing to determine if checkpoints must
take place and to calculate which messages should be retrieved upon failure recovery.

Our consistency criterion is linearizability [Herlihy and Wing 1990]. An execu-
tion is linearizable if it’s possible to totally order the operations such that: it respects the
semantics of the objects accessed by the operations as expressed in their sequential spec-
ifications; and it respects the real-time ordering of the operations in the execution. There
is a real-time order among two operations if one operation finishes in a client before the
other operation starts in the same client.



3. Background
To contextualize this paper’s contributions, this section reviews the primary concepts in-
volved: State Machine Replication (SMR) along with the problems that emerge from
checkpoints in SMR systems; related work to mitigate checkpoint impact in SMR appli-
cations; and the concurrent trie data structure investigated.

3.1. State Machine Replication (SMR)

State Machine Replication [Lamport 1978, Schneider 1990] is an approach to build fault
tolerant systems that achieves high availability through replication. In an SMR system,
machines called replicas contain each a copy of the system’s state. State access is made
through commands submitted by clients to any replica in the system. Replicas determine
the commands’ total execution order by running an instance of a consensus protocol such
as Paxos [Lamport et al. 2001] or Raft [Ongaro and Ousterhout 2014]. After executing
a command, the replica acknowledges its completion back to the submitting client. A
fundamental property ensures state consistency across replicas: given that all replicas start
at the same initial state, and deterministically execute all commands in the same order,
they all eventually reach the same final state. The system’s replicated architecture allows
it to tolerate a number of faulty replicas without consistency loss. Conservatively, the
system can continue to execute client issued commands as long as a majority of replicas
stay operational.

Durability is required to ensure the system can survive the crash or shutdown of all
its replicas without losing its state. Traditionally, durability in SMR systems is achieved
through command logging: after each round of consensus, the resulting commands are
persisted in a durable storage in the order agreed upon. A recovering replica can restore
its state by re-executing all commands in the log. It is worth noting that a recovering
replica’s log could become outdated if new commands are processed by the remaining
non-recovering replicas. To reconcile, the recovery process must transfer and execute
missing commands from other non-recovering replicas.

Command logging can consume large amounts of storage space in high throughput
systems. Moreover, recovering a replica’s state form a large log can be time-consuming
as the system has to go through every state transition that ever occurred in order to restore
the state prior to a crash or shutdown. To reduce storage space consumption and improve
recovery performance, a technique called checkpoint is applied: replicas periodically per-
sists a snapshot of their consolidated state into durable storage. After a checkpoint, com-
mands logged prior to its creation can be removed from storage as their effects have been
persisted by the newly created snapshot. In a checkpoint enabled system, a recovering
replica can restore its state by first loading its last snapshot, then only re-executing com-
mands logged after its creation.

3.2. Checkpoint’s Performance Problems and Related Work

In order to create a consistent snapshot of the system’s state, traditional SMR applications
stop executing commands while creating a checkpoint. This solution reduces a replica’s
throughput to zero for the duration of the checkpoint process. Furthermore, if a majority
of replicas start a checkpoint at approximately the same time, it creates a period of gener-
alized unavailability. Adding hardware, such as fast durable storage, might speed up the



process of persisting a snapshot, however, it does not fundamentally solve the problem
which is an artifact of the established algorithmic solution.

An alternative approach [Bessani et al. 2013] to mitigate the risk of unavailability
windows suggests that checkpoints can be coordinated across replicas so that at any given
time there is only one replica in the checkpoint process. This approach takes advantage of
the fault tolerance provided by the SMR architecture where a minority of faulty replicas
do not compromise the system’s operation. However, it does not address the localized
unavailability window created at the replica running the checkpoint. Furthermore, the
replica performing a checkpoint delays command execution until its completion. If the
time spent to catch up with both delayed and newly submitted commands exceeds the
checkpoint interval, multiple lagging replicas could still cause unavailability windows
through delayed quorum.

Another approach [Zheng et al. 2014] suggests the creation of fuzzy checkpoints:
a non-consistent snapshot of the system’s state that can be created in parallel with com-
mand execution. A consistent state is then reconciled from one or more fuzzy checkpoints
in addition to the command logs. This approach attacks the fundamental problem of cre-
ating unavailability windows by trading snapshot consistency for logging and recovery
complexity.

3.3. Concurrent Tries (CTrie)

A Concurrent Trie (CTrie) [Prokopec et al. 2012] is a persistent non-blocking concurrent
hash trie. Its interface, as originally presented, is an in-memory key-value data structure
that provides consistent snapshots. In this discussion we concentrate on the fundamental
primitives to write (insert and remove), read (lookup), and snapshot:

• insert(k, v): given a key k, associates value v to it;
• remove(k): given a key k, remove its associated value;
• lookup(k): given a key k, returns its associated value;
• snapshot(): returns a logical copy of the data structure.

Functional persistent data structures allow for operations that return a logical copy
of the data structure without performing an actual copy of all its elements, typically
achieving logarithmic or even constant complexity [Okasaki 1999]. In a persistent trie,
the data structure is updated by rewriting the path from its root to the leaf where the target
key belongs to, leaving its remaining nodes intact. CTrie employs a similar approach with
the addition of an indirect root node for non-blocking synchronization of concurrent mod-
ifications. The indirect node also contains a generation counter for snapshot purposes.

A consistent snapshot returns a state equivalent to the entire prefix set of opera-
tions up until the snapshot is taken – no intermediate states are observable. To ensure
this property, CTrie implements a new procedure called “Generation Compare and Swap”
(GCAS), based on the “Restricted Double-Compare Single-Swap” (RDCSS) introduced
by [Harris et al. 2002]. GCAS takes 3 arguments: the indirect node observed at the be-
ginning of the operation, the old node being replaced, and the new node to replace the old
one. The GCAS semantics are similar to traditional “Compare and Swap” (CAS) opera-
tions except that it also compares the observed node’s generation counter against the data
structure’s most recent generation.



When a snapshot is taken, it replaces its indirect root node with a new node of
higher generation, returning the previous root node to the call-site. Ongoing write opera-
tions will fail due to the GCAS semantics and retry at the new generation while operations
that finished before the snapshot will be accounted by it. Subsequent updates following a
snapshot compare the generation counter form the target node’s root with the data struc-
ture’s most recent generation, performing necessary path rewrites at first access after a
snapshot. Through the introduction of an indirect root node alongside with a generation
counter and a customized compare-and-swap procedure, CTrie is able to share the neces-
sary work to maintain snapshot consistency (i.e.: path rewriting) among updating threads
while creating consistent snapshots in constant time (O(1)).

4. Proposal
We propose the usage of a CTrie data structure to mitigate the checkpoint’s impact dur-
ing the normal operation of an SMR. Compared to [Zheng et al. 2014], using consistent
checkpoints dispense reconciliation, thus being a fundamentally simpler model to adopt.
This approach is orthogonal to the one presented by [Bessani et al. 2013] and could be
used in addition to cross replica checkpoint coordination.

We regard CTrie as a generic structure to keep SMR’s state. In order to be used
for SMR checkpoints, additionally to being consistent, a CTrie snapshot has to assume a
known position in the total order of execution provided by the atomic broadcast, therefore
separating the prefix of commands before and after the snapshot so that logging can be
consistent with the checkpoints taken.

4.1. Execution Model

We assume replicas are equipped with volatile memory and stable durable storage. Ser-
vice state is kept in-memory. According to the SMR execution model of a replica (Al-
gorithm 1), commands are delivered in total order at replicas with deliver(i,m) (line 7).
Each command is applied in its order, logged, and its response is sent to the client (lines 8
to 10). At each known interval ∆ of commands, a checkpoint is performed by the replica
and the log is reset to have only the commands after the last checkpoint (lines 12, 15,
and 20).

Algorithm 1 presents both the traditional checkpoint (line 13) and this paper’s
proposal (line 16). In traditional checkpoint implementations, state has to be persisted
to storage before executing new commands. In the proposed implementation, a CTrie
snapshot serves as an SMR checkpoint. According to the CTrie definition, the snapshot
operation marks the root of the CTrie with a new generation and subsequent state changes
keep previous generation’s state unchanged. Therefore, a snapshot operation provides a
logical copy of the data structure in constant time, as discussed in Section 3.3. Commands
following a snapshot take effect in the new generation of the CTrie, hence, keeping pre-
vious generation untouched and allowing the snapshot to be persisted concurrently with
command execution on the new generation.

Considering the sequential SMR execution model and the CTrie semantics pre-
sented, commands executed before a snapshot are accounted by its generation while com-
mands executed after a snapshot only take effect at the newly created generation. Hence,
the CTrie snapshot has effect in a known position regarding the total order of commands



Algorithm 1 Replica’s execution model.
1: Types and Variables:
2: state : the state of the replica (initially empty) {in our approach: a CTrie}
3: log : the log of commands applied (initially empty)
4: ∆ : the command interval to take checkpoints
5: storage : represents the possibility of persisting data

6: Replica works as follows:
7: on deliver(i, cmd) {atomic broadcast delivers ith command}
8: rsp← apply(state, cmd) {sequentially applies cmd to state}
9: append(log, cmd) {add cmd to log}

10: send(client(cmd), rsp) {assume client is known from cmd}
11: if i mod ∆ = 0 then {should start a checkpoint?}
12: checkpoint(state, storage) {one of lines 13 or 16 below}

13: checkpointTraditional(state, storage) {traditional version}
14: persist(state, storage) {writes state to stable storage}
15: log ← {} {reset the log}

16: checkpointProposed(state, storage) {proposed version}
17: CTrie snpsht← snapshot(state) {a CTrie snapshot – it marks the root and returns}
18: start thread to {concurrently with new commands}
19: persist(snpsht, storage) {writes state to stable storage}
20: log ← {} {reset the log}

which maintains the algorithm’s linearization point – line 14 in the traditional SMR ar-
chitecture and line 17 in the proposed solution. The adoption of the CTrie data structure
preserves the sequential semantics of the SMR architecture, therefore adhering to its guar-
antees while mitigating the checkpoint’s impact by moving data persistence to a separate
thread and allowing for command execution to continue in parallel.

With regard to failure recovery, typically, a recovering replica: retrieves the most
recent checkpoint and the associated log of commands, that is, commands that were al-
ready executed by the operational replicas but are not included in the retrieved checkpoint;
installs the checkpoint; executes the obtained log of commands; and then resumes pro-
cessing new commands arriving through the atomic broadcast primitive. Since the pro-
posed approach generates logs consistent with checkpoints, this standard recovery pro-
cedure applies. Contributions in the literature to speed up the recovery process, such as
[Bessani et al. 2013, Mendizabal et al. 2017], are also applicable although not discussed
in this paper.

4.2. The SMaRtTrie Application

To fulfill the experimental evaluation proposed, we designed SMaRtTrie as an in-memory
key-value storage. SMaRtTrie follows the SMR execution model presented in Section 4.1.
Moreover, SMaRtTrie implements two state management models: the blocking (tradi-
tional) model, based on TreeMap1; and the concurrent (proposed) model, based on a
TrieMap2. Both TreeMap and TrieMap provide in memory key-value stores supporting,

1https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/
util/TreeMap.html

2https://scala-lang.org/api/current/scala/collection/concurrent/
TrieMap.html



besides key-value pair iterators, other commonly known operations for this kind of data
structures:

• get(k): Given a key k, returns its associated value, if any;
• put(k, v): Given a key k, associates the value v to it;
• remove(k): Given the key k, remove and return its associated value, if any.

Both models persist state by ensuring all its key-value pairs are transferred and
written to durable storage. The prototype works with command batches, hence, the atomic
broadcast primitive delivers the batch of commands processed at a given consensus in-
stance. Commands in a batch are applied sequentially on the replicas state, following the
SMR’s execution model presented.

In order to focus on checkpoint’s performance impact during normal operation, as
well as to reduce performance variance in its evaluation, we assume failure free scenarios
with disabled logging during the experiments. Although disabled, considering no changes
to the SMR overall architecture were introduced, standard logging and failure recovery
techniques still applies. Having both models implemented in SMaRtTrie, we present its
experimental evaluation in Section 5.

4.2.1. Technologies and Platforms

The SMaRtTrie application has been developed using the Scala3 programming language,
which has a builtin CTrie data structure in its standard library called TrieMap. By leverag-
ing Scala’s interoperability with the Java4 platform, SMaRtTrie is able to use the BFTS-
MaRt [Bessani et al. 2014] library as the basis for its SMR implementation as well as the
YCSB [Cooper et al. 2010] framework for benchmark purposes.

BFTSMaRt is a well-established library for the development of SMR applications
in the Java platform. Like other SMR libraries, it offers standard operations to help with
commonly required tasks such as checkpoints, command logging, state-transfer, and re-
covery.

YCSB is a benchmark tool that facilitates the comparison of different commonly
used database service providers. YCSB comes with a set of standard benchmarks that
can be easily integrated with most database services. Database vendors can implement
the YCSB client interface and run its standard benchmarks to evaluate their products
against different competitors. At the same time, infrastructure maintainers can run YCSB
benchmarks to evaluate their infrastructure performance against the vendor’s promises.
Due to its high flexibility in customizing or creating entirely new benchmarks, the YCSB
tool has been chosen to evaluate SMaRtTrie’s performance in the experiments presented
in this paper.

4.2.2. Common Engineering and Performance Aspects

To better evaluate the impact of the different approaches, we identified common sources
of overhead and worked to minimize them so that performance results are more clearly

3https://scala-lang.org
4https://www.java.com/



associated to the different checkpoint approaches.

To minimize data copying during checkpoint execution, SMaRtTrie makes usage
of memory mapped buffers5 shared between its process and the operating system. SMaRt-
Trie’s key-value pair encoder is capable of writing its binary format into memory mapped
buffers, thus reducing needless allocation and data copying between application and the
operating system during IO operations. SMaRtTrie also minimizes memory allocation
of commonly used data structures in its binary encoder and decoder by employing ob-
ject pools [Freeman 2015]. These optimizations equally benefit both the blocking and
concurrent models as the optimized components play an equal role in both approaches.

The chosen runtime, the Java Virtual Machine (JVM) [Stärk et al. 2012], auto-
matically manages memory allocation, retention, and release (a.k.a.: garbage collection
or GC). At high level, a GC algorithm pauses the running program, frees its unused mem-
ory blocks, then resumes program execution. This process is commonly referred to as a
GC event. Automatic memory management, although often associated with higher de-
veloper productivity, can impact memory intensive systems such as an in-memory data
storage. Among the available choices6 in the JVM’s version 11, we emphasize here the
algorithms evaluated for throughput impact during SMR operation. Detailed results are
presented in Section 5.

• G1 GC. The G1 GC is the default algorithm in the JVM version 11. It’s a general
purpose GC that has a high probability of achieving GC goals while balancing
high throughput;

• Parallel GC. The parallel collector is intended for medium to large-sized data sets
that run on multi-core machines;

• Z GC. The Z garbage collector is indented for large memory sizes and applications
that can not tolerate large GC pauses.

5. Evaluation
SMaRtTrie’s performance has been evaluated experimentally in a proprietary cluster. The
following subsections present the experimental environment, its parameters, and the re-
sults obtained.

5.1. Experimental Environment

The experimental environment used is a proprietary cluster composed by machines of
various hardware profiles. Experiments presented in this paper were executed using two
machines: a server running the SMaRtTrie application; and a client running a YCSB
benchmark. Although SMR applications require multiple replicas to ensure fault toler-
ance, these experiments evaluate the performance of a single replica only. Considering
that no changes to the SMR protocol were introduced, the results obtained are independent
of cluster topology and should equally benefit additional replicas.

Both client and server have a Dual-Core AMD Opteron processor with 4 CPUs,
21 GB of memory, and 117 GB of SSD storage. Client and server also run the Ubuntu

5https://man7.org/linux/man-pages/man2/mmap.2.html
6https://docs.oracle.com/en/java/javase/11/gctuning/

available-collectors.html



operating system version 18.04.1 and have the Java Virtual Machine version 11 installed.
Machines in the cluster are connected via an internal high speed network. Despite the us-
age of a proprietary cluster, SMaRtTrie has no hardware specific requirements and should
run with similar performance in environments of similar hardware profile.

A YCSB benchmark has been designed with three phases that run sequentially:

1. Load: inserts a number of random key-value pairs into the system;
2. Warm-up: runs a number of updates at random key-value pairs;
3. Benchmark: runs a number updates at random key-value pairs.

The number of key-value pairs as well as concurrent clients can be configured
per phase. In the load phase, the benchmark creates a data set of configurable size to
reduce the impact of expanding and/or re-balancing internal data structures during its ex-
ecution. The warm-up phase is intended to heat caches and object pools to amortize their
initialization impact into performance measurements. Finally, the benchmark phase exe-
cutes a configured number of update requests for performance measurement. In both the
warm-up and the benchmark phases, a configurable number of clients issue requests in
a closed loop: a client issues a request and wait for its completion before submitting an-
other. The YCSB framework reports performance measurements in the form of operations
completed per second while SMaRtTrie reports checkpoint initialization and completion.
The aggregated results are presented in the following sections.

5.2. Experiments’ Parameters

Preliminary experiments were executed for debugging and profiling purposes. The sub-
sections bellow present the two major parameters choices derived from these experiments:
the choice of garbage collection algorithm and the number of concurrent clients.

5.2.1. Garbage Collection Algorithm

The YCSB benchmark was executed with the SMaRtTrie prototype using different
garbage collection algorithms in the Java Virtual Machine. These experiments were con-
ducted without checkpoints. They reveal that throughput is severely impacted by the
choice of the garbage collection algorithm. Figure 1 shows a comparison of throughput
by GC, including its mean, standard deviation (SD), and error (SE) measurements.

We observe a correlation between throughput drops and GC pauses while using
the G1 garbage collector, particularly related to periods of high GC activity. Although GC
pauses are sparse when using the Parallel GC algorithm, it occasionally produces larger
pauses which translates into significant drops in the system’s throughput. The Z GC
algorithm issues regular but short pauses which managed to produce the least impact in
our experiments, as evidenced by its higher average throughput, lower standard deviation,
and lower standard error.

Z GC was chosen for the remaining experiments presented in this paper. Its low
throughput impact further increases confidence in the comparisons between the blocking
and concurrent models by reducing environmental noise observed during experimental
evaluation.



0

2500

5000

7500

10000

12500

14:22 14:23 14:24 14:25 14:26
Time

T
hr

ou
gh

pu
t (

rp
s)

G1 GC

0

2500

5000

7500

10000

12500

16:23 16:24 16:25 16:26
Time

T
hr

ou
gh

pu
t (

rp
s)

Parallel GC

0

2500

5000

7500

10000

12500

15:12 15:13 15:14 15:15
Time

T
hr

ou
gh

pu
t (

rp
s)

Z GC
GC

G1

Mean

Parallel

SD

Z

SE

9325.20

9510.91

9771.54

1202.98

2132.02

 704.92

 75.93

131.22

 47.85

Unit: requests per second.

GC Pause

Figure 1. Throughput by garbage collection algorithm.

5.2.2. Number of Concurrent Clients

YCSB clients generate a workload by continuously issuing sequential requests in a closed
loop routine. Each client runs in its own thread. An experiment with increasing num-
ber of concurrent clients was executed in order to estimate the system’s saturation point
(Fig. 2). The system’s peak throughput is achieved with 32 clients. Beyond this threshold,
throughput does not increase with the number of concurrent clients but latency increases
significantly. We conservatively chose to run the remaining experiments with 8 clients so
that they stay safely bellow its saturation mark.

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

2000 3000 4000 5000 6000 7000 8000 9000
Throughput (rps)

La
te

nc
y 

(m
s)

Model

Blocking

Concurrent

Clients

1

2

4

8

16

32

64

128

256

512

Figure 2. Throughput vs latency by number of clients.

Additionally, a micro-benchmark was executed with the data structures used in the
prototype to determine their relationship with the system’s saturation point. The micro-
benchmark is a single threaded process executing a series of updates in each target data
structure after an initial data load. Figure 3 shows that the throughput of the data struc-
tures in isolation are far greater than then system’s peak throughput, indicating that state
management is not a limiting factor at current scale.



0

200.000

400.000

600.000

800.000

1.000.000

1.200.000

1.400.000

1.600.000

1.800.000

2.000.000

2.200.000

2.400.000

2.600.000

2.800.000

100M 1G 5G
Size

T
hr

ou
gh

pu
t (

op
s/

se
c)

Data structure

TreeMap

TrieMap

Figure 3. Data structures micro-benchmarks. Throughput vs. state size.

5.3. Results

Figure 4 shows the throughput of the blocking checkpoint model with data set of 5 GB
while running 20M requests. As described in Section 3.2, to keep consistency, the appli-
cation stops processing commands during checkpoint execution which are delimited by
the red (start) and green (stop) markers. This leads to the impacts measured, showing
sudden drops in the system’s throughput that last for the duration of the checkpoint pro-
cess. This behavior has been observed in the literature [Bessani et al. 2013] and is hereby
reproduced.

0
500

1000
1500
2000
2500
3000
3500
4000
4500
5000
5500
6000
6500
7000
7500
8000
8500

17:50 17:55 18:00 18:05 18:10 18:15 18:20 18:25 18:30 18:35 18:40 18:45
Time

T
hr

ou
gh

pu
t (

rp
s)

Markers: Checkpoint start Checkpoint stop

Figure 4. Throughput using blocking checkpoints.

Figure 5 shows the throughput of the concurrent state management model with
same data set size and number of requests (5G and 20M). As described in Sections 3.3
and 4.1, the CTrie’s capabilities that allows for the checkpoint process to run in parallel
with command execution alleviates the checkpoint’s impact into the system’s requests per
second metric. As before, the red and green markers show respectively the moment the
checkpoint is requested and finishes being persisted into durable storage.

The request rate sustained by the concurrent model during checkpoint periods
produces overall higher average throughput, lower standard deviation (SD), and lower



0
500

1000
1500
2000
2500
3000
3500
4000
4500
5000
5500
6000
6500
7000
7500
8000
8500

19:10 19:15 19:20 19:25 19:30 19:35 19:40 19:45 19:50 19:55
Time

T
hr

ou
gh

pu
t (

rp
s)

Markers: Checkpoint start Checkpoint stop

Figure 5. Throughput using concurrent checkpoints.

standard error (SE) (Tab. 1). Hence, the concurrent model is not only faster on average
than its blocking counterpart but, it also responds to client requests with less latency
variability overtime. A further breakdown of throughput observed outside (No) and during
(Yes) checkpoint periods is shown in Table 2. It reveals that the concurrent model is
able to sustain about 78% of its normal throughput during checkpoints. There isn’t an
equivalent breakdown for the blocking model as its throughput during checkpoints its
trivially observed to be zero (Fig. 4).

Model Mean SD SE
Blocking 6375.02 2685.29 44.75

Concurrent 7269.79 780.73 13.01
± +14.04% -70.93% -70.93%

Table 1. Overall throughput (request/second) by model.

Checkpoint Mean SD SE
No 7518.87 494.47 8.96
Yes 5894.44 625.36 26.62
± -21.6% -26.47% +197.18%

Table 2. Concurrent model’s throughput (request/second) by period.

Finally, Figure 6 presents average latency while varying the number of clients
and state size. Both models increase their throughput with the number of concurrent
clients. The smallest state size (100M) present similar average throughput in both models.
However, as the state size grows, and therefore the checkpoint process becomes more
expensive and time-consuming, the concurrent checkpoint model starts to present higher
average throughput.

The experiments presented in this section show that SMaRtTrie’s concurrent
checkpoint model allows it to outperform its traditional blocking checkpoint counterpart.
Although evaluations were made at a single replica, its benefits should equally extend



1 client 2 clients 4 clients 8 clients

100M
1G

5G

0

2000

4000

6000

8000

0

2000

4000

6000

8000

0

2000

4000

6000

8000

T
hr

ou
gh

pu
t (

rp
s)

Model

Blocking

Concurrent

Figure 6. Throughput by thread and state size.

to additional replicas. Moreover, the concurrent model addresses the fundamental prob-
lem of stopping command processing during checkpoint execution which, as described
in Section 3.2, could cause an unavailability window if a majority of replicas start their
checkpoint process in an overlapping time period. The work to measure the performance
benefits of deploying SMaRtTrie in a multi-replica topology is left for future contribu-
tions.

6. Conclusion
This paper presents SMaRtTrie: a simple in-memory key-value store based on a CTrie
data structure. We demonstrated the benefit of its concurrent checkpoint model via ex-
perimental evaluation. Noticeably, SMaRtTrie is able to reach the same throughput as
other commonly used solution while sustaining 78% throughput during checkpoints. We
have discussed how consistent concurrent checkpoints benefits multi-replica SMR appli-
cations, although its evaluation is left for future contributions. Additionally, an orthogonal
research into the impact of garbage collection algorithms was presented while defining the
experiments’ parameters.

The data structures used in the prototype have shown high throughput in isolation
(Sec. 5.2). However, the system peak throughput is nowhere near the data structures’
peak performance, suggesting that there are other limiting components. In this paper we
focused on the impact of checkpoints in SMR systems, leaving additional optimizations
to non-checkpoint related components to future contributions. SMaRtTrie uses a general
purpose CTrie implemented in the Scala language’s standard library. It’s feasible to con-
ceive that a specialized version of a CTrie built with the purpose of supporting in-memory
key-value SMR systems could expand its benefits further.

SMaRtTrie’s source code along with its experiment instrumentation, results, and
analysis are available via the GitHub 7 open source platform.

References
Bessani, A., Santos, M., Felix, J., Neves, N., and Correia, M. (2013). On the efficiency of

durable state machine replication. In 2013 {USENIX} Annual Technical Conference
7http://github.com/erickpintor/smarttrie



({USENIX}{ATC} 13), pages 169–180.

Bessani, A., Sousa, J., and Alchieri, E. E. (2014). State machine replication for the
masses with bft-smart. In 2014 44th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks, pages 355–362. IEEE.

Cooper, B. F., Silberstein, A., Tam, E., Ramakrishnan, R., and Sears, R. (2010). Bench-
marking cloud serving systems with ycsb. In Proceedings of the 1st ACM symposium
on Cloud computing, pages 143–154.

Défago, X., Schiper, A., and Urbán, P. (2004). Total order broadcast and multicast algo-
rithms: Taxonomy and survey. ACM Computing Surveys, 36(4):372–421.

Fischer, M. J., Lynch, N. A., and Paterson, M. S. (1985). Impossibility of distributed
consensus with one faulty process. Journal of the ACM, 32(2):374–382.

Freeman, A. (2015). The object pool pattern. In Pro Design Patterns in Swift, pages
137–156. Springer.

Harris, T. L., Fraser, K., and Pratt, I. A. (2002). A practical multi-word compare-and-swap
operation. In International Symposium on Distributed Computing, pages 265–279.
Springer.

Herlihy, M. and Wing, J. M. (1990). Linearizability: A correctness condition for concur-
rent objects. ACM Transactions on Programing Languages and Systems, 12(3):463–
492.

Lamport, L. (1978). Time, clocks, and the ordering of events in a distributed system.
Communications of the ACM, 21(7):558–565.

Lamport, L. et al. (2001). Paxos made simple. ACM Sigact News, 32(4):18–25.

Mendizabal, O. M., Dotti, F. L., and Pedone, F. (2017). High performance recovery for
parallel state machine replication. In 2017 IEEE 37th International Conference on
Distributed Computing Systems (ICDCS), pages 34–44.

Okasaki, C. (1999). Purely functional data structures. Cambridge University Press.

Ongaro, D. and Ousterhout, J. (2014). In search of an understandable consensus algo-
rithm. In 2014 {USENIX} Annual Technical Conference ({USENIX}{ATC} 14), pages
305–319.

Prokopec, A., Bronson, N. G., Bagwell, P., and Odersky, M. (2012). Concurrent tries
with efficient non-blocking snapshots. In Proceedings of the 17th ACM SIGPLAN
symposium on Principles and Practice of Parallel Programming, pages 151–160.

Schneider, F. B. (1990). Implementing fault-tolerant services using the state machine
approach: A tutorial. ACM Computing Surveys (CSUR), 22(4):299–319.

Stärk, R. F., Schmid, J., and Börger, E. (2012). Java and the Java virtual machine:
definition, verification, validation. Springer Science & Business Media.

Zheng, W., Tu, S., Kohler, E., and Liskov, B. (2014). Fast databases with fast durability
and recovery through multicore parallelism. In 11th {USENIX} Symposium on Oper-
ating Systems Design and Implementation ({OSDI} 14), pages 465–477.


