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Abstract—Teaching computer programming to the visually
impaired is a difficult task that has sparked a great deal of
interest, in part due to its specific demands. Robotics has been one
of the strategies adopted to help in this task. One system that uses
robotics to teach programming for the visually impaired, called
Donnie, has as its key part the need to detect Braille characters
in a scaled-down environment. In this paper, we investigate the
current state-of-the-art in Braille letter detection based on deep
neural networks. For such, we provide a novel public dataset
with 2818 labeled images of Braille characters, classified in the
letters of the alphabet, and we present a comparison among some
recent detection methods. As a result, the proposed Braille letters
detection method could be used to assist in teaching programming
for blind students using a scaled-down physical environment. The
proposal of EVA (Ethylene Vinyl Acetate) pieces with pins to
represent Braille letters in this environment is also a contribution.

Index Terms—Educational Robotics, Assistive Robotics,Deep
Neural Networks, Braille.

I. INTRODUCTION

There is a great concern of the community in developing
new ways to teach programming to the visually impaired
learners [1]–[3]. Several strategies have been proposed in the
last years to make the programming learning process more
accessible for these learners. Among several strategies that
have been adopted, as the use of physical artifacts to provide
tactile information [3], robotics has been used as a tool to
assist in this task [4]–[7].

In previous work [8], we presented a new educa-
tional/assistive robot called Donnie and its programming en-
vironment, which allows both the practice of computational
thinking and the training of orientation and mobility skills
that is inclusive for visually impaired people1.

We gratefully acknowledge the support of NVIDIA Corporation with the
donation of Titan Xp GPU used for this research. The result of this work was
achieved in cooperation with HP Brasil Indústria e Comércio de Equipamentos
Eletrônicos LTDA. using incentives of Brazilian Informatics Law (Law nº
8.2.48 of 1991). This work was supported by the CNPq/MCTIC/SECIS Nº
20/2016, National Council for Scientific and Technological Development –
CNPq. It was also partially supported by PUCRS (Edital 01/2018 - Chamada
Geral).

1Extensive documentation and manuals about Donnie are available at
https://github.com/lsa-pucrs/donnie-assistive-robot-sw

It’s well known that visually impaired people have orienta-
tion and mobility difficulties when facing a new environment.
Let us assume a scenario where a blind student moves to
a new school. One way this project can help the student is
by modeling a scaled-down version of the school’s floorplan.
Then the student can practice some programming skills to
perform mobility challenges in this scenario. For instance, the
student can practice going from his classroom to the bathroom.
The shorter distance he can move the robot, the more points
are earned. In parallel, the student is also learning how to
move independently in this new environment. However, there
are some challenges to reach this goal. How can the blind
student know he is driving the robot to the correct direction?
How can the student know that he is getting closer or reached
the goal? The approach chosen for this project is to place
markers in the environment that will give hints to the students
of the robot’s location.

When executing the virtual scenario by software simulation,
this task of object or place identification can be easily accom-
plished by using simulated fiducial markers or tags spread in
the virtual environment. However, when using the real robot,
the same task is much more complex. It is necessary to set up
an environment with objects that must be recognized by the
robot. For this reason, Donnie has a camera on its head with
horizontal movement, to search for objects.

Using normal markers such as QR Code would be easy
for the robot perception, but it is not useful for blind users
that need to assemble and identify the objects in a dynamic
physical environment. One of the goals of the project was
accessibility for both users of the simulator and of the actual
robot. Thus, the alternative is to build markers using the Braille
alphabet, which can be both felt by the users and detected by
the robot camera, as exemplified in Figure 1.

In this paper, we present a new approach for the detection
of markers in the Braille alphabet using Convolutional Neural
Networks to help in the assistive physical environment of the
Donnie robot. Our main contributions include a novel public
dataset 2 with 2818 labeled images of Braille characters, classi-

2https://www.kaggle.com/dlngoncalves/donnie-braille



fied in the letters of the alphabet; a proposal of EVA (Ethylene
Vinyl Acetate) pieces with pins to represent Braille characters
in the physical environment that need to be recognized; and a
comparison among the use of recent methods for detection of
Braille alphabet.

The remainder of this paper is organized as follows. We
briefly describe some related work in Section II. Section III
describes our novel dataset. The detection methods we employ
are presented in Section IV. Our results and main findings
regarding the suitability of employing state-of-the-art deep
neural approaches for Braille character recognition are de-
scribed in Section V. Finally, we end this paper with our
conclusions and future work directions in Section VI.

Fig. 1. Example of the robot in a real environment. The Braille markers are
in blue with dots in red.

II. BACKGROUND

Optical Braille Recognition (OBR) is the sequence of steps
involved in converting the contents of images of Braille text
documents into natural language. A description of the Braille
script and a general methodology for OBR is presented by
Isayed and Tahbou [9]. Their work compares different OBR
techniques based on criteria such as image acquisition and
Braille dots detection techniques. The authors notice that
most of the techniques found in literature use scanner image
acquisition, with few using mobile or standard cameras. They
also observed a lack of artificial intelligence approaches as
neural networks. Later, a review of some OBR methods that
use a camera for image acquisition was presented by Nugroho
et al. [10].

One early approach that used a multi-layer perceptron neural
network for Braille character recognition was presented by
Morgavi and Morando [11]. Another early work [12] used
image processing techniques and probabilistic neural networks
to recognize and transcribe Braille documents. Zhang and
Yoshino [13] use images acquired by a mobile phone with
image processing techniques for the recognition of Braille used
in Japan. Li and Yan [14] used Support-Vector Machine to
recognize Braille characters from an image. Artificial neural
networks were also recently used by Waleed [15] to identify
numbers in Braille from images.

Recently, deep learning methods have been used for OBR,
such as the stacked denoising autoencoder proposed by Li et

al. [16], which achieved good results compared to traditional
methods. Shimomura et al. [17] also used deep learning
techniques to convert Braille books into machine-readable
electronic data.

Despite the different detection techniques used, almost all
the works listed above use images acquired by traditional
flat-bed scanners. Moreover, few of them use recent deep
learning techniques. In this work, we use images acquired by
a common camera (thus the Braille characters are viewed from
different angles) and deep neural networks, which have shown
promising results for OBR.

III. A NOVEL BRAILLE DATASET

To the best of our knowledge, there is no public dataset of
images of Braille characters, at least not one large enough to be
used with machine learning techniques. In the review of OBR
techniques presented by Isayed and Tahboub [9], the authors
mention that there is no benchmark to test the algorithms and
researchers use their database and Braille images to measure
performance.

Thus, for this work, a dataset of images of Braille characters
was produced, with the goal of using it to train a convolutional
neural network for the detection and recognition of such
characters. The images produced were of cropped individual
letters of the Portuguese Braille alphabet. Some of such images
used in this training are shown in Figure 2.

(a) (b) (c)

Fig. 2. A selection of Braille character images. (a) Braille character a. (b)
Braille character f. (c) Braille character r.

For the Donnie project, it was necessary to be able to
visually detect and classify Braille characters in a scaled-
down real-world environment, with the robot’s camera being
used for image acquisition, as exemplified in Figure 1. The
robot should be able to detect characters in distances up to a
meter. Additionally, scenes needed to be dynamic and easily
modifiable by users without additional difficulties for the
visually impaired. However, this detection of Braille characters
in a real-world environment proved to be challenging, because
they are small, usually showing very little visual contrast
with their backgrounds, making them hard to detect. Some
characters are also very similar, a characteristic that makes
them hard to classify from a distance when relying only on
visual information.

Considering these problems and the needs of the Donnie
project, we designed and produced small acrylic pieces that
can be used to represent Braille characters, as shown in Fig-
ures 3(a) and 3(b). The pieces are larger and have significantly
more contrast with the environment than traditional Braille



characters printed on paper. Moreover, they facilitate the task
of identifying objects by blind users.

(a) (b) (c)

Fig. 3. Types of acrylic Braille pieces. (a) Pins representing characters. (b)
Magnets representing characters. (c) EVA Braille pieces with acrylic pins.

We used smartphones and the robot camera to collect
images to compose the dataset. The images contained the
pieces in different backgrounds and positions. Thus, we were
able to capture several images of the Braille character from
different angles and with lighting variations more quickly.
Since the camera of the Donnie robot uses a resolution of
640×480, the images acquired with smartphones were resized
to this size by a Python script before annotation. To annotate
the images, we used the software labelImg3. In the end, we
had a total of 26 classes, one for each letter.

Initially, the dataset was composed of images of two types
of Braille pieces, both containing a magnetic layer overlaid
with acrylic and with six holes. The first type showed in
Figure 3(a), used acrylic colored pins attached to magnets to fit
into the holes and form the characters. The second one showed
in Figure 3(b), used only magnets to fit into the holes. This
dataset had 3527 images but was incomplete since 6 letters
did not have any instances. The testing phase showed that the
neural network couldn’t identify any instance of some letters.

Since the results weren’t satisfactory, we decided to com-
pose a dataset where all the pieces had similar pins. However,
after some visually impaired people had manipulated the
Braille pieces, they suffered changes in its design due to
the difficulty encountered to use the magnets to compose the
characters. The new pieces, shown in Figure 3(c), have the
background part made of EVA, with acrylic pieces of a differ-
ent color for the pins used to fit into the holes and represent
the characters. This configuration was preferred by visually
impaired users with regards to usability and accessibility after
they performed some writing and reading activities with the
pieces. The colors were chosen based on preliminary detection
results.

To compose the new dataset, we removed all images that had
pieces that only used magnets to represent characters. After the
removal, the dataset remained with 991 images of pieces that
used colored pins attached to magnets. Then, we added images
of the new EVA pieces so that every letter had at least 100
different images. At the end of the process, the data set was
with 2818 images separated in the 26 letters of the alphabet.

3https://github.com/tzutalin/labelImg

After several tests, we noticed that videos containing words
composed by the Braille pieces presented worse results than
the videos with individual Braille pieces. Thus, we decided
to add annotated images of sequences of characters to the
dataset. These images presented the Braille pieces side by side
in a white acrylic base, as shown in Figure 4. A total of 217
images were annotated, with sequence length varying between
4 and 10 characters.

Fig. 4. Example of a sequence of pieces.

For the sake of testing false positives an additional 32
images were captured with the following scenarios:

• Pieces with configurations that do not represent a valid
character;

• Two pieces forming one character using one column of
each piece;

• Pieces with no configuration;
• Acrylic pins forming a character out of the base.

A sample of those scenarios is shown in Figure 5.

(a) (b) (c)

Fig. 5. Invalid configurations. (a) One character in two pieces. (b) Empty
background. (c) Pins without a background.

IV. DETECTION METHODS

In recent years Convolutional Neural Networks (CNN) have
become very successful in image classification and object de-
tection tasks, as shown in one pioneer work [18] that won the
2012 ImageNet image classification competition. They are one
of the deep learning methods, which has many convolutional
layers. In this work, we used state-of-the-art deep learning
techniques for object detection and classification on our cus-
tom Braille dataset, and we evaluated their performances. The
used techniques were Mask R-CNN and YOLOv2. In the next
sections, we briefly describe and compare these techniques.

A. Mask R-CNN

Mask R-CNN [19] is a framework for object instance
segmentation that extends the Faster R-CNN [20]. Both are
based on the Region-based Convolutional Neural Network (R-
CNN) [21] approach to bounding-box object detection.



R-CNN first generates regions of interest for potential
bounding boxes and then runs a classifier on those regions.
Faster R-CNN consists of two stages: in the first one occurs
the proposition of candidate bounding boxes; the second stage
use region of interest pool to extract features and perform
classification and bounding box regression.

Mask R-CNN extends Faster R-CNN by adding the calcula-
tion of a binary mask to each region of interest. The calculation
of the binary mask occurs in parallel with the second stage of
Faster R-CNN, and the first stage continues the same.

B. YOLO - You Only Look Once

YOLO [22] presents a new approach to object detection. It
treats object detection as a regression problem, using a single
convolutional network to simultaneously predict bounding
boxes and generate class probabilities for those boxes. This is
done by analyzing the entire image during training, dividing
it into a grid, and for each grid cell predicting a number of
bounding boxes, the confidence score of those boxes, and a
set of class probabilities.

Using this approach YOLO can achieve good results in
terms of precision metrics, being the fastest object detector.
One downside of the YOLO approach is that it has lower
precision than other methods. Also, the spatial constraints
imposed by the small number of bounding boxes predicted
by each grid cell limit the number of nearby objects YOLO
can predict. It also struggles with small objects [22].

V. EXPERIMENTAL ANALYSIS

To validate the use of our dataset in the task of training
models for detecting Braille characters and use on the Donnie
project, we performed experiments with both the YOLO and
Mask R-CNN approaches on it. The training was carried out
on a dual Intel Xeon E5-2620 system, with 48GB of RAM,
and an NVIDIA Titan Xp GPU with 12GB of VRAM.

For better initialization, we used pre-trained weights from
ImageNet in the networks’ backends. We also used data aug-
mentation techniques to enlarge our dataset, such as blurring,
sharpening, adding noise, and rotating the images. However,
due to the similarities between characters, some techniques, as
flipping the images, were avoided. To train the models, 80%
of the dataset was used for training and the rest of the images
were used for validation.

A. Ablation Experiments

We performed an ablation experiment on the networks
by analyzing the use of different backbone architectures.
Backbone architectures are used for feature extraction over
an image before classification. We trained the YOLO net-
work using the Full YOLO, Tiny YOLO, Inception v3 [23],
SqueezeNet [24] and MobileNet [25] backbones. Mask R-
CNN was trained using both the ResNet101 and the ResNet50
backbones. The backbone architectures differ mainly in re-
lation to the number and organization of their convolutional
layers. All models were trained for 200 epochs.

Another experiment was done to understand what features
of the characters were learned by the networks. The obtained
results are presented in the next sections.

B. Comparative Performance

The evaluation metric used to measure the accuracy of
the trained models was mean Average Precision (mAP) as
defined by the COCO dataset [26]. In this case, predictions are
considered correct when their intersection over union (IOU)
values regarding the ground truth bounding box are over 0.5.
Scores for the models are shown in Table I.

TABLE I
MAP SCORES FOR THE DIFFERENT MODELS TRAINED.

Model mAP Score
YOLO Full 0.9419
YOLO Tiny 0.9167
YOLO Inception V3 0.8872
YOLO SqueezeNet 0.8229
YOLO MobileNet 0.7905
Mask R-CNN (Resnet50) 0.9345
Mask R-CNN (Resnet101) 0.9248

Table II shows the average time in seconds that each of
the models took to analyze a still image or a single frame
of video, and generate predictions. Detection tests were run
on the same platform where training was performed, using an
NVIDIA Titan Xp GPU. Images used are always in the same
resolution as those of the camera of the Donnie robot, i.e.,
640x480 pixels.

TABLE II
DETECTION TIMES FOR THE DIFFERENT MODELS TRAINED.

Model Detection Speed (seconds)
YOLO Full 1.61
YOLO Tiny 1.21
YOLO Inception V3 4.15
YOLO SqueezeNet 0.95
YOLO MobileNet 1.89
Mask R-CNN (Resnet50) 3.76
Mask R-CNN (Resnet101) 4.40

C. Performance Analysis

What we can gather from the mAP scores is that all
the trained models achieved good accuracy results. Of note,
we see that the bigger number of layers in the resnet101
network actually decreases accuracy in the Mask R-CNN
model, when compared to the smaller resnet50 network. The
YOLO network benefits from the deeper architectures such as
Full YOLO.

The greatest performance difference between the models
is not their accuracy, but the detection time, as shown in
Table II, with the YOLO models generally performing over
three times faster than both Mask R-CNN configurations on
the same hardware. This is expected, as one of the goals of the
YOLO model is detection speed, with some implementations
running detections at real-time speeds. Only the YOLO model
using the Inception V3 backbone performed at similar speeds



(a) (b)

Fig. 6. Comparison between YOLO and Mask R-CNN prediction results. (a)
YOLO bounding boxes. (b) Mask R-CNN detection masks.

of Mask R-CNN. There is not a clear correlation between
detection speeds and mAP scores.

D. Qualitative Analysis

A benefit of the Mask R-CNN approach lies in the pixel
mask it generates for predicted results. This mask is useful
for increased precision in the detection of specific shapes of
objects. A comparison of the bounding boxes predicted by the
YOLO model and the masks of Mask R-CNN is shown in
Figure 6. In our case, the shape of all objects of interest is
the same, so this benefit is not particularly relevant. As such,
given the good accuracy obtained and fast detection speeds,
we decided to use the Full YOLO model for integration with
the Donnie robot.

E. Feature Learning

As described in Section III, the characters in our dataset are
formed from the same base components, a background piece,
and a number of pins. This makes the classes to be detected
and classified by the models very similar, with few distinctive
visual characteristics.

It was of our interest to discover if those characteristics were
enough to differentiate the characters, as the trained models
were not originally proposed for this specific task. We decided
to investigate which parts of the characters were more relevant
to the learning. We did this by testing the trained models on
images such as the ones shown in Figure 5.

Figure 5(a) with one character in two background pieces
was chosen to simulate a situation where two pieces are placed
next to each other and a potentially valid character is acciden-
tally formed between them. This test was intended to discover
if the shape of the individual pieces was relevant compared to
the contrast of the pins against the background color.

The empty background piece (Figure 5(b)) and the loose
pins (Figure 5(c)) images were used to test the recognition of
the models on the specific parts of the characters.

Another test was performed with images such as Fig-
ure 7(b), displaying invalid character configurations. This was
to allow us to determine how characteristics such as color
density and distribution, and the orientation of the characters
were being used in the classification process.

None of the trained models detected the loose pins as a
valid character. By contrast, some of the models detected the
empty background piece as one or more characters, as shown
in Figure 7(a). This suggests that the background pieces have
a stronger influence on the detection than the pins.

Some models also detected false positives in images with
invalid characters, like in Figure 7(b). However, there was no

(a) (b) (c)

Fig. 7. Detections performed on a number of test configurations. (a) Detection
in empty background piece. (b) Detections in invalid configurations. (c)
Detections in two pieces with one combined character.

correlation between the characters the models reported finding
and the configurations in the images. The reported characters
did not have a similar amount of pins, or pin positions that
were reverse of the ones in the images. In addition, the
confidence of those detections was lower than the one of the
valid characters.

False positives also appeared in detections performed in
the situation exemplified in Figure 5(a). This is shown in
Figure 7(c). But the false positives were of wrong characters in
the individual background pieces, not of the character between
them.

The false positives on empty pieces and invalid characters
suggest that the color of the pins and their positions don’t
provide enough differentiation for the classes.

F. Word Detection

Some of the trained models have problems in accurately
detecting and classifying images with a large number of char-
acters. This is more frequent in the models trained with smaller
backbone architectures such as Tiny YOLO. An example is
shown in Figure 8(a).

Another problem arises with the detection of more than
one character in a single piece. An example is presented in
Figure 8(b). However, we solve this problem by choosing the
detected character with the highest confidence value.

As our goal was to detect complete words in the images,
characters detected are sorted from left to right and grouped
by how close their position is. A single wrong character
prediction can cause an entire word to be wrong, despite the
confidence of the detection of the other characters. To fix this
problem, the words are passed through the spellchecking script
pyspellchecker 4. This also helps users who might have made
a mistake placing pins.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we presented a system for detecting Braille-
like characters in scaled-down real-world environments. Our
contributions are mainly regarding the novel public dataset
of labeled images of those Braille characters classified in the
letters of the alphabet, and the controlled comparison among
the deep learning state-of-the-art methods for detecting and
classifying the characters. Another novelty is the proposal of
the EVA pieces to represent Braille characters to allow the
generation of the dataset and to allow the visually impaired

4https://pypi.org/project/pyspellchecker/



(a)

(b)

Fig. 8. Errors in word detection. (a) Partial Detection of Words. (b) Detection
of overlapping characters in the same pieces.

to set up the real environment that must be recognized by the
Donnie robot.

We are now working to embed the models in the Donnie
robot, and further developing them with the aim of helping
the visually impaired. Thus, for future work, we intend to
perform tests with users that present visual impairment. We
also intend to further explore possibilities of detecting regular
embossed Braille characters in real-world locations, not only
in the context of the Donnie system but possibly as a general
tool to assist Braille literacy.
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