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Abstract
Propose: This study aims to explore the use of the Centiloid (CL) method in amyloid-β PET quantifica-
tion to evaluate distinct cognitive aging stages, investigating subjects’ mismatch classification using 
different cut-points for amyloid-β positivity.
Procedures: The CL equation was applied in four groups of individuals: SuperAgers (SA), healthy 
age-matched controls (AC), healthy middle-aged controls (MC), and Alzheimer’s disease (AD). The 
amyloid-β burden was calculated and compared between groups and quantitative variables. Three 
different cut-points (Jack CR, Wiste HJ, Weigand SD, et al., Alzheimer’s Dement 13:205–216, 2017; Sal-
vadó G, Molinuevo JL, Brugulat-Serrat A, et al., Alzheimer’s Res Ther 11:27, 2019; and Amadoru S, Doré 
V, McLean CA, et al., Alzheimer’s Res Ther 12:22, 2020) were applied in CL values to differentiate the 
earliest abnormal pathophysiological accumulation of Aβ and the established Aβ pathology.
Results: The AD group exhibited a significantly increased Aβ burden compared to the MC, but not 
AC groups. Both healthy control (MC and AC) groups were not significantly different. Visually, the SA 
group showed a diverse distribution of CL values compared with MC; however, the difference was not 
significant. The CL values have a moderate and significant relationship between Aβ visual read, RAVLT 
DR and MMSE. Depending on the cut-point used, 10 CL, 19 CL, or 30 CL, 7.5% of our individuals had 
a different classification in the Aβ positivity. For the AC group, we obtained about 40 to 60% of the 
individuals classified as positive.
Conclusion: SuperAgers exhibited a similar Aβ load to AC and MC, differing in cognitive performance. 
Independently of cut-point used (10 CL, 19 CL, or 30 CL), three SA individuals were classified as Aβ posi-
tive, showing the duality between the individual’s clinics and the biological definition of Alzheimer’s. 
Different cut-points lead to Aβ positivity classification mismatch in individuals, and an extra care is 
needed for individuals who have a CL value between 10 and 30 CL.
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disease [35], subcortical vascular dementia [36], chronic 
traumatic encephalopathy [37], and Down syndrome [38].

For diagnosis purposes, the development of approaches for 
the Aβ cut-point has received significant attention. In the last 
years, the studies published by Jack et al. [39], Salvadó et al. 
[40], and Amadoru et al. [41] provided different cut-points 
to differentiate the earliest abnormal pathophysiological 
accumulation of Aβ and the established Aβ pathology. Even 
knowing that the Aβ burden exists on a continuum, increasing 
the baseline may predict a corresponding increase in future 
cognitive decline rate [42]. Although the definition of a cut-
point to establish the stage of Aβ accumulation is challenging 
due to the variability between different individuals, the lack 
of standardization and harmonization in cut-point values can 
cause a misclassification in the individuals.

The present work aims to investigate Aβ PET quantifica-
tion on distinct cognitive aging stages, including the Super-
Agers. We further explored the subject’s classification using 
different cut-points for Aβ positivity, including the Centiloid 
method.

Materials and Methods
Participants

In this study, community-dwelling adults and elderly were 
invited to participate from January 2016 to March 2019 at the 
Brain Institute of Rio Grande do Sul. The Brazilian Super-
Agers Cohort was designed to comprehend individuals from 
the extremes of the cognitive stages. Forty participants were 
included in this study, divided into four groups: SuperAg-
ers (SA), age-matched controls (AC), middle-aged controls 
(MC), and Alzheimer’s disease (AD). The SA group was 
defined based on previously described criteria [3, 4]: older 
adults at or above 80 years old with exceptional memory 
scores (delayed-recall scores above 1.5 SD for age and edu-
cation) and standard scores for non-memory domains. The 
control groups were cognitively normal for age and education 
based on their age range, above 80 years old for the AC and 
between 55 and 65 years old for the MC. The older group was 
thought to have the same characteristics as the SuperAgers 
group—age and education to mitigate confounding factors. 
The AD group included individuals who matched the NIA-
AA clinical criteria for dementia due to Alzheimer’s disease 
[43].

All participants presented preserved activities of daily liv-
ing, excluding the individuals with AD. The healthy cognitive 
individuals denied any family history of dementia or cogni-
tive impairment. All individuals displayed negative scores 
for depression and anxiety when evaluated using the reduced 
Geriatric Depression Scale and the Beck Anxiety Inventory, 
respectively [44, 45]. The four groups were tested under a 
cognitive evaluation protocol that included the mini-mental 
state examination (MMSE) and the Rey auditory verbal learn-
ing test (RAVLT). Specifically, the delayed-recall memory 

Introduction
Human cognitive capacity reaches its peak in middle age, 
progressively decreasing after 50–60 years when a cognitive 
decline considered characteristically physiological occurs 
[1, 2]. In contrast to normal aging with a cognitive decline 
expected for age and education, brain aging could follow 
two other paths, successful or pathological aging. Success-
ful aging is denominated by individuals 80 years or older who 
maintain memory ability similar to or superior to middle-
aged subjects, named SuperAgers [3–7]. Pathological aging 
is mainly characterized by Alzheimer’s disease (AD), with 
the presence of amyloid-β (Aβ), tau neurofibrillary tangles, 
and neurodegeneration.

The National Institute on Aging and Alzheimer’s Asso-
ciation (NIA-AA), conceptualized as the [AT(N)] system, 
presents a new biomarker definition of AD, considering Aβ, 
pathologic tau, and neurodegeneration [8]. Various studies 
indicate that older adults with significant Aβ deposition are 
considered in a presymptomatic stage of Alzheimer’s dis-
ease AD [9, 10]. In contrast, the International Working Group 
(IWG) (2021) argued that only the presence of Aβ and tau 
biomarkers are not sufficient to predict progression to prodro-
mal AD or AD dementia confidently or to define a person’s 
position on the AD continuum without clinical input [11].

Biomarkers have the potential to enhance diagnostic accu-
racy and facilitate the development of disease-modifying 
therapy [12]. In vivo fibrillar brain Aβ quantification is pos-
sible by using positron emission tomography (PET) imag-
ing tracers as the 11C-Pittsburgh Compound B (PIB) [13], 
18F-NAV4694 [14], 18F-Florbetaben [15], 18F-Flutemetamol 
[16], and 18F-Florbetapir [17]. Thus, a precise assessment of 
Aβ biomarkers in the brain might be considered essential for 
improving the management of Aβ deposition and the effec-
tiveness of treatment [18]. Still, a small number of treatment 
strategies targeting Aβ accumulation are available [19–23].

Different methods were proposed to process and analyze 
Aβ PET data, potentially reducing reproducibility and pre-
venting comparison between studies [24]. The Centiloid scale 
(CL) was developed by the Centiloid Working Group to har-
monize the acquisition protocol and quantification variability 
in Aβ PET. The CL approach standardizes the quantification 
of Aβ deposition by using PET data on a scale ranging from 
0 to 100. The zero CL value represents the average uptake 
of the radiotracer in young individuals (< 34 years old), and 
the value of 100 represents the average uptake of individuals 
with AD.

Since its inception, the research community has gradually 
applied the CL method. Although it was initially conceived 
for the standardization of Aβ tracers analysis and the defini-
tion of the range of Aβ positivity characteristic of AD, other 
studies were conducted to correlate CL values with neuro-
pathological results and Aβ plasma levels [25], in longitudi-
nal cognitive evaluation [25, 26], or as a quantitative method 
in multicenter studies [27–34]. Moreover, the CL scale has 
also been applied for other diseases, such as Parkinson’s 
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score (RAVLT DR) was applied because of its high predic-
tive accuracy for progressive amnestic dementia [46]. Subse-
quently, they were examined under a neuroimaging protocol 
that included magnetic resonance (MR) imaging and 11C-PiB 
PET. The university’s ethical committee previously approved 
the study, and informed consent was obtained from all indi-
vidual participants included in the study.

Sample Size

The sample size was calculated using the G * Power 3.1R 
program [47]. Based on the experimental design and previ-
ous experimental data [3], we calculated an effect size of F 
of 0.5647 (test details: significance (α) = 0.05, power (1 − β 
error probability) = 0.80, non-centrality parameter δ = 12.75; 
critical = 2.8662; Df = 36; total sample number = 40; current 
power = 0.82). Based on the data presented above, the sample 
size was 10 individuals per group.

Imaging Acquisition

PET images were obtained using the 11C-PiB tracer in a 
PET/CT Discovery D600 system (GE Healthcare, USA) 
in the three-dimensional scanning mode. The 11C-PiB was 
injected into an antecubital vein as a bolus with a mean dose 
of 505 MBq (within a range of 307–762 MBq). PET scans 
were acquired in list mode, and static PET data were gener-
ated at 50–70 min after injection. CT scan was obtained for 
attenuation and scatter correction. Images were reconstructed 
by using the VUE Point HD (2 iterations, 32 subsets, a filter 
cutoff of 4.8 mm, a matrix size of 192 × 192 × 47, and a voxel 
size of 1.56 × 1.56 × 3.27 mm).

MR structural images were obtained using 3 T Signa 
HDxT equipment (GE Healthcare, USA) with an eight-
channel head coil. Volumetric T1-weighted images were 
obtained by using the 3DBRAVO® sequence with a sagittal 
slice thickness of 1.0 mm (no gap), a repetition time (TR) 
of 6.272 ms, an echo time (TE) of 2.256 ms, a flip angle of 
11°, a matrix size of 512 × 512 × 196, and a voxel size of 
0.5 × 0.5 × 1.0 mm.

Image Processing

Klunk et al. provided the details of standardizing the PET-
based Aβ burden quantification. The standard processing 
method is described by using the 11C-PiB and MR images to 
implement the Centiloid scale.

The CL method is designed for measuring the “global” 
cortical Aβ deposition by using two volumes of interest 
(VOI): CTX (also called global cortical target region) and 
WC (whole cerebellum). The CTX VOI includes the typical 
brain regions with high Aβ load in AD, such as the frontal, 
temporal, parietal cortices, precuneus, anterior striatum, and 
insular cortex. The WC VOI represents a reference region 
because of its minimal Aβ deposition [24].

The image processing was performed on our site using the 
PMOD software package version 4.0 (PMOD LLC Technolo-
gies, Switzerland) with the PNEURO tool. The processing 
methodology was validated previously [48]. The Centiloid 
atlas (CTX and WC regions) is selected in the processing 
software, and then the PET and MR T1-weighted images 
are uploaded, reviewed, and re-orientated. The PET and MR 
images are co-registered and processed by using the maxi-
mum probability atlas analysis. The Centiloid atlas is applied, 
and the output is used to derive the standardized uptake value 
ratio (SUVR) for CTX and WC.

In addition, T1-weighted images of all participants were 
processed with the Computational Anatomy Toolbox (CAT) 
12 (http:// www. neuro. uni- jena. de/ cat/, version r1109) within 
Statistical Parametric Mapping (SPM) 12 using MATLAB 
(12a). The estimation of cortical thickness in CAT is based 
on the PBT method and is fully automated, and we used the 
default settings described in detail in the manual of the CAT 
12 toolbox.

Image Analysis

The level-1 Centiloid replication analysis was first per-
formed as prescribed by Klunk et al. [24]. The Centiloid 
analysis implementation with GAAIN data presented a 
strong agreement with the previously published measure-
ments (R2 = 0.999). The fit exceeded the minimum specified 
acceptance criteria (slope = 0.9907; intercept = 0.0249).

Reproducing the image processing pipeline in our site with 
the GAAIN dataset, the CL equation is defined as follows:

This CL equation was applied in our study population for 
MC, AC, AD, and SA.

A scatter graph was plotted to calculate a linear regres-
sion and Pearson’s correlation [24] to compare the CL results 
of the Centiloid study and the CL results processed in our 
institution. The data are presented in the Electronic Supple-
mentary Material.

One Aβ PET expert reader (author CM), blinded to CL 
values and neuropathological data, visually interpreted all 
scans using the GE healthcare workstation (AW 4.6), as used 
in the clinical practice.

Amyloid-β Cut-Point

To evaluate how the Aβ cut-point classifies our individuals, 
we used the cut-points proposed by Jack et al. (2017) [39], 
Salvadó et al. (2019) [40], and Amadoru et al. (2020) [41]. 
Several studies have reported optimal CL cutoff values for 
Aβ positivity. Fig. 1 presents published cut-point values and 
shows their variability to define early and established Aβ 
accumulation [33, 39–41, 49–54]. Jack et al. defined a cut-
point of 19 CL based on the reliable worsening cut-point. 
Salvadó et al. (2019) reported the optimal cut-point value of 

CL = 100(SUVRsubject − 1.008)∕1.059.

http://www.neuro.uni-jena.de/cat/
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12 CL, which agrees with the values found for cerebrospinal 
fluid (CSF) Aβ42 and 30 CL indicating the presence of estab-
lished pathology by comparison with the phosphorylated tau/
Aβ42 ratio or total tau/Aβ42 ratio of the CSF. Amadoru et al. 
(2020) defined an optimal cut-point of 10 CL, accurately 
reflecting the absence of any neuritic plaque, 20 CL indicates 
the presence of moderate plaque density, and approximately 
50 CL or more is confirmed by both neuropathological and 
clinicopathological diagnosis of AD.

Statistical Analysis

The statistical analysis was performed in the IBM SPSS 
software, version 24.0 (Armonk, NY). Pearson’s correla-
tion coefficients and linear regressions were calculated for 
the SUVR and the CL scale using the GAAIN dataset and 
to compare the CL scale with other quantitative variables. 
The normality of the distributions was tested using the 
Shapiro–Wilk test. Demographic and quantitative variables 
were compared between groups with ANOVA, followed 
by Tukey’s post hoc test. It was considered an α = 0.05. 
The multiple comparisons were corrected by Bonferroni 
method. The effect size was calculated using Cohen’s d. 
Data are presented as means ± standard deviation unless 
otherwise stated. As the CL is a linear transformation of 
SUVR, the discussion will be presented in terms of CL. 
The general linear model was employed to compare CL 
with clinical variables (RAVLT DR and MMSE), educa-
tion, and age among the groups.

Results
Demographics

A total of 40 participants were included in our study 
(Table 1). There were no significant differences in age or gen-
der between the groups. As expected by the inclusion criteria 
for age, the MC group was significantly different between 
AC, SA, and AD groups (p < 0.001, corrected). Significantly 
lower MMSE scores were observed in the AD group com-
pared with other groups (p < 0.001, corrected). The MC, AC, 
and SA participants showed high RAVLT DR scores when 
compared with AD (p < 0.001, corrected), and the AC group 
differed significantly from the MC and SA groups (p = 0.003 
and p < 0.001 corrected, respectively).

Fig. 1.  Illustration of the published cut-point values for CL to 
divide the Aβ uptake as early accumulation (> 10 CL to < 24 CL) 
and established AD pathology (> 24 CL).

Table 1.  Demographic and clinical information in terms of the mean and 
SD of participants in our study

a Calculated only for eight participants
b Group differences evaluated with ANOVA test
Abbreviations: MC middle-aged controls, AC age-matched controls, SA 
SuperAgers, AD Alzheimer’s disease, MMSE mini mental state examina-
tion, RAVLT DR Rey auditory verbal learning test—delayed-recall memory 
scores

MC 
(n = 10)

AC 
(n = 10)

SA 
(n = 10)

AD 
(n = 10)

p  valueb

Age 58.70 
(5.52)

83.5 (4.22) 82.3 (2.63) 78.2 (6.14)  < 0.001

Gender 
(F/M)

9/1 7/3 7/3 5/5 0.302

Education 14.6 (4.79) 12.9 (4.98) 12.7 (4.79) 14.5 (5.40) 0.745
MMSE 29.6 (0.70) 27.9 (1.20) 28.6 (1.26) 22.0 (5.58)  < 0.001
RAVLT 

DR-
10.5 (3.21) 6.9 (1.60) 11.4 (2.01) 0.38 

(0.52)a
 < 0.001



Molecular Imaging and Biology

Amyloid-β Quantification and Visual Read

The summary of the CL results for all groups is shown in 
Table 2. The effect sizes were large enough (Cohen’s d > 0.8) 
to show consistent group differences, excluding the comparison 
between SA and MC groups. The SA group showed the high-
est range for the CL analyses, followed by the AC group. As 
expected, the AD group showed a significantly high Aβ bur-
den for the CL method when compared with the MC (d = 4.84, 
p < 0.001, corrected), the SA group (d = 1.77, p < 0.001, cor-
rected), and the AC group (d = 1.61, p = 0.005, corrected). The 
Aβ load of the SA group did not differ significantly from the 
two control groups (MC and AC groups) (d = 0.74, p = 0.665; 
d = 1.25, p = 1.00, corrected, respectively), and the MC and the 
AC groups did not differ significantly from each other (d = 1.61, 
p = 0.05, corrected). All pairwise statistical comparisons are 
presented in the Electronic Supplementary Material, Table S1.

Correlation of CL values with Aβ PET expert visual read 
(negative or positive) obtained a significant moderate relation-
ship with a value of r = 0.639 and p < 0.001. Five participants 
had a positive global uptake but a negative quantification (< 10 
CL), and one participant had CL above 30 with visual assess-
ment negative.

Cortical Thickness and CL Values

The summary of the cortical thickness results for all groups 
is shown in Table 3. The cortical thickness values are signifi-
cantly different among the groups (p < 0.001). The MC group 
has a significantly high cortical thickness compared with the 
AC (d = 3.34, p = 0.001, corrected), the SA group (d = 2.57, 
p < 0.001, corrected), and the AD group (d = 2.36, p < 0.001, 
corrected). The AC, SA, and AD groups are not significantly 
different in cortical thickness. All pairwise statistical compari-
sons are presented in the Electronic Supplementary Material, 
Table S1.

There is a moderate negative linear correlation between CL 
values and cortical thickness with r =  − 0.322 and p < 0.001. 
Fig. 2 shows how the distribution of cortical thickness val-
ues among the groups. The MC group has the highest range 
between the minimum and maximum cortical thickness values 
(2.51 mm and 2.72 mm). The AC group presents a very simi-
lar cortical thickness among the participants, even though they 
vary on the CL scale. The SA group has a higher variation and 
lower cortical thickness values than the same age group (AC). 
Still, the SA individuals with higher CL values have higher 
cortical thickness values. Finally, the AD group has the smallest 
range between the minimum and maximum values, with a wide 
distribution of cortical thickness values.

Centiloid Scale and Neuropathological Variables

Both cognitive variables (RAVLT DR and MMSE) showed 
a strong negative relationship with CL values (r =  − 0.561, 
p < 0.001; r =  − 0.457, p = 0.003, respectively), presented 
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in Fig.  3A, B. For comparison between CL vs age 
(Fig.  3C), a moderate and significative correlation 
(r = 0.32, p = 0.043) was obtained. However, for the CL vs 
education, it was obtained a negligible relationship and no 
significance (r =  − 0.100, p = 0.541) as shown in Fig.3D.

As shown in Fig. 4, the individuals were divided into 
three groups: low Aβ uptake (< 10CL); low-intermediate 
Aβ uptake (> 10 CL and < 30 CL); and intermediate-high 
Aβ uptake (> 30 CL). It was observed that younger indi-
viduals (between 50 and 60 years old) who have low Aβ 
uptake perform optimally on the RAVLT DR test, and with 
advancing age, this performance regresses. Most individ-
uals with > 30 CL perform worse on the test, regardless 
of age. Few individuals showed a low-intermediate Aβ 
uptake. Interestingly, there are two individuals with simi-
lar age and identical RAVLT DR scores in the opposite 
group, one from the < 10 CL group and the other from 
the > 30 CL group. Surprisingly, both individuals are clas-
sified as SuperAgers.

Amyloid-β Classification in the Clinical Setting

Fig. 5 presents our sample participants’ CL values distribu-
tion, which shows their positioning for different cut-point 
values. Regardless of the cut-point chosen, the AD individu-
als were above the three cut-point used (the minimum CL 
value of AD patients was 45.3). Aβ positivity differed from 
each cut-point used in MC, AC, and SA. Using 10 CL as cut-
point (Amadoru et al. 2020), one MC, six AC, and three SA 
were classified as Aβ-positive. Using the low-intermediate 
value of 19 CL presented by Jack et al., six AC and three SA 
were classified as Aβ positive. Considering an intermediate 
value of 30 CL [40], four AC and three SA were classified 
as Aβ positive.

Discussion
To our knowledge, this study represents the first report that 
sought to evaluate different degrees of successful cognitive 
stages using the Centiloid scale, from normal aging to Super-
Agers. Analyzing the distribution of individuals with differ-
ent aging stages on the CL allowed the investigation of how 
the use of different cut-points for the Aβ classification might 
impact the diagnosis of AD pathology.

It is expected that 30% of clinically normal elderly indi-
viduals have AD at autopsy or a high Aβ burden [55–57]. 
In our sample, 60% of the AC group showed a CL value 
above 10 CL, and 40% of the AC group showed a CL value 
above 30 CL. The AC group presented variable values of CL, 
from − 7.11 to 96.84 (mean, 31.96 ± 25.14 CL). The other 
healthy group, the MC group, showed a low Aβ uptake, with a 
mean value of − 0.18 ± 5.70 CL, which was expected for their 
age. In addition, the MC group differed significantly from 
the AD group and was not significantly different from the 
AC group. The CL values and Aβ visual read obtained a sig-
nificant moderate relationship with r = 0.639 and p < 0.001. 
When considering visual reading, there are rare cases of clear 
focal Aβ uptake that can lead to a positive visual read, and 
perhaps this is what happened to the five individuals with 
low Aβ uptake who were classified as positive. Also, the CL 
scale obtained moderate to strong correlations with analyzed 
variables such as education, MMSE, RAVLT DR, cortical 
thickness, and all proportionally inverse, as showed in a simi-
lar study [58–60].

As expected, the CL values of SuperAgers were signifi-
cantly different compared with the AD group. Previous stud-
ies have shown that SuperAgers can exhibit positivity in Aβ, 
comparable to age peers [3, 61, 62], which aligns with our 
results. Visually, the SA group showed a different distribu-
tion of CL values compared with the MC group; however, 
the difference was not statistically significant, although there 
is a statistical difference between the cortical thicknesses. 
The SA and AC groups visually presented a similar distribu-
tion, with some individuals showing high values of CL and 
others low CL values. Independently of cut-point, three SA 

Table 3.  Summary of the cortical thickness of our sample participants

Abbreviations: MC middle-aged controls, AC age-matched controls, SA 
SuperAgers, AD Alzheimer’s disease, CI confidence interval
a Group differences were evaluated with the ANOVA test

MC 
(n = 10)

AC 
(n = 10)

SA 
(n = 10)

AD 
(n = 10)

p  valuea

Cortical 
thickness

2.59 ± 0.06 2.4 ± 0.05 2.35 ± 0.1 2.32 ± 0.15  < 0.001

Fig. 2.  Distribution of CL values and cortical thickness, in mm, 
for each group. The symbols represent the groups: MC, blue 
square; AC, green circle; SA, red diamond; AD, orange triangle.
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individuals were classified as Aβ positive (Fig. 5) [39–41], 
showing values above 30 CL (34.2 CL, 64.83 CL, and 119.87 
CL). According to Salvadó et al. (2019), a value above 30 CL 
indicates the presence of established AD pathology. Fig. 4 
shows the duality between the individual’s clinics and the 
biological definition of Alzheimer’s, and that the presence of 
Aβ plaques does not interfere with an individual’s cognitive 
performance. Nevertheless, using only the cut-point for the 
Aβ classification of the individual, some SA would be classi-
fied as a prodromal AD [8]. However, when their age and the 
high capacity in the cognitive tests and routine performances 
are considered, they are not. One hypothesis about SuperAg-
ers performance is that they are resilient to cognitive decline 
despite increasing age [4, 62, 63].

A single cut-point for Aβ positivity is highly desired for 
interpreting Aβ PET imaging studies and classifying the 
patient at a specific time [8]. However, Fig. 5 shows that a 
single cut-point might fail to classify some individuals. In 
our sample, we observed a classification mismatch in 7.5% 
of individuals evaluated (one MC and two AC subjects). 

Fig. 3.  Scatter graphs of correlations between CL values and clinical variables. A Comparison between CL values and RAVLT DR. B Com-
parison between CL values and MMSE. C Comparison between CL values and education. D Comparison between CL values and age.

Fig. 4.  Scatter graphs of correlations between RAVLT DR and 
age, separated by the groups of CL values below 10 CL, values 
between 10 and 30 CL, and above 30 CL. The symbols represent 
the groups: green pentagon, < 10 CL; blue inverted triangle, > 10 
and < 30 CL; purple circle, > 30 CL.
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Therefore, our suggestion for improving the clinical classifi-
cation of the Aβ burden is using the cut-points as a reference 
for continuum classification. The lowest value classifies any 
neuritic plaque (< 10–12 CL), a middle-range value classifies 
early Aβ deposition (12–24 CL), and the highest confirms 
the presence of AD pathology (> 24 CL). Also, reporting the 
individual’s Centiloid value is a reliable manner to moni-
tor the Aβ accumulation in the brain longitudinally. Moreo-
ver, although pre-clinical evaluation of Aβ positivity is not 
recommended by the IWG [11], we believe that individuals 
who have an early Aβ deposition without a clinical diagnosis 
might benefit from early therapy and prevention strategies.

Despite our efforts, this study has some limitations. The 
small sample size cannot represent the general population, 
and its generalization must be interpreted cautiously. Addi-
tionally, it was not possible to evaluate the tau deposition in 
our sample. The use of tau information as a biomarker has 
been increasing in practice because it reflects the intensity 
of neuronal damage and tracking disease progression and is 
endorsed by NIA-AA in the AT[N] system [8] and by IWG 
recommendation [11]. Further analysis should consider tau 
biomarkers’ use in investigating cognitive decline and harmo-
nizing the cut-point values to classify individuals according 
to the CL values.

Conclusion
SuperAgers exhibited a similar Aβ load to that of age-
matched healthy controls and middle-aged controls. How-
ever, independently of the cut-point used (10 CL, 19 CL, or 

30 CL), three SA individuals were classified as Aβ positive. 
Also, different cut-points proposed for the CL determined 
a classification mismatch in 7.5% of individuals evaluated 
in this study. As the CL has been increasingly used in rand-
omized clinical trials, more studies need to be developed to 
harmonize cut-point values.

For clinical diagnosis, special attention is required for 
individuals with a CL value between 10 and 30 CL because 
the Aβ burden is undeniably a decisive risk factor for adverse 
cognitive outcomes. As recommended by IWG (2021), the 
AD diagnosis must consider biological patterns and clinical 
symptoms. Also, Aβ imaging techniques should be carefully 
addressed, standardized, and interpreted in clinical settings.
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