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ABSTRACT
Natural products are still a promising source of bioactive molecules. Food and Drug Administration
data showed that approximately 49% of the approved molecules originate naturally or chemically-
resemble these substances, of which more than 70% are being used in anticancer therapy. It is
noteworthy that at present there are no scientific studies to prove the effectiveness and safety of
a number of plants used in folk medicine such as in the case of Calyptranthes grandifolia O. Berg
(Myrtaceae) originally from South America. The aim of the present study was to determine the
biological potential and toxicological effects of the aqueous leaf extract of C. grandifolia. The main
detected phytoconstituents were condensed tannins and flavonoids and a high quantity of poly-
phenols. Regarding the antimicrobial potential, the extract exerted inhibitory activity against
Pseudomonas aeruginosa. The results also revealed the extract induced DNA damage in
a concentration-dependent manner in RAW 264.7 cells. In addition, C. grandifolia produced cytotoxi-
city in leukemia cell lines (HL60 and Kasumi-1) without affecting isolated human lymphocytes but
significantly inhibited JAK3 and p38α enzyme activity. Taken together, these findings add important
information on the biological and toxicological effects of C. grandifolia, indicating that aqueous
extract may be a source of natural antimicrobial and antileukemic constituents.
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Introduction

Approximately 3000 plants reported to possess
anticancer properties due to the presence of consti-
tuents with important antiproliferative activity
(Alves-Silva et al. 2017; Rody et al. 2018; Tariq
et al. 2017; Tuttis et al. 2018), plants may serve as
an alternative in cancer treatment. Naturally derived
anticancer agents may be considered as the best
choice. Between 1940 and 2014, approximately 49%
of the approved molecules for use were derived from
or resembled chemically natural products (Newman
and Cragg 2016). Food and Drug Administration
data showed that more than 70% of these approved

agents were used in anticancer therapy (Seca and
Pinto 2018). Due to this, the utilization and investi-
gation of medicinal plants have been increasing, but
only a small portion of the plants employed in tradi-
tional medicine provide scientific evidence of their
constituents and pharmacological effects (Adebayo
et al. 2015). Thus, there is still a lack of studies to
prove the effectiveness and safety of these products
considering the importance of natural products in
the discovery of new molecules for therapeutic uses
(Cordell and Colvard 2012; Fridlender, Kapulnik,
and Koltai 2015; Rayan, Raiyn, and Falah 2017;
Seca and Pinto 2018). In addition, investigators
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reported that some natural products contain toxic
compounds that may be potentially harmful to
human health (Araújo et al. 2015; Kich et al. 2017;
Maistro et al. 2019; Majolo et al. 2019). The evalua-
tion of cytotoxic or genotoxic effects of natural com-
pounds might minimize the risk of adverse
consequences of these agents for human health.
Alternatively, these bioactive compounds might be
a source for the development of novel antimicrobial
or antineoplastic drugs since infectious diseases and
cancer continue to be major public health problems
(de Souza Filho et al. 2013; Machado et al. 2016).
Usually, natural product-derived drugs present
important therapeutic potential and a broad struc-
tural diversity (Lima et al. 2016).

Myrtaceae is one of the dominant plant
families found in Brazilian biomes and of great
economic importance, mostly due to some species
that produce edible fruits used in the food indus-
try (Cascaes et al. 2015). Calyptranthes grandifolia
O. Berg is a Southern Brazilian native plant mem-
ber of this family (Limberger et al. 2002). The
essential oil of C. grandifolia was found to be
a potent antileishmanial agent with cytotoxic
activity on RAW 264.7 and CHO-K1 cell lines
(Faleiro et al. 2017; Kauffmann et al. 2016).
Regarding the antitumor effects, Dexheimer
et al. (2017) demonstrated that the ethanolic
extract of C. grandifolia inhibited TNF-α gene
expression and cytokine release. The ethanol and
hexane extracts of C. grandifolia also possess
some suppressive properties against neurotoxicity
induced by 6-OHDA (Kich et al. 2016).
Nevertheless, the lack of more information
regarding therapeutic activity and safety suggests
that more data are necessary to ensure the safe
use of this plant. As there are no apparent reports
of ethnopharmacological studies regarding
C. grandifolia, the aim of the present investigation
was to evaluate the biological potential of the
aqueous leaf extract of C. grandifolia on tumor
and bacterial cell viability.

Materials and methods

Chemicals

All chemicals – if not otherwise stated – were
purchased from Sigma-Aldrich (St. Louis, MO,

USA). Acetonitrile, phosphoric acid, gallic acid,
chlorogenic acid, p-coumaric acid, and caffeic
acid were purchased from Merck (Darmstadt,
Germany).

Plant material and extraction procedure

Leaves of C. grandifolia O. Berg were collected in
September 2013 in Teutônia (29° 26′ 52″ S, 51°
48′ 21″ W), Southern Brazil. The material was
authenticated by Prof. Dr. Elisete M. de Freitas,
a botanist from the University of Vale do
Taquari – Univates. For further analysis, leaves of
C. grandifolia were dehydrated in a circulating air
oven at 38ºC for 24 hr. After drying, plant material
was crushed with pestle and ground with
a blender. An aqueous extract was then prepared
by decoction in water at 70°C for 120 min. This
process was repeated twice, and resulting biomass
combined, filtered using a vacuum system
(Kitasato + vacuum pump), and dried in a rotary
evaporator at 40°C. The resultant dried material
was then solubilized in ultrapure water at
a concentration of 20 mg/ml.

Phytochemical screenings

Phytochemical analysis was carried out following
standard procedures. The qualitative phytochem-
ical analysis was based upon the methodologies
described by Simões et al. (2003). The phytocon-
stituents of the aqueous extract were examined
through qualitative tests, involving precipitation
reactions, color, and fluorescence development
characteristic to detect different compounds.
Samples of aqueous C. grandifolia extract were
screened for the following phytoconstituents: alka-
loids, steroids/triterpenoids, tannins, flavonoids,
coumarins, and quinones.

Analysis of total phenolic content (TPC)

To determine the amount of the extract’s total
phenolic compounds (TPC), the Folin-Ciocalteu
colorimetric method (Bonoli et al. 2004) was
applied using a standard curve prepared with gallic
acid. Briefly, 2 µl extract was added to 158 µl
distilled water in a 96-well microplate, followed
by 10 µl Folin-Ciocalteu reagent. The reaction
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mixture was pre-incubated for 2 min at room
temperature and then 30 µl 20% Na2CO3 (w/v)
was added and mixed. After one hr reaction in
the dark, the absorbance was measured at 765 nm
(SpectraMax 190, Molecular Devices Co.,
Sunnyvale, CA, USA) against blank solution (pre-
pared by the same procedure described above but
replacing Folin-Ciocalteu reagent for the same
amount of water) and used to calculate the phe-
nolic content. The TPC is expressed as milligrams
of gallic acid equivalents per gram of dry extract
(mg GAE/g).

Antioxidant activity

Diphenyl-2-picrylhydrazyl (DPPH) radical
scavenging activity
Based on Brand-Williams, Cuvelier, and Berset
(1995) with slight modifications the DPPH radical
scavenging activity was tested. DPPH radical was
dissolved in absolute ethanol. From 198 μl DPPH
radical solution (0.1 mM), different concentrations
(10–1000 μg/ml) of 2 μl sample solution were
produced and subsequently vortexed and incu-
bated for 30 min in the dark at room temperature.
The absorbance was read at 517 nm. Butylated
hydroxytoluene (BHT) was used as a reference
standard. The equation was set up to verify the
ability of samples to scavenge the DPPH radical:

DPPH radical scavenging activity % of controlð Þ
¼ 1� �ASample � ABlank

Acontrol

� �� �
� 100

Acontrol means the absorbance of the control
(DPPH solution with dimethyl sulfoxide); Asample

means the absorbance of the test sample (DPPH
solution plus test sample); and ABlank is the absor-
bance of the sample in ethanol (sample without
DPPH solution). The IC50 values were determined
in μg/ml.

High-performance liquid chromatography-diode
array detector (HPLC-DAD)

HPLC-DAD analysis was conducted using a SIL-
20A Shimadzu Prominence Auto Sampler HPLC
system (Shimadzu, Kyoto, Japan) equipped with
Shimadzu LC-20AT reciprocating pumps connected

to a DGU 20A5 degasser with a CBM 20A integrator
and SPD-M20A diode array detector. For the che-
mical characterization of C. grandifolia, the method
described by da Silva Brum et al. (2016) was followed
with slight modifications. Briefly, a reverse phase
chromatography was conducted using Phenomenex
C18 column (4.6 mm x 250 mm) packed with 5 µm
diameter particles. For solvent A, the mobile phase
was water with 1% phosphoric acid (v/v) and for
solvent B, acetonitrile. The composition gradient
was: 5% of solvent B reaching 15% at 20 min; 20%
solvent B at 30 min, 45% solvent B at 40 min, 60%
solvent B at 50 min and 98% solvent B at 60 min,
followed by 70 min at isocratic elution until 75 min
when at 80 min the gradient reached the initial
conditions again. For maximum resolution,
C. grandifolia was analyzed at 10 mg/ml and the
concentration of stock solutions used as a standard
reference ranged from 0.025 to 0.5 mg/ml.
Identification of the presence of phenolic com-
pounds was performed by integration of the peaks
using the external standard method at 254 nm for
gallic acid, 327 nm for chlorogenic, p-coumaric, and
caffeic acid, and 366 nm for luteolin, apigenin, and
rutin. The compounds were identified comparing
their retention time with those of the commercial
standards and by DAD spectra (200 to 600 nm).

Antimicrobial activity

The antimicrobial activity of plant extract was
assessed against Bacillus subtilis (ATCC 6633),
Escherichia coli (ATCC 25922), Pseudomonas aer-
uginosa (ATCC 27853), Staphylococcus aureus
(ATCC 25923), and Candida albicans (ATCC
10231), which were the five microorganisms
tested against the antimicrobial activity of the
plant extract. The culture media were: Luria
broth medium for B. subtilis, E. coli, and
P. aeruginosa; trypticase soy yeast extract med-
ium for S. aureus, and yeast extract peptone dex-
trose medium for C. albicans. The
microorganisms were cultured at 37ºC in 96-
well plates in the presence or absence of plant
extracts (300 µg/ml), and growth monitored at
600 nm by optical density. Microorganisms
where growth was inhibited by more than 50%,
a concentration-response analysis was conducted
and IC50 determined (Horta et al. 2014).
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Cell lines and culture

RAW 264.7 murine macrophage, epithelial cells
from CHO-K1 Chinese hamster ovary and
human colon adenocarcinoma Caco-2 cell lines
were obtained from the Banco de Células do Rio
de Janeiro (BCRJ), and leukemia cell lines (HL60,
K562, and Kasumi-1) were obtained from the
American Type Culture Collection (ATCC, USA).
RAW 264.7 and Caco-2 cells were cultured in
DMEM medium and CHO-K1 cells in DMEM +
Nutrient Mixture F-10 Ham medium (Ham’s
F-10) (Sigma-Aldrich). All cell lines were supple-
mented with 10% fetal bovine serum (FBS) and 1%
antibiotics (100 U/ml penicillin G and 100 µg/ml
streptomycin). HL60, K562, and Kasumi-1 cells
were cultured in RPMI-1640 medium supplemen-
ted with 10% FBS and 1% antibiotics. Cells were
incubated at 37°C in a humidified atmosphere
containing 5% CO2. Preliminary cell viability was
determined by the exclusion method with trypan
blue.

Cell-free kinase assay

The C. grandifolia aqueous extract was screened
for inhibition of p38 mitogen-activated protein
kinase (MAPK) and Janus kinase 3 (JAK3). The
inhibitory potency was assessed by previously
established ELISA assays measuring the inhibition
of p38α-mediated ATF-2 phosphorylation and
JAK3-mediated ATP phosphorylation
(Anastassiadis et al. 2011; Dörr et al. 2018;
Goettert et al. 2011, 2012). The half-maximal inhi-
bitory concentration (IC50) of the extract was
calculated.

Human PBMC isolation

Peripheral blood mononuclear cells (PBMCs) were
obtained from healthy volunteers after they were
informed and consent was obtained. This study
was approved by the Ethics Research Committee
of Univates. Isolation of PBMCs was performed by
Ficoll gradient centrifugation as previously
described (Haute et al. 2015). Bordignon et al.
(2003) were the first to use this technique, it is
known that approximately 85-90% of the PBMCs
are lymphocytes, the majority being T type.

Alkaline comet assay

Normally, the results obtained from the comet assay
indicate early or immediate DNA responses and are
essential for safety and efficacy evaluation of the
compounds present in medicinal plants (Araldi
et al. 2015). DNA damage may be transient and
prone to repair (Avishai, Rabinowitz, and
Rinkevich 2003; Kich et al. 2017). The comet assay
was performed under alkaline conditions as pre-
viously described (Singh et al. 1988). Briefly, RAW
264.7 cells were plated (2 x 104 cells/ml) in a 12-well
microplate and challenged with increasing concen-
trations (25, 50, 100, and 200 μg/ml) of C. grandifolia
extract for 3 hr. Ethyl methanesulfonate (EMS) was
used as a positive control. Samples were analyzed at
400x magnification under a light microscope. DNA
damage in the cells was assessed by quantification of
the amount of DNA released from the core of the
nucleus. Extension and distribution of DNA damage
were evaluated by analysis of 100 cells/sample ran-
domly selected and non-overlapping. Comets were
visually scored into five classes according to tail
length: (Class 0) undamaged, without a tail;
(Class 1) short tail, smaller than the diameter of the
head (nucleus); (Class 2)medium tail, up to twice the
diameter of the head; (Class 3) long tail, more than
twice the diameter of the head; (Class 4) very wide
tail, comet without head, maximum DNA damage.
The damage to DNAwas presented as DNA damage
index (DI) and calculated as follows: DI = n1 + 2n2
+ 3n3 + 4n4; where n1-n4 represents the number of
cells with level 1–4 of damage.

Cytotoxicity assays

RAW 264.7, CHO-K1, and Caco-2 cell viability were
performed according to the MTT colorimetric assay
(Mosmann 1983). Cells were seeded at a density of
3.5 × 103 cells/well in 96-well microplates, and then
challenged with increasing concentrations of aqu-
eous extract for 48 hr. Absorbance was read using
a SpectraMax i3 microplate reader. Leukemia cell
lines were stained with fluorescein calcein-AM
(CAM) according to the flow cytometry protocol
for a viability assay. Cells were seeded at a density
of 2 × 104 cells/well in 96-well plates. Cells were then
treated with the extract at a concentration of100 μg/
ml for 48 hr and subsequently incubated with CAM
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for 15 min at room temperature while protected
from light. The stained cells were analyzed by flow
cytometer (BD Accuri C6; BD Biosciences, Franklin
Lakes, NJ). The % distribution of viable and dead
cells was determined by FlowJo software (Tree Star,
Inc, Ashland, OR).

PBMCs (1.6 × 106 cell/ml) were plated and
cultured with different concentrations of the
extract (50, 100, or 200 µg/ml) in 96-well micro-
titer plates for 96 hr. Cell viability was determined
by trypan blue dye exclusion.

Statistical analyses

All experiments were performed at least in tripli-
cate. Statistical analyses were performed using
GraphPad Prism 6.0 (GraphPad Software, Inc).
All data are expressed as mean ± standard error
of the mean (SEM). Statistical significance was
evaluated using analysis of variance (ANOVA)
followed by Tukey’s test. A p – value <0.05 was
considered statistically significant. The IC50 con-
centration was calculated from nonlinear regres-
sion analysis using GraphPad Prism software with
the equation: Y = 100/(1 + 10(X−LogIC50)).

Results

Phytoconstituents of C. grandifolia extract

The main phytoconstituents of the aqueous leaf
extract ofC. grandifoliawere identified by qualitative
screening revealing that the aqueous extract con-
tained condensed tannins and flavonoids with no
traces of alkaloids, coumarins, quinones, or ster-
oids/triterpenoids. Regarding the assessment of
total phenolic compounds, C. grandifolia extract
possessed 265.4 mg GAE/g, indicating a high poly-
phenol content. The individual phenolic compounds
of C. grandifolia were identified and quantified by
HPLC. As illustrated in Figure 1, chromatographic
separation of phenolic compounds detected gallic
acid (peak 1, retention time [Rt]: 9.83 min); chloro-
genic acid (peak 2, Rt: 21.59 min); caffeic acid (peak
3, Rt: 25.04 min); rutin (peak 5, Rt: 37.16 min);
luteolin (peak 6, Rt: 56.72 min); and apigenin (peak
7, Rt: 64.09 min). Table 1 presents the concentration
of the six identified polyphenols and demonstrates
that the concentration of chlorogenic acid (3.07 mg/

g), luteolin (3.27 mg/g), and apigenin (3.35 mg/g)
appeared equal, and consequently the major com-
pounds present in the aqueous extract. Apigenin is
the one with the highest concentration value.

C. grandifolia antioxidant activity

In DPPH assay, the extract was noted to be a potent
natural antioxidant with effects were similar to stan-
dard ascorbic acid. Our results in the DPPH assay
demonstrated that C. grandifolia aqueous leaf extract
exhibited antioxidant activity, with an IC50 of
13.11 µg/ml, while the standard ascorbic acid showed
an IC50 of 7.95 µg/ml (Figure 2).

C. grandifolia antimicrobial activity

In order to explore the biological potential of
C. grandifolia, the antimicrobial activity of the aqu-
eous extract was determined against five different
microorganisms. The results are presented in
Figure 3a illustrating the capacity of the extract

Figure 1. Phytoconstituents of the aqueous leaf extract of
C. grandifolia. Representative high-performance liquid chroma-
tography profile. Gallic acid (peak 1), chlorogenic acid (peak 2),
caffeic acid (peak 3), rutin (peak 5), luteolin (peak 6), and
apigenin (peak 7).

Table 1. HPLC quantitative determination of some components
of Calyptrathes grandifolia aqueous leaf extract.
Compounds Extract (mg/g)

Gallic acid 0.95 ± 0.04b
Chlorogenic acid 3.07 ± 0.01a
Caffeic acid 0.48 ± 0.02c
p-Coumaric acid -
Rutin 0.51 ± 0.01c
Luteolin 3.27 ± 0.01a
Apigenin 3.35 ± 0.03a

Mean ± SEM is shown (n = 3). Different letters differ by ANOVA, Tukey
test at p < 0.05.
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(300 µg/ml) to inhibit the target microorganisms’
growth. In addition, the extract displayed inhibitory
activity against P. aeruginosa, and S. aureus.
However, only P. aeruginosa was inhibited by more
than 50% and therefore a concentration-response of
the extract against this microorganism was exam-
ined. Antimicrobial activities were not observed
against E. coli, B. subtilis, and C. albicans. As shown
in Figure 3b, the extract exhibited a significant anti-
bacterial activity with an IC50 = 273.6 µg/ml.

C. grandifolia extract as a potent JAK3 and p38α
kinase inhibitor in vitro

Since modulation of the immune system has been
an emerging concept in the control of tumor cell

proliferation, targeting protein kinases may be
a useful strategy to generate antitumor drugs
(Kauffmann et al. 2016; Limberger et al. 2002). In
order to investigate the specificity of C. grandifolia
as a kinase inhibitor, the aqueous extract was
tested for its ability to inhibit JAK3 and p38α
in vitro. The inhibitory potency (IC50) of the
extract was assessed by a direct ELISA assay.
Figure 4 demonstrates C. grandifolia extract mark-
edly inhibited JAK3 and p38α activity with an IC50

value in low concentration (JAK3 = 20.09 ng/ml;
p38α = 5,9 µg/ml). CP-690550 (Tofacitinib), a com-
mercial pan-JAK inhibitor, and SB203580,
a commercial p38-inhibitor, were used as positive
controls, presenting, respectively, the following
values IC50 0.57 ng/ml and not detectable
(0 µg/ml).

Genotoxic effects of C. grandifolia extract on
RAW 264.7 cells

To investigate whether the extract induced geno-
toxic effects, the comet assay was performed under
alkaline conditions with RAW 264.7 cells.
Supplementary material displays the five classes of
comets in RAW 264.7 cells, and the DNA damage
induction (DI) is shown in Table 2. Based upon the
score, the extract produced a concentration-
dependent DI after 3 hr with moderate genotoxicity
at lower concentrations (25 and 50 µg/ml). The
positive control EMS induced significant DNA frag-
mentation; however, this rise was lower than the
score of the highest concentration (200 µg/ml) of

Figure 2. Antioxidant activity from DPPH radical scavenging of
C. grandifolia aqueous leaf extract. Determination of half-
maximal inhibitory concentration (IC50) of the extract activity
expressed in µg/mL.

Figure 3. Antimicrobial activity of C. grandifolia aqueous leaf extract. (a) Antimicrobial activity of the extract (300 µg/mL) against five
different microorganisms (Bacillus subtilis, Candida albicans, Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus). (b)
Determination of half-maximal inhibitory concentration (IC50) of the extract activity against P. aeruginosa.
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the extract. The frequency and intensity of damage
were proportional to the concentration of the
extracts, and no or minimal damage was seen in
samples exposed to lower concentrations.

Cytotoxicity of C. grandifolia extracts on cell
lines

The MTT colorimetric assay was used to assess the
viability of different cell lines challenged with aqueous
extract of C. grandifolia. According to our results, no

significant change in cell viability was observed after
48 hr treatment with Caco-2, RAW 264.7, and CHO-
K1 cell lines (Figure 5) at 100 μg/ml, where values
ranged 90, 91–95, 53% between 25 and 200 μg/ml
concentrations (Figure 6). The extract produced cyto-
toxicity in leukemic cell lines andHL-60 e Kasumi cell
lines. No marked effect was observed in the leukemic
K562 cell line. The cytotoxic effect was also tested on
human lymphocytes. Surprisingly, the extracts did not
produce any significant effect on cell viability after
48 hr, maintaining it similar to control cells but initi-
ating activity only in leukemia cell lines where the cells
were challenged with 100 µg/ml extract. The extract’s
cytotoxicity on human lymphocytes was examined in
different concentrations of the extract ranging from
50 to 200 μg/ml on freshly isolated PBMC for 96 hr,
and cellular viability measured by trypan blue exclu-
sion. As reported in Figure 7b, C.grandifolia extract
did not produce any cytotoxicity on PBMCs after
96 hr incubation. Collectively, these findings indicate
that C. grandifolia extract may exert a cytotoxic selec-
tive action toward leukemia cell lines.

Discussion

Calyptranthes grandifolia belongs to the neotropi-
cal Myrtaceae family frequently found in Latin
America, mainly in Southern Brazil (Limberger
et al. 2002). It is noteworthy that the species
from the Myrtaceae family was found to possess
steroids, terpenoids, flavonoids, and tannins as
the commonly detected organic compounds
(Figueirôa Ede et al. 2013; Takao, Imatomi, and
Gualtieri 2015; Wen-Hung et al. 2014). Faleiro
et al. (2017) reported that the essential oil com-
position of C. grandifolia contained predomi-
nantly of β-pinene (38.3%) and E-caryophyllene
(20.1%). These data are in agreement with our
findings which demonstrated a high amount of

Figure 4. JAK3 and p38α inhibitory activity of C. grandifolia leaf
extracts. Half-maximal inhibitory concentration (IC50) of aqu-
eous extract. CP-690550 (Tofacitinib) was used as standard
JAK inhibitor, SB203580 was used to inhibit p38α.

Table 2. Comet assay analysis of DNA fragmentation in RAW 264.7 cells treated with aqueous leaf extract of C. grandifolia for 3 hr.
Treatment Class 0 Class 1 Class 2 Class 3 Class 4 Score

Control 83.00 ± 3.06 15.00 ± 2. 3.66 ± 1.2 ND ND 22.34 ± 3.58
EMS (200 μg/ml) 32.±1.53 25.33 ± 2.03 27.±0.58 10.33 ± 1.2 6.33 ± 0.88 135.64 ± 6.83
C. grandifolia extract
25 µg/ml 65.±0.58 27.±1.15 5.67 ± 1.20 2.±0.58 0.33 ± 0.33 45.66 ± 5.58
50 µg/ml 49.67 ± 2.33 28.±1.00 10.00 ± 1.15 6.5 ± 1.22 6.67 ± 0.33 94.14 ± 2.21
100 µg/ml 38.67 ± 2.33 27.33 ± 2.91 18.33 ± 0.88 11.±0.88 5.±1.15 118.99 ± 3.83
200 µg/ml 16.67 ± 1.76 39.5 ± 2.86 19.67 ± 3.71 11.5 ± 1.20 11.67 ± 0.67 160.01 ± 2.51

EMS (ethyl methanesulfonate), positive control. Mean values ± SEM are shown (n = 3).
ND, non-detected.
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polyphenols in the aqueous extract of
C. grandifolia. Since there are only few data con-
cerning the chemical composition of
C. grandifolia, our study is of importance and

our identified molecules need to be added to the
known molecules previously identified in this
species which may help to elucidate some attrib-
uted biological activities such as neuromodulatory
effects (Kich et al. 2016) and potent antileishma-
nial actions (Kauffmann et al. 2016).

Several members of the Myrtaceae family are
known to exhibit antimicrobial activity including
the essential oils of other species of the genus
Calyptranthes (Anago et al. 2011; Cascaes et al.
2015; Stefanello, Pascoal, and Salvador 2011). In
contrast to Anago et al. (2011) work on Psidium
guajava (Myrtaceae), our data showed
C. grandifolia to display potent antibacterial activ-
ity against P. aeruginosa. This microorganism,
a Gram-negative bacillus, presents the great capa-
city to adapt and survive in unfavorable environ-
mental conditions with minimal physiological
requirements for survival. It is one of the main
pathogens associated with nosocomial infections.
Despite the progress of antimicrobial therapies,

Figure 5. Cytotoxicity of C. grandifolia aqueous leaf extract on Caco-2 and CHO-K1 cell lines. Cell viability was assessed using MTT
assay after 48 hr. Mean values ± SEM are shown (n = 2).

Figure 6. Cytotoxicity and genotoxicity of C. grandifolia aqu-
eous leaf extract on RAW 264.7 cell lines. Cell viability was
assessed using MTT assay after 48 hr. Mean values ± SEM are
shown (n = 2).

Figure 7. Cytotoxicity of C. grandifolia aqueous leaf extract on human leukemia cell lines (HL60, K562, and Kasumi-1) and on
peripheral blood mononuclear cells (PBMCs). (a) Flow cytometer was used to assess calcein-stained leukemia cells after 24 hr of
treatment with the extract. (b) PBMCs were challenged with the extract for 96 hr and cell viability was assessed using trypan blue
exclusion. Mean values ± SEM are shown (n = 3). *p ≤ 0.05.
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P. aeruginosa infections are still the major cause of
mortality with rates between 18% and 61% (Comin
et al. 2016). Our findings indicated that
C. grandifolia may serve as an interesting source
of bioactive compounds with therapeutic potential
against P. aeruginosa. The constituents might be
the organic acids caffeic and gallic acid which are
known antimicrobial activity (Lima et al. 2016). In
addition, previously Kim et al. (2018) noted that
the antibacterial action of caffeic acid was due to
the inhibition of P. aeruginosa RNA polymerase
enzyme. Further, some antimicrobial agents such
as quinolones were investigated for their applica-
tion as anticancer drugs with some advantages to
the attributed topo II drugs such as etoposide and
doxorubicin, without any significant cardiotoxicity
(Aldred, Kerns, and Osheroff 2014; Andriole 2005;
Lavorgna et al. 2019; Sissi and Palumbo 2003).

As cellular toxicity includes genotoxic effects,
and because these effects were previously reported
in other species of Calyptranthes, the evaluation of
cytotoxic and genotoxic effects of C. grandifolia is
necessary to minimize possible risks to human
health (Kich et al. 2017). Macrophages are impor-
tant innate immune cells with key roles in the
primary response to pathogens and presentation
of foreign and self-antigens following infection or
injury (Hao et al. 2012). Cell culture systems includ-
ing mouse macrophage RAW 264.7 cell lines are
widely used to screen and study the effects of nat-
ural products. In addition, acute toxicity tests are
the initial assessment of adverse effects of new sub-
stances for therapeutic purposes providing preli-
minary data of target organs as well as
concentration-specific toxic effects (Catelan et al.
2018; Rodríguez-Chávez et al. 2015). Our results
revealed that the extract induced DNA damage in
a concentration-dependent manner in RAW 264.7
cells suggesting that the damage noted herein may
be liable to repair, since the comet assay is consid-
ered only indicative of mutagenicity due to its
detection of primary DNA damage. Thus, this
damage after 3 hr treatment may be reversible,
and not all DNA fragments are related to cell
death processes (Araldi et al. 2015). This reversal
might even be attributed to antioxidant action and
the damage may have occurred due to the presence
of some compound, tannins, and/or other second-
ary metabolites. In addition to its antibacterial

potential, C. grandifolia might exhibit an effective
activity against tumor cells similar to doxorubicin,
an anthracycline antibiotic that induces antineo-
plastic activity against hematological and solid
malignancies (Szwed et al. 2014). Using essential
oil from C. grandifolia, Faleiro et al. (2017) reported
moderate activity in RAW 264.7 and CHOK1 cell
lines. The primary intention of cancer chemother-
apy is to target cancer cells without affecting normal
cells. While the extract showed low activity in Caco-
2, Raw 264.7, K562, and CHO-K1 reaching approxi-
mately 100% viability in the current study, it is
important to emphasize that cytotoxicity was selec-
tive in comparison to acute myeloid leukemia cell
lines, HL-60 and Kasumi-1 where cell death was
significantly increased as evidenced by a decrease
in cell viability after 24 hr. Further, the cytotoxicity
of the extract on human normal peripheral blood
mononuclear cells (PBMC) was also not significant
from control. These findings suggest a high selective
killing ability of these extracts for tumor cell lines
without impacting normal cells. It should be noted
that PBMCs are the first normal cell populations
that come into contact with antitumor drugs used
in conventional chemotherapy where destruction of
PBMC occurs in the first week of intravenous treat-
ment of patients resulting in significant immune
deficiency and increased side effects reaffirming
that the extract may be effective in cancer therapy
without an associated damage to the immune cells.
This is the first investigation addressing the effect of
the aqueous extract on these cell lines, demonstrat-
ing cytotoxic selectivity toward leukemia cell lines.
Clinical data demonstrated that anticancer drugs or
cytotoxic agents are more effective in leukemia cells
since they are more susceptible to oxidative stress
than other cancer cells (Lindholm et al. 2002). The
anticancer activity of flavonoids was observed in
many different types of leukemia cell lines.
Apigenin, for example, is known to initiate cyto-
toxic activity against several leukemia cell lines with
IC50 ranging from 15 to 55 µM (Liu et al. 2015;
Mahbub et al. 2013). However, different leukemia
cell lines exhibit relative sensitivity/resistance
toward apigenin which induced variable effects on
the cell cycle depending on the cell line. Phenolic
compounds are also known to produce antileuke-
mic activity (Viktorsson et al. 2017). Previously
Chiang et al. (2003) showed caffeic acid to display
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antileukemic effects in HL-60 and U937 cells. Our
results might be attributed to a synergism between
the above-mentioned compounds and other com-
pounds not yet identified.

The human body has protection mechanisms
against free radicals and other oxidants that benefit
the health of the individual (Alam, Zafar, and
Sharmin 2013). Although several members of the
Myrtaceae family were previously investigated and
showed antioxidant activities (Mosmann 1983), the
aqueous extract from C. grandifolia demonstrated
significant antioxidant potential similar to that of
standard ascorbic acid. Dexheimer et al. (2017) also
reported a concentration-dependent antioxidant
activity of the C. grandifolia ethanolic extract and
no activity by using the hexanic extract.

In order to investigate the specificity of
C. grandifolia as a source of molecules able to inhibit
kinases, the aqueous extract was tested for its ability
to inhibit JAK3 and p38α in vitro, which are impor-
tant enzymes in cellular functions involved in the
progression of diverse pathologies such as neurode-
generative disorders and inflammation. According
to the results, C. grandifolia extract markedly inhib-
ited p38α and especially JAK3 activity. JAK3 belongs
to the Janus family of kinases. It is primarily
expressed in myeloid and lymphoid cell lines and –
unlike other JAKs – is required for immune cell
development. Therefore, JAK dysregulation may
result in several hematological disorders. In addition,
previous investigators showed JAK3 mutations to be
associated with myeloid leukemia (Klusmann et al.
2007; Marjanovic et al. 2016). Due to its unique
expression in cells of the hematopoietic lineage,
JAK3 is considered a highly appealing therapeutic
target. Thus, inhibition of JAK3might be expected to
display high specificity and a low amount of cross-
reactivity to other non-target cells (Dymock et al.
2014; Goedken et al. 2015). This is the first study that
demonstrated the inhibitory effect of C. grandifolia
extract on p38α. Between the identified polyphenols
from our study, apigenin was the main compound
followed by luteolin in the aqueous extract. These
two compounds are associated with suppressing the
JNK and p38-MAPK pathways and exhibit an affi-
nity for proteins involved in cancer, especially JAK3
(Kim and Lee 2018; Pu et al. 2018). Thus, the effect of
C. grandifolia extract may be related to the presence
of this substance.

In conclusion, the potential of the aqueous
extract of C. grandifolia was noted at low concen-
trations as an inhibitor of JAK3 and p38α in low
concentration. Thus, these findings suggest that
C. grandifolia contains active compounds that
might be used in the development of antileukemic
drugs using JAK3 as a target. Collectively, the
results of the current study demonstrate that
C. grandifolia might serve as a source for
a variety of active compounds with promising
therapeutic potential including antimicrobial and
antileukemic biomolecules. Further studies need to
be conducted to isolate, characterize, and under-
stand the mechanism of action of these active
compounds.
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