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Abstract
Sepsis is an organ dysfunction caused by an uncontrolled inflammatory response from the host to an infection. Sepsis is the main
cause of morbidity and mortality in intensive care units (ICU) worldwide. One of the first organs to suffer from injuries resulting
from sepsis is the brain. The central nervous system (CNS) is particularly vulnerable to damage, mediated by inflammatory and
oxidative processes, which can cause the sepsis-associated encephalopathy (SAE), being reported in up to 70% of septic patients.
This review aims to bring a summary of the main pathophysiological changes and dysfunctions in SAE, and the main focuses of
current experimental studies for new treatments and therapies. The pathophysiology of SAE is complex and multifactorial, com-
bining intertwined processes, and is promoted by countless alterations and dysfunctions resulting from sepsis, such as inflammation,
neuroinflammation, oxidative stress, reduced brain metabolism, and injuries to the integrity of the blood-brain barrier (BBB). The
treatment is limited once its cause is not completely understood. The patient’s sedation is far to provide an adequate treatment to this
complex condition. Studies and experimental advances are important for a better understanding of its pathophysiology and for the
development of new treatments, medicines, and therapies for the treatment of SAE and to reduce its effects during and after sepsis.
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Abbreviations
SAE Sepsis-associated encephalopathy
ICU Intensive care units
CNS Central nervous system
BBB Blood-brain barrier
TNF-α Necrosis factor alpha
IL Interleukins
CSF Cerebrospinal fluid
ROS Reactive oxygen species
NO Nitric oxide
RNS Reactive nitrogen species
H2O2 Hydrogen peroxide
O2

. Superoxide

.OH Hydroxyl
NO2

. Nitrogen dioxide
ATP Adenosine triphosphate
CLP Cecal ligation puncture procedure
FBP Fructose-1,6-bisphosphate
18F-FDG 18F-fluoro-2-deoxy-D-glucose
GSDMD Gasdermin-D protein
CAT Catalase
GPx Glutathione peroxidase
KYN Kynurenine
SOD Superoxide dismutase
EE Ecballium elaterium
FBP Fructose-1,6-bisphosphate
Ngb Neuroglobin
FO Fish oil
IVIg Immunoglobulin

Introduction

Sepsis is an organic dysfunction caused by the hosts uncon-
trolled inflammatory response to an infection [1, 2], represent-
ed by an imbalance in the pro-inflammatory and anti-
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inflammatory factors, leading to injury and multiple organ
dysfunction and failure [3–6]. Sepsis remains as the main
cause of ICU morbidity and mortality worldwide [7, 8], being
responsible for approximately six million deaths, affecting
predominantly low and middle-income countries [9]. The
acute systemic inflammation resulting from sepsis causes a
cascade of physiological changes that affects the central ner-
vous system (CNS) [10, 11]. The CNS is particularly vulner-
able to damage, mediated by inflammatory and oxidative pro-
cesses, which can cause sepsis-associated encephalopathy
(SAE) [11–13].

Although the exact mechanism of cerebral dysfunction is
still not well understood, it is known that the pathophysiology
of SAE ismultifactorial [14–17]. Studies report that up to 70%
of patients with sepsis develop SAE [18, 19]. One of the main
processes involved in the brain changes and injuries during
sepsis is the increased expression of pro-inflammatory cyto-
kines [20–22], and the activation of microglia and astroglial
cells causes changes in cerebral homeostasis [20, 23–25].
Neuroinflammation increases metabolic and bioenergetic de-
mands, resulting in oxidative stress and mitochondrial dys-
function, with production of reactive oxygen species, stimu-
lating a pro-apoptotic scenario that affects glial cells, neurons,
and the blood-brain barrier (BBB) structure [26–28].
Alterations of the BBB integrity compromise the healthy brain
function, considering its role as a highly selective barrier be-
tween the brain and the periphery [29, 30]. Metabolic and
hemodynamic changes also precede cognitive impairment
and structural changes in the brain, such as atrophy of white
and gray matter [31–33]. Changes in brain metabolism may
represent a key component to trigger encephalopathy during
the pathological process of sepsis [16, 17, 34]. Once SAE’s
cause remains unknown, its treatment is limited, and one of
the therapeutic strategies, such as patient sedation, is clearly
unsatisfactory as treatment of such complex condition [19].

This review provides a summary of the main pathophysio-
logical changes and dysfunctions in SAE and describes the
progress obtained from experimental studies, in the task force
of better understanding the mechanisms related to this condi-
tion. Many efforts have been done to develop new treatments
and therapies not only to treat SAE but also to improve the
quality of life of the septic patient, during the hospitalization
period and, mainly, after sepsis.

SAE Clinical Presentation and Dysfunctions

Encephalopathy associated with sepsis can be defined as a cog-
nitive dysfunction associated with sepsis, in the absence of
infection in the central nervous system or structural brain inju-
ry, after excluding other metabolic causes. Clinically, this syn-
drome is manifested by mental confusion, anxiety, irritability,
depression, anhedonia, decreased social communication and

environmental interest, and cognitive changes, including de-
creased concentration, learning capacity, and memory [35].
The researches about the mechanisms underlying this syn-
drome began in the 1950s [24, 36].

SAE is classified as acute when is manifested only during
the course of sepsis, with patient improvement after its control
[37, 38]. When symptoms last from weeks to months, SAE
can be considered subacute, and if the symptoms persist for a
year, it can be categorized as chronic. Subacute and chronic
deficits require close monitoring and attention, since affected
individuals may need rehabilitation or home care [36].

During sepsis, neurological dysfunctions can vary from
mild mental confusion to cognitive impairment and coma
[16, 39]. In some cases, patients may also experience muscle
stiffness, tremors, or seizures [40]. Neurological disorders in
SAE are similar to the description of hypoactive and hyperac-
tive delirium, which is considered a manifestation of cerebral
dysfunction during sepsis [41].

Even though SAE has been considered a reversible syn-
drome, mild-to-moderate neurological symptoms, including
memory changes, depression, anxiety, or cognitive disorders,
can persist between 20 and 40% of patients 1 year after hos-
pital discharge [16, 38, 42, 43].

Numerous works address certain and new pathophysiologi-
cal factors that are involved in cerebral dysfunction during sep-
sis, trying to understand its complexity. This is the exciting
point of SAE, because new factors, resulting from sepsis, have
been elucidated by researchers as causing or mediating SAE
(Fig. 1). These pathophysiological factors are described below.

Pathophysiology of SAE

Neuroinflammation and Changes in Neural Cell
Function and Signaling

Neuroinflammation is one of the main processes involved in
SAE [20, 21], playing a crucial role in neural apoptosis and
cognitive impairment during and after sepsis [22, 38]. The
inflammatory process in SAE involves increased expression
and release, by the activated cells of the immune system, of
pro-inflammatory cytokines, such as nitric oxide, tumor ne-
crosis factor alpha (TNF-α), and interleukins (IL) IL-1β and
IL-6, increasing the inflammatory response [22, 44, 45]. In
addition, circulating proinflammatory mediators promote the
expression of adhesion molecules in brain endothelial cells of
microvessels, which facilitate the passage of neurotoxic fac-
tors and inflammatory cells into the brain tissue [46]. The
results of these phenomena are the activation of microglia,
which acquires neurotoxic properties, more specifically by
the release of nitric oxide, cytokines, reactive oxygen species,
and glutamate, inducing neuronal injury and death in vulner-
able brain areas [47].
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Systemic inflammation also triggers the local production of
cytokines. In the brain, this local production can cause neuro-
inflammation, which mediate neuronal dysfunction and, ulti-
mately, cell death. In this scenario, TNF-α, IL-1β, and IL-6
seem to be the most relevant inflammatory mediators [24, 48].
Significant neuroinflammation induces neutrophil infiltration in
brain tissue, activation of astrocytes through toll-like receptors,
and overexpression of aquaporin 4. Moreover, it increases syn-
thesis of prostaglandins and nitric oxide that activate the hypo-
thalamus and adrenal axis [49–51]. This pro-inflammatory en-
vironment results in behavioral changes, fever, and severe neu-
rological impairment, due to cerebral edema and neuronal ap-
optosis, contributing to both transitory and permanent cognitive
dysfunction present in the survivors of sepsis [12, 16].

Alterations and activation of microglial and astroglial cells,
orchestrated by the inflammatory process, are among the most
relevant phenomena in SAE [20, 23–25]. The function of these
cells is essential for cerebral homeostasis [23, 24]. They con-
tribute to brain defense against infection by being closely in-
volved in maintaining blood-brain and cerebrospinal fluid bar-
riers [20, 24]. Also, astrocytes and microglia are involved in the

modulation and maintenance of synapses, being closely related
to the entire intracerebral communication network [20, 23, 24].
Therefore, the alterations in their activity can cause synaptic
dysfunctions [24] and tissue injuries (apoptosis), affecting not
only the structure of the organ but also its functions, such as
memory, attention, cognition, and consciousness [20, 23, 25,
52]. Many researchers have raised the hypothesis that the acti-
vation of immune cells in the brain, and the entire inflammatory
process of releasing pro-inflammatory cytokines, is crucial for
the development of SAE [16, 53, 54].

The exact mechanism of acute brain dysfunction, caused
by cerebral inflammation during sepsis, remains unclear.
Nonetheless, a lot of efforts are being done to elucidate the
role of this process in the development of SAE in order to find
new treatments that can prevent the severe neurological inju-
ries, dysfunctions, and deficits disorders in septic patients.

Oxidative Stress

Neuroinflammation increases according to metabolic and bio-
energetic demands, resulting in oxidative stress and

Fig. 1 Sepsis is a systemic dysfunction caused by a host’s uncontrolled
inflammatory response to an infection. Circulating proinflammatory
mediators promote the expression of adhesion molecules in brain
microvessel endothelial cells that facilitate the passage of inflammatory
cells and proinflammatory cytokines to brain tissue. Inflammatory
mediators cause cellular changes in brain tissue, such as the activation
of astrocytes and microglia, which release pro-inflammatory cytokines.
Neuroinflammation causes changes and damage to neural cells. The pro-
duction of reactive oxygen species also contributes to brain tissue damage

and injury. Injuries and damage to brain tissue during SAE are multifac-
torial, being accompanied and enhanced by changes in cerebral perfusion
and reduced metabolism. BBB is the main selective barrier of neural
tissue. During sepsis, encephalopathy can cause changes and dysfunc-
tions in the integrity of the BBB, compromising its selectivity. These
complications and interconnected processes, in addition to causing dam-
age to the neural tissue, compromise synaptic interactions, causing cog-
nitive and memory disorders, which can leave long-term sequelae
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mitochondrial dysfunction [26, 27]. Mitochondrial dysfunc-
tion results in the production of reactive oxygen (ROS) and
reactive nitrogen species (RNS) [27]. ROS includes not only
oxygen-centered free radicals, such as superoxide (O2

.) and
hydroxyl (.OH) anions, but also some non-radical oxygen de-
rivatives, such as hydrogen peroxide (H2O2). Peroxynitrite
(ONOO−) and nitrogen dioxide (NO2

.) are examples of RNS
[54]. All those species can cause structural damage to the
membrane and induce inflammation.

The formation of ONOO− by the scavenge of NO by ROS
and RNS activates the inducible NO synthase, increasing the
NO production and, hence, the yielding of more ONOO−.
Donors and producers of NO and, subsequently, of ONOO−,
induce a rapid decrease in oxygen consumption, inhibiting
complexes I and IV of the electron transport chain in mito-
chondria and uncoupling oxidative phosphorylation, leading
to neuronal bioenergetic failure [55–57]. NO reversibly in-
hibits mitochondrial respiration, competing with oxygen for
the binding site in complex I, while ONOO− attenuates elec-
tron transport both in complex I [56, 58] and, to a lesser extent,
in complex IV [55] through irreversible oxidative changes
[56].

The increased presence of ONOO−, driven by NO and free
radicals, within the brain can be critical for neuronal function
in sepsis [56], leading to a clinical condition that affects glial
cells, neurons, and the BBB structure, which contribute con-
siderably to brain injury related to SAE [27, 59, 60]. Probably
the apoptosis of neurons leads to SAE during sepsis, because
its association with cognitive dysfunction in patients with sep-
sis has been well documented [61, 62].

The serious damage caused by oxidative stress during sep-
sis, including injury and cell death in the neural tissue, dem-
onstrates the need for advances in research to better under-
stand its triggering processes. Studies are needed in order to
develop treatments and therapies to mitigate and perhaps to
prevent oxidative stress and its effects on SAE, in an attempt
to preserve the integrity of brain tissue during sepsis.

Alterations in Cerebral Perfusion and Metabolism

The glucose supply for the continuous energy production is
more imperative in the brain than in any other organ [61]. The
brain consumes more than 20% of the oxidative fuels supplied
by the body, and, even though it has only 2% of the body’s
weight, it receives a generous cardiac supply to get nutrients
(glucose and oxygen) to maintain the metabolism (growth and
function) of its cells [62]. The energy costs of the brain are
mainly supported by adenosine triphosphate (ATP) derived
from glucose oxidation, which is the primary energy substrate
for the brain, although other substrates may contribute to the
production of ATP, such as ketone bodies and lipids [63].

A recent research showed a significant reduction in cere-
bral glycolytic metabolism in C57BL6 mice submitted to an

experimental model of severe sepsis [34]. Nonetheless, the
pathophysiologic mechanism of this reduced cerebral glyco-
lytic metabolism during sepsis remains to be elucidated. Some
studies reported the presence of ischemia [17, 64, 65] and
dysfunctions in cerebral perfusion and its microcirculation,
leading to cerebral hypoperfusion [66]. The impaired cerebral
microcirculation during sepsis can result in inadequate cere-
bral perfusion and may be related to electrophysiological ab-
normalities and neurological modifications [17, 67, 68]. These
metabolic and hemodynamic reductions precede cognitive im-
pairment and structural changes in the brain, such as atrophy
of white and gray matters [31–33]. Thus, the changes in the
blood flow, along with the release of inflammatory molecules,
can represent a key component to trigger encephalopathy dur-
ing the pathological process of sepsis and may be related to
changes in glucose uptake by neural cells [17, 69].

The lack of maintenance in the metabolic rate of glucose
has been related to cognitive impairment in patients with dia-
betes in Alzheimer’s disease [70, 71]. Likewise, other studies
have shown that neurovascular dysfunction is highly associ-
ated with an accelerated decline in linguistic ability, verbal
memory, attention, and visuospatial skills [72, 73]. Once the
maintenance of adequate cerebral metabolic and vascular in-
tegrity is quite important to cognitive ability and mental health
[69], a better understanding of brain metabolic processes, such
as glucose metabolism, is essential for a thorough comprehen-
sion of the pathogenesis of sepsis and for the development of
new therapeutic and adjuvant treatments to add to convention-
al treatments, both for sepsis and SAE.

Modifications in the BBB

The blood-brain has a key role in the control and maintenance
of cerebral homeostasis and, hence, to maintain adequate neu-
ral function [29, 74, 75]. BBB plays a unique role as a highly
selective biological interface between the brain and its periph-
ery. The preservation of the BBB’s integrity maintains and
protects the healthy brain function, largely orchestrated by
the ion concentration gradients and the availability of nutrients
[30]. Several studies support a regulatory role of the BBB in
the progression of acute and chronic brain dysfunction [30].

Through mechanisms yet poorly understood, sepsis can
induce acute and chronic changes in the central nervous sys-
tem, particularly in the BBB [30, 69]. The production and
exacerbated release of pro-inflammatory cytokines such as
TNF-α, IL-1β, and IL-6; endotoxins such as LPS; and medi-
ators such as ROS and NO act on the brain barriers, changing
cellular functions and leading to the rupture of homeostasis
and the consequent increase in permeability [76–78]. In addi-
tion, these mediators cause the activation of MMPs, MMP-2,
and MMP-9, in the BBB, and MMP-8, in the blood-
cerebrospinal fluid barrier; these proteins act by breaking the
junctions between the cells that make up the brain barriers,
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allowing even greater permeability. These inflammatory cas-
cades and oxidative stress are responsible for structural chang-
es in the BBB [29].

IL-1β, one of the main cytokines involved in this patho-
physiology, induces the astrocyte-activated release of vascular
endothelial growth factor A (VEGF-A) and thymidine phos-
phorylase (TYMP, or endothelial cell growth factor 1,
ECGF1), which contribute to the negative regulation of ex-
pression of the tight junction proteins in brain endothelial
cells, thus promoting the loss of integrity of the BBB [77].
At the same time, astrocytes can attenuate microglia activation
through secretion of TGF-β, to detain the inflammatory pro-
cess [78]. IL-1β is also recognized as a potent inducer of
astrocyte response. Stimulation of astrocytes with IL-1β in-
creases mRNA and protein expressions of TNF-α and IL-6
[79]. The constitutive astroglia overexpression of IL-6 is as-
sociated with neurodegeneration, astrogliosis, and BBB
breakdown [24].

The understanding of the determinants of the integrity of
the BBB during sepsis is quite important for the comprehen-
sion of SAE and for the development of new treatment op-
tions, aiming a positive prognosis. Thus, experimental studies
have been focused on BBB as part of the research for short to
long term therapeutic strategies. Advances in experimental
studies, focused on the BBB as a strategy for SAE treatment,
are of great importance and relevance in the search for thera-
pies that inhibit BBB dysfunction, thus possibly inhibiting
brain alterations and dysfunction during sepsis. The mainte-
nance of the normal BBB function during sepsis is crucial to
suppress inflammation, reduce mortality, and improve neuro-
logical outcomes in sepsis survivors, in addition to reducing
long-term sequelae resulting in a better quality of life after
sepsis.

Experimental Studies

The main focus of the experimental studies on SAE is related
to understand the role of microglial and astroglial cells and the
pathways to control neuroinflammation by modulating the
function of these cells.

Michels et al. [23] conducted a study on an animal model
of severe sepsis by cecal ligation puncture (CLP) in rats, to
determine the effects of microglial depletion, by clodronate-
liposomes, on the systemic and brain inflammatory response.
An increase in pro-inflammatory cytokines was observed in
animals submitted to CLP, as expected. Administration of
clodronate decreased the density of microglia in the hippo-
campus and increased the proinflammatory cytokines even
further and also increased the expression of CD11b. The
CD11b integrin is a surface receptor expressed by monocytes,
macrophages, neutrophils, dendritic cells, and subsets of B
lymphocytes that bind to several ligands, including members

of the ICAM family, and to the complement factor iC3b. It is
involved in essential immune and pro-inflammatory process-
es, including leukocyte extravasation and phagocytosis.
Therefore, increased expression of CD11b may potentiate
the neural inflammatory process during sepsis [23, 80].
Microglial restocking, by doxycycline, was able to reverse
brain and systemic cytokine levels. The study suggests that
depletion of microglia, during the development of severe sep-
sis, may be associated with exacerbation of cerebral and sys-
temic inflammation, whereas the microglial restocking is able
to reverse this condition [23].

Neutrophils and monocytes are recruited by chemokines
during the inflammatory process in sepsis, being the CCR2+
receptor as one of the main receptors responsible for the re-
cruitment of inflammatory response cells to the brain [81, 82].
A recent study demonstrated, for the first time, that the recruit-
ment of monocytes by CCR2+ to the brain causes microglial
activation, playing an important role in the long-term cogni-
tive impairment resulting from SAE [19]. In this study, be-
yond observing human patients, the researchers also induced
severe sepsis in mice, by pneumonia caused by Streptococcus
pneumoniae, which also triggered encephalopathy with long-
term cognitive sequelae in animals. They demonstrated that
controlling the recruitment of inflammatory monocytes by
CCR2+ could reduce microglial activation and neuroinflam-
mation, preventing signs of cognitive impairment after sepsis.
They suggest that using the control of monocyte recruitment
by CCR2+ as a therapeutic target during sepsis could repre-
sent a new clinical intervention strategy to prevent the devel-
opment of sequels and long-term cognitive deficiencies
resulting from SAE [19].

A key factor involved in inflammation is the NF-κB.
During sepsis, the activation of NF-κB increases the expres-
sion of pro-inflammatory cytokines. Studies have shown that
the expression of the silent information regulator 1 (SIRT1)
can neutralize the activation of NF-κB [22, 83, 84]. SIRT1 is
an important nicotinamide adenine dinucleotide (NAD+)–de-
pendent protein lysine deacetylase which regulates stress re-
sponses, inflammation, apoptosis, and cellular senescence,
and its activation exerts protection against neurological disor-
ders such as ischemic stroke and neurodegenerative disorders
[85, 86]. SIRT1 activation is intensively connected with the
SIRT1-mediated deacetylation of downstream signaling pro-
teins such as FOXO1, p53, and NF-κB, thus exerting anti-
apoptotic, antioxidant, and anti-inflammatory actions
[87–89]. A recent study evaluated the effect of attractylone
(Atr), a plant sesquiterpene, in an LPS-induced sepsis model
in mice. Atr promoted the expression of the SIRT1 and sup-
pressed the expression of NF-κB, thus attenuating cognitive
dysfunction caused by microglia activation and also reducing
neural apoptosis and neural inflammatory factors caused by
sepsis [22]. Another study evaluated the activation of SIRT1
using butein (3,4,2′, 4′-tetrahydroxychalcone), a plant

2774 Mol Neurobiol  (2021) 58:2770–2779



flavonoid, which has been described acting as neuroprotective
agent reducing inflammation and oxidative stress in neurons
[85, 90, 91]. In a CLP mice sepsis model, the treatment with
butein upregulated the SIRT1 levels, resulting in a significant
reduction in the expression of IL-6, TNF-α, and IL-1β and in
a decreasing in acetylated NF-kB, FOXO1, and p53 (Ac-
NF-κβ, Ac-FOXO1, and Ac-p53) levels. The treatment with
butein had a protective effect on BBB integrity, attenuating
the inflammatory process and reducing oxidative stress, thus
reducing neurological dysfunctions caused by SAE [92].

Pyroptosis is a recently discovered type of programmed
cell death, which is performed by the GSDMD-NT, the N-
terminal of gasdermin-D protein (GSDMD). GSDMD-NT
can bind to the lipids of the cell’s inner membrane, forming
pores in the plasma membrane, resulting in cell lysis and re-
lease of inflammatory mediators such as IL-1β [93, 94].
Inflammatory mediators cause a rapid change in the microglia
phenotype in the brain, and the activated microglia produces
inflammatory mediators [93]. A study investigated the effect
of caspase-1 inhibition, by administration of caspase-1 inhib-
itor VX765, as a protective treatment for the brain, aiming to
suppress GSDMD expression and its cleavated form
GSDMD-NT, to reduce pyroptosis in the brain during sepsis,
in a CLP-induced sepsis animal model [93]. Inhibited caspase-
1 suppressed GSDMD expression and its form of GSDMD-
NT cleavage, resulting in reduced pyroptosis in brain tissue.
The inhibition of caspase-1 also reduced the expression of IL-
1β, MCP-1, and TNF-α in serum and brain tissue and
prevented the interruption of the blood-brain barrier induced
by sepsis and damage to brain ultrastructure. The authors de-
fend the hypothesis that inflammatory mediators circulating in
the peripheral blood, as a result of sepsis, access the brain
through the damaged BBB and trigger pyroptosis in the neural
tissue. This process would be followed by activation of mi-
croglia and neural dysfunction, leading then to cognitive im-
pairments. The study demonstrated that inhibition of caspase-
1 protected the brain’s ultrastructure, especially BBB, drasti-
cally reducing pyroptosis and reducing the release of inflam-
matory cytokines, resulting in preservation of cognitive func-
tions in CLP-induced experimental sepsis in mice [93].

Wang and colleagues [94] evaluated a pro-apoptotic mito-
chondrial serine protease involved in caspase-dependent cell
death, Omi/HtrA2. They described a specific Omi/HtrA2 in-
hibitor, UCF-101, and investigated its effect on brain cell in-
jury and death caused by oxidative stress due to SAE, in an
animal model of CLP-induced sepsis. The levels of caspase-3,
caspase-9, and PARP (poly [ADP-ribose] polymerase) in the
hippocampus of CLP animals were higher than levels in con-
trol animals, whereas Omi/HtrA2 levels were slight increased
in the hippocampus of septic animals, with a translocation of
Omi/HtrA2 from mitochondria to the cytosol. The treatment
with UCF-101 prevented the translocation of Omi/HtrA2
from the mitochondria to the cytosol, decreased the cleaved

expression of caspase-3, caspase-9, and PARP, as well as
reduced apoptosis. The inhibition of Omi/HtrA2 by UCF-
101 also reduced the levels of inflammatory cytokines (IL-6
and TNF-α) and the oxidative stress (CAT, GSH, and MDA)
in the hippocampus of septic animals. Taken together, these
data indicate that Omi/HtrA2 regulates a mitochondria-
dependent apoptotic pathway and suggests that the inhibition
of Omi/HtrA2 by UCF-101 could result in neuroprotection by
inhibiting the cytosolic translation of Omi/HtrA2 and antago-
nizing a caspase-dependent apoptosis pathway [94].

The treatment with intravenous immunoglobulin (IVIg) is
an established modality for immunomodulation in neurologi-
cal diseases [95], so it will be interesting to evaluate its use for
brain protection to damage. Esen et al. [96] developed exper-
imental tests with IVIg in an animal sepsis model. The results
suggest that the administration of IVIg reduces brain damage
caused by sepsis by inhibiting complement-mediated neuronal
death. The findings indicate that IVIg can suppress the classic
complement pathway, reducing C5a activity and the pro-
apoptotic expressions of NF-κβ and Bax, thereby inhibiting
large cascades of inflammation and apoptosis, reducing cell
death by apoptosis, and, consequently, neuronal dysfunction
and behavioral deficits [96].

The phosphatidylinositol-3-kinase (PI3K)/Akt pathway is
a vital survival signaling pathway in neurons ([97]). A study
reported that neuroglobin (Ngb) protects mice from the effects
of SAE through a PI3K/Akt/Bax-dependent mechanism
in vivo. Ngb is a species of globin expressed mainly in verte-
brate neurons and works similarly to myoglobin, described by
Burmester and colleagues [98]. Some studies have reported
that Ngb has neuroprotective effects [99–101]. The study per-
formed by Deng et al. [101] administered neuroglobin via
intracerebroventricular injection of Ngb plasmids in rats with
CLP-induced sepsis. The results showed that Ngb attenuated
brain damage, by histological analysis of brain tissue, and
demonstrated a protective effect on neurological dysfunction.
The mechanism was observed by Western blot analyses,
which demonstrated an increasing in Akt phosphorylation
and a decreasing in the level of Bax protein, confirming the
protective effect of Ngb in SAE through the PI3K/Akt/Bax-
dependent mechanism [101].

During neuroinflammation, cytokine levels are high [22,
44, 45], which stimulate the formation of neurotoxic metabo-
lites by the kynurenine (KYN) pathway [27, 102]. During
inflammation, indoleamine 2,3-dioxigenase is activated in ex-
trahepatic tissues, converting tryptophan to KYN [103]. This
process is followed by the synthesis of enzymes that regulate
the generation of neurotoxic metabolites, such as 3-
hydroxykynurenine, 3-hydroxyanthranilic acid, and
quinolinic acid, causing neurotoxicity through the formation
of ROS [27]. Danielski et al. [27], in a study with a CLP-
induced sepsis model in Wistar rats, evaluated the effect of
vitamin B6 (vit B6) on survival, activation of the kynurenine
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pathway, acute neuroinflammation, and long-term cognitive
dysfunction due to SAE. Vit B6 has anti-inflammatory and
antioxidant properties and also acts as a cofactor for enzymes
in the KYN pathway [104, 105]. They observed higher levels
of tryptophan in septic animals treated with vit B6, when
compared with septic animals without treatment, suggesting
a reduction in the conversion of tryptophan to KYN. The
results showed that vit B6 affects the activation of KYN path-
way, being able to restore normal levels of tryptophan. The vit
B6 administration led to an improvement in neurochemical
and neuroinflammatory parameters, such as a reduction in
IL-1β, IL-6, and TNF-α, especially in the hippocampus of
septic animals that received the treatment. The administration
of vitamin B6 also had a protective effect in preserving the
integrity of the BBB. Consequently, there was a decrease in
neuroinflammation and oxidative stress resulting from sepsis
in brain tissue. Animals from the CLP group and CLP + vit B6
group were followed for 10 days to determine survival rate
and cognitive functions. The CLP + vit B6 animals had better
long-term memory and improved cognition when compared
with animals with CLP alone. The results indicate that vitamin
B6 has neuroprotective effects on the acute and long-term
consequences of sepsis [27].

Bedirli and colleagues [28] evaluated the effects of
sevoflurane, a volatile anesthetic, in the oxidative process
and brain tissue injury during SAE, as well as on memory
changes in an experimental model of CLP sepsis in rats.
Sevoflurane treatment had a protective role against oxidative
damage, significantly increasing the activities of GPx and
SOD compared with CLP animals. The levels of IL-6, IL-
1b, MDA, and of caspases 3, 8, and 9 were lower in the treated
animals. Sevoflurane also decreased apoptosis in brain tissue
and improved memory in this experimental model of CLP in
rats. The study suggests that sevoflurane sedation in septic
patients may have beneficial effects on sepsis-related brain
damage and memory impairment [28].

Recently, our research group evaluated the effect of treat-
ment with fructose-1,6-bisphosphate (FBP) on glucose metab-
olism and oxidative stress in brain tissue, in a model of severe
sepsis in C57BL6 mice [106, 107]. Septic animals without
treatment showed a strong and significant reduction in brain
metabolism when compared with basal metabolism.
Treatment with FBP had a significant protective effect on
SAE, being able to preserve the cerebral glucose metabolism
during severe sepsis, without significant changes when com-
pared with the basal metabolism. FBP also reduced the activ-
ity of CAT and GPx in septic animals. These results suggest
that fructose-1,6-bisphosphate may be a possible candidate for
adjuvant treatment in SAE [34].

Plants used in traditional medicine, with anti-inflammatory
properties, have been studied by researchers for SAE treat-
ment. A study explored the neuroprotective effects of
Ecballium elaterium (EE), a plant with anti-inflammatory

properties from the cucurbitaceous family, during SAE in a
CLP-induced sepsis model in rats [108, 109]. They reported a
significant reduction in TNF-α levels in the brain of animals
treated with EE. The treatment with EE also reduced neuronal
damage, pericellular and perivascular edema, and infiltration
of inflammatory cells in septic animals. These data suggest
that EE contains components that have protective effects
against SAE, reducing the accumulat ion of pro-
inflammatory cytokines and attenuating the neural damage
resulting from inflammation [108].

A fish oil (FO)-55–enriched lipid emulsion was orally ad-
ministered to rats with CLP-induced sepsis to determine its
effect as an important anti-inflammatory compound in brain
dysfunction in septic rats. The lipid emulsion enriched with
fish oil reduced BBB permeability in the prefrontal cortex and
in the total cortex of septic rats, decreased levels of IL-1β and
protein carbonylation in all brain structures, and also de-
creased activity of myeloperoxidase in the hippocampus and
prefrontal cortex. The FO improved levels of neurotrophic
factors derived from the brain in the hippocampus and pre-
frontal cortex and prevented cognitive impairment in the ani-
mals [109].

Conclusion

SAE’s pathophysiology is complex and multifactorial, com-
bining intertwined processes, and is promoted by numerous
changes and dysfunctions resulting from sepsis, such as in-
flammation, neuroinflammation, oxidative stress, reduced
brain metabolism, and injuries to BBB integrity. These dys-
functions cause damage to the neural tissue, compromise syn-
aptic interactions, leading to cognitive and memory disorders,
in addition to leaving long-term sequelae. It is evident that in
the absence of a precise understanding of its cause, the treat-
ment is limited, such as patient sedation, being clearly unsat-
isfactory face to its complexity [19]. The variety of dysfunc-
tions and also mental and brain symptoms have an impact on
clinical strategies and may require different therapeutic ap-
proaches. Researchers are engaged in the task force of better
understanding the trigger process and the aggravating factors,
looking for new and effective approaches to treat and mitigate
the effects of SAE during and after sepsis.
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