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Resveratrol increases the activation markers and changes the release 
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Abstract
The phytoalexin Resveratrol (3,5,4′-trihydroxystilbene; RSV) has been related to numerous beneficial effects on health by 
its cytoprotection and chemoprevention activities. Liver fibrosis is characterized by the extracellular matrix accumulation 
after hepatic injury and can lead to cirrhosis. Hepatic stellate cells (HSC) play a crucial role during fibrogenesis and liver 
wound healing by changing their quiescent phenotype to an activated phenotype for protecting healthy areas from damaged 
areas. Strategies on promoting the activated HSC death, the quiescence return or the cellular activation stimuli decrease 
play an important role on reducing liver fibrosis. Here, we evaluated the RSV effects on some markers of activation in GRX, 
an HSC model. We further evaluated the RSV influence in the ability of GRX on releasing inflammatory mediators. RSV 
at 1 and 10 µM did not alter the protein content of α-SMA, collagen I and GFAP; but 50 µM increased the content of these 
activation-related proteins. Also, RSV did not change the myofibroblast-like morphology of GRX. Interestingly, RSV at 10 
and 50 µM decreased the GRX migration and collagen-I gel contraction. Finally, we showed that RSV triggered the increase 
in the TNF-α and IL-10 content in culture media of GRX while the opposite occurred for the IL-6 content. Altogether, these 
results suggested that RSV did not decrease the activation state of GRX and oppositely, triggered a pro-activation effect at 
the 50 µM concentration. However, despite the increase of TNF- α in culture media, these results on IL-6 and IL-10 secre-
tion were in accordance with the anti-inflammatory role of RSV in our model.
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Introduction

Resveratrol (3,5,4′-trihydroxystilbene; RSV) is a phyto-
alexin produced by several plant species, such as peanuts and 
grapes, in response to pathogenic infection and environmen-
tal stresses. This molecule is present at relevant concentra-
tions in red wine and has been related to numerous beneficial 
effects on health by its cytoprotection and chemoprevention 
activities, which has been largely associated with its anti-
inflammatory and anti-oxidant effects. Paradoxically, RSV 
can also exert cytotoxicity through inducing cell death and 
cell growth inhibition, two positive effects for treating sev-
eral pathological conditions such as cancer [1, 2].

Liver fibrosis is a dynamic process characterized by the 
accumulation of extracellular matrix resulting from hepatic 
injury, including those caused by a viral infection, alcoholic 
liver disease (ALD), non-alcoholic steatohepatitis (NASH) 
and hepatic steatosis. It is a consensus that liver fibrogenesis 
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can be reversed if the cause of injury is ceased. However, the 
unchecked chronic liver injury and fibrogenesis can lead to 
cirrhosis, which compromises the hepatic architecture lead-
ing to abnormal blood flow and eventually to portal hyper-
tension. In addition, liver cirrhosis may lead to the onset of 
complications, such as hepatic encephalopathy and variceal 
haemorrhage, which may increase the chances of hepatocel-
lular carcinoma (HCC) development and, thus, the mortality 
risk [3, 4].

Hepatic stellate cells (HSC) are known to store lipid drop-
lets enriched in retinyl ester in their cytoplasm, a condi-
tion that characterizes their quiescent phenotype. As one 
of their physiological features, HSC can differentiate into 
an activated phenotype in response to paracrine stimulation 
from damaged hepatocytes after liver injury. At this condi-
tion, HSC loses their lipid droplets and becomes fibrogenic 
myofibroblast-like cells, playing an important role in liver 
wound healing through protecting healthy areas from dam-
aged areas. Nonetheless, continuous damage to the liver 
results in a chronic inflammatory response in which hepatic 
environment may not recover its homeostatic balance. In this 
context, increased production/activity of cytokines may be 
critical for both autocrine and paracrine perpetuation of HSC 
activation, which contributes to the excessive extracellular 
matrix accumulation that leads to liver fibrosis. In this way, 
strategies that promote the activated HSC death, the quies-
cence return or the cellular activation stimuli decrease play 
an important role on treating chronic liver injuries, focusing 
in the liver fibrosis reduction [5–7].

Along the past years, our research group has been stud-
ying the effects of RSV treatment in the murine cell line 
GRX, an activated HSC model [8]. GRX cells have been an 
excellent tool for studying the extrinsic and intrinsic factors 
that could trigger or prevent liver fibrosis since these cells 
can be induced to display the HSC quiescent-like or a more 
activated-like phenotype [9–13]. We already found that RSV 
treatment (0.1–50 µM) compromised the GRX cell viabil-
ity through inhibiting cell cycle at the S-phase, impaired 
mitochondria and induced apoptosis, especially in the cell 
group that received the highest dose, where the cell popula-
tion was drastically reduced. However, it was interesting that 
these effects were attenuated by the concomitant induction 
of mitochondrial biogenesis and autophagy, two survival 
mechanism against cellular environmental toxicity, which 
culminated in the GRX resistance to the cytotoxic effects 
of RSV [14–16]. Further, we found that 0.1 μM of RSV 
was not able to restore the GRX capacity of storing lipid 
droplets. On the contrary, our results suggested that RSV 
could play a SIRT1-mediated lipolysis in GRX stimulated to 
store lipid droplets by Retinol treatment or by PPARγ super 
expression [17].

RSV treatment showed positive effects on compromising 
viability or reducing the number of activated HSC especially 

at the highest concentration (50 μM). On the other hand, 
RSV compromised the ability of GRX on storing lipid drop-
lets, a characteristic of quiescent HSC. Here, we seek for 
evaluating the effects of RSV towards HSC activation by 
measuring some molecular markers and cell migration after 
wound induction in GRX cell culture. We further evaluated 
the effects of RSV in the HSC ability on releasing TNF-α, 
IL-6 and IL-10 in the culture media, considering the impor-
tance of these cytokines during liver fibrogenesis.

Material and methods

Cell culture

The GRX cell line was obtained from the Cell Bank of Rio 
de Janeiro (HUCFF, UFRJ, RJ). For most experiments, 
3 × 104/cm2 cells were seeded in 24-well culture plates 
(Nunc, Roskilde, Denmark). For cell migration evalua-
tion, 1.5 × 104/cm2 cells were seeded in 96-well culture 
plates (Nunc, Roskilde, Denmark). During culture, cells 
were maintained in Dulbecco’s Modified Eagle’s Medium 
(DMEM, Invitrogen, Carlsbad, CA, USA) supplemented 
with 5% foetal bovine serum (Cultilab, Campinas, SP, Bra-
zil) and 2 g/L HEPES buffer (pH 7.4) in a humidified atmos-
phere containing 5%  CO2 at 37 °C.

Resveratrol treatment

Resveratrol (Sigma Inc., St. Louis, MO, USA) was dissolved 
in 20 µL of ethanol (Merck, Darmstadt, Germany) to a stock 
concentration of 100 mM and sequentially diluted in DMEM 
to a final concentration of 1, 10 and 50 µM just before use. 
After reaching confluence, cells were treated for 24 h. Vehi-
cle-treated cells were considered experimental control.

Analysis of HSC activation markers by flow 
cytometry

The cellular protein content for glial fibrillary acidic protein 
(GFAP), collagen I and smooth muscle actin-α (SMA-α) in 
GRX treated with RSV was measured by flow cytometry. 
Briefly, after 24-h treatment, cells were harvest by trypsin/
EDTA (Sigma Inc.) and fixed with 4% paraformaldehyde 
in phosphate buffer saline (PBS) for 15 min. Sequentially, 
cells were overnight incubated with the primary antibodies 
(GFAP, n.34001, from Cell Signalling, Danvers, MA, USA; 
collagen I, n.8784, from Santa Cruz Biotechnology, Dallas, 
TX, USA; SMA-α, n.A5228, from Sigma Inc.) diluted in 
PBS with 5% of albumin (1:500). Then, cells were incubated 
with adequate secondary antibodies (1:1000, diluted in PBS 
with 5% of albumin) for 2 h at room temperature: GFAP 
and SMA-α-labelled cells were exposed to anti-mouse 
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AlexaFluor 488 (n.A11001, from Invitrogen) while colla-
gen I-labelled cells were exposed to anti-goat AlexaFluor 
647 (n.A21447, from Invitrogen). Cells incubated only with 
respective fluorescence secondary antibodies were used as 
negative controls. A total of 20,000 events were acquired 
by FACSCalibur flow cytometer (BD Biosciences, San 
Jose, CA, USA) at FL-1 (green fluorescence) and FL-4 (red 
fluorescence) channels. All data analyses were performed 
with FCS Express 4 software (De Novo, Software, Ontario, 
Canada). Results were expressed as fluorescence units 
[Control = 1].

Analysis of HSC morphology by confocal microscopy

For analysing the cytoskeleton morphology, GRX was 
stained with tetramethyl-rhodamine isothiocyanate–phal-
loidin (Invitrogen), which specifically binds to F-actin with 
high affinity. Briefly, cells were cultured under coverslip, 
fixed in 4% paraformaldehyde for 15 min at 4 °C and per-
meabilized with 0.1% Triton X-100 in PBS for 5 min at room 
temperature. Filamentous actin was stained in accordance to 
the manufacturer’s instructions. Images were collected using 
Olympus FV1000 laser‐scanning confocal microscope. Ten 
single confocal sections of 0.7 μM were taken parallel to 
the bottom plates (xy sections) with a × 60 (numeric aper-
ture 1.35) oil-immersion objective (Olympus, U plan-super 
apochromat, UPLSAPO60XO). Images from six random 
fields were acquired and deconvolved using the interactive 
3D plugin of ImageJ software (https ://rsb.info.nih.gov/ij).

Analysis of HSC‑induced contraction of collagen I 
gel

In order to evaluate the RSV effects in the HSC ability of 
contracting ECM, a characteristic of activated cells, a ready-
to-use storable gel of collagen I was prepared after extracting 
it from rat tail tendon as previously described [18]. Animals 
were obtained from the Center for Experimental Biological 
Models at Pontifícia Universidade Católica do Rio Grande 
do Sul (PUCRS) and kept in a controlled temperature envi-
ronment (24 ± 2 °C), light/dark cycle of 12 h, with free 
access to water and food. The experimental protocol was 
approved by the Ethics Research Committee of PUCRS.

Collagen I gels (constituted by 125 μl of 4 × DMEM 
and 125 μl of 4 mg/mL Rat Tail Tendon extracted collagen 
I) were impregnated with  105 cells resuspended in 250 μl 
of PBS and added into a 24-well plate for polymerising at 
37 °C during 1 h. Then, collagen I gels and impregnated 
cells were detached and suspended in culture (control) and 
treatment (1, 10 and 50 µM of RSV) media. Images were 
acquired in a gel documenter (L-Pix, Loccus, Cotia, SP, 
Brazil) after 24 h of treatment, and the surface area for each 
gel was determined as percentage of well area using ImageJ 

software (https ://rsb.info.nih.gov/ij/), a public domain Java 
image processing software. Cell treatment with N-acetyl-
cysteine (NAC) at 400 μg/mL was used as a positive con-
trol [19]. Results were expressed as area of gel, considering 
control as 100%.

Analysis of HSC migration by in vitro scratch assay

The effect of RSV in the migration capacity of GRX 
was evaluated by the in vitro scratch assay as previously 
described [20]. Briefly, after 24-h treatment, a circular gap 
was created with a 200-μL pipette tip at cell-confluent mon-
olayer. Then, 24 images for each group were acquired in the 
SpectraMax i3 Multi-Mode Platform (Molecular Devices, 
Sunnyvale, CA, USA) at 0, 6, 12 and 24 h. Wound area at the 
aforementioned times was measured using ImageJ software. 
Results were expressed as the percentage of cell migration 
which represents the wound area reduction (wound closure).

Analysis of HSC inflammatory release by ELISA assay

After 24-h treatment, the interleukine-6 and interleukine-10 
concentrations were quantified in cell culture media using 
Quantikine ELISA Kit and protocol (R&D Systems, Minne-
apolis, MN, USA). Tumour necrosis factor-α concentration 
in the culture medium was determined using Sigma ELISA 
Kit (Sigma Inc.), accordingly to the manufacturer’s protocol. 
Optical density was collected in a microplate fluorimeter 
reader (M5, Molecular Devices, USA). For allowing a more 
precise estimate for the RSV effects on cytokine releasing 
by GRX, cell quantity had to be considered. Results were 
then normalized by protein content [21] at the end of RSV 
treatments and were expressed as pg/µg.

Statistical analysis

Data were expressed as mean ± standard deviation of the 
mean. Experiments were repeated at least three times (n = 3). 
One-way ANOVA was used to analyse the effect of RSV 
treatment, and Tukey post-hoc was performed. Results were 
considered statistically different when the p values were less 
than 0.05.

Results

Resveratrol induces an increase in the protein 
markers of activation in HSC

HSC have well-known molecular markers for activation and 
myofibroblast differentiation and among them, the increase 
in the protein content of GFAP, collagen I and SMA-α [3, 
5, 22–24]. Thus, we sought to evaluate the content of these 

https://rsb.info.nih.gov/ij
https://rsb.info.nih.gov/ij/
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proteins in GRX by flow cytometry. Treatment with 1 and 
10 μM of RSV did not alter the intracellular GFAP, collagen 
I and SMA-α protein quantity; however, 50 μM of RSV trig-
gered an increase in the protein content of these molecular 
markers of activation in GRX (Fig. 1).

Resveratrol does not alter HSC cytoskeleton 
morphology, but the highest concentration 
decreases cells ability of contracting collagen I gel

The increase of cell contractibility, characterized by the 
F-Actin cytoskeleton rearrangement in stress fibres, is an 
important feature of activated HSC [25, 26]. Thus, RSV-
treated cells were stained with tetramethyl-rhodamine iso-
thiocyanate–phalloidin for evaluating cell cytoskeleton. No 
significant changes were observed since all groups were pre-
sented with cells with stress fibres and a myofibroblastic-like 
morphology with elongated cytoplasm (Fig. 2a). However, 
the collagen I gels containing cells treated with 50 μM of 
RSV were significantly less contracted (Fig. 2b).

Resveratrol induces a decrease in the HSC migration

The increase in the cell migration ability is also a feature 
of activated HSC [27]. Thus, we also evaluate GRX capac-
ity on migrating after creating a circular gap in cultured 
cell at monolayer. Interestingly, after 6 and 12 h of wound 
creation, cells treated with 10 and 50 μM of RSV presented 
a decreased rate of migration. At 24 h after wound crea-
tion, only cells treated with 50 μM of RSV remained with a 
decreased rate of migration (Fig. 3).

Resveratrol alters the HSC capacity of releasing 
tumour necrosis factor‑α, interleukin‑6 
and interleukin‑10 in cellular medium

Numerous cytokines, which may be pro- or anti-fibrogenic, 
have been shown to play a major role in wound-healing 
response during liver diseases [3, 5–7]. Therefore, the 
largely discussed anti-inflammatory property RSV [1, 
28–30] may interfere on cytokines signalling among cul-
tured HSC. Thus, we evaluated the RSV effects in the GRX 
ability on releasing TNF-α, IL-6 and IL-10; three important 
cytokines that are involved in liver fibrogenesis [5, 22, 31, 
32]. All concentrations of RSV were able to increase the 
release of TNF-α in culture medium by GRX (Fig. 3a) while 
treatment with 10 and 50 μM triggered a similar effect for 
IL-10 releasing (Fig. 3c). Oppositely, all concentrations of 
RSV triggered the decrease on IL-6 releasing by GRX in 
culture media (Fig. 3b).

Discussion

The phytoalexin resveratrol (RSV) has attracted a lot of 
researchers’ attention for being a nutraceutical compound 
with a large pharmacological potential for clinical treat-
ing of many diseases. In this regard, the potential health-
promoting properties of RSV have been associated to its 
pleiotropic-like effects, which are a consequence of its 
interaction with a large number of signalling pathways 
that covers a broad range of pathologies including cancer, 
metabolic syndrome, cardiovascular diseases, neurodegen-
erative disorders, ageing and inflammation [1, 28, 33–35].

Understanding liver fibrosis focuses primarily on events 
that lead to activation and proliferation of HSC, which 
consists of two major phases: initiation and perpetua-
tion. Under liver inflammatory condition, the paracrine 
stimuli from neighbouring cells—namely injured hepato-
cytes, endothelial cells, Kupffer cells and platelets—ini-
tiate HSC activation. The pathways for perpetuating the 
activated HSC phenotype include the acquisition of new 
functions such as proliferation, release of pro-inflamma-
tory cytokines, matrix rearrangement and fibrogenesis. 
The HSC activation may substantially contribute for the 
maintenance of liver cirrhosis that can culminate in hepa-
tocarcinoma or liver failure. Thus, the search for treating 
chronic liver disease, including advanced cirrhosis, shall 
be focusing in the liver fibrosis regression by controlling 
the fibrotic activity of activated HSC through inducing 
these cells to quiescence or apoptosis [3–7].

Recent studies have demonstrated the preventive and 
therapeutic role of RSV for many liver disorders. Among 
these beneficial effects, RSV was able (1) to provide liver 
protection against chemical, cholestatic and alcohol injury; 
(2) to improve glucose metabolism and lipid profile, thus 
decreasing liver fibrosis and steatosis; (3) to increase 
the survival period after liver transplantation; and (4) to 
decrease fat deposition, necrosis and apoptosis in hepato-
cytes after liver ischemia–reperfusion (I/R) injury. When 
focusing on HSC metabolism, previous studies had shown 
the RSV effects on promoting the reduction of α-SMA pro-
tein content [28, 29]. In light of the huge number of studies 
pointing the beneficial effects of RSV for treating numer-
ous pathologies including liver diseases, our research 
group has been studying the effects of this phytoalexin in 
GRX cell line, seeking for evaluating its treatment effects 
focusing on activated HSC.

RSV was indeed cytotoxic to GRX, but these effects 
seemed to be dose-dependent, being attenuated along time 
of cell treatment. Furthermore, this phytoalexin was not 
able to restore the capacity of GRX cells on storing lipid 
droplets. Oppositely, RSV treatment promoted lipolysis 
in quiescent-like cells [14–17], which is an event that 
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Fig. 1  RSV at 1 and 10 µM concentrations did not alter the protein content of GFAP, collagen I, and SMA-α; however, the highest concentration, 
50 µM, triggered an increase in these molecular markers of activation in GRX (n = 3, mean ± SDM, p < 0.05)
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characterizes the early steps of HSC activation [3–5]. 
Thus, we sought to first evaluate some parameters of HSC 
activation in response to a 24-h treatment with RSV at 1, 
10 and 50 µM. We found that RSV at lowest concentra-
tions (1 and 10 µM) did not alter the protein content of 
α-SMA, collagen I and GFAP. However, treatment with 
50 µM of RSV induced an increase of content for these 
activation-related proteins. The increase of contractibility 
in activated HSC is an important feature that contributes to 
the intrahepatic resistance and portal hypertension, which 
is responsible for the morbidity in liver cirrhosis. In this 
situation, activated HSC displays morphological changes 
in their cytoskeleton characterized by the presence of 
F-actin stress fibre [25, 26]. In this way, RSV was not 
able to change the myofibroblast-like morphology of GRX, 
which remained displaying elongated cytoplasm charac-
terized by the presence of stress fibres. Altogether, these 

results suggested that RSV treatment did not decrease the 
activation state of GRX and, oppositely, triggered a pro-
activation effect at the 50 µM concentration.

Another remarkable feature of activated HSC is their abil-
ity to migrate towards damaged areas after liver injury, a 
chemotactic effect that is important to wound healing and 
hepatic tissue remodelling. However, an increased migra-
tion of activated HSC could exacerbate the fibrotic progres-
sion, worsening organ dysfunction [3, 27]. Cells treated with 
10 µM of RSV presented a decreased rate of cell migra-
tion after 6 and 12 h from wounding while this effect was 
observed in cells treated with 50 µM of RSV at all times of 
wounding evaluation. In addition, it was also notable that 
50 µM of RSV apparently decreased cells ability of con-
tracting collagen I gels. At first sight, all results regarding 
the RSV effects in GRX activation, contraction ability and 
migration were surprising and seemed to be contradictory, 

Fig. 2  a No significant changes were observed in GRX cytoskel-
eton since all-treated groups presented cells with stress fibres (white 
arrows) and a myofibroblastic-like morphology with elongated cyto-
plasm (images were pseudo-coloured in Red Hot by ImageJ; Scale 

bar: 10 µm); b Collagen I gels containing cells treated with RSV at 
50  µM were significantly less contracted. N-acetylcysteine (400  μg/
mL) was used as a positive control
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Fig. 3  Cells treated with 10  µM of RSV presented a decreased rate of cell migration after 6 and 12  h from wounding while this effect was 
observed in cells treated with 50 µM of RSV at all times of wounding evaluation (n = 3, mean ± SDM, p < 0.05, Scale bar: 200 µm)
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especially on those cells that were treated with the high-
est concentration. However, it is necessary to consider that 
RSV was cytotoxic to our model [14–16]. Once the HSC 
is activated in response to stress mediators [3–5], and here 
RSV appears to display a stressor behaviour, it seems to be 
a plausible hypothesis that GRX cells respond to the RSV 
cytotoxicity through remaining at their activation state or, in 
the scenario by which this phytoalexin is remarkably toxic, 
through increasing their activation state. Furthermore, cyto-
toxicity and low cell migration use to be correlated events 
[36–38], which can make sense to explain the RSV effects 
on impairing GRX migration regardless the fact of these 
cells remaining at an activated—or more activated—pheno-
type. In the same way, the reduction of cell population due 
to the cytotoxicity of RSV at 50 µM after 24-h treatment, as 
previously demonstrated [14], may be related to the smaller 
contraction of collagen I gel in this group.

Most of the new cellular functions of activated HSC are 
indeed sustained by an autocrine loop characterized by the 
enhancement of cell response to several mediators through 
both the upregulation of their membrane receptors and the 
enhancement of intracellular signalling [3–5]. Also, HSC-
mediated inflammatory signalling may influence the func-
tion of hepatocytes and sinusoidal cells, and may favour the 
repair of injured tissue through promoting the restoration 
of hepatic homeostasis [3–5, 22]. Thus, we assume that the 
largely discussed anti-inflammatory property of RSV [1, 
2, 28] would interfere on cytokines signalling mediated by 
HSC. Here, we showed that RSV was able to increase the 
release of TNF-α and IL-10 by GRX in culture media while 
the opposite occurred for the IL-6 releasing. Considering 
these results and since our model represents a restricted 
population of liver cells, the presence of TNF- α and IL-10 
in culture media could influence the GRX itself metabolism.

Tumour necrosis factor-α (TNF-α) and interleukin-6 
(IL-6) are important pro-inflammatory and pro-fibrogenic 
mediators that participate in the HSC activation during ini-
tiation phase. Curiously, some studies have also suggested 
that TNF-α can reduce liver fibrogenesis by inducing acti-
vated HSC to synthesize less collagen I during their perpetu-
ation phase. Also, there are evidences that TNF-α mediates a 
pro-apoptotic pathway in which the mitochondrial potential 
decreases while reactive oxygen species (ROS) and caspase 
cascade act as downstream mediators, and this scenario is in 
accordance to the RSV effects on GRX, which were found in 
our previous studies. Similarly, IL-6 is thought to exert ben-
eficial effects during liver chronic diseases through playing 
an important role for inducing the hepatocytes regeneration. 

Fig. 4  a All concentrations of RSV triggered the release of TNF-α 
in culture medium by GRX; b An opposite effect was observed 
regarding the release of IL-6; c RSV at 10 and 50  µM concentra-
tions triggered the release of IL-10 in culture medium by GRX (n = 3, 
mean ± SDM, p < 0.05)
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These facts reveal that both TNF-α and IL-6 have, indeed, 
a pleiotropic function during the HSC activation process 
[32, 39–43]. Interleukin-10 (IL-10) has been regarded as one 
of the most important anti-inflammatory cytokines even in 
the presence of higher levels of pro-inflammatory cytokines 
[1, 2, 29, 34, 44]. Also, IL-10 may act on preventing an 
excessive liver fibrogenesis or an inappropriate inflamma-
tory response through inducing activated HSC to apoptosis 
[45–48]. Altogether, considering that GRX is an activated 
HSC model, these results on the TNF- α, IL-6 and IL-10 
media content may indicate an important role of RSV in our 
model, which may be helpful for controlling HSC activity 
during liver fibrosis (Fig. 4).

Several studies have demonstrated that RSV can exert 
contradictory effects depending on its concentration, time 
of treatment or model of study. Indeed, RSV studies in cell 

culture models have demonstrated that low concentrations 
of this molecule increase proliferation while high concentra-
tions impair cell growth [1, 2, 28, 49]. Until now, we found 
several relevant effects on treating activated HSC with RSV 
(Fig. 5). However, it is relevant to point that, during liver 
fibrosis associated to cirrhosis, at the same time by which 
is expected to control the proliferation of activated HSC or 
to induce apoptosis or quiescence of activated HSC, the 
hepatocyte regeneration or survival against damage stimuli 
must be sought [3, 6, 7, 50]. The RSV-mediated HSC release 
of TNF-α and IL-10, and the decrease of IL-6 release, may 
influence not only HSC itself but also hepatocytes. Thus, it is 
undoubtedly relevant to consider the effects of RSV for other 
liver cells on considering this phytoalexin for treating liver 
fibrosis during chronic hepatic diseases and cirrhosis. In this 
way, more studies focusing on the HSC relationship with 

Fig. 5  Treatment of chronic liver disease, including advanced cir-
rhosis, shall be focused in the liver fibrosis regression by controlling 
the fibrotic activity of activated HSC through inducing these cells 
to quiescence or apoptosis. Our previous findings showed that RSV 
treatment induced cell cycle arrest, cell death, and lipolysis in GRX 
cell line, which is an activated HSC model. Here we found that RSV 

at 1–10  µM did not decrease in HSC activation state; oppositely, 
the highest concentration induced an increase of activation markers 
(GFAP, collagen I, and SMA-α). However, RSV treatment decreased 
activated HSC migration and triggered an anti-inflammatory effect. 
Further studies are needed to elucidate the RSV effect on other liver 
cells, especially healthy or cirrhotic-injured hepatocytes
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other liver cells, especially hepatocytes, shall be conduct for 
a better understanding of the RSV effects to liver as whole.
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