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A B S T R A C T

It is well-known that deposits of turbidity currents can significantly change bathymetry. The deposit of a current
can alter sedimentation that happens afterwards, changing the deposit shape of a turbidity current. Direct
Numerical Simulations of tridisperse turbidity currents are performed considering a rectangular channel and
finite-release initial condition. The results are successfully compared to numerical and experimental results.
We developed the Evolutive Deposit Method (EDM), that calculates the deposited volume and updates the
topography based on the accumulated deposit for a given period of time. Entrainment is not considered. EDM
has an original mathematical formulation. Topography update occurs at every 𝜏 and is based on two surfaces:
𝛹 and 𝛤 . 𝛹 is a reference surface that can only assume integer mesh nodes, and defines the location of the solid
represented by Immersed Boundary Method. 𝛤 is a signed surface in which the deposit is integrated, and that
is also fed by the rounding errors of 𝛹 . It is observed that the error caused by not considering the changes on
topography due to deposit increases with time. For the case with initial flat terrain, the turbidity current front
is the same whether considering the update or not. We also performed two simulations of turbidity currents
propagating over the deposits produced by a previous current. In one case, the bathymetry was updated during
both the first and the second events, and, in another, only changes on bathymetry between the simulations
were considered. Results show that the order of magnitude of the relative deposit error of not considering
bathymetry update remains the same order for both the first and the second consecutive events.

1. Introduction

Hyperpycnal gravity currents consist of a wedge of heavy fluid
intruding into an expanse of lighter fluid by the action of gravitational
force (Benjamin, 1968). If the flow is driven by a density difference
caused by the presence of suspended particles, the phenomenon is
called a turbidity current (Simpson, 1999). Even though there are
sediments in its composition, the dynamics of low-concentrated tur-
bidity currents are mainly dictated by turbulence rather than grain
interaction (Shanmugam, 2000; Parsons et al., 2007; Manica, 2009;
Meiburg and Kneller, 2010).

Turbidity currents deposits, called turbidites, are of common in-
terest for many research fields, such as stratigraphy, petroleum engi-
neering, and fluid mechanics simulation (Meiburg and Kneller, 2010).

Abbreviations: EDM, Evolutive Deposit Method
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Such turbidites are consolidated deposits from many flows, generat-
ing a complex underwater set, which involves submarine fans and
channels. Specific models for different concentration and grain-size
ranges were proposed to predict the gradation and the layers of these
deposits (Bouma, 1962; Stow and Shanmugam, 1980; Lowe, 1982).
Harris et al. (2002) developed a theoretical model for deposit and front
evolution of turbidity currents that obviates the need for numerical
integration, and achieved results comparable to the numerical solution
of shallow-water equations. Normal to massive gradation is usually
observed in an event deposit (Kuenen and Migliorini, 1950). Normal
gradation is when the larger grain sizes are deposited below the smaller
ones, and massive gradation is a particle grain size mix in the deposit. It
is possible to predict the deposition patterns on turbidites by simulating
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numerically the flow that generated them, and recomposing its deposit.
Using numerical simulations with a polidisperse approach, it is possible
to understand the deposition process and the formation of turbidites in
a temporal scale.

There are several methods for turbulence representation on numer-
ical simulations. Using a Direct Numerical Simulation (DNS) means
turbulence models are not employed, because they are not needed when
mesh sizes chosen are small enough to capture the highest wavenum-
bers (smallest eddies) of turbulence energy cascade (Lesieur, 2008).
Therefore, DNS provides an accurate turbulence simulation, because
the energy dissipation of the smallest scales occurs by the same mech-
anism as for the large eddies. Unlike other common methods such as
Reynolds-Averaged Navier–Stokes (RANS) and Large Eddy Simulation
(LES), DNS brings the possibility to simulate all turbulent scales present
in a fluid flow. Turbidity currents are turbulent by definition — the
sediments are sustained by turbulence rather than by other supporting
mechanisms such as grain interaction (Shanmugam, 2000). Therefore,
turbidity currents are possible subjects of study and would benefit from
DNS. Another characteristic of DNS is its spatial discretization. Because
mesh sizes tend to be much smaller in DNS than in methods that use
modeled turbulence (such as RANS and LES) (Lesieur et al., 2005), the
resolution of the deposit tends to be better. Also, the turbulent flow of
the turbidity current is solved directly in all turbulent scales, bringing
possibly more accurate results.

Even if turbidity currents deposits have been widely studied numer-
ically (Necker et al., 2002; Cantero et al., 2008; Nasr-Azadani et al.,
2013; Guerra et al., 2013; Nasr-Azadani and Meiburg, 2014; Espath
et al., 2015; Kovářík et al., 2015; Francisco et al., 2018), there are
no records of DNS of turbidity currents that consider the previous
time steps deposited matter in the simulation, and also no records
of topography updating on two successive events. Hoffmann et al.
(2015) simulated 2D turbidity currents that propagated and deposited
over complex topographies, and the bottom topography is updated at
the end of every simulation. Recently, Kyrousi et al. (2018) updated
the topography of a turbidity current based on its deposit, but the
effect of the update itself was not analyzed. Kyrousi et al. (2018)
research employed Large Eddy Simulations (LES), that, unlike DNS,
applies a turbulence model to the smallest turbulent scales, simulating
only the largest turbulent scales present in the turbulent fluid flow.
Most numerical simulations of turbidity currents do not consider the
evolution of bathymetry, thus it is important to quantify the error that
they can be committing when not considering topography updates. No
studies on this matter were found. In this paper, we present numerical
results of DNS in which the topography is updated at a given frequence
of time, feedbacking the simulated domain with the so-far calculated
deposit, quantifying the differences in the resulting deposit. We call this
development Evolutive Deposit Method (EDM). Deposits of a simulation
that employs this method are compared to one that does not. These
differences are quantified and presented for four instants of time. We
also simulated the propagation of a turbidity current event over the
deposit of a previous one, as it happens in nature. Within this concept,
we compared EDM to the approach in which the terrain is updated at
the end of each simulation.

2. Methodology

The simulations are performed in a channel configuration, with
finite-release initial condition (Fig. 1). The domain is rectangular (
𝐿𝑥, 𝐿𝑦, 𝐿𝑧 ) and, initially, the bottom is a horizontal layer of height
ℎ𝑝, over which the sediments suspended on the gravity current flows
are able to accumulate. The denser fluid, in the initial condition, has a
volume (𝑋𝑓 , ℎ, 𝐿𝑧). To represent the suspended sediments, we employ
dimensionless density 𝛷, composed by fractions of different grain-size
categories simulated (𝛷 =

∑𝑛𝛷
𝑑=1 𝛷𝑑), defined as:

𝛷𝑑 =
∼
𝜌𝑑 −

∼
𝜌𝑚𝑖𝑛

∼
𝜌𝑚𝑎𝑥 −

∼
𝜌𝑚𝑖𝑛

, (1)

Fig. 1. Initial condition and dimensions of the simulated domain.

where
∼
𝜌𝑑 is the density of the mix of fluid with sediments of granulo-

metric fraction 𝑑,
∼
𝜌𝑚𝑎𝑥 is the maximum density and

∼
𝜌𝑚𝑖𝑛 is the minimum

density at the initial condition. Dimensional quantities are denoted by
a tilde. For simulation purposes we define 𝛷 = 1 for the denser fluid
on the initial condition and 𝛷 = 0 for the lighter one.

Boussinesq approximation can be considered a good approximation
because the cases here presented are low-concentration turbidity cur-
rents (Bagnold, 1954). The differential equations to solve the flow are
non-dimensionalized with the dimensional magnitudes

∼
ℎ,

∼
𝜌𝑚𝑎𝑥,

∼
𝜌𝑚𝑖𝑛,

and
∼
𝑢𝑏. The buoyancy velocity is

∼
𝑢𝑏 =

√

𝑔′
∼
ℎ, where

∼
ℎ is the dimensional

height of the denser fluid in the initial condition, and the modified
gravity 𝑔′ =

∼
𝑔𝐶𝑟(

∼
𝜌𝑝 −

∼
𝜌𝑚𝑖𝑛)∕

∼
𝜌𝑚𝑖𝑛, being

∼
𝜌𝑝 the grain density of the parti-

cles,
∼
𝜌𝑚𝑖𝑛 the ambient fluid density, 𝐶𝑟 the dimensionless volumetric

sediment fraction of the current (Gladstone et al., 1998), and
∼
𝑔 the

local gravity acceleration. The adimensional groups obtained by non-
dimensionalization procedures are Reynolds Number 𝑅𝑒 =

∼
𝑢𝑏

∼
ℎ∕𝜈 and

the Schmidt number 𝑆𝑐 = 𝜈∕𝜅, where 𝜅 is the molecular diffusion coef-
ficient and 𝜈 the kinematic viscosity. Assuming the same diffusivity and
kinematic viscosity for all fluids, the 𝑆𝑐 number becomes 1. The value
of 𝑆𝑐 was also based on the paper from Nasr-Azadani et al. (2013), that
also simulated the same case from Gladstone et al. (1998). Härtel et al.
(2000b) showed that Schmidt numbers equal to unity or greater than
one do not affect the dynamics of the flow significantly.

Continuity, Navier–Stokes, and Scalar Transport equations in di-
mensionless form are:

∇ ⋅
→
𝑢 = 0, (2)

𝜕
→
𝑢
𝜕𝑡

+ (
→
𝑢 ⋅ ∇)

→
𝑢 = −∇𝛱 +

𝑛𝜙
∑

𝑑=1
𝛷𝑑

→
𝑒 𝑔 +

1
𝑅𝑒

∇2→𝑢 +
→
𝑓 (3)

𝜕𝛷𝑑
𝜕𝑡

+ (
→
𝑢 + 𝑢𝑠,𝑑

→
𝑒 𝑔) ⋅ ∇𝛷𝑑 = 1

𝑅𝑒𝑆𝑐
∇2𝛷𝑑 , 𝑑 = 1, 2,… , 𝑛𝜙 (4)

where
→
𝑢 is the velocity field, 𝑡 is time,

→
𝑒 𝑔 = (0,−1, 0) is a versor

in the gravity direction, 𝛱 is the normalized pressure field, and 𝑢𝑠,𝑑
is the dimensionless settling velocity for each granulometric fraction
𝑑, calculated by 𝑢𝑠,𝑑 =

∼
𝑢𝑠,𝑑∕

∼
𝑢𝑏, for which

∼
𝑢𝑠,𝑑 is the dimensional

settling velocity for a given particle diameter, expressed by the Stokes
law (Rubey, 1933).

→
𝑓 is a forcing term that represents the force reaction

of the solid body (in this case, the terrain elevation) on the surrounding
fluid.

The boundary conditions for velocity are free-slip conditions in ev-
ery face, except over the bottom topography, where

→
𝑓 forcing term en-

sures the no-slip condition via Immersed Boundary Method (IBM) (Pe-
skin, 2002). An advantage of IBM is that the mesh does not need to be
dynamic in order to insert a moving object (in case, the topography)
inside the simulated domain. For 𝛷, on the boundaries of the domain
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no-flux condition ( 𝜕𝛷
𝜕𝑥𝑖

= 0) is applied in every direction except over the
bottom topography, where an internal condition is imposed via IBM.
The sedimentation condition is applied as

→
𝑢 =

→

0 on the surface of the
object, so the advection term in Eq. (4) is only influenced by the settling
velocity.

The Eqs. (2), (3), and (4) are solved using Incompact3d code (Laizet
and Lamballais, 2009; Laizet and Li, 2011). The domain is discretized in
a 3D Cartesian mesh, with sixth-order finite-difference implicit compact
schemes (Lele, 1992) for spatial derivatives, and third order Adams–
Bashforth scheme for temporal integration. We also use 2D Message
Passing Interface (MPI) for parallel processing.

The mass of sediments deposited over the bottom, after a time 𝑡, is
given by:

𝐷(𝑥, 𝑧, 𝑡) = ∫

𝑡

0

𝑛𝛷
∑

𝑑=1
𝑢𝑠,𝚍 𝛷𝚍(𝑥, 𝑧, 𝜏) 𝑑𝜏 (5)

In order to convert 𝐷 into a volume of deposit, used for topography
modification, a compactation factor 𝜎 = 𝐶𝑟∕(1 − 𝑝) is applied (Nasr-
Azadani et al., 2013), where 𝑝 is the porosity of the turbidite. Once
deposited, the sediments cannot be re-suspended by the flow. Mostly,
the presented simulations are for small Reynolds numbers, that tend to
present less entrainment (Necker et al., 2002).

To calculate the deposit updates, the mass deposit is integrated at
each time step, and accumulated in a deposit surface 𝛤 = 𝛤 (𝑥, 𝑧, 𝑡),
representing a surface where the deposit of each time step is accumu-
lated. Physically, it could be observed as a value, positive or negative,
representing the signed distance of the continuous deposit surface
location from the discretized surface represented in the simulation,
called 𝛹 . The surface 𝛹 = 𝛹 (𝑥, 𝑧, 𝑡) is a reference surface that represents
integer mesh values in 𝑦 direction, in order to define the mesh location
of the bottom surface for simulation purposes. This reference surface
must be located over the mesh nodes, so it can only assume integer
mesh values. If a parallel was to be traced with Exner equation (Paola
and Voller, 2005) for topography alteration, the interface between solid
and fluid would be analogous to 𝛹 , with the difference that 𝛹 can only
assume integer mesh values. Every interval of time 𝜏, the bathymetry is
updated, and the surface 𝛹 can be updated, depending on the volume
sedimentated in 𝜏. If 𝛹 changes, then 𝛤 should be adjusted accordingly
to compensate the rounding errors of 𝛹 . If 𝛥𝑦

2 ≤ 𝛤𝑡 + (𝐷𝑡+𝜏 −𝐷𝑡)𝜎 < 𝛥𝑦,
𝛹 surface is updated to the upper point even if the mesh cell is not
completely filled with sediments, and 𝛤𝑡+𝜏 assumes a negative value
to be compensated in the next update (Fig. 2a). If the mesh cell is
overfilled by deposit, 𝛹 is updated to the upper point and 𝛤 receives
the value of the deposit excess in relation to 𝛹 (Fig. 2b). When 𝛹 is
updated to the upper point, all sediments located within the transition
area are accounted as deposit. On Fig. 2 one can see an illustration of
the developed method. The general scheme for EDM is:

𝛤𝑡+𝜏 =

⎧

⎪

⎨

⎪

⎩

𝛤𝑡 + (𝐷𝑡+𝜏 −𝐷𝑡)𝜎, 𝑖𝑓 𝛤𝑡 + (𝐷𝑡+𝜏 −𝐷𝑡)𝜎 <
𝛥𝑦
2
,

𝛤𝑡 + (𝐷𝑡+𝜏 −𝐷𝑡)𝜎 − 𝛥𝑦, 𝑖𝑓 𝛤𝑡 + (𝐷𝑡+𝜏 −𝐷𝑡)𝜎 ≥ 𝛥𝑦
2
.

(6)

The value 𝛤𝑡 + (𝐷𝑡+𝜏 − 𝐷𝑡)𝜎 must be smaller than 3
2𝛥𝑦 so that the

reference surface 𝛹 does not jump two meshes at a time, avoiding
important changes on the velocity field, and so time intervals 𝜏 must
be adjusted accordingly to assure that. 𝜏 is usually set to a much lower
value than the average time necessary to fill one mesh vertically. The
topography can be, as well, updated at each time step, but this would
be, for most cases, a waste of computational resources because the
update on IBM is a costly operation.

DNS are performed for all simulations but the one that resem-
bles Gladstone et al. (1998) experiment, because the original 𝑅𝑒 for
this case was too high. In this simulation, sub-eddy hyperviscosity was
modeled using the method of Dairay et al. (2017).

Fig. 2. Deposit evolution and topography update scheme, for each (𝑥, 𝑧) coordinate.
Deposited volume 𝛤 changes when 𝛹 is updated, and can either become (a) negative,
representing a deposit deficit relative to the reference surface 𝛹 , or (b) positive,
representing an excess of deposit relative to 𝛹 . 𝜏 is the interval between two successive
bathymetry updates.

Fig. 3. Schema of the verification domain and one quarter of it.

3. Validation and verification

Even if Incompact3d code is already validated for gravity cur-
rents (Espath et al., 2014, 2015; Francisco et al., 2017), some new
verifications and validations are needed, because the new method
changes the bathymetry. A verification of the lateral free-slip boundary
conditions is proposed to quantify the numerical error in deposits,
caused by boundary conditions. Validations with the results of Glad-
stone et al. (1998) and Nasr-Azadani and Meiburg (2014) are also
performed.

The boundary conditions for 𝑥 and 𝑧 directions are verified using
a domain with double symmetry and comparing its deposit with the
deposit of one quarter of it (Fig. 3). The complete domain has 𝐿𝑥 = 1,
𝐿𝑦 = 1.1 (ℎ𝑝 = 0.1), 𝐿𝑧 = 1 and the mesh is 𝑁𝑥 = 101, 𝑁𝑦 = 101,
𝑁𝑧 = 101. One quarter of the domain has 𝐿𝑥 = 0.5, 𝐿𝑦 = 1.1 (ℎ𝑝 = 0.1),
𝐿𝑧 = 0.5, and spatial mesh size is the same. In the initial condition, a
cubic volume of dense fluid (𝛷 = 1), measuring (0.5, 1, 0.5) is initially
positioned in the center of the domain. In one quarter of the domain,
it is positioned in the corner to keep similarity between simulations.
The difference in deposit volume between these simulations remains
in order of machine accuracy, which is on order of 10−16 for double-
precision variables (Fig. 4). Thus, we can assume there is no influence
of the free-slip boundary conditions in the deposit fields.

We compare our model with a numerical simulation that computed
the propagation of a turbidity current over a Gaussian bump (Nasr-
Azadani and Meiburg, 2014). For this comparison, we used a domain
with 𝐿𝑥 = 20, 𝐿𝑧 = 3 and 𝐿𝑦 = 2.2, where the bottom platform under
the bump is 0.2 thick. The bump height is 0.25 and its center is located
at 𝑥 = 5.5. Meshes are 1025 × 129 × 97, and 𝑅𝑒 = 2000. The simulation
is discretized in two particle diameter sizes, it is therefore called a
bidiperse simulation, with 𝑢𝑠,1 = 0.03 and 𝑢𝑠,2 = 0.006. The accounted
quantity for deposit is the sedimentation rate 𝐷∗

𝚍
(𝑡), shown below:

𝐷∗
𝚍
(𝑡) = ∫

𝐿𝑧

0 ∫

𝐿𝑥

0
𝑢𝑠,𝚍 𝛷𝚍(𝑥, 𝑧, 𝑡) 𝑑𝑥 𝑑𝑧. (7)
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Fig. 4. Difference between the deposits of the test domain used in the verification and
one quarter of it.

Fig. 5. Sedimentation rate along time. Comparison between Nasr-Azadani and Meiburg
(2014) and the present results.

The comparison with Nasr-Azadani and Meiburg (2014) is shown
in Fig. 5. The results for 𝐷∗ are similar to those of Nasr-Azadani and
Meiburg (2014), with a small difference at the peak position. After
𝑡 = 25, the results are very close. The maximum difference is of 6%
for 𝑢𝑠 = 0.03 and 26% for 𝑢𝑠 = 0.006.

The temporal evolution of front position is also compared in Fig. 6.
The turbidity current position of the present simulation shows satisfac-
tory agreement with results from Nasr-Azadani and Meiburg (2014).

We also performed comparisons with the accumulated deposit of
experimental (Gladstone et al., 1998) and numerical results (Nasr-
Azadani et al., 2013). Dimensional height adopted for nondimensional-
ization is ℎ = 0.4 m, which makes the physical domain 14.25× 1.0× 0.5.
The bottom platform is ℎ𝑝 = 0.1. Reduced gravity is

∼
𝑔
′
= 7.6 cm∕s2,

given by Gladstone et al. (1998), resulting in
∼
𝑢𝑏 = 0.174 m∕s. Settling

velocities estimated by Gladstone et al. (1998) are divided by
∼
𝑢𝑏,

resulting 𝑢𝑠,1 = 0.0333 and 𝑢𝑠,2 = 0.0043. Each one composes 50% of
the initial mass fraction, reproducing experiment D of Gladstone et al.
(1998). The Reynolds number calculated for this case is 7 ⋅104, that was
prohibitive, therefore, in order to reduce the computational cost, 𝑅𝑒 =
4 ⋅ 104 had to be adopted. An hyperviscous operator mimic of Spectral
Vanishing Viscosity (SVV) Large Eddy Simulation (LES) (Dairay et al.,
2017) was adopted for this specific case to adjust the simulations to the
available computational power. The employed mesh is (𝑁𝑥, 𝑁𝑦, 𝑁𝑧) =
(1153, 193, 97). The simulation uses EDM, for which the porosity of the
deposit is 𝑝 = 0.35, and the volumetric fraction of 𝐶𝑟 = 3.49 ⋅ 10−3,

Fig. 6. Front position along time. Comparison between Nasr-Azadani and Meiburg
(2014) and the present paper.

Fig. 7. Comparison between the deposit density (𝐷𝛿) of Gladstone et al. (1998)
experiments, Nasr-Azadani et al. (2013), and the present study. Typical uncertainties
for the experimental results are plotted as errorboxes.

volumetric concentration of 0.349% (Boussinesq is applicable), resulting
in a compacting factor of 𝜎 = 0.005369. At the end of the simulation,
at 𝑡 = 55, the maximum change on the bottom topography is 1𝛥𝑦. The
computed quantity is called by Gladstone et al. (1998) as the deposit
density (𝐷𝛿), which is an average of the deposited mass of sediment
on the measured area, in case, a circular cylinder. To make sure the
measurement is similar to the experimental case, circular samples of
radius 𝑟 = 0.104 of the resulting deposit are extracted and the average
deposit density is calculated. These samples are taken at each 0.625
dimensionless length units, starting on the finite-volume release.

Comparisons of the deposit density acquired by the present authors
and the experimental and numerical results of other authors are pre-
sented in Fig. 7. Nasr-Azadani et al. (2013) simulated numerically the
same case based on Gladstone et al. (1998), even though the numerical
approach was different and the simulation was bidimensional. There is
a good agreement, even if there are some spots in which the difference
between Gladstone et al. (1998) data and the present results are larger
than the presumed errors.

In Fig. 8, we present the deposit densities for the two particle
fractions separately, for the same case. For the smaller particles, there
are some differences for 𝑥 < 7. This issue can be caused by the
discretization used for this case, and because bedload is not accounted,
and possibly it is an important phenomenon in this case. Another
possible reason is the fact that our method does not consider possible
re-suspension of deposited matter. Also, variability of particle sizes
in the original experiment is not considered in our simulations. The
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Fig. 8. Comparison between the deposit density (𝐷𝛿) of Gladstone et al. (1998) and EDM, separately for the two particle sizes. Typical uncertainties for the experimental results
are plotted as errorboxes.

Fig. 9. Front evolution of Gladstone et al. (1998), and for the present analysis.

standard deviation of this variability for each grain size is 1.2𝑑𝑎𝑣𝑔 , in
which 𝑑𝑎𝑣𝑔 is the average diameter.

The front position is as well compared with Gladstone et al. (1998)
(Fig. 9). The fronts evolved at similar rates and velocities. Overall, val-
idation with Gladstone et al. (1998) results is considered satisfactory.

4. Deposit of a single event

In order to analyze the differences caused by bathymetry updating
in a single event, we perform simulations F1 and U1 for comparison.
The simulation F1 has a flat bottom topography, modeled by an IBM
platform with ℎ𝑝 = 0.3. Simulation U1 starts with the same flat terrain,
but topography is updated at each 𝜏 = 0.01. The domain for both
simulations has 𝐿𝑥 = 15, 𝐿𝑦 = 1.5, and 𝐿𝑧 = 1.5, and 𝛥𝑥 = 0.013,
𝛥𝑦 = 𝛥𝑧 = 0.010, the 𝛥𝑡 used is 10−4 and it is simulated until 𝑡 = 20. The
initial lock-exchange has dimensions of 2 × 1 × 1.5. Both F1 and U1 are
tridisperse simulations, with 𝑢𝑠,1 = 0.01 at a initial concentration of 70%,
𝑢𝑠,2 = 0.003 of 20% and 𝑢𝑠,3 = 0.001 of 10%. The compactation factor
used in U1 is 𝜎 = 0.5. In the analysis here presented, three grain sizes
are used to simulate each current. Even if the code was verificated for
bidisperse currents, the methodology is the same, no matter how many
grain sizes are employed. Any (integer and positive) number would be
valid.

The EDM terrain updating effects are analyzed by a comparison of
cases in which the deposit is updated while the turbidity current prop-
agates (U1 and U2), and cases in which this update is not performed
(F1 and F2). In Table 1 we present a summary of the presented cases.
F1 and U1 are turbidity currents that propagate over an initially flat
surface, while F2 and U2 propagate over the deposits of F1 and U1,
respectively. F1 and F2 events do not use EDM, while U1 and U2 do.

Table 1
Cases presented in the present study.

Simulation Initial bathymetry EDM

F1 Flat surface No
U1 Flat surface Yes
F2 Deposit of F1 No
U2 Deposit of U1 Yes

Table 2
Differences in mass deposit between U1 and F1.

Time Mean dif. Relative mean dif. Max. dif. Relative max. dif.

𝑡 = 5 3.6 ⋅ 10−5 0.43% 9.4 ⋅ 10−4 4.71%
𝑡 = 10 3.7 ⋅ 10−4 1.77% 3.0 ⋅ 10−3 5.88%
𝑡 = 15 9.9 ⋅ 10−4 2.64% 5.1 ⋅ 10−3 6.21%
𝑡 = 20 2.0 ⋅ 10−3 3.58% 9.1 ⋅ 10−3 10.75%

Final deposits after 𝑡 = 20 are calculated, for which we can see
(Fig. 10) that there are differences between the resulting deposits of U1
and F1. To analyze it in detail, absolute differences on deposit surfaces
for each 5 times are computed, for both simulations F1 and U1. Fig. 10
shows the absolute differences on the accumulated deposit (𝐷𝑈1 −
𝐷𝐹1) between both simulations, in four moments. Average deposits on
spanwise direction for times 5, 10, 15 and 20 are plotted in Fig. 11. The
magnitude of the absolute differences in deposit increases with time. In
𝑡 = 5 and 𝑡 = 10, the higher differences occur in the propagation region,
near the turbidity current front. Until 𝑡 = 10, case U1 deposited more
than F1 in all of the region where the current already propagated over,
and the shape of the deposit is different. In 𝑡 = 15, deposit differences
become less concentrated on the finite release area, and the generation
of deposit shape by lobe and cleft structures (Härtel et al., 2000a) is
increased. In 𝑡 = 20, it is also possible to observe lobe and cleft marks
on the differences between the two deposit surfaces.

The average and maximum differences in deposit are also analyzed.
In Table 2, the differences in deposit (𝐷𝑈1−𝐷𝐹1) for 𝑡 = 5, 𝑡 = 10, 𝑡 = 15
and 𝑡 = 20 are shown. The relative maximum differences are calculated
as 𝑚𝑎𝑥(𝐷𝑈1

𝐷𝐹1
− 1). The absolute and relative differences between the

deposits of U1 and F1 increase with time. The longer the duration of
the event, the more important it is to implement a model that considers
updates on topography during the simulation.

The effects of not considering deposit feedback are not restricted
to deposit magnitude and shape. Considering the resulting fields for
simulations U1 and F1 after 𝑡 = 20, we compared local velocity fields
in the three directions (Table 3), showing that the velocity fields of a
current can be altered by updating the terrain.

We also compute the differences on total mass of suspended par-
ticles, at 𝑡 = 20, between U1 and F1, taking F1 as the base data
(Table 4). The suspended particles are calculated by integration of 𝛷𝑑
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Fig. 10. Absolute differences in the deposited volume between simulations U1 and F1 (𝐷𝑈1 −𝐷𝐹1), at (a) 𝑡 = 5, (b) 𝑡 = 10, (c) 𝑡 = 15 and (d) 𝑡 = 20.

Fig. 11. Deposit curve averages on 𝑧 direction, for cases F1 and U1, at 𝑡 = 5, 𝑡 = 10,
𝑡 = 15 and 𝑡 = 20 (curves from bottom to top).

Table 3
Mean differences on velocities between cases U1 and F1, at 𝑡 = 20.

Velocity Mean difference Relative mean difference

𝑢𝑥 0.0187 17.62%
𝑢𝑦 0.0148 50.13%
𝑢𝑧 0.0090 65.54%

on the domain (except over and inside the deposit). The difference is
computed separately for the three granulometric fractions, though the
errors are rather small and all of the same order. Case F1 has more
suspended particles for the three particle diameters. This is probably
due to the fact that the interface between fluid and solid tends to
be higher in simulation U1, therefore the fluid flow is closer to the
topography, facilitating sedimentation in U1.

In order to observe the front propagation of F1 and U1, isosurfaces
of dimensionless density 𝛷 = 0.4 are plotted in Fig. 12 for times 10, 15
and 20. These isosurfaces are observed from a top view, so that one can
see clearly the interface between denser and lighter fluid. To ensure
the possibility of a direct comparison, the lighting applied to the six
views is constant. It is observed that the turbidity currents fronts are

Table 4
Differences in total suspended mass of particles between U1 and F1, at 𝑡 = 20.
𝑢𝑠,𝑑 dif. Relative dif.

0.001 −0.0014 −0.30%
0.003 −0.0031 −0.34%
0.01 −0.0152 −0.56%

similar, and the lobe-and-cleft surfaces (Härtel et al., 2000a) are on the
same position and configuration for simulations F1 and U1. This can
have happened because both fronts propagate over a flat surface, since
the bottom updates only affect regions in which the current front has
already passed by. The most remarkable differences between F1 and U1
in these isosurfaces are in the body area of the current, in which some
changes can be observed in the vortex pattern, specially in 𝑡 = 15 and
𝑡 = 20. Vortexes in the body area of the current, caused by the alteration
in bottom topography, affect the interface between denser and lighter
fluid. This effect can be seen in 𝑡 = 15 (Fig. 12b), between 𝑥 = 3 and
𝑥 = 7, and in 𝑡 = 20 (Fig. 12c), between 𝑥 = 4 and 𝑥 = 8. In 𝑡 = 10
(Fig. 12a), the differences are more subtle, but some alterations can be
seen around 𝑥 = 5.

5. Deposit of two events

An alternative methodology is developed for simulating various
turbidity current events one over another, in which a flat-bottom
current would propagate, and the resulting deposit would be introduced
as the starting topography for another current. We analyze the errors
introduced by not considering EDM in cases with two currents with
terrain updates between them.

For this analysis, U2 and U1 deposits are compared to F1 and F2.
Simulation F2 has a similar configuration to F1. Its bathymetry is fixed
during time, and its initial bottom topography is defined as the final
deposit of F1. The maximum deposit height achieved in the initial con-
dition of F2 is 6𝛥𝑦. F2 bottom remains fixed during the simulation. To
perform a fair comparison with EDM, a turbidity current propagating
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Fig. 12. Top view of isosurfaces of dimensionless density 𝛷 = 0.4, for simulations F1 and U1, at times (a) 10, (b) 15 and (c) 20. Top view.

Fig. 13. Front evolution of turbidity currents F2 (–) and U2 (–).

over the topography generated by U1 is simulated, considering EDM,
with the same compactation factor as U1 (𝜎 = 0.5), called here U2.
Therefore, our goal is to compare deposits of a second event occurring
over the same place as the first event, using two different approaches:
F1 and F2 consider the bottom topography remains unchanged during
the simulations, but is updated before the second event; U1 and U2
are the cases in which the bottom topography is updated during the
simulations.

The front position along time, for simulations U2 and F2, is very
similar (Fig. 13). Lobe-and-cleft structures develop differently. At 𝑡 =
20, F2 has only two lobes, while U2 presents four. This difference is
surely caused by the differences in the starting topography, which are
themselves caused by differences in the final deposits of F1 and U1.
Fronts of F1 and U1 are exactly the same, therefore differences in lobe-
and-cleft front structures of F2 and U2 should be caused by the initial
topography over which the current front propagates over.

The deposit of U2 and F2 are analyzed for times 5, 10, 15 and 20.
Fig. 14 shows the average deposit on 𝑧 direction for each 𝑥 coordinate,
generated during cases F2 and U2. The effect of not updating the
bathymetry is progressive, as shape differences increase with time. The
differences between the deposits generated by F2 and U2 currents are
shown in Table 5. The average differences tend to grow with time, both
the absolute and relative values. The maximum difference in deposit is
one or two orders of magnitude greater the average. Its relative form
is calculated based on the deposit of F2 existent on the location of the
maximum difference. The results suggest that topography updates are
as important in a flow that happens over the deposit of a previous
current as in one that propagates over an initially flat surface. The
relative errors calculated in F2 and U2 are a little higher than in F1
and U1, but remain at the same order of magnitude.

The deposits of U2 and F2 are settling over the deposits of previous
simulations U1 and F1. Nevertheless, we wanted to compare the whole
deposited material for each case, to see if there is any attenuation or
reinforcement of the differences observed between F1 and U1 deposits.
Comparisons of the whole deposit for each case, showing the amount
deposited in each event are shown in Fig. 15. In some places, such
as the region from 𝑥 = 0 to 𝑥 = 2, the errors are increased with

Fig. 14. Streamwise deposit averages on 𝑧 direction, for cases F2 and U2, at 𝑡 = 5,
𝑡 = 10, 𝑡 = 15 and 𝑡 = 20 (curves from bottom to top).

Table 5
Differences in mass deposit between U2 and F2.

Time Mean dif. Relative mean dif. Max. dif. Relative max. dif.

𝑡 = 5 4.3 ⋅ 10−5 0.63% 2.9 ⋅ 10−3 14.92%
𝑡 = 10 3.6 ⋅ 10−4 1.97% 5.1 ⋅ 10−3 10.31%
𝑡 = 15 1.1 ⋅ 10−3 3.31% 8.7 ⋅ 10−3 26.55%
𝑡 = 20 2.5 ⋅ 10−3 4.70% 1.1 ⋅ 10−2 13.62%

the propagation of F2 and U2. The mean difference in deposit, after
both events, is 0.036, representing 3.32% of the average value of total
deposit. The relative error is very close to the one found for the
first event, which is 3.58%. This evidence suggests that the relation
between error and total deposit is maintained for the same channel
configuration, even if there are events occurring one over another.
Another possible analysis is that having an event propagating over
another slightly attenuates the errors caused by the non-consideration
of deposit feedback during the simulation. Although, further analysis
should be conducted to corroborate these results.

6. Conclusion

We performed high-order Direct Numerical Simulations of tridis-
perse turbidity currents propagating over consolidated deposits. The
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Fig. 15. Final deposits of simulations F1 plus F2, and U1 plus U2, averaged in 𝑧
direction.

bathymetry was updated during the turbidity current event based on
the deposited volume. The initial bathymetry was a horizontal bottom
over which two currents propagated, one with topography update and
another one maintaining the bottom flat. For these cases, the currents
fronts evolution are the same, because both fronts propagated over the
same flat terrain. On the other hand, for the parameters considered,
the error in calculated deposit considering the deposit feedback can be
larger than 10% in some regions of the domain, and its average value
increases with time, attaining 3.58% at 𝑡 = 20.

A second turbidity current was introduced over the bathymetry
generated by deposits of the first current. Two cases were considered.
One considers fixed topography and the other one updates the topog-
raphy during the event. The difference on initial topography produces
differences on the gravity current fronts. For both consecutive currents
with fixed bottom, the deposit errors after 𝑡 = 20 are similar.

With further research, it may be possible to understand more about
the formation of submarine channels and fans using the model here
presented. Granulometric curve, compactation factor and bathymetry
data from natural currents can be employed as a base to simulate
the propagation of turbidity currents and predict submarine landscape
evolution.

Computer code availability

The open-source code used is Incompact3d, written in Fortran-90,
and is available since 2006. Developers: Sylvain Laizet and Eric Lambal-
lais. Sylvain Laizet contact address: Imperial College London, Depart-
ment of Aeronautics, South Kensington Campus, London, SW7 2AZ, UK.
Telephone number: +44 (0)20 7594 5045. E-mail: s.laizet@imperial.ac.
uk. Fortran-90 and MPI compilers are required. The code was tested us-
ing Operating Systems Ubuntu 14.04, Ubuntu 16.04 and Ubuntu 18.04.
Code and documentation can be found at www.incompact3d.com, on
Downloads tab, or alternatively, on GitHub at github.com/xcompact3d,
repository Old_Incompact3d Program size: 646 kB (source code), 4.6
MB (compiled). The code is licensed under GNU General Public License.

CRediT authorship contribution statement

Luísa Vieira Lucchese: conceptualization, formal analysis, inves-
tigation, methodology, validation, visualization, writing the original
draft. Leonardo Romero Monteiro: methodology, formal analysis,
writing - review & editing. Edith Beatriz Camano Schettini: project
administration, supervision, formal analysis, writing - review & editing.
Jorge Hugo Silvestrini: supervision, writing - review & editing.

Acknowledgments

This research was supported by Conselho Nacional de Desenvolvi-
mento Científico e Tecnológico (CNPq). This research was developed
with the support of Núcleo Avançado de Computação de Alto Desem-
penho (NACAD) from COPPE (Instituto Alberto Luiz Coimbra de Pós-
Graduação e Pesquisa de Engenharia), Universidade Federal do Rio
de Janeiro (UFRJ). This research was also supported by CENAPAD-
SP (Centro Nacional de Processamento de Alto Desempenho em São
Paulo), project UNICAMP/FINEP — MCTIC.

References

Bagnold, R.A., 1954. Experiments on a gravity-free dispersion of large solid spheres in
a Newtonian fluid under shear. Proc. R. Soc. A 225 (1160), 49–63.

Benjamin, T.B., 1968. Gravity currents and related phenomena. J. Fluid Mech. 31 (02),
209–248.

Bouma, A.H., 1962. Sedimentology of Some Flysch Deposits: a Graphic Approach to
Facies Interpretation. Elsevier Pub. Co..

Cantero, M.I., García, M.H., Balachandar, S., 2008. Effect of particle inertia on the
dynamics of depositional particulate density currents. Comput. Geosci. 34 (10),
1307–1318.

Dairay, T., Lamballais, E., Laizet, S., Vassilicos, J.C., 2017. Numerical dissipation vs.
subgrid-scale modelling for large eddy simulation. J. Comput. Phys. 337, 252–274.

Espath, L., Pinto, L., Laizet, S., Silvestrini, J., 2014. Two-and three-dimensional direct
numerical simulation of particle-laden gravity currents. Comput. Geosci. 63, 9–16.

Espath, L., Pinto, L., Laizet, S., Silvestrini, J., 2015. High-fidelity simulations of the
lobe-and-cleft structures and the deposition map in particle-driven gravity currents.
Phys. Fluids (1994-present) 27 (5).

Francisco, E., Espath, L., Laizet, S., Silvestrini, J., 2018. Reynolds number and settling
velocity influence for finite-release particle-laden gravity currents in a basin.
Comput. Geosci. 110, 1–9.

Francisco, E.P., Espath, L., Silvestrini, J., 2017. Direct numerical simulation of bi-
disperse particle-laden gravity currents in the channel configuration. Appl. Math.
Model. 49, 739–752.

Gladstone, C., Phillips, J., Sparks, R., 1998. Experiments on bidisperse, constant-
volume gravity currents: propagation and sediment deposition. Sedimentology 45
(5), 833–844.

Guerra, G.M., Zio, S., Camata, J.J., Rochinha, F.A., Elias, R.N., Paraizo, P.L.,
Coutinho, A.L., 2013. Numerical simulation of particle-laden flows by the residual-
based variational multiscale method. Internat. J. Numer. Methods Fluids 73 (8),
729–749.

Harris, T.C., Hogg, A.J., Huppert, H.E., 2002. Polydisperse particle-driven gravity
currents. J. Fluid Mech. 472, 333–371.

Härtel, C., Carlsson, F., Thunblom, M., 2000a. Analysis and direct numerical simulation
of the flow at a gravity-current head. Part 2. the lobe-and-cleft instability. J. Fluid
Mech. 418, 213–229.

Härtel, C., Meiburg, E., Necker, F., 2000b. Analysis and direct numerical simulation of
the flow at a gravity-current head. Part 1. Flow topology and front speed for slip
and no-slip boundaries. J. Fluid Mech. 418, 189–212.

Hoffmann, G., Nasr-Azadani, M.M., Meiburg, E., 2015. Sediment wave formation
caused by erosional and depositional turbidity currents: A numerical investigation.
Procedia IUTAM 15, 26–33.

Kovářík, K., Mužík, J., Masarovičová, S., Sitányiová, D., 2015. A local boundary integral
method for two-dimensional particle-driven gravity currents simulation. Eng. Anal.
Bound. Elem. 56, 119–128.

Kuenen, P.H., Migliorini, C., 1950. Turbidity currents as a cause of graded bedding. J.
Geol. 91–127.

Kyrousi, F., Leonardi, A., Roman, F., Armenio, V., Zanello, F., Zordan, J., Juez, C.,
Falcomer, L., 2018. Large eddy simulations of sediment entrainment induced by a
lock-exchange gravity current. Adv. Water Resour. 114, 102–118.

Laizet, S., Lamballais, E., 2009. High-order compact schemes for incompressible flows:
A simple and efficient method with quasi-spectral accuracy. J. Comput. Phys. 228
(16), 5989–6015.

Laizet, S., Li, N., 2011. Incompact3d: A powerful tool to tackle turbulence problems
with up to O (105) computational cores. Internat. J. Numer. Methods Fluids 67
(11), 1735–1757.

Lele, S.K., 1992. Compact finite difference schemes with spectral-like resolution. J.
Comput. Phys. 103 (1), 16–42.

Lesieur, M., 2008. Turbulence in Fluids, Fluid Mechanics and its Applications. Springer,
Dordrecht.

Lesieur, M., Métais, O., Comte, P., 2005. Large-Eddy Simulations of Turbulence.
Cambridge University Press.

Lowe, D.R., 1982. Sediment gravity flows: Ii depositional models with special reference
to the deposits of high-density turbidity currents. J. Sediment. Res. 52 (1).

Manica, R., 2009. Geração De Correntes De Turbidez De Alta Densidade: Condicionantes
Hidráulicos E Deposicionais (Ph.D thesis). Universidade Federal do Rio Grande do
Sul. Instituto de Pesquisas Hidráulicas. Programa de Pós-Graduação em Recursos
Hídricos e Saneamento Ambiental.

Meiburg, E., Kneller, B., 2010. Turbidity currents and their deposits. Annu. Rev. Fluid
Mech. 42, 135–156.

Nasr-Azadani, M., Hall, B., Meiburg, E., 2013. Polydisperse turbidity currents propa-
gating over complex topography: comparison of experimental and depth-resolved
simulation results. Comput. Geosci. 53, 141–153.

Nasr-Azadani, M., Meiburg, E., 2014. Turbidity currents interacting with three-
dimensional seafloor topography. J. Fluid Mech. 745, 409–443.

Necker, F., Härtel, C., Kleiser, L., Meiburg, E., 2002. High-resolution simulations of
particle-driven gravity currents. Int. J. Multiph. Flow. 28 (2), 279–300.

Paola, C., Voller, V.R., 2005. A generalized exner equation for sediment mass balance.
J. Geophys. Res.: Earth Surf. 110 (F4).

mailto:s.laizet@imperial.ac.uk
mailto:s.laizet@imperial.ac.uk
mailto:s.laizet@imperial.ac.uk
http://www.incompact3d.com
http://www.github.com
http://refhub.elsevier.com/S0098-3004(18)30931-2/sb1
http://refhub.elsevier.com/S0098-3004(18)30931-2/sb1
http://refhub.elsevier.com/S0098-3004(18)30931-2/sb1
http://refhub.elsevier.com/S0098-3004(18)30931-2/sb2
http://refhub.elsevier.com/S0098-3004(18)30931-2/sb2
http://refhub.elsevier.com/S0098-3004(18)30931-2/sb2
http://refhub.elsevier.com/S0098-3004(18)30931-2/sb3
http://refhub.elsevier.com/S0098-3004(18)30931-2/sb3
http://refhub.elsevier.com/S0098-3004(18)30931-2/sb3
http://refhub.elsevier.com/S0098-3004(18)30931-2/sb4
http://refhub.elsevier.com/S0098-3004(18)30931-2/sb4
http://refhub.elsevier.com/S0098-3004(18)30931-2/sb4
http://refhub.elsevier.com/S0098-3004(18)30931-2/sb4
http://refhub.elsevier.com/S0098-3004(18)30931-2/sb4
http://refhub.elsevier.com/S0098-3004(18)30931-2/sb5
http://refhub.elsevier.com/S0098-3004(18)30931-2/sb5
http://refhub.elsevier.com/S0098-3004(18)30931-2/sb5
http://refhub.elsevier.com/S0098-3004(18)30931-2/sb6
http://refhub.elsevier.com/S0098-3004(18)30931-2/sb6
http://refhub.elsevier.com/S0098-3004(18)30931-2/sb6
http://refhub.elsevier.com/S0098-3004(18)30931-2/sb7
http://refhub.elsevier.com/S0098-3004(18)30931-2/sb7
http://refhub.elsevier.com/S0098-3004(18)30931-2/sb7
http://refhub.elsevier.com/S0098-3004(18)30931-2/sb7
http://refhub.elsevier.com/S0098-3004(18)30931-2/sb7
http://refhub.elsevier.com/S0098-3004(18)30931-2/sb8
http://refhub.elsevier.com/S0098-3004(18)30931-2/sb8
http://refhub.elsevier.com/S0098-3004(18)30931-2/sb8
http://refhub.elsevier.com/S0098-3004(18)30931-2/sb8
http://refhub.elsevier.com/S0098-3004(18)30931-2/sb8
http://refhub.elsevier.com/S0098-3004(18)30931-2/sb9
http://refhub.elsevier.com/S0098-3004(18)30931-2/sb9
http://refhub.elsevier.com/S0098-3004(18)30931-2/sb9
http://refhub.elsevier.com/S0098-3004(18)30931-2/sb9
http://refhub.elsevier.com/S0098-3004(18)30931-2/sb9
http://refhub.elsevier.com/S0098-3004(18)30931-2/sb10
http://refhub.elsevier.com/S0098-3004(18)30931-2/sb10
http://refhub.elsevier.com/S0098-3004(18)30931-2/sb10
http://refhub.elsevier.com/S0098-3004(18)30931-2/sb10
http://refhub.elsevier.com/S0098-3004(18)30931-2/sb10
http://refhub.elsevier.com/S0098-3004(18)30931-2/sb11
http://refhub.elsevier.com/S0098-3004(18)30931-2/sb11
http://refhub.elsevier.com/S0098-3004(18)30931-2/sb11
http://refhub.elsevier.com/S0098-3004(18)30931-2/sb11
http://refhub.elsevier.com/S0098-3004(18)30931-2/sb11
http://refhub.elsevier.com/S0098-3004(18)30931-2/sb11
http://refhub.elsevier.com/S0098-3004(18)30931-2/sb11
http://refhub.elsevier.com/S0098-3004(18)30931-2/sb12
http://refhub.elsevier.com/S0098-3004(18)30931-2/sb12
http://refhub.elsevier.com/S0098-3004(18)30931-2/sb12
http://refhub.elsevier.com/S0098-3004(18)30931-2/sb13
http://refhub.elsevier.com/S0098-3004(18)30931-2/sb13
http://refhub.elsevier.com/S0098-3004(18)30931-2/sb13
http://refhub.elsevier.com/S0098-3004(18)30931-2/sb13
http://refhub.elsevier.com/S0098-3004(18)30931-2/sb13
http://refhub.elsevier.com/S0098-3004(18)30931-2/sb14
http://refhub.elsevier.com/S0098-3004(18)30931-2/sb14
http://refhub.elsevier.com/S0098-3004(18)30931-2/sb14
http://refhub.elsevier.com/S0098-3004(18)30931-2/sb14
http://refhub.elsevier.com/S0098-3004(18)30931-2/sb14
http://refhub.elsevier.com/S0098-3004(18)30931-2/sb15
http://refhub.elsevier.com/S0098-3004(18)30931-2/sb15
http://refhub.elsevier.com/S0098-3004(18)30931-2/sb15
http://refhub.elsevier.com/S0098-3004(18)30931-2/sb15
http://refhub.elsevier.com/S0098-3004(18)30931-2/sb15
http://refhub.elsevier.com/S0098-3004(18)30931-2/sb16
http://refhub.elsevier.com/S0098-3004(18)30931-2/sb16
http://refhub.elsevier.com/S0098-3004(18)30931-2/sb16
http://refhub.elsevier.com/S0098-3004(18)30931-2/sb16
http://refhub.elsevier.com/S0098-3004(18)30931-2/sb16
http://refhub.elsevier.com/S0098-3004(18)30931-2/sb17
http://refhub.elsevier.com/S0098-3004(18)30931-2/sb17
http://refhub.elsevier.com/S0098-3004(18)30931-2/sb17
http://refhub.elsevier.com/S0098-3004(18)30931-2/sb18
http://refhub.elsevier.com/S0098-3004(18)30931-2/sb18
http://refhub.elsevier.com/S0098-3004(18)30931-2/sb18
http://refhub.elsevier.com/S0098-3004(18)30931-2/sb18
http://refhub.elsevier.com/S0098-3004(18)30931-2/sb18
http://refhub.elsevier.com/S0098-3004(18)30931-2/sb19
http://refhub.elsevier.com/S0098-3004(18)30931-2/sb19
http://refhub.elsevier.com/S0098-3004(18)30931-2/sb19
http://refhub.elsevier.com/S0098-3004(18)30931-2/sb19
http://refhub.elsevier.com/S0098-3004(18)30931-2/sb19
http://refhub.elsevier.com/S0098-3004(18)30931-2/sb20
http://refhub.elsevier.com/S0098-3004(18)30931-2/sb20
http://refhub.elsevier.com/S0098-3004(18)30931-2/sb20
http://refhub.elsevier.com/S0098-3004(18)30931-2/sb20
http://refhub.elsevier.com/S0098-3004(18)30931-2/sb20
http://refhub.elsevier.com/S0098-3004(18)30931-2/sb21
http://refhub.elsevier.com/S0098-3004(18)30931-2/sb21
http://refhub.elsevier.com/S0098-3004(18)30931-2/sb21
http://refhub.elsevier.com/S0098-3004(18)30931-2/sb22
http://refhub.elsevier.com/S0098-3004(18)30931-2/sb22
http://refhub.elsevier.com/S0098-3004(18)30931-2/sb22
http://refhub.elsevier.com/S0098-3004(18)30931-2/sb23
http://refhub.elsevier.com/S0098-3004(18)30931-2/sb23
http://refhub.elsevier.com/S0098-3004(18)30931-2/sb23
http://refhub.elsevier.com/S0098-3004(18)30931-2/sb24
http://refhub.elsevier.com/S0098-3004(18)30931-2/sb24
http://refhub.elsevier.com/S0098-3004(18)30931-2/sb24
http://refhub.elsevier.com/S0098-3004(18)30931-2/sb25
http://refhub.elsevier.com/S0098-3004(18)30931-2/sb25
http://refhub.elsevier.com/S0098-3004(18)30931-2/sb25
http://refhub.elsevier.com/S0098-3004(18)30931-2/sb25
http://refhub.elsevier.com/S0098-3004(18)30931-2/sb25
http://refhub.elsevier.com/S0098-3004(18)30931-2/sb25
http://refhub.elsevier.com/S0098-3004(18)30931-2/sb25
http://refhub.elsevier.com/S0098-3004(18)30931-2/sb26
http://refhub.elsevier.com/S0098-3004(18)30931-2/sb26
http://refhub.elsevier.com/S0098-3004(18)30931-2/sb26
http://refhub.elsevier.com/S0098-3004(18)30931-2/sb27
http://refhub.elsevier.com/S0098-3004(18)30931-2/sb27
http://refhub.elsevier.com/S0098-3004(18)30931-2/sb27
http://refhub.elsevier.com/S0098-3004(18)30931-2/sb27
http://refhub.elsevier.com/S0098-3004(18)30931-2/sb27
http://refhub.elsevier.com/S0098-3004(18)30931-2/sb28
http://refhub.elsevier.com/S0098-3004(18)30931-2/sb28
http://refhub.elsevier.com/S0098-3004(18)30931-2/sb28
http://refhub.elsevier.com/S0098-3004(18)30931-2/sb29
http://refhub.elsevier.com/S0098-3004(18)30931-2/sb29
http://refhub.elsevier.com/S0098-3004(18)30931-2/sb29
http://refhub.elsevier.com/S0098-3004(18)30931-2/sb30
http://refhub.elsevier.com/S0098-3004(18)30931-2/sb30
http://refhub.elsevier.com/S0098-3004(18)30931-2/sb30


Computers and Geosciences 133 (2019) 104306

9

L.V. Lucchese et al.

Parsons, J.D., Friedrichs, C.T., Traykovski, P.A., Mohrig, D., Imran, J., Syvitski, J.P.,
Parker, G., Puig, P., Buttles, J.L., Garcia, M.H., 2007. The mechanics of marine
sediment gravity flows. In: Nittrouer, C., Austin, J., Field, M., Syvitski, J., Wiberg, P.
(Eds.), Continental Margin Sedimentation: From Sediment Transport to Sequence
Stratigraphy. Blackwell, Oxford, UK, pp. 275–333.

Peskin, C.S., 2002. The immersed boundary method. Acta Numer. 11, 479–517.
Rubey, W.W., 1933. Settling velocity of gravel, sand, and silt particles. Amer. J. Sci.

(148), 325–338.

Shanmugam, G., 2000. 50 years of the turbidite paradigm (1950s—1990s): deep-water
processes and facies models—a critical perspective. Mar. Pet. Geol. 17 (2), 285–342.

Simpson, J.E., 1999. Gravity currents in the environment. Proc. Indian Nat. Sci. Acad.
A 65, 1–26.

Stow, D.A., Shanmugam, G., 1980. Sequence of structures in fine-grained turbidites:
comparison of recent deep-sea and ancient flysch sediments. Sediment. Geol. 25
(1–2), 23–42.

http://refhub.elsevier.com/S0098-3004(18)30931-2/sb31
http://refhub.elsevier.com/S0098-3004(18)30931-2/sb31
http://refhub.elsevier.com/S0098-3004(18)30931-2/sb31
http://refhub.elsevier.com/S0098-3004(18)30931-2/sb31
http://refhub.elsevier.com/S0098-3004(18)30931-2/sb31
http://refhub.elsevier.com/S0098-3004(18)30931-2/sb31
http://refhub.elsevier.com/S0098-3004(18)30931-2/sb31
http://refhub.elsevier.com/S0098-3004(18)30931-2/sb31
http://refhub.elsevier.com/S0098-3004(18)30931-2/sb31
http://refhub.elsevier.com/S0098-3004(18)30931-2/sb32
http://refhub.elsevier.com/S0098-3004(18)30931-2/sb33
http://refhub.elsevier.com/S0098-3004(18)30931-2/sb33
http://refhub.elsevier.com/S0098-3004(18)30931-2/sb33
http://refhub.elsevier.com/S0098-3004(18)30931-2/sb34
http://refhub.elsevier.com/S0098-3004(18)30931-2/sb34
http://refhub.elsevier.com/S0098-3004(18)30931-2/sb34
http://refhub.elsevier.com/S0098-3004(18)30931-2/sb35
http://refhub.elsevier.com/S0098-3004(18)30931-2/sb35
http://refhub.elsevier.com/S0098-3004(18)30931-2/sb35
http://refhub.elsevier.com/S0098-3004(18)30931-2/sb36
http://refhub.elsevier.com/S0098-3004(18)30931-2/sb36
http://refhub.elsevier.com/S0098-3004(18)30931-2/sb36
http://refhub.elsevier.com/S0098-3004(18)30931-2/sb36
http://refhub.elsevier.com/S0098-3004(18)30931-2/sb36

	Direct Numerical Simulations of turbidity currents with Evolutive Deposit Method, considering topography updates during the simulation
	Introduction
	Methodology
	Validation and verification
	Deposit of a single event
	Deposit of two events
	Conclusion
	Computer code availability
	CRediT authorship contribution statement
	Acknowledgments
	References


