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a b s t r a c t 

A numerical study is performed on flow-induced vibrations of two cylinders of diameter D , 

in tandem configuration relative to the free-stream uniform flow U at low Reynolds num- 

bers Re = UD/ν . In order to solve numerically the incompressible momentum and con- 

tinuity equations, the in-house code Incompact3D is used. Compact sixth-order finite 

differences for spatial differentiation and second-order Adams–Bashforth scheme for time 

advancement are employed. The cylinders movement is modeled as a mass-damper-spring 

system which is solved by a fourth-order Runge–Kutta scheme. To represent the multi- 

ple moving cylinders in an immersed boundary method framework, a modification in the 

Poisson equation is proposed. The modified algorithm was evaluated and applied for sce- 

narios with zero, one and two translational degrees of freedom to oscillate. The validation 

is carried out against several numerical and experimental previous works. The results are 

analyzed in terms of the forces on cylinders, Strouhal number of the wake, streamwise 

velocity profiles and cylinders oscillation amplitudes and frequencies. The algorithm could 

satisfactorily represent the resonance and wake-flutter phenomena. In the most cases, the 

rear cylinder has greater oscillations than the front cylinder. However, a state was iden- 

tified where the cross-stream oscillation amplitudes of the front cylinder are lower than 

those of the rear cylinder. In this state, the lift force acts as negative spring on the front 

cylinder (amplifying its oscillations) and as a damper on the rear cylinder (controlling its 

oscillations). The scenarios with two degrees of freedom ( 2dof ) have higher oscillation am- 

plitudes than the equivalent scenarios with one degree of freedom. Moreover, the stream- 

wise oscillation amplitudes are not negligible in relation to the cross-stream oscillation 

amplitudes. On the other hand, for 2dof , when the Reynolds number increases the clash- 

ing risk also increases, since the cylinders proximity is narrowed. 

© 2019 Elsevier Inc. All rights reserved. 

 

 

1. Introduction 

Several engineering and biological applications involve Fluid–Solid Dynamic Interaction ( FSI ). For instance, structures sub-

mitted to sea/river currents (e.g., bridge piers, risers and vegetation) and wind flux (e.g. buildings, electricity transmission
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lines, anchor cables, cable-stayed bridges) represent some common cases of FSI . Moreover, the complex nature of this non-

linear interaction makes FSI challenging and interesting for scientific research. From the wide range of FSI phenomena, we

focus on two types of Flow-induced vibration ( FIV ): Vortex-induced vibration ( VIV ) and Wake-induced vibration ( WIV ). VIV

phenomenon is associated with the solid motion caused by forces induced by the vortex shedding (Williamson and Govard-

han [1] make a comprehensive review on the topic). Assi et al. [2] define WIV as a fluid-elastic mechanism able to yield

oscillations of a body immersed in the wake interference region behind a bluff body [3–5] . 

Cylinders arrays submitted to cross-flow (flow normal to main cylinder axis) can develop both VIV and WIV which, even-

tually, cause high oscillations amplitudes. Under certain conditions, the restitutive and damping forces of solid structures

are not able to control the fluid forces, then self-excited oscillations could lead to structure failure. It should be pointed out

that fluid-elastic instabilities, also referred to self-excited oscillations [6] , of cylinders arrays submitted to cross-flow, were

the cause of damages worldwide whose costs were estimated at 10 0 0 M$ over one decade [7] . 

In-line cylinders arrays whose center-to-center line is parallel to the free-stream flow direction is defined as tandem

cylinders arrangement [8,9] . For this configuration, separated flow on upstream cylinders forms free shear layers that in-

teract with downstream cylinders surfaces. Thus, the behavior is substantially different from a single cylinder, and strongly

influenced by the center-to-center spacing between the cylinders S , as observed in previous works [e.g., 10,11 ]. For two

fixed tandem cylinders of same diameter D , it can be defined a critical non-dimensional spacing ( S / D ) c as the distance S / D

associated to unstable reattachment of the upstream free shear layers on the downstream cylinder surface, i.e. the spacing

for which the upstream wake is formed and developed inside the gap between cylinders. This critical spacing determines

three flow patterns: (i) stable reattachment of upstream free shear layers on downstream cylinder ( S / D < ( S / D ) c ), (ii) bistable

reattachment ( S / D ≈ ( S / D ) c ) and (iii) vortex wake completely developed in the gap between the cylinders ( S / D > ( S / D ) c ). Fluc-

tuating and time-averaged force coefficients, fluctuating and time-average pressure on cylinders surfaces and the Strouhal

number, as a function of S / D , show hysteretic discontinuities at S / D ≈ ( S / D ) c [12] . At low Reynolds numbers ( Re = 100 and

Re = 300), Huhe et al. [13] observed that the critical spacing varies in the interval 3.5 < ( S / D ) c < 4.5, while, for Re ∼ 10 4 , Kiya

et al. [14] , Igarashi [3] and Alam et al. [12] identified 3 < ( S / D ) c < 4. 

Depending on the temporal scale relation between solid and fluid oscillations, the FIV -modeling of rigid cylinders can be

satisfactorily represented by fixed, forced or elastically-mounted cylinders. Here, a cylinder with one degree of freedom ( 1dof )

can freely oscillate in cross-stream or streamwise direction, while, a cylinder with two degrees of freedom ( 2dof ) oscillates

in both directions. 

There are several numerical [e.g., [15–17] ] and experimental [e.g., 18,19 ] studies on flow around two fixed cylinders in

a tandem arrangement, but comparatively few researches involving cylinders in tandem submitted to FIV . Some authors

consider fixed upstream cylinder and oscillating downstream cylinder [e.g., [20–22] ], and both oscillating cylinders with 1dof

or 2dof [e.g., [16,17,23] ]. However, it is not clearly understood the FIV of two cylinders in tandem configuration with 2dof

each one at initial spacing equal to the critical one (which is around ( S / D ) c ≈ 3.5, for fixed cylinders). 

In some cases, flow around tandem arrays with 1dof has less complexity and different solid dynamic response than

the corresponding 2dof system. For instance, in 1dof system, the vibration control is applied by increasing the mechanical

damping, while in a 2dof system, increasing damping could yield higher energy absorption of the downstream cylinder and

change the cylinder modal pattern [6] . For upstream fixed cylinder and flexible downstream cylinder, Huera-Huarte et al.

[21] identified multi-mode vortex and wake-induced vibrations yielding higher amplitude response than a single oscillating

cylinder in resonance. The resonance occurs in the so-called lock-in or synchronization interval. Lock-in is associated to the

control of shedding process by the elastic structure, in a bandwidth around the fundamental frequency [24] ; i. e. the vortex

shedding frequency f is “locked” in the fundamental frequency f N of structure oscillation ( f ≈ f N ). 

From the above statements, the governing parameters for elastically-mounted smooth circular cylinders, initially in tan-

dem arrangement, are: the Reynolds number Re ; the reduced velocity U R (which represents the relation between the solid

and fluid time scales); the center-to-center spacing S / D ; structural parameters as the mass-damping parameter = mζ (where

m is the reduced mass and ζ is the critical damping ratio), and the number of degrees of freedom ( dof ). 

The numerical strategies to represent solid geometries can be classified as: non-body conformal methods (as the Im-

mersed Boundary Method, IBM ) which, basically, consider the body embedded in the grid, so the grid is not body shape

dependent, in contrast to body-conformal methods. In high-order schemes framework, the IBM allows using a Cartesian grid,

which allows straightforward implementation and accurate computations of the discrete operators (spatial derivatives) near 

the fluid–solid interface [25] . The IBM could make the moving boundaries representation simpler than the body-conformal

methods, because the grid is not reformulated every body displacement. In this paper, the flow governing equations are nu-

merically solved by using the high precision code Incompact3D [26] , coupled with the Immersed Boundary Method ( IBM )

proposed by Parnaudeau et al. [27] . In this work, this IBM is extended in order to incorporate several moving cylinders. In

Section 2 the governing equations and the numerical algorithm are presented and described. 

This algorithm is evaluated for two cylinders fixed, in Galilean translation and in 1dof Flow-induced vibration ( Section 3 ).

The consistent validation allowed applying the algorithm to simulate the FIV of two cylinders at low Reynolds numbers,

aiming to analyze the dynamic cylinders responses and flow characteristics ( Section 4 ). This is achieved by studying the

2dof system in detail and comparing it with the 1dof system, for Re equal to 200 and 300, U R from 2 to 14, m = 1 , ζ =
0 . 007 and S/D = (S/D ) c ≈ 3 . 5 . This reduced velocity interval is especially interesting because galloping instability (or wake-

induced flutter) and resonance phenomenon could simultaneously occur [28] . Finally, Section 5 is dedicated to present some

concluding remarks as well as the main highlights of this study. 
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Fig. 1. Flow configuration, computational domain and boundary conditions, where u = [ u v ] T and U conv is the mean convection velocity of the main outflow 

structures. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2. Computational method 

In this section, we present the governing equations, the boundary conditions and the numerical methodology. The gov-

erning equations are: the fluid mass and momentum balance equations, the solid dynamic equation and the control volume

formulation to compute the fluid forces. It must be pointed out that here, the fluid and solid dynamic equations are on-

line coupled to accurately represent the non-linear physical processes involved in Fluid–structure interaction. The numerical

methodology, involves time advancement and the IBM formulation proposed to represent one or more moving cylinders. In

the following analysis, all quantities are assumed to be scaled by the cylinder diameter, the free-stream velocity and the

fluid density. As a consequence of the non-dimensionalization, the dimensionless diameter D and the free-stream velocity

are unitary ( D = 1 and U = 1 ). 

2.1. Hydrodynamic model 

The dynamic of a newtonian, incompressible and isothermal flow can be mathematically represented by partial differen-

tial equations of mass and momentum balance, which, respectively, read 

∇ · u = 0 , (1)

∂u 

∂t 
= −u · ∇u − ∇� + 

1 

Re 
∇ 

2 u + f (2)

where, u and � are the velocity and pressure field, respectively. The forcing term f is the surface force imposed by the

cylinder, via IBM , in order to ensure the no-slip condition on the fluid-solid interface. The non-linear convective term (first

on right-side of Eq. (2) ) is computed in the skew-symmetric formulation to minimize the aliasing errors. 

Eqs. (1) , (2) are discretized in a uniform Cartesian grid. Fig. 1 shows a schema of the boundary conditions and some

useful geometrical parameters. The initial condition is adopted as an unitary velocity field u (x, y, t = 0) = [1 0 0] T , and

the inflow condition is u (x = 0 , y, t) = [1 0 0] T . On y = 0 and y = L y , the velocity verifies the free-slip condition, while

considering a simplified convection equation as outflow ( x = L x ). 

2.1.1. Numerical solution 

In order to solve numerically the governing equations ( 1,2 ), the Incompact3D code is used [26] . The code is based on

compact sixth-order finite difference schemes [29] for spatial differentiation and a second-order Adams–Bashforth scheme

for time advancement. To treat the incompressibility condition, a fractional step method requires solving a Poisson equation.

This equation is fully solved in spectral space via the use of a Fast Fourier Transform. 

The cylinders are represented via an IBM based on adapted direct forcing method [27] . It allows simple implementation

of high-order schemes, for spatial discretization, by adding a forcing term ( f ) in the fluid momentum equation ( Eq. (2) ).

This term acts only on the grid nodes inside the immersed boundary. The IBM is materialized in the time advancement and

reflected in the Poisson equation, to solve the pressure field and to ensure the incompressibility condition. 

The time advancement method requires to define intermediary velocities (denoted as u 

∗ and u 

∗∗). These intermediary

velocities are computed by the splitting method: 

u 

∗ − u 

k 

= 

3 

F k − 1 

F k −1 − ∇ �k −1 / 2 + f k +1 / 2 , (3)

�t 2 2 
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Fig. 2. Immersed boundary method based on mirrored flow. Streamwise velocity inside and outside the cylinder. 

 

 

 

 

 

 

 

 

 

u 

∗∗ − u 

∗

�t 
= ∇�k −1 / 2 , (4) 

u 

k +1 − u 

∗∗

�t 
= −∇�k +1 / 2 , (5) 

here f k +1 / 2 is estimated by 

f k +1 / 2 ≈ f ∗ = ε 

(
−3 

2 

F k + 

1 

2 

F k −1 + ∇ �k −1 / 2 + 

u 

k +1 
0 

− u 

k 

�t 

)
, (6) 

where F k represents the convective-diffusive term at the instant t k , �t is the time step, ε( x, y, t ) is an auxiliary parameter,

which is zero outside the cylinder ( ε = 0 ) and one inside ( ε = 1 ). The target velocity field u 

k +1 
0 

inside the cylinder is an

artificial flow induced by the IBM , to ensure smoothness in the velocity (continuity in first derivative) while minimizing

spurious oscillations near the fluid-solid interface. 

The target velocity at t k +1 , in cylindrical coordinates, is computed by 

u 

k +1 
0 (r, θ, z, t) ≈ u 

∗
0 (r, θ, z, t) = u 

k +1 
c + (u 

k +1 
c − u 

∗(D − r, θ, z, t)) sin 

(
2 π r 2 

D 

2 

)
, 

f or 0 � r � D/ 2 and 0 � θ < 2 π, (7) 

where u c is the cylinder velocity and u 0 is a mirrored flow modulated by a, conveniently selected, sinusoidal function in

the solid domain ( Fig. 2 ). 

The cylinder velocity u 

k +1 
c is calculated every time step by solving the solid dynamic equation ( Section 2.2 ). The forcing

is being applied in u 

∗
0 

instead of u 

k +1 
0 

( Eq. (7) ), inducing a second-order error in time ( error ∼�t 2 ). Hence, the second-order

accuracy in the time advancement scheme is preserved. 

According to Parnaudeau et al. [30] , the no-slip condition on the cylinder surface can be assured up to second-order

accuracy. Thus, the velocity is reflected by bilinear interpolation. 

Applying the divergence operator on both sides of (5) , we obtain 

∇ 

2 �k +1 / 2 = 

∇ · u 

∗∗ − ∇ · u 

k +1 

�t 
, (8) 

where, from incompressibility condition ( Eq. (1 )), ∇ · u 

k +1 = 0 outside the cylinder but unknown inside, since the internal

flow is not physical. Then, to deal with the cylinder(s) movement, some modifications will be proposed on this equation.

For one cylinder , we consider the following correction to the incompressibility condition 

∇ · u 

k +1 = ∇ · ε 
(
u 

k +1 
0 − u 

k +1 
c 

)
≈ ∇ · ε 

(
u 

∗∗
0 − u 

k 
c 

)
(9) 
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Substituting (9) in (8) , taking ε u 

k +1 
0 

≈ ε u 

∗∗
0 

and u 

k +1 
c ≈ u 

k 
c , it follows 

∇ 

2 �k +1 / 2 = 

∇ ·
[
(1 − ε) u 

∗∗ + εu 

k 
c 

]
�t 

. (10)

Analogously, for two moving cylinders we have 

∇ · u 

k +1 = ∇ ·
[
ε 1 

(
u 

k +1 
0 1 

− u 

k +1 
c 1 

)
+ ε 2 

(
u 

k +1 
0 2 

− u 

k +1 
c 2 

)]
, (11)

where the subscripted 1 and 2 represent the cylinder numbering. Then, the Poisson equation for two cylinders can be

expressed as 

∇ 

2 �k +1 / 2 = 

∇ ·
[
( 1 − ε 1 − ε 2 ) u 

∗∗ + ε 1 u 

k 
c 1 

+ ε 2 u 

k 
c 2 

]
�t 

. (12)

Without considering the correction in the incompressibility condition (11) , we obtain 

∇ 

2 �k +1 / 2 = 

∇ · [ ( 1 − ε 1 − ε 2 ) u 

∗∗] 

�t 
. (13)

For several moving cylinders , the Poisson equation reads 

∇ 

2 �k +1 / 2 = 

∇ ·
[(

1 − ∑ n cyl 

i =1 
ε i 

)
u 

∗∗ + 

∑ n cyl 

i =1 

(
ε i u 

k 
c i 

)]
�t 

, (14)

where u c i is the velocity of the i -cylinder, and n cyl is the total number of cylinders. Eq. (14) is completely solved in the

spectral Fourier field, then, using Eq. (5) , a velocity correction is carried out to compute u 

k +1 . In the right-side of Eq. (13) ,

the divergence is applied to a velocity field which is null inside the cylinder ( ε i = 1 ) and equal to u 

∗∗ outside the cylin-

der ( ε i = 0 ). As the forcing was already applied on u 

∗∗, if we are approaching from the fluid to the solid, u 

∗∗ −→ u 

k 
c i 
,

while inside the solid domain, the velocity field is null. It means that, when u 

k 
c i 

� = 0 , the Eq. (13) yields a discontinuity

at the interface. To overcome this issue, we propose to consider an uniform velocity field equal to the cylinder velocity, in-

side the solid ( Eq. (12) , for 2 cylinders or Eq. (14) , for n cyl cylinders). By this procedure, the velocity discontinuity is avoided

and the internal uniform velocity field is divergence-free. Moreover, it was verified that this consideration stabilizes the code

and improves the compact centered schemes performance. 

2.2. Dynamic model for cylinders vibration 

The elastically-mounted rigid cylinder is modeled as a mass-damping-spring system. The solid motion equation non-

dimensionalized by flow parameters (Shiels et al. [31] ) is written as 

m ̈x j + c ̇ x j + kx j = C j (t) , (15)

where x j , ˙ x j and ẍ j are the cylinder displacement, velocity and acceleration in j -direction ( j = x or y ). The mechanical pa-

rameters (per unit length) are defined as 

m = 

m 

∗
1 
2 
ρD 

2 
= 

π

2 

ρc 

ρ
, c = 

c ∗
1 
2 
ρUD 

= 2 ζ
√ 

mk , k = 

k ∗
1 
2 
ρU 

2 
= m 

(
2 π

U R 

)2 

(16)

where m is the reduced mass, ρc is the cylinder density, c is the mechanical damping coefficient, ζ is the structural damping

ratio, k is the structural stiffness coefficient, U R is the reduced velocity and C j is the force coefficient in the j -direction.

Variables with asterisk represent the corresponding dimensional magnitude. Eq. (15) is numerically solved using a fourth-

order Runge–Kutta scheme. 

The FIV phenomenon is highly dependent on the reduced velocity, which establishes the relation between the solid and

fluid time scales. Assuming that the solid time scale ( T solid ) is estimated through the inverse natural frequency of the system

(1/ f N ) and the fluid time scale ( T fluid ) by D / U , the following expression is obtained 

U R = 

T solid 

T f luid 

= 

U 

f N D 

. (17)

2.3. Forces computation 

In the present cartesian grid, it is not convenient to compute the force coefficients by integrating the pressure and viscous

stresses on the cylinder surface, since an extra interpolation procedure would be required to take the information from the

grid nodes to the fluid-solid interface. Conversely, forces are calculated by applying the integral momentum equation in a

rectangular control volume ( CV ) defined around the cylinder ( Fig. 3 ). 

The integral momentum equation can be expressed, in the dimensionless form, as 

∑ 

F ext = F 1 + F 2 = 

∂ 

∂t 

∫ 
u d∀ + 

∫ 
u (u · n ) dA, (18)
VC CS 
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Fig. 3. Control volume to compute the forces on the cylinder surface. The surfaces S 1 and S 2 define the volume control boundaries. The background image 

is an instantaneous field of the velocity magnitude. 

Table 1 

Convergence analysis of the force coefficients for various spatial uniform res- 

olutions. For domain size L x × L y = 25 × 18 , time step �t = 5 × 10 −4 , cylinders 

streamwise spacing S/D = 5 and Reynolds number Re = 100 . 

n x × n y �x = �y < C D 1 > < C D 2 > C L 1 rms C L 2 rms St 

501 × 361 0.050 1.394 0.887 0.319 1.199 0.1617 

751 × 541 0 . 03 
� 

3 1.385 0.883 0.314 1.191 0.1629 

1001 × 721 0.025 1.384 0.873 0.306 1.162 0.1630 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

where F 1 and F 2 are the forces per unit cylinder length on the surfaces S 1 and S 2, respectively; n is a unit vector normal to

the control surface ( CS ). From the integration of the pressure and viscous stresses on the surface S 2, F 2 is computed as 

F 2 = 

∫ 
S2 

[ 
−� I + 

1 

Re 

(∇u + ( ∇u ) 
T 
)] 

n dS. (19) 

From Eq. (18) , and highlighting that there is not flow through S 1, F 1 is estimated by 

F 1 = 

∂ 

∂t 

∫ 
CV 

u d∀ + 

∫ 
S2 

u (u · n ) dA −
∫ 

S2 

[ 
−� I + 

1 

Re 

(∇u + ( ∇u ) 
T 
)] 

n dS, (20) 

where, I is the identity matrix. Finally, The force coefficients can be computed using the Cartesian components of F 1 : 

C D = 2 F 1 · e x , (21) 

C L = 2 F 1 · e y . (22) 

All simulations in this work were carried out up to 500/ �t iterations at least. The mean and rms of drag ( C D ) and lift

( C L ) coefficients were computed for the statistically stationary time interval. Then, depending on the simulation, we used

around 400/ �t iterations for the computations. 

3. Evaluation of the algorithm 

The code Incompact3D has been validated and applied to uniform and sheared flow profile past one static cylinder

[e.g., [27,32,33] ], a single forced oscillating cylinder [34] and a single cylinder subjected to Vortex-induced vibration [33] .

A second cylinder, in the wake interference region behind the first cylinder, modifies considerably the flow field and the

mechanical response. Hence, in this section, the code is evaluated for two tandem cylinders: (i) fixed with 2 � ( S / D ) � 10, (ii)

in Galilean streamwise translation for S/D = 3 . 5 , (iii) with 1dof cross-stream and initial spacing (S/D ) 0 = (S/D ) c ≈ 3 . 5 . 

3.1. Fixed cylinders (Re = 100) 

To evaluate the code for two fixed cylinders in tandem, simulations for Re = UD/ν = 100 and spacings in the range

2 � S / D � 10 are performed. Results are compared with numerical and experimental studies in terms of mean drag coefficient

< C D > , root mean square ( rms ) of the lift coefficient C L rms and the Strouhal number St ( = f v D/U, where f v is the vortex

shedding frequency) behind the rear cylinder. The vortex shedding frequency was calculated from the time series of cross-

stream velocity measured by a probe located 5 D behind the rear cylinder measured along the center-to-center line. In this

paper, the subscript 1 is adopted for representing quantities associated to the front cylinder and the subscript 2 for the rear

cylinder. 

In order to define the mesh resolution, a convergence analysis was performed in a domain size L x × L y = 25 × 18 , with

three different spatial resolutions, time step �t = 5 × 10 −4 and cylinders streamwise spacing S/D = 5 ( Table 1 ). The deviation

of the forces coefficients between a simulation and its corresponding more refined simulation is around 1%, thereby it was

selected the intermediate resolution n x × n y = 751 × 541 . The front cylinder position is set to 
[
x c 1 , y c 1 

]
= [8 , L y / 2] while
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Fig. 4. < C D > as a function of S / D , for Re = 100: ( a ) front cylinder, ( b ) rear cylinder. C L rms as a function of S / D : ( c ) front cylinder; ( d ) rear cylinder. •
Present study, ◦ Sharman et al. [37] , × Mussa et al. [39] , 
 Mizushima and Suehiro [36] . 

Fig. 5. Vorticity fields. Figure on the left shows the vorticity field and streamlines in the gap before the discontinuity of the force coefficients (unstable 

reattachment). Figure on the right shows vorticity field after the discontinuity, corresponding to the peak of the lift coefficients fluctuations. 

 

 

 

 

 

 

varying the streamwise spacings by moving the rear cylinder position in downstream direction. For S/D = 10 , the domain

size in the streamwise direction is increased to L x = 35 to avoid interference at the outlet. 

Force coefficients are in good agreement with numerical works ( Fig. 4 ). The greatest difference of < C D 1 > ( Fig. 4 a) relative

to other numerical studies is close to 4%. For S/D = (S/D ) c ≈ 3 . 5 , the signal inversion of < C D 2 > is adequately reproduced

and the vorticity field shows appropriate representation of the unstable reattachment ( Fig. 5 ). It is particularly interesting

the upper-branch identified for < C D 2 > , C L 1 rms and C L 2 rms ( Fig. 4 b, c and d, respectively) in the range 4 � S / D � 5. Such

upper-branch is associated with the cylinders proximity after the force coefficients discontinuity, for which the wake is

completely developed in the gap (left-side of Fig. 5 ). 
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Fig. 6. Strouhal number St behind the rear cylinder, as a function of center-to-center spacing S / D . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The Strouhal number St has a good agreement with the reference numerical studies ( Fig. 6 ). For S / D > 3.5 and Re =
100 , the experimental study [13] shows surprisingly low values of St if it is compared to the numerical results [23,35–39] .

However, the experimental results for Re = 300 fit better with the numerical studies, at this interval. 

3.2. Evaluation of formulation for Galilean translation (Re = 40) 

In order to verify the beneficial effects of the algorithm for representing moving multiple bodies, 2 D simulations for

Re = 40 are performed. Galilean invariance is considered, which means that there must not be differences between two

fixed cylinders and the equivalent moving cylinders (streamwise movement) relative to the Eulerian mesh. This invariance

is evaluated in terms of the streamwise velocity profile ( u x ) through the cylinder center ( x = x c i , i = 1 , 2 ) and along the

middle of gap. 

For fixed cylinders, the computational domain ( L x × L y = 20 × 12 ) and resolution ( n x = 361 , n y = 217 ) are selected as

defined by Parnaudeau et al. [27] . The cross-stream position of the front cylinder is y c 1 = L y / 2 = 6 and the streamwise

position is x c 1 = 8 . For moving cylinders, the computational domain is L x × L y = 40 × 12 and the number of nodes in x is

incremented to n x = 721 , to maintain the spatial resolution. 

Finally, for fixed cylinders the free stream velocity is U , while, for moving cylinders, it is U /2 and the cylinders velocity

is set to −U / 2 . Thus, the Reynolds number remains the same for both cases. The center-to-center spacing and the time step

were set to S/D = 3 . 5 and �t = 1 × 10 −3 , respectively. 

The results obtained using the new proposed Poisson equation (12) , with the incompressibility condition corrected, fit

better to the fixed cylinders results than the results obtained without correction ( Eq. (13 )), as Fig. 7 shows. The differences

between the two approaches can be observed especially in the boundary layers and in between the two cylinders. 

3.3. Cylinders submitted to FIV 

In this section, the algorithm is evaluated for a single cylinder and two cylinders in tandem elastically mounted with

one degree of freedom ( 1dof ) to oscillate in cross-stream direction. Table 2 shows the structural and flow parameters asso-

ciated with the configurations simulated. Table 3 displays the domain size and the parameters for the spatial and temporal

discretization. The formulation is evaluated in terms of the maximum cross-stream oscilation amplitudes ( y / D ) max as a func-

tion of the reduced velocity U R = U/ ( f N D ) . It is important to stress that the low reduced velocity U R is associated with high

natural vibration frequency f N (quick solid response), while high values of U R implies low values of f N (slow solid response).

Fig. 8 presents the maximum cross-stream oscillation amplitude ( y / D ) max against the reduced velocity U R , for the verifi-

cation scenarios. This figure shows the results obtained in this paper compared with the results presented in Griffith et al.

[17] and in Borazjani and Sotiropoulos [16] . The largest deviations relative to the reference studies occur for 4 � U R � 5,

where the rear cylinder response curve seems to be shifted around 0.5 reduced velocity units. But nevertheless, the reso-

nance range and the behavior of the response curves are similar. 
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Fig. 7. Streamwise velocity profiles for Re = 40 . Comparison between fixed (continuous line) and moving cylinders with ( ∗) and without the new Poisson 

equation ( 
 ). (a) Profile through the front cylinder; (b) profile in the middle of the gap between cylinders; (c) profile through the rear cylinder. 

Table 2 

Structural and flow parameters of simulations for cylinders in induced vibration ( VIV and FIV ). ( S / D ) 0 is 

the initial streamwise center-to-center spacing. 

Degrees of freedom Re ( S / D ) 0 m ζ U R 

Verification scenarios 

I 1 dof (single cylinder) 200 – 4 0 (3 − 9) 

II 1 dof (two cyl. in tandem) 200 1.5 4 0 (3 − 9) 

Application scenarios (two cylinders in tandem) 

III 1 dof 200 3.5 1 0.007 (2 − 14) 

IV 2 dof 200 3.5 1 0.007 (2 − 14) 

V 1 dof 300 3.5 1 0.007 (2 − 14) 

VI 2 dof 300 3.5 1 0.007 (2 − 14) 

Table 3 

Parameters for the spatial and temporal discretization. 

n x n y L x L y �t 

Verification scenarios 

I 721 649 20 18 5 × 10 −4 

II 751 541 25 18 5 × 10 −4 

Application scenarios 

III 901 721 25 20 5 × 10 −4 

IV 901 721 25 20 5 × 10 −4 

V 1001 801 25 20 5 × 10 −4 

VI 1001 801 25 20 5 × 10 −4 
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Fig. 8. Maximum cross-stream displacement ( y / D ) max as a function of reduced velocity ( U R ), for Re = 200, S/D = 1 . 5 , m = 4 and ζ = 0. Single cylinder: ( � ) 

present study, ( 
 ) Borazjani and Sotiropoulos [16] , ( ) Griffith et al. [17] ; front cylinder: ( ) Present work, ( ) Borazjani and Sotiropoulos [16] , ( ) Griffith 

et al. [17] ; rear cylinder: ( �) present study, ( �) Borazjani and Sotiropoulos [16] and ( ) Griffith et al. [17] . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4. Flow-induced vibration 

Considering the results obtained, the formulation can be applied for two elastically mounted cylinders in tandem with

1dof and extended to cylinders with 2dof . In this section, results of application scenarios (corresponding to simulations from

III to VI in Tables 2 and 3 ) are analyzed. The initial streamwise spacing ( S / D ) 0 is set to 3.5, which is close to the critical one

( S / D ) c for fixed cylinders, although ( S / D ) c slightly decreases as the Reynolds number increases. For this initial spacing, the

rear cylinder is located at the start of the wake interference region where the wake energy is the highest (as reflected in

C L 2 rms , interpreting the rms like an energy measurement, Fig. 4 b). This, in addition to a low mass-damping parameter ( m ζ ),

aims to achieve high oscillation amplitudes and large synchronization range. 

4.1. Re = 200 

The results discussed in this subsection are based on the parameters defined by the simulations III and IV ( Tables 2 and

3 ) corresponding to 1dof and 2dof scenarios, respectively. As for a single cylinder, the response of a tandem arrangement

shows a strong dependence on the reduced velocity (Borazjani and Sotiropoulos [16] ). Hence, almost all the variables are

analyzed as a function of this parameter. 

Fig. 9 displays the cross-stream oscillation amplitude A y , the relation between oscillation frequency to natural frequency

f / f N and the Strouhal number St as a function of the reduced velocity U R , for the scenarios with 1dof and 2dof . 

For 1dof (left column of Fig. 9 ), the cross-stream oscillation amplitude A y of the front cylinder is practically the same

as for a single cylinder ( Fig. 9 a), but the lock-in region is shorter (5 � U R � 8 in Fig. 9 b). Out of lock-in region, the Strouhal

number St of 1dof single cylinder is different from that for two cylinders in tandem ( Fig. 9 c). As predicted by lock-in defi-

nition f ≈ f N ( Fig. 9 b ), the St decreases in this region, approximately, according to the relation St = 1 /U R . Out of lock-in, the

Strouhal number St trends to stabilize in lower values than those of a fixed single cylinder ( St ≈ 0.20). 

For 2dof scenario (right column of Fig. 9 ), the front cylinder has higher amplitudes A y ( Fig. 9 d) and shorter lock-in range

( Fig. 9 e) than a single cylinder. Rear cylinder does not show clearly a lock-in interval ( Fig. 9 e), but it reveals f / f N < 1 (or f < f N ).

Fig. 9 e displays the frequency ratio f / f N relative to the most energetic oscillation frequency f , although in the oscillation

spectrum there were identified slightly lower energetic harmonics of f (not shown here), which fit better with the lock-in

condition f / f N ≈ 1. As observed for 1dof , for 2dof , the Strouhal number St trends to stabilize in lower values than those of

fixed single cylinder ( Fig. 9 f). 

The cross-stream oscillation amplitude A y is higher for the rear cylinder than for the front cylinder, except within the

interval 3.75 < U R < 4.5 ( Fig. 9 a), for 1dof scenario, and within 3.75 < U R < 5 ( Fig. 9 d), for 2dof scenario. This effect starts

around the reduced velocity region in which the Strouhal number St has a peak ( Fig. 9 c and f) and finishes when the lock-

in starts ( Fig. 9 b and e). In order to understand this effect, the pressure field, vorticity field, lift force, cylinders displacement

and velocity are analyzed for one oscillation cycle and 1dof scenario ( Fig. 10 ). The pressure field around the front cylinder

shows high- (stagnation region) and low-pressure pockets, while around the rear cylinder, lower pressure magnitudes are

developed. However, the lift force acting on both cylinders has the same order of magnitude. At instants A and C, (conversely

to the result reported by Borazjani and Sotiropoulos [16] , for S/D = 1 . 5 ) a significant stagnation region arises on the rear

cylinder surface, resulting in a high lift force acting in opposite direction to the movement. This is because the external flow

partially enters the gap region, confining or controlling the rear cylinder movement (low cylinder velocities and oscillation

amplitudes) through the development of this stagnation region. Here, this effect will be referred to as confinement effect . 
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Fig. 9. Flow-induced vibration of two cylinders in tandem ( Re = 200, S / D = 3.5, m 

∗ = 1 , ζ = 0.007). Left: 1dof , right: 2dof . ( a, d ) A y : Cross-stream oscillation 

amplitude ; ( b, e ) f / f N : oscillation frequency to natural frequency; ( c, f ) St : Strouhal number. 

 

 

 

 

 

 

 

 

 

 

Analyzing the signals of lift force, displacement and velocity, it can be observed that, C L 1 is approximately in-phase with

y 1 / D and C L 2 is approximately in anti-phase with V cyl 2 
. This roughly suggests that the flow acts as a negative spring on the

front cylinder ( C L 1 ∝ + y 1 /D, maintaining high oscillations) and as a damper on the rear cylinder ( C L 2 ∝ −V cyl 2 
, maintaining

low oscillations). In contrast, it is interesting to note that, for S/D = 1 . 5 , U R = 4 and no structural damping (Borazjani and

Sotiropoulos [16] ), the lift force is in-phase with the cylinder displacement ( C L 2 ∝ + y 2 /D ). The same effect is reported by

Assi et al. [2] , who performed physical and numerical experiments at different Reynolds numbers and streamwise spacing

S/D = 4 , for fixed front cylinder and 1 dof rear cylinder. For no mechanical spring ( k = 0 or U R = ∞ in Eq. (15 )), they found

that the wake acts as a spring on the rear cylinder (It was so-called “wake stiffness”). This is also reported by Carmo et al.

[20] , for the same degrees of freedom, but considering S/D = 3 , Re = 150 and k � = 0. 

On the other hand, in the vorticity fields can be identified that the rear cylinder is always inside the upstream wake.

Moreover, the downstream combined wake is not a regular Von Karman street since vortexes shed from the front cylinder

disrupts and consequently modifies the vortex detachment from the rear cylinder. 
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Fig. 10. Instantaneous pressure fields (up left) and vorticity (up right) for two tandem cylinders submitted to FIV ( 1dof, Re = 200, S/D = 3 . 5 , m 

∗ = 1 , 

ζ = 0 . 007 and U R = 4 ). Bottom: time series of lift coefficient ( C L ), cylinder cross-stream velocity ( V cyl ) and cylinder cross-stream displacement ( y / D ) relative 

to the initial position. The black arrows in the pressure fields represent the cylinder velocity vector. The curved black arrows in the vorticity fields illustrate 

the confinement effect of the external flow over the free shear layers around the rear cylinder. 
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Fig. 11. Oscillation amplitudes (a, b) and extreme center-to-center spacings (c, d) as a function of reduced velocity, for scenario with 2dof, Re = 200, 

(S/D ) 0 = 3 . 5 , m 

∗ = 1 and ζ = 0 . 007 . ( a ) A y : Cross-stream oscillation amplitude; ( b ) A x : streamwise oscillation amplitude; ( c ) | δy / D | max : maximum cross- 

stream spacing; ( d ) ( δx / D ) max , ( δx / D ) min : maximum and minimum streamwise spacing. 

Fig. 12. Phase portrait of the lift coefficient relative to the transverse motion for the 1 dof tandem system ( Re = 200, S / D = 3.5, m 

∗ = 1 , ζ = 0.007). Black 

and grey colors correspond to the front and the rear cylinders respectively. 
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Fig. 13. Flow-induced vibration of two cylinders in tandem ( Re = 300, ( S / D ) 0 = 3.5, m 

∗ = 1 , ζ = 0.007). ( a, d ) Response curve: cross-stream oscillation 

amplitude A y ; ( b, e ) f / f N : oscillation frequency to natural frequency; ( c, f ) St : Strouhal number. 

 

 

 

 

 

 

 

 

 

Fig. 11 a displays the cross-stream oscillation amplitude A y and the cylinders trajectories as a function of the reduced

velocity U R . Front cylinder trajectories have eight-shape for U R < 5, drop-shape for U R > 8, and an irregular transition between

these shapes for lock-in interval (5 � U R � 8). From the inclination of some trajectories, it can be inferred that the maximum

cross-stream oscillation, approximately, coincides with minimum stream-wise one (left-top branch of the trajectory loop), 

and, inversely, when y / D is minimum, x / D is maximum (right-bottom branch of the trajectory loop). This means that the

time histories of the cross-stream y / D and stream-wise x / D oscillations are approximately in anti-phase. 

In the lock-in region, a single cylinder does not show considerable streamwise amplitude oscillations A x ( Fig. 11 b) and

concentrates the energy, transferred from the fluid, in cross-stream amplitude oscillations ( A y ). On the other hand, in 2dof

cylinders, the distribution of energy between cross-stream and streamwise oscillations could lead to dual resonance [40] .

It means that, the lock-in region of the cross-stream oscillations could coincide with those of the streamwise oscillations.

Thus, A x could not to be negligible in relation to A y ( Fig. 11 a and b). Nevertheless, for high reduce velocities ( U R > 9, where

the galloping normally occurs) A y > A x . 
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Fig. 14. Oscillation amplitude and extreme relative spacing as a function of reduced velocity. ( a ) Cross-stream oscillation amplitude A y ; ( b ) Streamwise 

oscillation amplitude A x ; ( c ) Maximum cross-stream spacing ( δy / D ) max ; ( b ) Maximum and minimum Streamwise spacing. Scenario with 2 dof , for Re = 300, 

(S/D ) 0 = 3 . 5 , m 

∗ = 1 and ζ = 0 . 007 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

For 2dof , in the confinement effect interval, from U R = 3 . 75 to U R = 4 . 5 , the rear cylinder oscillations and the Strouhal

number ( A y , A x and St ) decrease around 50% ( � in Fig. 11 a, b and f). Furthermore, in this interval, the maximum center-

to-center cross-stream spacing is | δy / D | max < 1, while | δy / D | max > 1 for U R > 4.5 ( Fig. 11 c). When | δy / D | max > 1, a vertical gap

allows activating the gap-flow-switch mechanism [41] , stimulating the galloping instability. On the other hand, the peak

center-to-center streamwise spacing ( δx / D ), is greater in the lock-in and practically negligible out of lock-in ( Fig. 11 d). Using

a mechanical admittance function, an excitation (e.g. C L , C D ) can be transformed in a response (e.g. y / D, x / D ). This assump-

tion is satisfactory when the response does not modify considerably the excitation, but in fluid-structure interaction frame-

work, the excitation and response coexist and have a non-linear relation. This complex interaction can be represented in

an Excitation-Response plane, as Fig. 12 ( y/D − C L ) shows, for 1dof scenario. From this figure, aspects related to the phase

and frequency relations, between C L and y / D , can be inferred. In the VIV literature, these plots are also referred to as phase

portraits or Lissajous curves. At the points where ∂ (y/D ) /∂ C L = ∞ , C L has extreme values, which are maximum in the first

and fourth quadrants and minimum in the second and third quadrants. Analogously, where ∂ (y/D ) /∂ C L = 0 , y / D has a max-

imum in the first and second quadrants and a minimum in the third and fourth quadrants. Curves with positive inclination

represent cases close to in-phase condition, since both maximum (or minimum) C L and y / D values coincide in the same

quadrant. Conversely, negative inclinations are associated to anti-phase conditions. Therefore, for U R � 4, the variables are

in-phase; in the lock-in (5 � U R � 8 in Fig. 9 b), low values of C L yield large variations of y / D ; for U R � 10, the variables are

in anti-phase. During a closed cycle along the curve, the number of maximum (or minimum) of C L and y / D can be counted

and the relation between frequencies will be directly linked to these number of extreme values. For instance, in the lock-in

( Fig. 12 c and d), C L has three maximum values in a cycle, while y / D has one. Thus, the fluctuation frequency of C L is three

times higher than the frequency of y / D . In Fig. 12 , the higher frequencies were filtered, in order to consider only the more

energetic frequencies in the analysis. 

4.2. Re = 300 

It is well known that, for a fixed cylinder, tree-dimensional flow structures are developed at flow about Re = 180 − 194

[42] . Thus, as the 3D flow structures are not developed in 2D simulations, the energy which should be dissipated by these

flow structures, now, is concentrated in the 2D flow structures. This energy could eventually be transfered to the cylinders,
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amplifying artificially the oscillations. However, it has been shown that cylinder oscillations tend to suppress the 3D flow,

remaining 2D flow behavior up to Re = 280 , as it was found by Leontini et al. [43] , for a transversely oscillating cylinder.

Anyway, we consider that this scenario with Re = 300 , is an interesting condition to test our algorithm and evaluate the

implications of the non-dissipated energy. As we are aware of this, in this section the 1 dof simulations show that, in the

lock-in, this energy could be concentrated in higher frequencies than the corresponding to the resonance condition f = f N . 

For 1 dof , the confinement effect is identified for U R = 4 ( Fig. 13 a) and the lock-in was practically eliminated ( Fig. 13 b).

This phenomenon so-called soft lock-in [44] has also been reported in other papers [e.g., [45–47] ]. Mittal and Kumar define

soft lock-in as one of the mechanisms in nonlinear oscillators to self-limit the vibration amplitude. As a soft lock-in conse-

quence, the St ( Fig. 13 c) does not decreases with the relation St ≈ 1/ U R , but with the relation St ≈ 0.4/( U R ) 
0.4 in the range

5 � U R � 8. For U R > 8, St tends to stabilize in lower values ( ≈ 0.16) than the associated to fixed single cylinder ( St ≈ 0.21). 

For 2dof scenario, the confinement effect is identified in the range 3 < U R < 6 ( Fig. 13 d) and the lock-in is more evident for

front cylinder in the range 4 � U R � 5 ( Fig. 13 e). The galloping instability induces the highest oscillation of the rear cylinder,

for U R = 14 . Despite of the cross-stream oscillation amplitudes are higher than those corresponding to Re = 200 , for 2dof

scenario, the behavior of the frequency ratio f / f N ( Fig. 13 e) and of the Strouhal number St ( Fig. 9 f) is similar. 

The dual resonance and galloping development make the streamwise oscillation amplitudes not negligible related to the

cross-stream oscillation amplitudes ( Fig. 14 a and b). The cross-stream and streamwise ( Fig. 14 c and d) extreme center-to-

center spacing increase as the reduced velocity increases. For U R = 10 , ( δx / D ) min is closed to zero, which could mean crashing

or, at least, increasing of crashing risk ( Fig. 14 d). However, in the simulations, the cylinders did not crash. 

5. Conclusions 

In this paper, we study numerically the flow-induced vibration of two circular cylinders in tandem arrangement at low

Reynolds numbers Re and center-to-center streamwise spacing S / D around the critical one ( S / D ) c . Three scenarios are ana-

lyzed: (i) fixed cylinders and various spacings at Re = 100 , (ii) Galilean streamwise translations at Re = 40 , (iii) elastically

mounted cylinders with one and two degrees of freedom at Re = 20 0 and 30 0. For scenario (iii) the mass ratio m and the

damping ζ are set to 1 and 0.007. For scenario (i), we analyze the drag coefficient C D , the lift coefficient C L and the Strouhal

number St as a function of the streamwise spacing. In scenario (ii), we evaluate the algorithm in terms of the streamwise

velocity profiles. Finally, for scenario (iii), we investigate the cross-stream A y and streamwise A x cylinders oscillations, the

frequency ratio f / f N , the Strouhal number. The relative distance between cylinders, the lift coefficient and the cylinder dis-

placement in function of the reduced velocity U R . 

To achieve the foregoing goals, the high-order precision code Incompact3D is applied as fluid dynamics solver. It is

required to develop and evaluated a formulation, for the Poisson equation to solve the pressure field, which allows coupling

the fluid and multiple solid movement by using an immersed boundary method. The code Incompact3D , with the pro-

posed Poisson equation, represented satisfactorily the Galilean invariance between two fixed cylinders in tandem and the

equivalent moving cylinders case. It is also capable of representing phenomena arising from the fluid/solid interaction, as

the galloping instability (also referred to as wake-flutter) and resonance. 

In the range of adopted parameters in simulations, the scenarios with two degrees of freedom ( 2dof ) always are more

critical than those with one degree of freedom ( 1dof ) in terms of oscillation amplitudes. It should be pointed out that,

for 2dof , the streamwise oscillations amplitudes are not negligible relative to the cross-stream oscillation amplitudes. It

means that the streamwise degree of freedom allows the rear cylinders to be placed in different wake interference points

and, eventually, closer to the front cylinder. Hence, the cylinders clashing risk increases, especially when the wake-flutter

mechanism is activated. 

For 3.5 < U R < 5.0, a confinement effect was identified in which the cross-stream oscillation amplitude A y of rear cylinder

is lower than that of front cylinder. This is due to the upstream wake acts as a mechanical damper on the rear cylinder. This

was not reflected on Strouhal number St or the frequency ratio f / f N , for 1dof . For 2dof the effect is reflected in energy transfer

from A y to A x , which can also be identified in the subharmonics of the St −U R and f/ f N − U R graphs. On the other hand, for

2dof , when the Reynolds number increases the crashing risk also increases, since the cylinders proximity is narrowed. 

For Re = 200 , the trajectories are well defined out from the lock-in region. Typically, trajectories are eight-shaped (two

loops) for 5 < U R , and drop-shaped for U R > 8. The first case indicates that streamwise oscillation frequency is twice the

cross-stream ones, while the second one shape indicates the same frequencies in both direction oscillations. 
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