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A B S T R A C T

Background: The Personal Health Record (PHR) and Electronic Health Record (EHR) play a key role in more
efficient access to health records by health professionals and patients. It is hard, however, to obtain a unified
view of health data that is distributed across different health providers. In particular, health records are com-
monly scattered in multiple places and are not integrated.
Objective: This article presents the implementation and evaluation of a PHR model that integrates distributed
health records using blockchain technology and the openEHR interoperability standard. We thus follow
OmniPHR architecture model, which describes an infrastructure that supports the implementation of a dis-
tributed and interoperable PHR.
Methods: Our method involves implementing a prototype and then evaluating the integration and performance
of medical records from different production databases. In addition to evaluating the unified view of records, our
evaluation criteria also focused on non-functional performance requirements, such as response time, CPU usage,
memory occupation, disk, and network usage.
Results: We evaluated our model implementation using the data set of more than 40 thousand adult patients
anonymized from two hospital databases. We tested the distribution and reintegration of the data to compose a
single view of health records. Moreover, we profiled the model by evaluating a scenario with 10 superpeers and
thousands of competing sessions transacting operations on health records simultaneously, resulting in an average
response time below 500ms. The blockchain implemented in our prototype achieved 98% availability.
Conclusion: Our performance results indicated that data distributed via a blockchain could be recovered with
low average response time and high availability in the scenarios we tested. Our study also demonstrated how
OmniPHR model implementation can integrate distributed data into a unified view of health records.

1. Introduction

The adoption of the Electronic Health Record (EHR) has evolved as
a consolidated technology for recording patient health data [1,2]. A key
difference between an EHR and a Personal Health Record (PHR) is that
a PHR enables patients to access and control their own data [3]. PHR is
an emerging trend with growth potential in the health care domain [4].
Improving the management and sharing of health records is a key focus
of our work reported in this article.

Although initiatives to adopt PHR have evolved in recent years, they
face barriers to adoption [5]. One barrier faced by both EHR and PHR is
the distribution and limitations of health record integration. Other

barriers relate to security issues, such as confidentiality and privacy of
health records [6,7].

Patient health data are conventionally stored in health care provider
repositories [8,9]. Often, however, these data are not shared between
providers or with patients. Moreover, even where there is an intention
to share data, there are barriers to achieving this goal [10], including

(a) Interoperability stemming from the lack of common health data
standards [7].

(b) The difficulty of integrating large amounts of data contained in
medical records [11].
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As a consequence, patients must often re-inform their health history,
repeat laboratory exams, or even perform unnecessary tests when they
are attended by different health providers [12]. Although some coun-
tries have initiatives to integrate personal health history, this integra-
tion often occurs only at the organizational level, without patients
having access to their digital records [13]. In such cases, therefore, only
the data reported in the health organizations are integrated, regardless
of factors like patient wellness data, nutrition, data collected on
wearables, or collected on monitoring equipment at home [14].
Moreover, patient care often comes from health providers who are not
part of an integrated network of health organizations, e.g., if patients
are treated in a foreign country [9].

Blockchain technologies [15,16] are a promising means to address the
barriers with distributed PHRs described above by forming a unified view
of PHRs. Blockchain technology has been researched and implemented in
various domains, initially in the financial domain with virtual currencies
and more recently in the health domain [17,18]. Various approaches to
applying blockchain to health data have been proposed, centered largely
around composing a distributed ledger of health records [19] and pro-
viding useful tools to preserve patient privacy [20].

The performance of distributed PHRs and integration of health data
among health organizations are crucial factors to ensuring the adoption
of blockchain technologies. In prior work, we have devised an archi-
tecture model named OmniPHR [21,22] and characterized its key
components and interoperability features. This article extends our prior
work using a prototype implementation of OmniPHR model in pro-
duction scenarios by evaluating health records from two health orga-
nizations.

A key aspect of our work involves evaluating a model for distributed
PHR integration based on blockchain technology. The research gap that
our work addresses involves determining how to develop a distributed
and interoperable PHR implementation using blockchain technology to
integrate patient health records. In particular, this article

(a) evaluates the distribution and reintegration of health records via
blockchain technologies to compose a unified PHR view,

(b) analyzes the assessment of non-functional performance require-
ments, such as measure response time, CPU usage, memory occu-
pation, disk and network usage of a varied number of superpeers
and concurrent sessions transacting different operations on health
records simultaneously, and

(c) discusses best practices for deploying blockchain technologies in
healthcare.

OmniPHR approach is innovative since it promotes the integration
of health data through the use of a distributed, private, and customiz-
able platform, along with interoperable and standards-based protocols.
Likewise, we integrate distributed health records in a unified, safe, and
interoperable manner for use by health providers and patients. In par-
ticular, the key contribution is that OmniPHR promotes the sharing of
PHRs among health care providers, with the possibility of knowledge
and consent of the patient.

The remainder of the article is organized as follows: Section 2
summarizes the terminology and platforms used in this paper; Section 3
explains the methods used in OmniPHR prototype, evaluation, and re-
sults collection; Section 4 describes OmniPHR architecture and the
application model, as well as key aspects of OmniPHR implementation
and scenarios applied in our evaluation environment; Section 5 ana-
lyzes the results obtained from our empirical evaluations and compares
our results with related work; and Section 6 presents concluding results
and future work.

2. Terminology and platforms

This section summarizes the terminology and platforms used in this
article.

Personal Health Record (PHR) can be considered an evolution of an
Electronic Health Record (EHR). According to ISO/TR 18638:2017 [3],
PHR is a “representation of information regarding or relevant to the
health, including wellness, development, and welfare of a subject of
care, which may be stand-alone or integrating health information from
multiple sources, and for which the individual, or their authorized re-
presentative, manages and controls the PHR content and grants per-
missions for access by and/or sharing with other parties.”

Blockchain is a linked list of datablocks chained together in a dis-
tributed ledger by pointers, represented by a hash code that identifies
each block, and where each datablock has, beyond the content, the
pointer to the previous datablock in the chain [15,34]. In a blockchain,
each node in the peer-to-peer (P2P) network acts as a recorder of da-
tablocks and as an evaluator of appropriate access and permissions of
the content. Each node can add new blocks in the list and execute
evaluation rules every interaction. These checks are performed in
conjunction with the other nodes, forming the consensus protocol
[35,36].

Smart contracts are another concept applied in blockchain tech-
nology to incorporate business rules or scripts to the processing per-
formed on the platform. According to [37], a smart contract is a “set of
promises, specified in digital form, including protocols within which
the parties perform on these promises.” In many cases, smart contracts
are used to verify the validity of contracts between two or more par-
ticipants in a contract.

One way to make health records interoperable is to use recognized
data standards or protocols [38,39]. Several health data standards are
defined around the world, with different purposes. Two internationally
recognized standards used for electronic medical records are HL7 [40]
and openEHR/ISO CEN13606 [41]. The openEHR standard has the dif-
ferential to treat health records semantically through ontology [42]. In
the openEHR standard, instances of datablocks can be serialized in ei-
ther archetype (RDF/XML or JSON) or ontology (OWL) format, where
RDF stands for “Resource Description Framework” and OWL stands for
“Web Ontology Language.”

3. Methods applied in our study

This section explains the methods used in OmniPHR prototype,
evaluation, and results collection. Due to the barriers to adoption of
distributed health records across different health providers discussed in
Section 1—and in accordance with the background underlying PHR and
Blockchain technology discussed in Section 2—we researched the state-
of-the-art regarding open issues in this area. Below we explain how we
researched and analyzed related work and then outline the steps used to
evaluate OmniPHR model. Section 4 then describes OmniPHR archi-
tecture in detail and shows how we integrated it with blockchain
technologies.

We first reviewed the state-of-the-art by analyzing articles related to
OmniPHR, which implements blockchain solutions applied to health
records. For this review, we used strings combining the PHR and EHR
definitions with blockchain. We then submitted these strings to
PubMed, Medline, CiteSeerX, Cochrane, HealthStar, Elsevier and
Google Scholar, which are common portals that index scientific studies
in the area of Health and Information Technology.

The selected related work studies are listed in Table 1, which lists
the model name and reference, year of publication, health data stan-
dards, used framework, and if the study meets only organizational
(EHR) or personal (PHR) health records. Table 1 underscores the fact
that few studies dealt with the implementation of blockchain tech-
nology applied to health records. Moreover, even fewer articles pre-
sented results with systematic quantitative evaluations.

We analyzed the studies returned from these searches and selected
only those studies that demonstrated blockchain implementations in-
volving health records in actual databases. We discarded studies that
only conducted simulated evaluations, as well as those that only dealt
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with surveys or proposed solutions, i.e., without implementations that
processed real data. Although the related work we examined was not
restricted by date, we found relevant publications only from the year
2015 onwards since blockchain technologies have just recently been
explored in the context of healthcare.

In addition to verifying the correct reunification of patients’ scat-
tered data, we evaluated non-functional requirements [43,44]. The
requirements and statistical formulas used to collect the data are de-
scribed below.

Initially, we counted the Mean Time Between Failures (MTBF):

=MTBF TotalWorkingTime TotalBreakdownTime
TotalBreakdownIncidences (1)

and Mean Time To Repair (MTTR):

=MTTR TotalBreakdownTime
TotalBreakdownIncidences (2)

to compose the Availability (A):

=
+

A MTBF
MTBF MTTR (3)

Finally, we evaluated the Performance (P) extraction arithmetic mean:

=
=

P
n

a1

i

n

i
1 (4)

through the accounting of main memory, storage occupation, response
time and throughput, where a compose the values and n the total of
observations.

4. Blockchain model for OmniPHR

This section describes OmniPHR architecture and our application
model. It also discusses key aspects of our OmniPHR implementation
and scenarios applied in our evaluation environment. Our prototype
follows the definitions proposed in OmniPHR model [21,22] and uses a
distributed P2P network architecture with superpeers [45].

Our first article on this subject [21] dealt with OmniPHR model in a
broader context [21]. In contrast, the current study expands and in-
troduces improvements on OmniPHR’s blockchain-based architecture
and implementation, as well as evaluates OmniPHR prototype in three
other production health organization scenarios. In particular, this ar-
ticle deals with aspects focused on OmniPHR’s blockchain architecture
and the impacts arising from the replication of health data.

OmniPHR’s blockchain architecture model is comprised of the fol-
lowing two architectural layers:

(a) Client modules, which are installed in the health providers and in
patient devices;

(b) Server layer, which is distributed in superpeers on a platform
based on blockchain technology.

This architecture is formed via a private P2P network, where health
records are organized into datablocks comprising a linked list and a
distributed ledger of health data [46]. Fig. 1 depicts the architecture of
OmniPHR prototype. This figure shows how clients communicate with
the underlying blockchain platform via pull and push messaging [45].
This format enables all clients connected in the network to update their
data proactively, i.e., datablocks can be sent and received auto-
matically.

On the server, the blockchain platform is installed on a set of dis-
tributed superpeers. This private network stores datablocks within a
KnowledgeBase, which is a non-relational NoSQL database based on a
Graph or RDF DBMS. The KnowledgeBase itself is implemented using
the openEHR ontology to store the data in a non-relational database
based on graphs.

OmniPHR prototype also uses a parallel database in an entity-re-
lationship (ER) model to store the datablocks in the format of arche-
types, which is a relational DBMS. These archetypes follow the openEHR
health data standard, which we adopt for communication and data
storage in our blockchain network. The compositions of archetypes are
the units that comprise the openEHR medical record structure [47]. The
chained health datablocks in this database are used in forming the PHR
smart contract.

Fig. 2 shows how OmniPHR prototype chains health datablocks
together. Each datablock consists of (a) content formed by an archetype
containing the health record, (b) a field containing the hash code re-
presenting the digital signature of the content of the archetype, and (c)
a pointer with hash code that set the previous datablock. The first da-
tablock is named the ’genesis block’ and the ’previous hash’ field points
to no other datablock since it is the first node in the linked list.

OmniPHR prototype applies the blockchain smart contract feature
[37] to verify and prevent violations of PHR data. Another highlight of
OmniPHR prototype involves the role of each node in the blockchain
network of health records. In particular, our prototype only allows
superpeers located in the private network to evaluate the correctness of
datablocks. Client nodes therefore only consume microservices pro-
vided by superpeers. Moreover, clients also produce content that is
evaluated and distributed on the blockchain by superpeers.

Datablocks in OmniPHR prototype can be stored in the following
two ways:

(a) Replicated in all nodes, following the approach adopted by the
crypto-currency Bitcoin [48] or

(b) Using a replication algorithm, such as Chord [21], to replicate re-
cords only on certain nodes in the private blockchain network.

Table 1
Related Work - Comparison of work with blockchain-based implementations.

Model & Yeara Health Data Std.b FWc EHR PHR Results

[23] Invisible Ink, 2015 E ✓ Built Certified Mail service as a sensitive user-data management platform
[24] FairAccess, 2016 E ✓ ✓ Established an initial implementation with IoT and local blockchain
[25] Healthbitt, 2016 HL7/FHIR, ISO13606 ✓ ✓ Stores patient data in a distributed ledger allowing sharing with doctors
[26] HGD, 2016 ✓ ✓ Potential way to house and share health care data
[27] MyData, 2016 ✓ ✓ Provides useful information on business models and ecosystems
[28] CBTi, 2017 H ✓ ✓ Data update and evaluation process worked normally
[29] D-CAM, 2017 Adds a modest overhead and can be scaled for large networks
[30] MedRec, 2017 HL7/FHIR E ✓ ✓ Describes the technical design and early-stage prototype
[31] MeDShare, 2017 Comparable to solutions for data sharing between cloud services
[32] Patientory, 2017 HL7/FHIR E ✓ ✓ Potential to eliminate friction and the costs of third-party intermediaries
[18] Ancile, 2018 HL7 E ✓ ✓ Discusses interactions with patient’s needs, providers and third parties
[33] FHIRChain, 2018 HL7/FHIR E ✓ ✓ Demonstrates a case study of a collaborative app for remote cancer care

a Models in ascending order by year.
b Health data standards.
c Platforms used in the solution, where E: Ethereum and H: Hyperledger Fabric.
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OmniPHR model can be configured to support both forms of re-
plication because when using the Chord algorithm we can set up to how
many nodes we want to replicate the data blocks. The Chord algorithm
was used to make this decision flexible. This flexibility is one of the
main characteristics of the model, since it may not be desirable or even
performative to replicate health blocks for all nodes in the network.

4.1. The structure and functionality of OmniPHR prototype

A distinguishing characteristic of OmniPHR prototype is its modular
and distributed architecture based on components and microservices.
We support the use of different components, as shown by the ecosystem
in Fig. 3.

This figure should be viewed from the inside ring outwards. The
core ring is PHR, which focuses on the integration of patient records.
The second ring is based on a private blockchain network and data
protocol following the openEHR or ISO 13606 standard. The third ring

Fig. 1. The architecture of OmniPHR prototype.

Fig. 2. PHR Blockchain in OmniPHR.

Fig. 3. OmniPHR application ecosystem.
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used supports and implements the blockchain network via a distributed
streaming platform, as well as a graph-based database or RDF. This
streaming platform enables the distribution and integration of health
records, whereas the database in Graph or RDF format forms the
KnowledgeBase ontology.

To support OmniPHR, we evaluated several blockchain platforms
that have been applied to support health records, including
Hyperledger Fabric (www.hyperledger.org) [28] and Ethereum (www.
ethereum.org) [49]. To gain greater control, however, we developed
our own blockchain platform based on open APIs. This platform applies
a private blockchain format, i.e., a trusted network, where only clients
who are authorized to participate in the network can access health
datablocks [50].

Table 2 summarizes all the platforms and tools employed in Om-
niPHR prototype. We use the Apache Kafka platform to distribute the
datablocks in the superpeers network [51]. Kafka abstracts application
concerns about data replication by extending its producer and con-
sumer classes, which represent client nodes sending and receiving da-
tablocks, respectively.

The Apache Kafka platform also acts as the message broker in
OmniPHR architecture, which uses its messaging and queuing features
to exchange data between nodes. Its high-performance partitioning and
replication capabilities are also used to support real-time processing
systems. Apache Storm is a real-time distributed computing system
associated with Apache Kafka. In contrast, Apache Spark supports large-
scale data processing, making OmniPHR architecture scalable and fault
tolerant when distributing messages with health records.

We also use Apache Zookeeper in conjunction with the network
resources provided by Apache Kafka. In particular, we use Zookeeper as
a microservice interface to perform distributed configuration and syn-
chronization of the messages that circulate in the blockchain network
[52]. Apache Storm and Apache Spark services [53,54] are also applied
to support scalable and responsive processing needs.

OmniPHR prototype contains classes that serve as an interface to
access the blockchain, as well as store and remove content from the
ledger. These classes enable the creation and maintenance of the PHR
smart contract. Health data is stored in the open-source edition
OpenLink Virtuoso database, which can store both relational storage
(archetypes) and triple store (ontology) [55].

The Virtuoso database enables data querying via the SQL or SPARQL
(RDF) query languages. OmniPHR prototype applies the Docker platform
(www.docker.com) as the network container to provide a layer that
abstracted and automated the virtualization [56]. To automate the
building and deploying of code we use Gradle (gradle.org) [57].

To verify the transactions that circulate in the platform and to check
with the content transmitted in the prototype, we exposed some mi-
croservices through RESTful web services and we used the HTTP client
SoapUI (www.soapui.org) to test the unification of health records.
Finally, we used the Apache JMeter tool (jmeter.apache.org) to re-
present the concurrent load of client nodes by performing insertions of

new datablocks in the network or queries of existing blocks on the
network.

4.2. Environment for evaluation methodology

To help load the KnowledgeBase of health data, we used the
CaboLabs EHRServer [58] platform. This platform implements the
openEHR standard in a relational database. Using data stored in ar-
chetypes—and following the openEHR standard—we distributed the
records into datablocks in the blockchain.

To evaluate if the datablocks comprised a unified view of the health
records, we evaluated the response time, the amount of memory oc-
cupied and the CPU usage, in a private blockchain network with 10
superpeers and up to 40,000 concurrent sessions. That is since the used
database has data of 40,000 patients, and as a way to perform a stress
test on the system, we have tested the blockchain to the limit of having
at least one block of data from each patient searched or included con-
currently. Each superpeer node consisted of Intel(R) Core(TM) i5,
3.30 GHz CPU, 4 cores, and 8 GB RAM. We also profiled OmniPHR
prototype behavior by submitting different types of queries from an
increasing series of client nodes.

Our evaluation environment used EHR and PHR for data query and
health record manipulation [59]. As a load test scenario, therefore, we
shared the use of the network blockchain by having half the client
nodes query blocks of registers and the other half insert blocks into the
blockchain network. For comparison purposes, we created the fol-
lowing three test scenarios that performed an increasing number of
queries and inserts operations:

(a) Light scenario, which had datablocks triggered from 50 up to 500
concurrent sessions in the network;

(b) Medium scenario, which had datablocks triggered from 1000 up to
10,000 concurrent sessions;

(c) Heavy scenario, which had blocks of records transmitted from
13,000 up to 40,000 sessions on the network.

In the test scenarios, the number of users accessing the network was
the number of concurrent sessions connected to the network, with the
same increasing number of requests to the network [60].

We chose a private blockchain to restrict the management and ac-
cess of network participants, thereby avoiding unauthorized sharing.
This approach used mining resources and data evaluation more effec-
tively by limiting access only to members of the network. In particular,
evaluation in our private network was only performed by superpeers
rather than burdening client nodes (which only produce and consume
datablocks registered in the blockchain).

Two other factors justified our use of a private blockchain network:
(a) to facilitate the traceability of updates and (b) to reduce inter-
mediaries in data exchanges since the superpeers concentrate the ex-
ecution of operations on health records. Moreover, we applied the
openEHR standard since it stored data in meta-data blocks, which in-
tegrates seamlessly into the blockchain model. OmniPHR prototype
accepts JSON and XML, though we applied XML predominantly within
the blockchain and for the evaluation tests since XSD is useful to
evaluate content and typing.

This study just focused on private blockchains instead of public
blockchains due to data security and privacy issues, as well as due to
the specific domain of healthcare targeted by OmniPHR. We, therefore
did not allow access to other nodes since we handled sensitive health
data that should only be shared by health providers and patients.

5. Results of performance experiments

This section analyzes the results obtained from our empirical eva-
luations and compares the results of our performance experiments with
related work.

Table 2
Architectural choices.

Option Potential benefits

Apache Kafkaa Distributed platform to store data safely in the distributed,
replicated and fault-tolerant network

Apache Zookeeperb Configuration and synchronization services
Apache Stormc Real-time computing for data stream distribution
Apache Sparkd Engine for large-scale data processing
OpenLink Virtuosoe Multi-model DB, supporting KB and ER store

a Apache Kafka – https://kafka.apache.org/.
b Apache Zookeeper – https://zookeeper.apache.org/.
c Apache Storm – http://storm.apache.org/.
d Apache Spark – https://spark.apache.org/.
e OpenLink Virtuoso – http://sourceforge.net/projects/virtuoso/.

A. Roehrs, et al. Journal of Biomedical Informatics 92 (2019) 103140

5

https://www.hyperledger.org
https://www.ethereum.org
https://www.ethereum.org
https://www.docker.com
https://www.gradle.org
https://www.soapui.org
https://www.jmeter.apache.org
https://kafka.apache.org/
https://zookeeper.apache.org/
http://storm.apache.org/
https://spark.apache.org/
http://sourceforge.net/projects/virtuoso/


5.1. Summary of our performance experiments

After configuring the settings to start each test scenario, we ran the
network for nearly a week. During this period of ∼160 h, we performed
several load tests to evaluate the Light and Heavy scenarios described in
Section 4.2. These load tests obtained the necessary values for the
MTBF and MTTR calculations discussed in Section 2, obtaining results
of 3.9586 and 0.0414, respectively.

Based on these results we calculated the Availability (A), where we
obtain the value of 0.98964. The number of users accessing the network
during the execution of the Light scenario was increased gradually,
starting from 50 initial concurrent sessions until reaching the number of
500 users, as shown in Fig. 4, which depicts the Light scenario results.

The average load of blocks transmitted in the blockchain during the
load test period is represented in Megabytes. The average response time
(i.e., the average time of end-to-end latency that a client node requests
to query a block or insert a new data in the blockchain and obtain the
response) is represented in milliseconds. Fig. 4 shows the number of
users accessing simultaneously the network in the Light scenario is
increasing, as is the average load of records and the average response
rate obtained. In this scenario, the load tests start from 50 concurrent
sessions accessing the network, with a load of 5MB/s of throughput, an
average latency rate (end-to-end latency) of 52ms and 144 records
processed per second, reaching 500 users (concurrent sessions), with
11MB/s of throughput in the network, one average response rate of
214ms and 325 records/s.

In the second scenario of Fig. 5, we can see a range from 1000 to
10,000 concurrent sessions. Throughput ranges from 30MB/s to
64MB/s. We can observe that latency is stable, almost unchanged,
going from 447ms to 449ms, i.e., less than half a second. And the
number of records per second goes from 919 to 1917 records/s.

In the third scenario, represented by Fig. 6, we can see the results
from the Heavy scenario. This scenario also shows an increasing
number of users, average load of datablocks and response rate. The
initial load was 68MB/s with response time of 432ms for 13,000
concurrent sessions until 40,000 were reached, with 77MB/s of
throughput, an average response rate of 404ms and 2298 records/s. We
can observe that even by increasing the number of concurrent sessions
and throughput, the average response time remained stable.

The Table 3 presents data collected in the load test profiling for
other non-functional requirements. The items analyzed were (a) CPU
Usage, (b) Memory, (c) Disk throughput, (d) Network throughput
(Sender) and (e) Network throughput (Receiver), for each of three
scenarios evaluated (Light, Medium and Heavy). The variations of the

data obtained in our tests for these requirements did not significantly
impact the performance of the superpeers, except in the case of the
heavy scenario, where there was a greater use of machine resources.

5.2. Analysis of our results

After we applied the methods presented in Section 3, the results
from the MTBF and MTTR calculations comprised and demonstrated a
98% solution availability during load tests. These results were obtained
by subjecting the model to three scenarios: one light with until 500
concurrent sessions accessing the network, one medium with up to
10,000 sessions and one heavy with up to 40,000 sessions. The sce-
narios used the same amount of patient data.

Although there were some periods with communication problems in
the network (i.e., some nodes were not accessible), these periods were
generally short. Our blockchain solution ensured that superpeers knew
about the distribution of other nodes connected to them. In particular,
since the Chord algorithm provided access to nodes with replicated
content, superpeers could access other nodes with replicated data even
though some nodes had communication problems. As a result, the
overall operation of our solution was not impeded.

Another aspect is regarding smart contracts used to evaluate the
permissions granted on the PHR. The smart contract can specify who
can access PHRs and what permissions each client can get on the data.
A smart contract on OmniPHR prototype, therefore, maintains the se-
curity and privacy of health records.

One difficulty faced in evaluating OmniPHR prototype stemmed
from the challenge of submitting data to the model. To test the proto-
type we had to submit a considerable volume of health records to
evaluate its performance. However, the results from the load tests
shown in Fig. 6 indicated that in the heavy scenario response times
stabilize around 500ms. In general, OmniPHR prototype demonstrated
average responses below one second. Although average response times
grew with the load and number of users, response times remained low
even as the loads increased. In particular, response times are nearly
instantaneous with smaller loads and few simultaneous accesses. The
network still responded quickly, however, even with larger simulta-
neous loads and accesses.

5.3. Limitations with our performance experiments

Our performance experiments did not cover the execution of busi-
ness rules and inferences about records, such as specific evaluations of
the content of patients’ health records. Instead, we limited OmniPHR

Fig. 4. Light load scenario.
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prototype to join datablocks that formed a unified view of patient data.
In particular, our load tests only focused on evaluating the distribution
and traffic of the blocks of records based on blockchain technology and
the openEHR standard. We made this provision to isolate the perfor-
mance evaluation of the blockchain solution without the interference of
the usual business rule validations that health information systems
have.

Another limitation is for image files, such as DICOM images. These
images can occupy large spaces because of their size in megabytes.
Replication of these files in the blockchain is not foreseen, although the
location address is provided. In this way, the images are stored off-
chain with a content hash code, and only the address where the images
are located is replicated to the network.

We created the test scenarios in order to stress the system and verify
that it remained stable without generating errors or crashes, such as
OOM (Out Of Memory). We went to the limit of having at least one
block of data from each registered patient handled concurrently. We
tried to verify if the system remained stable of the original form as it
was constructed, without using special tunings of optimization.

5.4. Comparison with related work

Table 1 summarizes results obtained by related work. Although
these studies espouse the benefits of applying blockchain technologies

to the healthcare domain through qualitative evaluations, few studies
present empirical results to substantiate their claims. We, therefore,
focus on qualitative analyses that evaluate the performance and efficacy
of integrating health records via blockchain technologies. Although all
projects use some blockchain technology in their implementations, only
Healthbitt [25], MedRec [30], Patientory [32] and FHIRChain [33]
applied at least one health data standard and focus on providing access
to both health providers and patients.

Among the related work efforts presented in Table 1, seven used at
least one of the two cross-industry platforms: Ethereum or Hyperledger.
Most of these studies used Ethereum [18,23,24,30,32,33] as their
blockchain platform and only one used Hyperledger Fabric [28]. The
Ethereum platform uses the Ether (ETH) crypto-currency, whereas
Hyperledger is not associated with any crypto-currency.

Related work focuses largely on describing how models can utilize
blockchain technologies. In contrast, our research presented in this
article focuses on demonstrating the viability of blockchain technolo-
gies by evaluating the behavior of OmniPHR prototype in production
health record scenarios. Moreover, unlike related work that use con-
ventional blockchain platforms like Ethereum or Hyperledger,
OmniPHR uses the Chord algorithm, which supports replication.

Conventional blockchain platforms generally follow the original
blockchain concept applied to crypto-currencies, which replicate data
to all nodes in the network. In contrast, the Chord replication algorithm

Fig. 5. Medium load scenario.

Fig. 6. Heavy load scenario.
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enables finer-grained control over how much, how, and where to re-
plicate the data, thereby enabling more granular control of replications.
Our results in Section 5. A show that Chord optimizes performance,
although data redundancy is reduced. In addition, by storing datablocks
in ontology format, i.e., in the Ontology Web Language (OWL), the
KnowledgeBase enables the creation of semantic rules that allow in-
ferences about possible patient health problems.

6. Concluding remarks

This article presented the prototype implementation and evaluation
of OmniPHR architecture model that integrates distributed health re-
cords using blockchain technology and the openEHR interoperability
standard. OmniPHR prototype comprises a novel blockchain-based
design that optimizes health data replication across computing nodes.
We evaluated the performance of OmniPHR prototype by subjecting it
to loads of thousands of concurrent sessions transmitting datablocks on
a network of 10 superpeers. We also evaluated implementation strate-
gies related to the replication of health-oriented blockchain solutions to
promote the unification of patient health data.

The following are a summary of the lessons learned from conducting
our research on OmniPHR:

(a) Combining the openEHR standard with blockchain technologies
created a unified and interoperable view of health data. Even with
some limitations, such as not executing business rules on the pro-
totype (since it is not a complete system), we observed promising
results of the architectural model using our private blockchain
platform.

(b) Applying the Chord algorithm for directed and limited data re-
plication is a more scalable alternative than conventional crypto-
currency platform replication models, where all nodes receive all
data. Chord’s scalability is a critical factor to effectively support
health data. In particular, it enables data replication with restricted
access, providing control and management by patients and
healthcare professionals.

(c) The results of our empirical evaluations showed that OmniPHR
blockchain architecture provided adequate network level perfor-
mance. It, therefore, appears that patient health records can be
integrated effectively via a blockchain network using technologies
applied to the treatment of large masses of data and an interoper-
able health data standard.

In future work, we plan to evolve OmniPHR prototype to in-
corporate additional databases and conduct additional tests to evaluate
its performance in even more scalable and realistic production en-
vironments. Other evaluations we plan to conduct involve data security
and privacy, especially in the case of external access to private block-
chain networks.
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