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ABSTRACT
Stream processing applications have seen an increasing demand

with the increased availability of sensors, IoT devices, and user data.

Modern systems can generate millions of data items per day that

require to be processed timely. To deal with this demand, applica-

tion programmers must consider parallelism to exploit the maxi-

mum performance of the underlying hardware resources. However,

parallel programming is often difficult and error-prone, because

programmers must deal with low-level system and architecture

details. In this work, we introduce a new strategy for automatic

data-parallel code generation in C++ targeting multi-core archi-

tectures. This strategy was integrated with an annotation-based

parallel programming abstraction named SPar. We have increased

SPar’s expressiveness for supporting stream and data parallelism,

and their arbitrary composition. Therefore, we added two new at-

tributes to its language and improved the compiler parallel code

generation. We conducted a set of experiments on different stream

and data-parallel applications to assess the efficiency of our solu-

tion. The results showed that the new SPar version obtained similar

performance with respect to handwritten parallelizations. More-

over, the new SPar version is able to achieve up to 74.9x better

performance with respect to the original ones due to this work.
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1 INTRODUCTION
Stream processing applications are becoming ubiquitous with the

increased availability of sensors, IoT devices, digital financial sys-

tems and social networks. The viability of these class of applications

is highly dependent on efficient, endless, and intense data exchange.
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They are executed in large scale distributed systems or single multi-

core machines. However, extracting maximum efficiency from the

underlying architecture demands that programmers write paral-

lel code. This task is much more complex than writing sequential

programs because it requires the developer to deal with low-level

parallel details, such as schedulers, synchronizations, replications,

etc. There has been an increasing trend in the computer science

community towards higher-level abstractions for increasing pro-

ductivity with minimal added performance overhead. For instance,

C++ employed structured parallel programming as a solution to

offer high-level abstractions with near negligible performance over-

head. In fact, many state-of-the-art parallel libraries exploit this

parallelism paradigm such as Microsoft PPL [15], Intel Threading

Building Blocks (TBB) [22], and others.

Structured parallelism is based on high-level and ready-to-use

parallel patterns. They are composable, parametric, and reusable

abstractions that can be inter-connected to model complex data

flows [3]. In the literature, parallel patterns are also known as

algorithmic skeletons. The “parallel pattern” taxonomy was cre-

ated when studies focusing in algorithmic skeletons [2] were uni-

fied with software engineering parallel programming methodolo-

gies [13]. There is a plethora of well-documented parallel patterns

that are available for programmers to use (i.e. Map, Reduce, and

Pipeline). However, efficiently applying them is still a challenge.

This approach also introduced the notion of two different classes

of programmers: applications programmers are those interested in

using parallel patterns for modeling their specific-domain applica-

tions; and system programmers are those responsible for designing,
implementing and optimizing parallel patterns. Indeed, applica-

tions programmers should not be responsible for deciding parallel

implementation questions such as: which is the best parallel pat-

terns; which is the best schedulers; which is the best degree of

parallelism. These are tasks that system programmers should be in

charge. Therefore, recent researches [4, 8, 14, 16, 18] are moving

towards higher-level parallel abstractions.

Differently from others, SPar [8] is a domain-specific language

(DSL) for expressing stream parallelism via code annotations. It

provides five attributes for application programmers to learn and

annotate sequential code with minimal code refactoring. The com-

piler decides for the parallel patterns and performs the hard work of

parallelization. However, SPar is currently limited to coarse-grained

stream parallelism. Modern stream processing systems may also

display internal data parallelism computation. We highlight appli-

cations such as machine learning, natural resources exploration,

financial systems, and others. In these cases, performance can be

improved by combining stream and data parallelism. To the best of

our knowledge, no previous work in the literature has combined

both stream and data via code annotations. Therefore, in this work,
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we investigate the feasibility of introducing high-level and effi-

cient combined stream and data-parallel abstractions for Map and

MapReduce using SPar as the use case. Therefore, we contribute

for increasing SPar’s language expressiveness, a new strategy for

parallel code generation, a prototype implementation in the SPar

compiler, and set of experiments with representative applications.

The remainder of this paper is organized as follows. Section 2

introduces our high-level strategy for automatic data-parallel code

generation. The experimental analysis is discussed in Section 3

using applications extracted from both data and stream parallelism

domains. Section 4 describes and discusses related researches. Fi-

nally, Section 5 concludes the study and presents future works.

2 INCREASING EXPRESSIVENESS
In this section, we introduce a parallel programming abstraction

for automatic data-parallel code generation in C++ stream process-

ing applications targeting multi-cores. To do so, we increase the

expressiveness of SPar [8], which is a domain-specific language for

expressing stream parallelism. It generates parallel code using Fast-

Flow [1]. In the future, the strategies discussed in this work along

with the compiler algorithm and transformation rules could be ap-

plied to other parallel programming abstractions besides SPar. Fur-

thermore, the automatic parallel code generation is not bounded to

FastFlow and it is possible to modify the final phase of our compiler

algorithm to generate code for other runtimes like OpenMP [17]

and TBB [22]. The outline of the section is the following. Section 2.1

introduces SPar and the basic concepts regarding its language and

compiler. Section 2.2 presents the strategy we created for identify-

ing data-parallel patterns in sequential code. Then, in the following

we implement this strategy: (i) first by extending SPar’s language

in Section 2.3 and (ii) implementing a new compiler algorithm for

source-to-source parallel code generation in Section 2.4.

2.1 Introduction to SPar
SPar (acronym for stream parallelism) is a domain-specific language

for expressing stream parallelism in C++. The language was pro-

posed in [6, 8] and presents a study towards parallelism higher levels

of abstraction. For instance, choosing the most efficient parallel

pattern or scheduling protocol should not be a high-level program-

mer responsibility. The intention of SPar is to offer a collection of

intuitive attributes extracted from the stream processing domain

and supported by C++ programming language. The programmer

can use these attributes to annotate the data flow in the sequential

code. Then, SPar’s compiler is in charge of performing the semantic

analysis of the annotated attributes and automatically generating a

suitable parallel pattern using source-to-source transformations.

Currently, SPar’s language contains five attributes for expressing

stream parallelism in the code: (1) ToStream denotes where the

data stream starts and ends; (2) Stage denotes where a stage/block
of sequential code starts and ends; (3 and 4) Input and Output, as
the name suggests, are the inputs and outputs of a ToStream or

Stage; (5) Replicate is a special attribute for replicating a stateless
Stage for parallel execution.

Listing 1 shows an example of stream processing application

parallelized with SPar. The ToStream and Stages declared in lines

1, 3, and 5 represent identifier attributes. With this annotations,

SPar’s compiler will identify that the loop in line 1 represents a data

stream. Therefore, each item of this data stream (each iteration)

will be consumed by two sequential Stages (line 4 and 6). In this

example, i represent the stream item. Since i is created outside the

Stage, we use Input and Output to communicate data between the

Stages. Finally, the Replicate attribute informs that this Stage
can be computed in parallel.

1 [ [ spar : : ToStream ] ] while ( 1 ) {

2 i = read ( ) ;

3 [ [ spar : : Stage , spar : : Input ( i ) , spar : : Output ( i ) , spar : : Replicate ( 4 ) ] ]

4 { i = f i l t e r ( i ) ;

5 } [ [ spar : : Stage , spar : : Input ( i ) ] ] {
6 wr i t e ( i ) ;

7 } }

Listing 1: Stream parallelism with SPar annotations.

SPar has been studied over the last few years. Someworks already

revealed that SPar is able to improve programmability with negli-

gible performance cost [8, 9]. However, SPar targets only stream

parallelism. For that, the SPar compiler generates code based on the

Pipeline and Farm patterns, and their semi-arbitrary composition.

The SPar language semantics are flexible and can be used to model

and exploit parallelism in many application domains as shown in

Listing 1. However, at the moment SPar’s compiler performs auto-

matic parallel code generation only using stream patterns. Unfortu-

nately, in some applications the code generated becomes inefficient.

In fact, we exhibit this throughout experiments later in Section 3.

In the ecosystem of stream processing applications, today’s mas-

sively workloads are implying in many applications containing in-

ternal regions with intensive data processing.We highlight some ap-

plications: machine learning, which implements convolution math-

ematical operations; natural resources exploration, which computes

CFD routines (Computational fluid dynamics), wildfires reporting,

that analyzes high-definition satellite images, among others. For

these applications, adding an extra internal level of parallelism can

increase performance by improving resource utilization. However,

SPar does not support efficient data parallelism exploitation.

Figure 1 illustrates a composition of stream and data parallelism.

The Figure also highlights the goal of this work, where we investi-

gate if it is possible to compose stream and data parallelism with

a single language abstraction, and how efficient this can be. For

that, we still keep stream parallelism for the coarse grain computa-

tion and internally exploit data parallelism. In this work, we target

multi-core architectures, but in the future the data parallelism can

target other specialized architectures, such as GPUs and FPGAs.

......

S1 S2 S3 S4

Source Sink

Figure 1: Composing stream and data parallelism.

2.2 High-level Data Parallelism
In this section, we describe the strategy that was created for identify-

ing data-parallel patterns in sequential code. Later, we extend SPar

using this strategy. We focus on the recurrent used data-parallel

patterns: Map and MapReduce. A Map pattern can be introduced
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when there is a known indexed data set locally stored in the multi-

core architecture. This indexed set can be empty, but must be stored

locally since data stored in network file systems or cloud storage

usually is associated with severe I/O bottlenecks, which limits data

parallelism. Consequently, these systems could be better modeled

with stream parallelism using efficient schedulers.

For data parallelism, the Map and MapReduce patterns demand

that the algorithm knows the size of the data set during execu-

tion time. For that, the algorithm must locate the boundaries of

the indexed data set (start and end) and iteration step. With this

information, if not explicit, the size can be calculated implicitly.

For example: start=0, end=9, iteration_step+=1 (10 elements); or,

start=2, end=64, iteration_step*=2 (6 elements).

The MapReduce parallel pattern is a special case of the Map in

which iterations exhibit certain dependency. In this situation, all

parallel replicas work towards solving a slice of the data in which

results are later combined into a single output. To identify a MapRe-

duce, first a Map has to be located and checked for dependencies.

Then, data dependencies are analyzed for ensuring the computation

can be implemented in terms of Reduce pattern (i.e. accumulations

such as sums and multiplications). Some dependencies can not be

reduced, because the order of execution modifies the result.

Listing 2 shows a high-level representation of Map (line 1) and

MapReduce (lines 2 and 3) considering C++ for loop syntax. We

have created a special notation to associate the C++ for with the

parallel patterns. The lhs and rhs are the left- and right- hand sides
data boundaries. We did not name them start and end since the
loop can be both ascendant or descendant orders. The it stands for
iteration step. The lhs, rhs, and it must be static and can not be

modified after the parallel execution started. The type and type2
can be a standard language type (i.e int, long int, double)
or custom types (i.e. struct, class). Sometimes the type is not

declared within the loop. Therefore, a compiler strategy should use

the id (identifier) and traverse the abstract syntax tree (AST) to find

where the variable was declared and extract the type. The exp and

op stand for expression (i.e. <, >, <=, >=, !=) and operation (i.e.

-=, ++, *=, &=, |=), respectively. These tokens are functions
because they receive static values or variables (rhs and it) and
modify this values according to the operator. For example, the

tokens < or <= modify the rhs to either rhs+0 or rhs+1. The loop
(line 3) uses a shared variable. This is a common example of a

MapReduce pattern that must implement synchronizations to avoid

race-conditions and safely parallelize the code.

1 for ( type i d = l h s ; i d exp ( rhs ) ; i d = i d op ( i t ) ) { }

2 type2 i d 2 ;

3 for ( type i d = l h s ; i d exp ( rhs ) ; i d = i d op ( i t ) ) { i d 2 = i d 2 op2 ( v ) }

Listing 2: High-level Map and MapReduce representation.

Until now, we have only characterized the Map and MapReduce

patterns using C++ syntax. However, this does not semantically

checks if the sequential code can be safely parallelized. For example,

if a loop has data dependency, as shown in previous Listing 2 at

line 3, the automatic parallel code generation would be incorrect.

Therefore, the data parallelism strategy in the compiler must im-

plement checkers to test if a loop can be safely parallelized. There

are two techniques that can be used in our context:

• Auto-parallelization: This technique uses compilers for an-

alyzing the programming language syntax and semantic for

validating functional correctness. Popular compilers for that

are Cetus, Par4all, Rose, ICC and Pluto. However, a recent

study [20] has performed a deep analysis to evaluate quanti-

tative and qualitative aspects of these compilers using two

bechmarks: PolyBench and NAS Parallel Benchmarks (NPB).

In this study, the authors discovered and described many

problems: starting from execution errors, missing parallel

loops, incorrect semantics, and inefficient code generation.

The authors suggest that the frameworks need more sophis-

ticated techniques for parallel code analysis. In the mean

time, frameworks and compilers can improve efficiency with

user-oriented parallelism.

• User-oriented parallelism: This strategy is been used by

almost any parallelism framework such as OpenMP, Thread-

ing Building Blocks, FastFlow, C++ Parallel STL, and others.

While more sophisticated techniques for automatic parallel

code detection are missing, the alternative is base the par-

allel abstractions in user-oriented information. Our work

follows this approach with higher-level programming ab-

stractions the programmer can use to express parallelism

in the code. The compiler do not perform any static code

analysis, instead we expect the programmer to provide the

correct annotations.

In Sections 2.3 and 2.4, we present SPar’s extension. First, we

describe two new attributes we included to increase SPar’s language

expressiveness. Then, we describe a new compiler algorithm and

transformation rules we implemented for SPar to support stream

and data parallelism composition.

2.3 SPar’s Language extension
We extend SPar’s language proposing two new attributes to support

data parallelism: Pure and Impure. The Pure attribute is a term al-

ready defined in functional programming for describing functions

implemented in its purest shape. This means that the results (out-

puts) depend only on input parameters and computation has no

side effect. In functional programming, the “pure” definition has

many properties. In SPar, we limit pure functions to the parallelism

property. Therefore, our pure definition carries the information that

a block of code annotated with Pure can be executed in parallel

with no restrictions.

A pure function must only implement a single effect: perform a

processing based on input data, and return the result or store it in

a non-shared location. Examples of side effects are:

• Modify an external shared variable;

• Read from a file or write to a file;

• External synchronizations, like return, break, and socket;
The next attribute included in SPar’s language is the Impure.

This attribute allows otherwise impure code regions to be anno-

tated as pure. For example, if inside a function there is a single line

of code with side effects, by definition all the function is consid-

ered not pure, or impure. Therefore, the Impure attribute shall be
used to annotate that code region to purify the function, allow-

ing parallelism transformations. In SPar, annotating a code region

with Impure means that SPar will try to automatically implement
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the required synchronization to allow parallelism. By default, an

impure region is protected using locks. Before that, the compiler

checks the code trying to detect ways to optimize the synchroniza-

tion. In this work, we already detect reduce operations which we

optimize using the MapReduce pattern. Other optimizations can

be implemented in the future using speculative synchronization

mechanisms or even other parallel patterns and their implications

with the Impure attribute.

Listing 3 shows an example of parallelization using the matrix

multiplication algorithm with the new attributes. Note that com-

pared to SPar’s original language (shown in Listing 1) it only re-

quires the programmer to annotate the code using two extra at-

tributes: Pure and Impure. Line 3 annotates a Pure, meaning the

entire loop can be safely parallelized. However, lines 9 and 10 have

side effects and we annotate this impure block of code using Impure.

1 [ [ spar : : ToStream ] ]

2 for ( long int i = 0 ; i <SIZE ; i +=1) {

3 [ [ spar : : Stage , spar : : Pure , spar : : Input ( i ) , spar : : Replicate ( ) ] ]

4 for ( long int j = 0 ; j <SIZE ; j ++) {

5 for ( long int k =0 ; k<SIZE ; k++) {

6 mat r i x [ i ] [ j ] += ( ma t r i x1 [ i ] [ k ] ∗ mat r i x2 [ k ] [ j ] ) ;

7 [ [ spar : : Impure ] ]
8 {

9 sum += mat r i x [ i ] [ j ] ;

10 sum_l ine [ j ] += mat r i x [ i ] [ j ] ;

11 }

12 } } }

Listing 3: Matrix multiplication with new attributes.

Listing 4 provides a sequence of commands to show how the com-

piler transformations should be performed (explained in Section 2.4)

from the annotation inserted by the programmer in previous List-

ing 3. Puremeans the computation annotated by this attribute is in

its purest form, has no side effects, and depends only on its inputs.

Therefore, we encapsulate and abstract this block of code into a

single function call pure_function(), as show in line 2. In this

example, the parallelization is not safe yet, because it is conditioned

to a compiler automatically purifying the impure block of code.

Once the compiler purifies the impure region, it can parallelize

the code using Map (line 1), and each parallel worker computes a

partial result (line 2). At the end, the partial results are accumulated

into a single output using the Reduce pattern (line 3).

1 MAP i = 0 , 1 , . . . , SIZE

2 sum_ loca l = pure_function ( i ) ;

3 REDUCE sum += sum_ loca l ;

Listing 4: High-level annotated attributes

2.4 SPar’s Compiler Implementation
In this section, we introduced the modifications implemented in

SPar’s compiler to enable its extension towards data parallelism.

Now, SPar supports automatic parallel code generation for different

parallelism domains. Figure 2 illustrates a flowchart of our imple-

mentation methodology, which is discussed in sequence.

2.4.1 Semantic Analysis. We start by extending SPar’s compiler to

support the two new attributes already included in SPar’s language:

Pure and Impure. The first compiler step traverses the AST and

performs a semantic analysis verifying the annotated attributes

correctness. For example, Impure must be declared within a Pure,
and ToStream must be the outermost attribute annotation. During

the AST traverse, the compiler also gathers important information

about the annotations: information where ToStream was declared,

how many internal Stages or Pures, Input and Output variables,

and others. Then, the next step of the compiler uses this information

combined with pre-defined transformations rules and definitions,

to converge in a suitable parallel pattern.

2.4.2 Transformation Rules. In the second compiler step, we have

proposed new definitions and transformation rules to support

source-to-source transformations. The current SPar definitions and

transformation rules can be found in [8]. The new transformation

rules we included can be classified in two groups. First, two basic

transformation rules, where a code annotated with SPar can be

transformed in Map or MapReduce patterns. The main goal with

this data parallelism strategy is to improve SPar’s automatic parallel

code efficiency. Second, two composable transformation rules that

target parallel code generation using arbitrary pattern composition.

These are a set of transformation rules supporting the composition

of stream-parallel patterns (Pipeline and Farm) with data-parallel

patterns (Map and MapReduce).

2.4.3 Information Extraction. Once the compiler determines the

parallel pattern, or the composition of them, it performs data extrac-

tion. This step is responsible for executing compiler routines that

traverse the C++ abstract syntax tree (AST) and gather information

regarding the new Map and MapReduce patterns. Data parallelism

is much more restricted than stream parallelism. For example, data-

parallel applications can be implemented using stream parallelism

while the reverse is not possible. Also, data parallelism patterns

require more information like knowing the data set. Stream paral-

lelism is more flexible and can deal with infinite data. Therefore, in

this compiler step, both the information extraction and syntax anal-

ysis routines can abort the data-parallel patterns generation. If this

proceeds, our compiler algorithm resumes the original SPar execu-

tion flow, even it only generates stream parallelism. In Section 2.2,

we presented our strategy and have defined the basic data required

to generate the Map and MapReduce patterns based on C++ syntax.

This step must extract essential data such as identifiers, variable

types, indexed set size, and others. To extract these information,

we have implemented parses based on standard C++17 ISO [11].

2.4.4 Parallel Code Generation. Finally, if data is correctly ex-

tracted, we generate the parallel patterns using FastFlow runtime

calls. Listing 5 shows a slice of the parallel code automatically gen-

erated by our compiler algorithm. The code represents the matrix

multiplication algorithm annotated with SPar in previous Listing 3.

This example gives an idea how much parallelism details a pro-

grammer must deal with to parallelize an application, even if the

application is as simple as a matrix multiplication. Lines 1 and 2

store a copy of the original values that require synchronization.

In this case, memory copy is necessary because the reduction is

performed using an array. Line 3 initializes the reduction variables

since FastFlow requires the initial value and an empty reference.

Lines 4 to 16 implement FastFlow’s MapReduce parallel pattern

schema, which is based on C++ lambda functions. We replace the

lambda function by the pure_function() block annotated with

Pure. Finally, in lines 17 and 18 the accumulated reduction values

are assigned to the original variables.
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Figure 2: Implementation methodology used to implement the new compiler algorithm in SPar.

1 spar_global . sum = sum ;

2 memcpy ( spar_global . sum_l ine , sum_l ine , s i z eo f ( in t ) ∗ SIZE ) ;

3 spar_reduce r educe_c l e an , reduce ( spar_global . sum , spar_global .
sum_l ine ) ;

4 spar_pf−> p a r a l l e l _ r e d u c e ( reduce , r educe_c l e an , 0 , SIZE +0 , 1 ,

5 [&] ( long int i , spar_reduce & reduce ) {

6 for ( long int j = 0 ; j < SIZE ; j ++) {

7 for ( long int k = 0 ; k < SIZE ; k++) {

8 mat r i x [ i ] [ j ] += ( ma t r i x1 [ i ] [ k ] ∗ mat r i x2 [ k ] [ j ] ) ;

9 reduce . sum = reduce . sum+mat r i x [ i ] [ j ] ;

10 reduce . sum_l ine [ j ] += mat r i x [ i ] [ j ] ;

11 }

12 }

13 } ,

14 [&] ( spar_reduce & reduce , const spar_reduce spa r_aux_ reduce ) {

15 reduce += spa r_aux_ reduce ;

16 } ) ;

17 sum = reduce . sum ;

18 memcpy ( sum_l ine , reduce . sum_l ine , s i z eo f ( in t ) ∗ SIZE ) ;

Listing 5: MapReduce parallel code generation.

3 EXPERIMENTS
The experiments were conducted to assess the efficiency of the com-

piler algorithm. The tests are divided in two parts. In Section 3.1,

we evaluate how the new compiler algorithm performs when auto-

matically generating parallel code for data parallelism applications.

For that, we selected a representative benchmark for multi-cores

in C++, the NAS Parallel Benchmarks (NPB) [10, 12]. The NPB

contains eight benchmarks extracted from computational fluid dy-

namic (CFD) domain. The workload represents heavy mathematical

computation that can be easily found in popular scientific HPC

applications. In Section 3.2, we evaluate arbitrary pattern composi-

tion of different parallelism paradigms, composing stream and data

parallelism. The applications used in this experiments are to obtain

a first impression of how pattern composition behaves. We also

have parallelized the Mandelbrot Set [6] and Lane Detection [9]

applications. The former application belongs to the mathematical

visualization set while the latter belongs to autonomous vehicle

systems.

3.1 Data Parallelism
The experiments were executed in a machine equipped with 64

GB of RAM and a processor Intel(R) Xeon(R) Silver 4108 CPU @

1.80GHz with 8 cores and hyper-threading, adding up to 16 threads.

We used a machine equipped with a single processor to avoid com-

munication bottleneck between the processors since some NPB

benchmarks stress this feature. The operational system was Ubuntu

18.04with kernel 4.15.0-123-generic. We used GCC 7.5with -O3 flag

enabled. The FastFlow versionwas v3.0.0. In our experimental setup,

we used NPB’s class B (parameters available on website
1
). The tests

were executed from 1 up to 16 (maximum degree of parallelism).

The execution was repeated 5 times and the graphs represent the

average value. The standard deviation was plotted using error-bars

and may not be visible when the value is negligible.

The graphs in Figure 3 summarize our results. In these graphs, the

x axis show the degree of parallelismwhile they axis shows the total
execution time in seconds using logarithmic scale 2. We compare

the original SPar and the new SPar+ proposed in this work against

handwritten and manually optimized FastFlow versions obtained

from [10, 12]. We named SPar+ with the purpose of differentiating

our versionwith respect to original SPar. In Figure 3a, the results are

similar since EP is an embarrassingly parallel application containing

a single parallel loop. However, there is already a slight advantage

when using data-parallel pattern over stream patterns. This can

be seen in the maximum degree of parallelism (16 threads), where

SPar+ is 3.9% faster than SPar using the same annotations in the

code. And the main reason is that the stream patterns use an extra

thread for scheduling, the Emitter. Therefore, in maximum degree

of parallelism there are actually 17 threads (16 parallel workers + 1

scheduler) competing for resources.

In Figures 3b and 3c, this is more evident as it becomes clear

that the stream parallelism generated by SPar is inefficient in this

type of applications. The main problem is that the scheduler is

a bottleneck, since it has to orchestrate a fine-grained workload.

The tasks are low computational intensity and working threads

finish very quickly, becoming idle until a new task arrives from

the scheduler. The execution time increases with higher degrees of

parallelism, considering there are more threads waiting and time to

receive new tasks increases. The difference between SPar versions

is up to 1.54x in FT and up to 74.9x in CG.

We were not able to implement the other three applications

with SPar. The reason is SPar exhibits limitations such as code

refactoring and variable capturing that preclude parallelizing NPB’s

benchmarks. On the other hand, the new language and compiler

algorithm increased SPar+ expressiveness and flexibility, and we

were able to fix those limitations while enabling parallelism for all

applications. The results are illustrated in Figures 3d, 3e and 3f, and

1
https://www.nas.nasa.gov/publications/npb_problem_sizes.html
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Figure 3: NPB with handwritten parallelizations [12] vs. automatic parallelizations using SPar and SPar+.

revealed that SPar+ can achieve similar performance to handwritten

FastFlow parallelizations. The major differences between SPar+

and FastFlow are in CG and MG. In CG, FastFlow uses dynamic

scheduling, whose optimal configuration was obtained through

experimental tests. SPar+ by default applies static scheduling. In

MG, the difference is that SPar+ implements one less MapReduce

pattern than FastFlow. The reason is that currently SPar+ only

supports summation reduce operations while MG implements a

reduction of type max. It is worth noting that in some graphs the

execution time increases in the transition from degree of parallelism

8 to 10 due to the hyper-threading technology, which introduces

workload balancing issues.

In this section, our goal was to evaluate SPar using data-parallel

applications. Since by default SPar generates parallel code to the

FastFlow runtime, we expected SPar+ to execute similar to hand-

written FastFlow parallel programs. The experiments have revealed

that SPar+ achieves similar results at most 3.8% lower than hand-

written parallelizations. In the best case scenario, SPar+ achieves

up to 2% better performance with respect to FastFlow, and up to

74.9x better performance than SPar. SPar+ was slightly better than

handwritten parallelism in some situations because we used C++

mechanisms such as operator overloading to abstract reductions.

3.2 Stream and Data Parallelism Composition
In this section, we assess the performance of different parallelism

paradigms. Considering the nature of the applications, it is known

that the performance may not improve as we include an extra level

of parallelism. Some applications have internal unbalanced work

and fine grainedworkloads. The goal is investigating the behavior of

parallelism composition and how to accommodate different parallel

patterns, which may bring new insights to this research domain.

The experiments were executed in a machine equipped with

24 GB of RAM and two processors Intel(R) Xeon(R) CPUE5-2620

v3 @ 2.40GHz with 6 cores each and support to hyper-threading,

adding up to 24 threads. The operational system was Ubuntu 18.04

with kernel 4.15.0-112-generic. We used GCC 7.5 with the -O3

flag enabled. The execution was repeated 5 times and the graphs

show the average results. The basis of the graph (x and y axis) are

different configurations for data and stream degrees of parallelism.

The execution time is represented through intensity colors, where

red are higher execution times while blue are lower execution times.

Figure 4 illustrates the results obtained with the Mandelbrot Set

application. The first behavior we observed is that stream paral-

lelism scales better than data parallelism. In fact, the best execution

time was obtained with degree of stream parallelism 20 and degree
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Figure 4: Performance results using SPar+ inMandelbrot Set.

Lane Detection − KITTI Dataset 0101 (936 frames)
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Figure 5: Performance results using SPar+ in LaneDetection.

of data parallelism 1. Furthermore, it is worth highlighting that data

parallelism limits the total execution time of the application, since

varying the stream degree has no impact at all, and execution time is

the same. In the Mandelbrot Set application we observe unbalanced

workload. However, this is an interesting result because it suggest

that a second nested level of parallelism can balance workloads

derived from originally unbalanced applications.

Figure 5 illustrates the results we obtained with the Lane Detec-

tion application. Again we observe that stream parallelism scales

better than data parallelism. However, now the best execution time

was obtained combining different degrees of parallelism. The best

results was using degree of stream and data parallelism 14 and 8,

respectively. Differently from the previous application, the results

are not limited by data parallelism. In the contrary, there are many

points along the grid that obtained much lower execution time than

their neighbors.

In this section, our goal was to analyze the behavior when com-

posing parallelism from different paradigms. The experiments have

revealed that there are opportunities to improve parallelism effi-

ciency by exploiting this approach. The most important characteris-

tic we are interested in is to improve resource usage. In Mandelbrot

Set the best load balancing was obtained with higher degrees of

stream parallelism while in Lane Detection the best load balanc-

ing was obtained combining different degrees of stream and data

parallelism.

There are open research questions towards combining different

levels of parallelism. However, the literature still lacks solutions that

exploit compositions between different parallelism paradigms. For

example, using stream parallelism combined with data parallelism

to exploit both highly scalable and distributed cloud environment

(stream parallelism) and internally implement fine-grained paral-

lelizations for multi-cores (data parallelism). Our analysis is limited

to machine resources available. There are other much powerful

multi-core machines delivered by the industry with hundreds of

processing cores. We expect that our approach of combining data

and stream parallelism will present more benefits in these larger

multi-core machines due to the massive parallelism available.

4 RELATEDWORK

In the literature, many works are moving towards increasing

the level of parallelism by offering high-level abstractions with al-

most no performance cost. Table 1 summarizes such related works.

We focus on works targeting stream processing and multi-core

architectures. Others [21] proposed a DSL named StreamIt, which

introduces a new language and compiler. Similar to SPar, StreamIt

offers a high-level interface for expressing stream parallelism and

generates automatic parallel code using source-to-source transfor-

mations. However, StreamIt requires to learn a new syntax and

language based on Java while SPar uses C++11 attributes, which

are fully recognized and represented in the standard language AST

(abstract syntax tree). GrPPI [4] (Generic Reusable Parallel Pattern

Interface) instead offers a parallel programming abstraction with

generic parallel patterns. For that, the programmer only instantiates

parallel patterns once, and chooses at compilation-time for which

runtime GrPPI should generate parallel code. In GrPPI, the pro-

grammer is responsible for identifying the best pattern refactoring

the code to it manually. In contrast, SPar automatically decides and

generates a parallel pattern.

Table 1: Comparison between related works.

Work API Programming
Language Runtime Supported

Architectures

StreamIt [21] External domain

specific language

Java Custom

multi-cores

and clusters

GrPPI [4] template library C++

FastFlow, TBB,

OpenMP and

C++ Parallel STL

multi-cores

OpenStream [19] pragma compilation

directives

C/C++ POSIX Threads multi-cores

OmpSs [5] pragma compilation

directives

C/C++ Custom

multi-cores, clusters

and accelerators

WindFlow [14] Parallel library C++ FastFlow

multi-cores

and accelerators

PiCo [16] C++ domain

specific language

C++ FastFlow multi-cores

SPar [7] C++ domain

specific language

C++ FastFlow, TBB

multi-cores, clusters

and accelerators

OpenMP is the de facto standard for data parallelism in C++

and multi-core architecture. Some works notice the difficulties for

developing stream processing applications using OpenMP and pro-

posed extensions. OpenStream [19] extended OpenMP by offering

additional support to task parallelism and Pipelines. This tool is

based on pragma compilation directives used by the programmer

to annotate dependencies between tasks and provide information

about the data flow. OmpSs [5] is another high-level language that

extended OpenMP. The authors propose a new syntax to annotate

parallel code also based on pragma directives. Besides, OmpSs sup-

port heterogeneous programming (GPUs and FPGAs). In recent

47



SBLP’21, September 27-October 1, 2021, Joinville, Brazil Löff et al.

versions OpenMP also supports a task-based model taking inspira-
tion from OmpSs programming model. Developers are equipped

with pragmas for creating tasks and linking them with dependen-

cies. Instead of using pragmas, SPar leverages C++ attributes that

are available for any compiler that recognizes C++11 and newer.

Attributes are fully represented in the C++ grammar.

WindFlow [14] introduces a specific-domain template library for

leveraging data stream parallelism in multi-core and heterogeneous

architectures. The library is based on the stream domain and offers

domain-specific operators. However, the API requires the program-

mer to learn domain-specific approaches to implement the most

efficient data flow. PiCo [16] is a DSL that tries to simplify paral-

lelism with respect to other Big Data solutions. However, although

PiCo proposes a high-level abstraction over FastFlow (similar to

SPar), the syntax used by PiCo is still very similar to FastFlow. Dif-

ferently, SPar clearly distinguishes between low-level parallelism

optimizations and high-level abstractions. SPar’s main goal is to

support application programmers achieving higher levels of pro-

ductivity and performance using high-level parallel abstractions.

5 CONCLUSION
In this paper, we investigated the feasibility of extending the ex-

pressiveness and flexibility in a high-level parallelism abstraction

to support data and stream parallelism. For that, we used SPar as

the use case, adding two new attributes to SPar’s language and

implementing a new algorithm for SPar’s compiler. Now, SPar is

able to generate parallel code more efficiently because it can select

parallel patterns between stream patterns (Pipeline and Farm), data

patterns (Map and MapReduce), and arbitrary composition of them.

In the experiments, we evaluated the new SPar version using repre-

sentative applications extracted from stream and data parallelism

domains. Results evaluating only the data parallelism domain have

revealed that SPar’s new compiler algorithm can improve perfor-

mance by up to 74.9x compared to old SPar compiler. Moreover,

the performance of automatic parallel code generation is similar

to handwritten parallelization, varying between 3.8% slower and

2% faster than FastFlow. Also, results evaluating stream and data

parallelism composition have revealed that there is opportunity for

exploiting fine-grained data parallelism inside stream parallelism

stages for improving resource usage and raising scalability.

As future work, we plan to evaluate the new SPar version using

other complex stream processing applications and larger multi-

core machines. We expect to conduct more experiments to better

understand the advantages or disadvantages of combining stream

and data parallelism. Furthermore, we intend to investigate the

necessity for including more parallel patterns, besides Pipeline,

Farm, Map and MapReduce. Also, supporting automatic parallel

code for combining different architectures such as clusters of multi-

cores, or multi-cores with GPUs.
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