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Abstract—NAS Parallel Benchmarks (NPB) are one of the
standard benchmark suites used to evaluate parallel hardware
and software. There are many research efforts trying to provide
different parallel versions apart from the original OpenMP and
MPI. Concerning GPU accelerators, there are only the OpenCL
and OpenACC available as consolidated versions. Our goal is
to provide an efficient parallel implementation of the five NPB
kernels with CUDA. Our contribution covers different aspects.
First, best parallel programming practices were followed to
implement NPB kernels using CUDA. Second, the support of
larger workloads (class B and C) allow to stress and investigate
the memory of robust GPUs. Third, we show that it is possible
to make NPB efficient and suitable for GPUs although the
benchmarks were designed for CPUs in the past. We succeed
in achieving double performance with respect to the state-of-the-
art in some cases as well as implementing efficient memory usage.
Fourth, we discuss new experiments comparing performance and
memory usage against OpenACC and OpenCL state-of-the-art
versions using a relative new GPU architecture. The experimental
results also revealed that our version is the best one for all the
NPB kernels compared to OpenACC and OpenCL. The greatest
differences were observed for the FT and EP kernels.

I. INTRODUCTION

The utilization of graphic processing units (GPUs) has

significantly increased over the years. GPUs are nowadays

equipped by thousands of computing unites (cores), offering

high-performance, high energy-efficiency, and low cost. The

use of GPUs is more and more fundamental and necessary

for accelerating enterprise and scientific software, solving

complex and large problems [1]. This amount of parallelism

available imposes parallel programming and hardware design

challenges. To mitigate this, benchmarks become the standard

way to help in research and development for improving

hardware and software performance. They are used to evaluate

computing architectures, programming techniques, tools, and

other solutions.

The NASA Advanced Supercomputing Division has de-

veloped the NAS Parallel Benchmarks (NPB) [2]. It has

become an important and standard benchmark set that has

been used in many types of research over the years. NPB

consists of five kernels and three pseudo-applications based

on computational fluid dynamics (CFD). The NASA expertise

and the knowledge along with the documentation provided

by scientific reports, which includes math and algorithmic

definitions, assigned major relevancy to NPB. Also, NPB

gained great popularity due to the extensive use of differ-

ent evaluations and tests. The benchmarks offer algorithmic

kernels close to real applications and also provide several

workload options, from small to very large sizes. The NPB was

originally developed with Fortran language and is available in

several versions such as sequential code [2], OpenMP [3], MPI

[4]–[6], High Performance Fortran (HPF) [7] and Multi-Zone

(NPB-MZ) [8].
Concerning the GPU context, NPB is receiving attention for

evaluating the performance behavior, compare different archi-

tectures, study specific programming techniques, and evaluate

the efficiency of compilers’ code generation [9]–[15]. When

analyzing the literature, we realize that the main works are

relatively old, while programming techniques and hardware

architecture have evolved. For instance, GPUs got from tens

to thousands of cores, have new features, and more efficient

mechanisms. A problem with the available GPU parallel

implementations is that there is no test with large workloads

such as NPB class B and C due to the limitations that this

kind of architectures had in the past. Also, a low expectation of

acceleration for GPUs was given, even if that small workloads

do not allow to evaluate the GPU performance precisely in cur-

rent architectures. Therefore, it is unclear the real performance

that a GPU can obtain in these applications. It is also hard to

analyze the performance gap between high-level approaches

and robust low-level implementations. To the best of our

knowledge, there is no complete parallel implementation of the

NPB kernels provided with CUDA. The only implementations

available use OpenCL [10] and OpenACC [12]. There are

also works reporting the lack of CUDA version for the NPB

benchmarks as a limiting point for their research [12], [16].
To fill these gaps, our goal is to provide new NPB parallel

versions with CUDA, starting from the five kernels. We also

intend to compare the performance and discuss the imple-

mentations with respect to the state-of-the-art OpenCL and

OpenACC versions using larger workloads (classes B and C).

The scientific contributions are summarized as follows:

• it is the first work to provide NPB’s five kernels
with CUDA. It is an important progress to research

and development since CUDA is the standard parallel

programming framework for Nvidia’s GPUs. Research
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on hardware and software can now be expanded due to

the availability and possibility to compare the existing

frameworks, programming techniques, code generation

techniques, and parallel algorithms for GPUs.

• it is the first work to support and compare classes B
and C for the NPB’s five kernels. Previous works were

not able to run experiments with these classes. Conse-

quently, there was a limitation for analyzing the current

GPU architecture’s behavior under certain computations

as well as the scalability of the parallel implementations

provided.

• we revealed new facts about NPB. Previous works

reported a low expectation of acceleration for the NPB’s

kernels with GPUs. However, the performances we ob-

tained are significantly better w.r.t. the previous ones. We

have shown that performing a careful analysis, code refac-

toring, and smart parallel implementation, it is possible to

make the NPB kernels suitable for GPUs . We achieved

more than double of the state-of-art speed-up and made

the memory usage more efficient.

• we run new experiments covering performance and
memory usage as well as comparing with the Open-
ACC and OpenCL state-of-the-art versions. We used a

relative new GPU architecture to measure the memory us-

age, and to discuss the parallel implementation techniques

and algorithms, comparing the state-of-the-art GPU par-

allel programming frameworks (CUDA, OpenACC, and

OpenCL) for the five NPB kernels.

The paper is organized as follow. Section II describes the

related work. Section III describes the CUDA implementation

of the NPB five kernels. Section IV presents the experiments

and results of this work. Section V presents the conclusion.

II. RELATED WORK

Here, we selected papers that studied NPB for GPUs and

discard approaches where the focus was to provide tools for

automatic code generation or tackled Multi-GPU for NPB.

The design and implementation of the EP NPB kernel with

CUDA are presented and compared with others works by Gong

et. al. [9]. Their goal was to share the programming experience

to register possible parallelism strategies applied to EP that

improved the performance, and consequently, may be used on

other applications to gain performance. It was essentially one

of the first works about NPB for GPUs.

The NPB kernels and pseudo-applications were imple-

mented with OpenCL in [10]. The work was the first complete

implementation of the NPB targeting accelerators. Differently

from [9], they did not made a comparison with other works.

The work compared performance differences between multi-

core and many-core architectures. The optimization design

principles adopted in the implementations were also described.

The main contribution was the characterization of the OpenCL

performance and the availability of the source codes for the

parallel versions.

The work [11] implemented the CG, EP, FT and MG kernels

with CUDA, OpenCL, OpenACC and MATLAB. The paper

made a comparative study between these frameworks, ana-

lyzing the programming effort and programmer productivity.

Differently from the other works [9] and [10], no details about

the implementations were given. The focus was to provide

a discussion about the evaluated frameworks. Additionally,

they evaluated how much impact have high-level abstractions

like OpenACC or MATLAB on the performance compared to

CUDA and OpenCL.

The SP pseudo-application was studied with OpenACC

in [14]. The work shared the development experience of

the authors, analyzed the usability, programming effort, and

performance of OpenACC compared to CUDA. The authors

implemented several versions of the SP, applying a closer

strategy to OpenACC and CUDA. As of this, the work is

similar to [11]. It is the only paper published by NASA about

NPB with GPUs.

BT-MZ, LU-MZ and SP-MZ from the NPB Multi-Zone

(NPB-MZ) [8] were implemented with CUDA in [15]. The

focus was on hybrid programming techniques. This is the

single work that ported the complete NPB-MZ to GPUs. They

presented the deepest hybrid parallel programming approach

of the NPB GPU literature, however, researchers commonly

utilize the NPB standard instead of NPB-MZ.

The NPB kernels and pseudo-applications were imple-

mented with OpenACC by et. al Xu [12]. This was the second

complete implementation of the NPB benchmarks targeting

GPU accelerators. The authors shared their OpenACC experi-

ence and described several techniques that improved the GPU

performance using OpenACC. Also, the authors compared

their OpenACC implementation to the OpenCL work [10].

SP-MZ from the NPB Multi-Zone (NPB-MZ) was studied

with OpenACC by Stone et. al. [13], using different program-

ming paradigms, single GPU, hybrid CPU and GPU, and

Multi-GPU. The authors compared the performance of the

approaches. The work is similar to [9] and [14] in the goal of

presenting a deeper study for a single application.

Table I presents an overview on the related work character-

istics and features. First column presents the work followed

by the publication year. Second column lists the benchmarks

investigated. Third column lists the GPU Frameworks to

provide the parallel versions. Fourth column indicates if the

author made the source code of the work available. Fifth

column shows the programming language used. Sixth column

describes the hardware used in the experiments.

Based on our survey, the main research works are [10] and

[12], mostly because they implemented the complete NPB for

GPU or with OpenACC or OpenCL and their source code is

available. Therefore, other scientists can use or compare their

parallel implementations in the research works. Since there is

no source code available of [9], [11], [13], [14], they are less

used in other researches. Although the work [15] has made the

source code available, NPB-MZ is less used in the literature

and its focus is on hybrid parallel programming.

All related works cited have common characteristics, they

are relatively old. The works have also not tested bigger

workloads (e.g., class B or C) for NPB due to the GPU limi-
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TABLE I
RELATED WORK GENERAL INFORMATION

Work Apps Tools Available Lang. Hardware
[9]

2010
EP CUDA No C (1) Intel Q6600,

Nvidia Tesla GT200

[10]
2011

BT, CG,
EP, FT,
LU, IS,
MG, SP

OpenCL Yes C (1) two Intel
X5660, Nvidia
GTX 480

[11]
2012

CG, EP,
FT, MG

CUDA,
OpenCL,
Open-
ACC,
MAT-
LAB

No C (1) Intel X5560,
NVIDIA Tesla
C2050

[14]
2012

SP OpenACC No For-
tran

(1) Intel X5670,
Nvidia Tesla
M2090, (2) AMD
Opteron 2354,
Nvidia GTX 480

[15]
2013

BT-MZ,
LU-MZ,
SP-MZ

CUDA Yes C++ (1) two Intel
X5670, Nvidia
GTX 570

[12]
2015

BT, CG,
EP, FT,
IS, LU,
MG, SP

OpenACC Yes C (1) Intel
Xeon (version
unspecified), Nvidia
Kepler K20

[13]
2015

SP-MZ OpenACC No C (1) Intel E5-2670,
Nvidia Kepler
K40c, (2) Intel
E5-2670 v2, Nvidia
Tesla K40s

our
work
2020

CG, EP,
FT, IS,
MG

CUDA Yes C++ (1) Intel E5-2620,
Nvidia Titan X Pas-
cal

tations at the time that those papers were written. In addition,

the conclusions were relatively basic as GPU programming

techniques were not mature and most of the implementation

choices were related to architecture characteristics instead of

fine-grained and massive thread parallelism.

This work has common characteristics with respect to all

related works cited. Our goal is to provide for the community

NPB for GPU like [10] that implemented the NPB with

OpenCL and [12] that implemented the NPB with OpenACC.

Differently, we presented the first NPB kernels parallel imple-

mentation with CUDA. We implemented different techniques

and evaluate the performance of our approach like [9], [14],

[15]. We compare performance of our work with other works

like [9]. Also, our experiment are broader since we compare

the performance of CUDA, OpenCL and OpenACC using

different workloads (class B and C).

III. PARALLEL IMPLEMENTATIONS

To implement our NPB kernels with CUDA, we used a

well tested conversion from the original NPB 3.3.1 to C++

[17]. This section first describes the design principles used to

implement the NPB kernels and then discusses in detail how

each one of the kernels has been implemented. Our source

codes are available in a GitHub repository1.

A. Design Principles

The design principles we used in this work to implement

NPB with CUDA can be described as follows:

1NPB with CUDA is available here https://github.com/GMAP/NPB-GPU

1) Implement the GPU kernels as simple as possible
to avoid large operation cycles in the GPU. The

idea is to allow more lightweight threads execute in

parallel. For instance, if a sequential routine has two

array computations that can compute independently, we

can create two GPU kernels. In principle, this approach

can improve performance because threads can do less or

no jumps among memory blocks.

2) Avoid branch divergences as much as possible.

Branches inside GPU kernels prevent the threads parallel

execution. The usual strategy is to collapse the loops

so that each thread computes one iteration. However,

sequential source codes may naturally have branches for

optimizing the performance of the sequential algorithm

by using conditions and jumps. There are also situations

where nested loops can not be simply collapsed due to

the data dependencies. We used different strategies that

are explained later to avoid and minimize the impact

of the branches inside GPU kernels and therefore to

increase the performance of kernel parallel executions.

3) Support memory coalescing. Accessing the global

GPU memory adds a significant latency. Therefore, it is

important to perform contiguous data access in parallel

threads to save load instructions and therefore to increase

performance [1].

4) Avoid as much as possible global memory accesses.

The GPU memory is hierarchical organized. The Shared

memory is on the chip offering high bandwidth. Con-

stant memory, texture, and surface memory are the cache

memory offering low latency. Then, there is the local

memory where data coalescing is automatically done by

the GPU to speed up the memory access. Therefore,

each code has unique characteristics regarding memory

access. For example, if there is a recurrent access to

specific data, data can be copied to the shared memory.

In case data is read but never written, we can copy it to

the constant memory. We discuss the specific memory

improvements made so far to each NPB kernel in the

next sections.

5) Implement GPU parallelism only when it is worth.

Since to compute on GPU we need to pay for the data

transferring overhead, a careful analysis of the code

should be done about the potential parallelism that the

application can obtain as well as the cost of the data

transfers and GPU kernel computations. As a conse-

quence, only if it adds performance improvements, the

parallel implementation to GPU should be performed.

B. Conjugate Gradient (CG)

CG computes an approximation to the smallest eigenvalue

of a large matrix, and tests irregular communication and un-

structured matrix vector multiplication [2]. The CG execution

flow is organized into a global loop, where inside conj_grad
function, find norm of z operation, and normalize z to obtain x
are executed for each iteration. Overall, achieving a reasonable

parallel performance is a relatively simple task due to the
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changes required compared to other NPB kernels. Almost

all parallel regions consist of nested for loops that can

be collapsed and mapped into GPU threads independently.

Several of these loops can perform parallel reduce operations.

Nonetheless, the two main computations of CG inside

the conj_grad function cannot achieve a good speedup

performing a simple implementation as we did for all other

operations. There is a sub-matrix multiply of irregular compu-

tations demonstrated in the code snippet of Listing 1. In the

sub-matrix multiply, there are different workloads sizes that

begins on rowstr[j] and goes until rowstr[j+1] for the

inner loop. For each iteration j, different blocks of data are

accessed in the global memory and the size of these blocks

vary because rowstr has aleatory numbers. If we simply

apply the map pattern (assign each thread to a j iteration),

the workload will be unbalanced and the memory access will

be irregular. If we simple collapse both loops, the computation

grain is smaller, but the threads execution is still irregular. In

this case, GPU threads from a block may compute different

groups of computations. Although each computation group

has a regular data access inside, it may happen that threads

from the same block execute different computation groups.

Finally, decompose this part of code in a streaming fashion

where each kernel executes a j computation group is not a

good performance strategy, because it will launch GPU kernels

too frequently. We tested and evaluated all these strategies to

highlight the drawbacks.

1 f o r ( j = 0 ; j < l a s t r o w − f i r s t r o w + 1 ; j ++){
2 sum = 0 . 0 ;
3 f o r ( k = r o w s t r [ j ] ; k < r o w s t r [ j + 1 ] ; k ++){
4 sum = sum + a [ k ]∗p [ c o l i d x [ k ] ] ;}
5 q [ j ] = sum ;}

Listing 1. CG’s irregular computations.

1 i n t j = b l o c k I d x . x ;
2 i n t l o c a l i d = t h r e a d I d x . x ;
3 i n t b e g i n = r o w s t r [ j ] ;
4 i n t end = r o w s t r [ j + 1 ] ;
5 double sum = 0 . 0 ;
6 f o r ( i n t k= b e g i n + l o c a l i d ; k<end ; k+=blockDim . x ){
7 sum = sum + a [ k ]∗p [ c o l i d x [ k ] ] ;}
8 s h a r e d a t a [ l o c a l i d ] = sum ;
9 /∗ r e d u c e sum on t h i s b l o c k ∗ /

10 i f ( l o c a l i d ==0){q [ j ]= s h a r e d a t a [ 0 ] ;}

Listing 2. Strategy for CG’s irregular computations on GPU

To overcome these problems, our strategy was to create a

group of threads for each iteration j as presented in Listing 2.

Since we are not able to know in advance the number of

iterations of the inner loop, we defined a default number of

threads per block, which is defined according to the maximum

number of threads that the GPU warp scheduler is able to

handle at once. If the inner loop has more iterations than the

number of threads in the block, line 6 implements the loop

where threads will execute again the computation. Observe

that the memory access pattern is vertical to increase the

performance. We made so that the global data rowstr is

accessed only two times to read the start and end of

the computation group. All other accesses are made through

local variables. The results of each thread are then stored in

the shared memory to apply the parallel reduce pattern with

interleaved addressing [1].

C. Embarrassingly Parallel (EP)

The EP kernel estimates the floating point capacity. It was

designed to be an embarrassingly parallel computation with

almost no communication/synchronization [2]. The EP execu-

tion flow is organized into a loop, where each iteration exe-

cutes two distinct computations. Firstly, it computes pseudo-

random numbers from the given iteration as the initial value.

Secondly, it computes Gaussian deviates from the pseudo

random numbers generated. The parallel implementation of

EP could be performed executing each iteration in parallel.

However, this approach requires special attention regarding the

memory consumption on GPUs. Each iteration needs a very

large array x to store the pseudo random numbers, and each

thread has its own copy of the array x. A possible strategy

to approach this problem is assign a group of iterations to

each thread. Consequently, a thread will reuse the array x.

This coarse grained approach does not scales very well on

GPUs, because the number of threads will be limited. Also,

the number of serial computations in the GPU kernel will be

too big, as for each iteration a very large array of pseudo-

random numbers is computed.

To overcome memory and scalability limitations, the strat-

egy was to create a small array x for each thread so that

each one of them recomputes the array x until all the pseudo

random-numbers are generated. Therefore, a larger number of

threads is created and each iteration is assigned to a block of

threads instead of a single thread. The array x is also in the

GPU shared memory. We also applied a vertical access pattern

for coalescing the memory access.

D. Fast Fourier Transform (FT)

FT solves differential equations using forward and inverse

Fast Fourier Transforms [2]. The FT execution flow is orga-

nized in a loop where each iteration executes five functions,

evolve, fft-z, fft-y, fft-x and checksum. The evolve computes

the initial values of the arrays for each iteration, and consists

of three nested loops that can be simple collapsed into a

GPU kernel for executing multiple threads in parallel. Then, a

function called checksum combines the arrays values at the

end of each iteration. checksum also have the potential to

implement the parallel reduce pattern on GPU.

The fft-x, fft-y and fft-z functions have a similar

pattern of behavior. The main difference is that fft-x com-

putes the Fourier Transformation on the x axis, fft-y on

y axis and fft-z on z axis. These functions have several

dependencies in the loops and exploit coarse grain parallelism

as they were developed to target CPU architectures. The

original fft-x sequential code is shown in Listing 3. Inside

the most external loop (line 1), dependencies are established.

The computation is done in blocks (the loop at line 2), where a

sequence of different operations are performed for each block.

The first operation copies a data of a block (loops at lines 3
and 4). The second operation processes this block (line 6). The
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third operation writes the block in the output (loops at lines 7
and 8).

1 f o r ( k =0; k<NZ; k ++){
2 f o r ( j j =0 ; j j <=NY−FFTBLOCK ; j j +=FFTBLOCK){
3 f o r ( j =0 ; j<FFTBLOCK ; j ++){
4 f o r ( i =0 ; i<NX; i ++){
5 y1 [ i ] [ j ] = x [ k ] [ j + j j ] [ i ] ;}}
6 c f f t z ( y , . . . ) ;
7 f o r ( j =0 ; j<FFTBLOCK ; j ++){
8 f o r ( i =0 ; i<NX; i ++){
9 xou t [ k ] [ j + j j ] [ i ] = y1 [ i ] [ j ] ;}}}}

Listing 3. The original fft-x code.

To add parallelism without refactoring the source code in

the original disposition, we can just apply the map pattern

in the most external loop so that each GPU thread performs

an iteration. However, the GPU kernel will have branch

divergences with five nested loops. For a proper parallel

implementation on GPUs, we rewrote fft-x, fft-y and fft-z,

eliminating the dependencies to allow fine-grained parallelism

exploitation. We organized the operations in three stages that

can be visualized in Listing 4. The loops of each stage are

then simply collapsed to apply the parallel map pattern and

launched as a GPU kernel without branch divergences.

1 /∗ s t a g e one , copy i n ∗ /
2 f o r ( k =0; k<NZ; k ++){
3 f o r ( j =0 ; j<NY; j ++){
4 f o r ( i =0 ; i<NX; i ++){
5 y [ k ] [ j ] [ i ] = x [ k ] [ j ] [ i ] ;}}}
6 /∗ s t a g e two , compute FT on x a x i s ∗ /
7 f o r ( k =0; k<NZ; k ++){
8 f o r ( j =0 ; j<NY; j ++){
9 c f f t z ( y , k , j , . . . ) ;}}

10 /∗ s t a g e t h r e e , copy o u t ∗ /
11 f o r ( k =0; k<NZ; k ++){
12 f o r ( j =0 ; j<NY; j ++){
13 f o r ( i =0 ; i<NX; i ++){
14 x [ k ] [ j ] [ i ] = y [ k ] [ j ] [ i ] ;}}}

Listing 4. The fft-x code refactored.

As fft-x, fft-y and fft-z compute on different axis,

each function has a different memory access pattern. fft-x
have horizontal accesses to x in the global array. We change

the access pattern by refactoring the code, for instance, from

array[z][y][x] to array[z][x][y]. Consequently,

the memory access will be coalesced in the GPU for fft-x
while this is done by default in fft-y and fft-z functions.

This modification adds significant performance improvement.

E. Integer Sort (IS)

IS performs a sort operation for testing the integer compu-

tation speed and communication [2]. The kernel is organized

into a loop where each iteration calls a rank function, which

consists of a sequence of simple loop routines. The way

to exploit the parallelism is to execute each iteration of a

loop by a GPU thread. Therefore, our developing for GPU

was quite fast in IS. The workload is small in each loop

and synchronization between GPU and host is necessary.

Differently from the other NPB kernels, IS have a relative

small portion of code, provides a small workload, the degree

of parallelism is small, and it requires several GPU atomic

operations and synchronizations between the GPU kernels.

F. MultiGrid (MG)

MG is a simplified multi-grid kernel implementation [2].

The kernel is organized into a global loop, where each iteration

executes the function mg3P. mg3P has five main routines:

interp, psinv, resid, rprj3 and zero3. interp
and rprj3 have the same code structure. The computation

consists of two nested loops where inside there is a sequence

of a few loops of the same number of iterations.

A possible way to implement the parallelism is to collapse

the two most external loops and launch as a GPU kernel.

Therefore, each thread corresponds to a iteration of the col-

lapsed loops. Then, the threads will execute a sequence of

internal loops. This is a coarse grain parallelism and results in

a poor GPU usage. Another possibility is to create a sequence

of GPU kernels, where each GPU kernel is the collapsing of

the two most external loops with one of the most internal

loops. As the sequence of internal loops must be kept, it is

possible to launch a sequence of GPU kernels with no branch

divergences. However, a synchronization between each kernel

must done, which generates an extra overhead. The sequence

of internal loops has an important feature. For instance, the

iteration i of a loop computes data[i]. The iteration i of

the next loop computes also exactly data[i] and so on.

Consequently, it is possible to join the most internal loops

into a single loop. Our parallelism strategy is to collapse

the two most external loops, where each block of threads

corresponds to an iteration of the collapsed loop. We also join

the most internal loops and each thread of the block computes

an iteration of the joined loop. This strategy exploits fine-

grained parallelism, eliminates the branch divergences, and

does not requires synchronization between the host.

psinv and resid are organized in the same way. In

these functions, there are two nested loops. Inside these loops,

there are two consecutive serial loops that should execute one

after the other. We collapsed the most external loops into

a GPU kernel where each block of threads correspond to

an iteration of the collapsed loops. Each thread computes a

subset of the internal loops. Also, we implemented the vertical

access pattern in the two most internal serial loops to provide

coalesced access to the memory. Function zero3 just clears

matrix values, using three simple nested loops that can be

collapsed into a GPU kernel.

IV. EXPERIMENTS

A. Methodology

All experiments were executed in the same machine

equipped with an Intel E5-2620 2.0 GHz processor, 16 Giga-

bytes of RAM, and a GPU Nvidia Titan X Pascal with 3584

CUDA Cores and 12 Gigabytes of dedicated memory. The

operating system was Ubuntu 14.04 LTS. The software used

are CUDA 10, GCC-9, OpenCL 1.1, and OpenACC 2.5. We set

the -O3 compiler flag to compile all benchmarks. We repeated

10 times each test to compute the performance metrics.

In order to execute classes B and C workloads for the

related work NPB-OpenCL [10] and NPB-OpenACC [12], it
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was necessary to add -mcmodel=large compilation flag as

well as use the command ulimit -s unlimited, which

allows more memory in the stack. As mentioned before, the

related works implemented inefficient memory allocation with

large multi-dimensional arrays. Moreover, we must to refactor

the source code of NPB-OpenCL and NPB-OpenACC to

solve compilation errors. We faced problems with macros

for NPB-OpenCL and some gang/work/vector configurations

that were present in the NPB-OpenACC codes were not

compatible with the GPU used in the experiments .

B. Results

The execution time and standard deviations of the experi-

ments are shown in Table II. First column presents the NPB

kernel followed by the workload evaluated. Second column

lists the mean of 10 execution times in seconds (Time) and

standard deviation in seconds (STDEV). Third column lists the

results of the serial code, labeled as Serial. Fourth column

lists the results of the work [10] labeled as NPB-OpenCL.

Fifth column lists the results of the work [12] labeled as

NPB-OpenACC. Sixth column lists the results of our work

labeled as NPB-CUDA.

TABLE II
EXECUTION TIME AND STANDARD DEVIATIONS

Kernel. Metrics Serial NPB- NPB- NPB-

Class OpenCL OpenACC CUDA

CG.B Time (s) 90.89 1.60 108.42 1.54
STDEV (s) 0.27 0.00 0.06 0.02

CG.C Time (s) 254.93 3.73 232.34 3.56
STDEV (s) 1.12 0.01 0.13 0.03

EP.B Time (s) 104.52 0.74 2.24 0.72
STDEV (s) 0.04 0.01 0.00 0.01

EP.C Time (s) 418.16 2.63 8.72 2.39
STDEV (s) 0.48 0.02 0.00 0.01

FT.B Time (s) 53.81 6.21 6.71 2.4
STDEV (s) 0.42 0.00 0.01 0.00

FT.C Time (s) 258.62 24.91 27.35 10.21
STDEV (s) 10.72 0.03 0.01 0.01

IS.B Time (s) 5.50 0.88 - 0.86
STDEV (s) 0.01 0.01 - 0.01

IS.C Time (s) 22.87 2.35 - 2.34
STDEV (s) 0.04 0.01 - 0.00

MG.B Time (s) 4.37 0.34 1.32 0.32
STDEV (s) 0.02 0.00 0.02 0.00

MG.C Time (s) 38.27 1.73 7.51 1.72
STDEV (s) 0.17 0.00 0.02 0.01

The speedup and GPU memory consumption of the exper-

iments are shown in the graphs presented in this section. The

X-axis of each graph presents the NPB kernels and the Y-axis

presents the metric evaluated. Figure 1 presents the speedup

for the class B and Figure 2 presents the speedup for the class

C. The GPU memory consumption of the NPB kernels for

the class B is shown in the Figure 3, and the GPU memory

consumption of the NPB kernels for the class C workload is

shown in the Figure 4.

In CG, our CUDA implementation achieved 58.94 of

speedup with the class B and 71.55 with the class C (Figures 1

and 2), which is significantly better than OpenACC version

as well as 3.74% (class B) and 4.48% (class C) better than

OpenCL version. Our performance improvement is due to

the isolation of irregular computations for load balancing,

fine-grained parallelism exploitation, and memory coalescing

support. NPB-OpenCL achieved a closer performance to
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our parallel implementation because a similar isolation of

irregular computations has been applied. When applying our

design principles in NPB-OpenCL for CG, we believe that a

better performance could be achieved for it. NPB-OpenACC
achieved a very low performance due to the poor GPU

parallelism exploitation given that non of our design principles

were followed in their work.

When comparing memory consumption, NPB-OpenCL pre-

sented the higher values. The main reason is that the whole

CG code is offloaded to GPU. As we only offloaded the

code where parallelism is implemented, our parallel imple-

mentation consumes less GPU resources. Due to the same

reason, NPB-OpenACC presented a memory consumption

very similar to our version.

A expressive performance difference was observe for EP.

Our CUDA version achieved 144.36 of speedup with class

B and 175.11 with class C. This was possible due to the

fine-grained parallelism exploitation and the memory coalesc-

ing. NPB-OpenCL achieved a similar performance to our

work only with class B. Using class C, NPB-OpenCL was
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significantly lower than our work. Although NPB-OpenCL
implemented a similar parallelism strategy to ours, the worst

performance in class C is due to the use of a larger block of

memory for each thread, which generates memory bank con-

flicts and misses. NPB-OpenACC presents significantly lower

performance than our work and has almost no improvement

with a larger workload. This work implemented a coarser-

grained parallelism exploitation. While our implementation

creates a block of threads per iteration and each thread of

each block computes a subset of pseudo-random numbers,

NPB-OpenACC creates a GPU thread per iteration and the

single thread computes the complete set of the pseudo-random

numbers. This reduces significantly the total number of GPU

threads. Consequently, the GPU utilization is low and it

results in a larger GPU kernel. Therefore, the low degree

of parallelism was the main factor for the lower speedup.

In addition, they did not implemented memory coalescing.

Concerning GPU memory consumption, our work is very

similar to the NPB-OpenCL, except the memory requirements

per GPU threads. We created a small array x for each thread

and each thread reuses it for the computations of the GPU

kernel. This way, it was possible a low memory consumption.

NPB-OpenACC implementation created a complete copy of

the EP larger array x for each GPU thread, increasing signif-

icantly the GPU memory consumption. Avoiding EP to run

out of memory, they created a fixed number of threads, which

has impacted negatively in the performance scalability when

comparing class B and C.

The main reason of the performance gain in FT for

the CUDA version is that we split the main routines of

fft-dimension in three stages, eliminating branch diver-

gences and exploiting a finer grain parallelism. Moreover, the

memory accesses were coalesced in fft-x. NPB-OpenCL
obtained less than half of our performance. This work imple-

mented a coarser grain parallelism exploitation. They did not

refactor the FT original code presented before in Section III-D.

They simple mapped each iteration of the most external loop of

fft-dimension to a GPU thread. This approach lowered

significantly the GPU utilization with a smaller number of

threads. Also, the branch divergences were not eliminated and

the memory was not coalesced in fft-x. NPB-OpenACC
also obtained less than half of our performance. The reason

for this poor performance is similar to NPB-OpenCL.

When comparing memory consumption from the FT parallel

versions (Figures3 and 4), NPB-OpenCL presented the lowest

values. As they used a strategy with a smaller number of

threads, the GPU memory requirements were also smaller. In

contrast, this impacted on performance. NPB-OpenACC pre-

sented the highest memory requirements. They created multi-

dimensional global arrays where the size of each dimension

corresponds to the size of the bigger dimension given by

the workload. Therefore, NPB-OpenACC uses more memory

than necessary. when the dimensions of the workloads are not

equal. Also, the values of the arrays will not be contiguous

in the memory, which also impacts on GPUs’ performance.

Finally, although they transformed the accesses of the func-

tions fft-x and fft-z, the memory coalescing is not work.

The memory consumption of our CUDA version corresponds

to the minimum requirements for executing FT with a finer

grain parallelism. In class B, our memory consumption is

significantly lower than NPB-OpenACC because the arrays

have different size dimensions. In class C, the dimensions

are equal, consequently, NPB-CUDA memory consumption is

close to NPB-OpenACC.

NPB-CUDA and NPB-OpenCL achieved a similar perfor-

mance and memory consumption in IS as both implemented

similar parallelism strategies. IS has the smallest workload and

degree of parallelism of the NPB. The kernel needs atomic

operations and several synchronizations with the host. These

characteristics impacted significantly on GPU performance at

the point that it is the only kernel where our approach achieved

less than 20 of speedup. NPB-OpenACC results are not shown

because their IS implementation was not available.

The NPB-CUDA performance in MG is achieved due to the

strategy adopted. In the functions interp and rprj3, we

were able to launch a single GPU kernel with no branch diver-
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gences. Since this was not possible for psinv and resid,

we applied memory coalescing. NPB-OpenCL implemented

a similar strategy and obtained also a similar performance.

NPB-OpenACC obtained a significant lower performance.

This work implemented a different parallelism strategy com-

pared to ours. In interp and rprj3 branch divergences

were eliminated, however, they splitted the functions in several

GPU kernels. Therefore, synchronization with the host is

necessary among each GPU kernel launch in order to maintain

the correctness. It adds an extra overhead, as these functions

are called recurrently in MG. Although the parallelism strategy

were similar to ours in psinv and resid, no memory

coalescing was implemented. The GPU global memory latency

and the additional synchronizations between CPU and GPU

were the main reasons for NPB-OpenACC’s low performance.

Finally, our version presented the smallest memory consump-

tion as we just offload to the GPU only the code regions

needed. NPB-OpenCL and NPB-OpenACC implemented in

way that the complete MG is offloaded to GPU, requiring more

GPU memory usage. Observe that NPB-OpenACC presented

the highest memory consumption.

We have to highlight that the performance of NPB kernels

varied significantly due to the different code characteristics. EP

achieved higher speed-ups because it is able to exclusively use

the GPU with almost no communications/synchronizations.

CG and other kernels have more synchronizations between

GPU and CPU. FT and MG have branch divergences that

were not eliminated in significant parts of the code. FT also

has different memory accesses patterns that impact speedup.

MG has similar code characteristics to FT, however, it has

more GPU kernel calls, synchronizations, and more branch

divergences, which resulted in lower speedups than FT. Finally,

IS has the smallest degree of parallelism from the NPB kernels,

demands GPU atomic operations, has branch divergences that

can not be eliminated, and also has many synchronizations

between host and GPU.

V. CONCLUSION

This paper presented new and efficient NPB kernels for

GPUs using CUDA. The solution was compared to the state-

of-the-art NPB OpenACC and OpenCL versions. The exper-

imental results have shown that it is possible to obtain good

performance on GPUs. Our parallel versions were significantly

better concerning performance and memory consumption.

Since NPB represents the fluid dynamic application domain,

our investigations and analysis are important to reason about

the parallel implementation challenges and behaviors on GPUs

in this application domain. With these contributions, other

opportunities for future works remain opened. We plan to

apply our design principles for improving performance and

reducing the memory consumption of OpenACC and OpenCL

versions. Also, to expand the research to the NPB pseudo

applications using CUDA as well as to other GPU parallel

programming frameworks. Another opportunity is to exploit

parallelism using multi-GPU.
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