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ABSTRACT
Data generation, collection, and processing is an important work-

load of modern computer architectures. Stream or high-intensity

data flow applications are commonly employed in extracting and

interpreting the information contained in this data. Due to the

computational complexity of these applications, high-performance

ought to be achieved using parallel computing. Indeed, the efficient

exploitation of available parallel resources from the architecture

remains a challenging task for the programmers. Techniques and

methodologies are required to help shift the efforts from the com-

plexity of parallelism exploitation to specific algorithmic solutions.

To tackle this problem, we propose a methodology that provides

the developer with a suitable abstraction layer between a clean

and effective parallel programming interface targeting different

multi-core parallel programming frameworks. We used standard

C++ code annotations that may be inserted in the source code by

the programmer. Then, a compiler parses C++ code with the anno-

tations and generates calls to the desired parallel runtime API. Our

experiments demonstrate the feasibility of our methodology and the

performance of the abstraction layer, where the difference is negli-

gible in four applications with respect to the state-of-the-art C++

parallel programming frameworks. Additionally, our methodology

allows improving the application performance since the developers

can choose the runtime that best performs in their system.

KEYWORDS
programming language, parallel programming, parallel patterns,

algorithmic skeletons, C++ annotations, source-to-source code gen-

eration, TBB
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1 INTRODUCTION
Stream processing applications are characterized by a flow of data

continuously moving through processing filters or stages. Common

examples are found in cryptography, audio and video processing, or

data compression. These applications are becoming more and more

popular today as huge amounts of data are generated through the

operation of electronic devices or software systems. However, this

is a computationally intensive endeavor for getting time efficient

insights/results and requires to exploit parallelism on current multi-

core architectures for increasing the performance [2].

Multi-core processors are ubiquitous in machines ranging from

mobile devices to data center servers [13]. Consequently, parallel

development techniques are required to leverage the architecture’s

inherent parallelism. These techniques aim at providing mecha-

nisms or algorithms to deal with the complex aspects of parallelism

such as load balancing, cache optimization, synchronization, and

thread management. Parallel programming abstractions are impor-

tant to relieve the programmer of the burden of rearranging these

low-level concepts such that he can concentrate his efforts on the

formulation of efficient domain-specific solutions. One way of pro-

viding these abstractions consists of adopting a structured parallel

programming approach where the user is equipped with parallel

patterns to express parallelism in the source code [15, 16]. To this

purpose, Intel TBB (Threading Building Blocks) [18], FastFlow [1],

SkePU2 [7], and GrPPI (Generic Parallel Programming Interface) [5]

were designed to support parallelism on multi-cores. There are also

the non-structured approaches like OpenMP and C++ Threads.

Each parallel programming interface is designed in a different

way concerning abstraction and parallelism management. As an

example from the scientific community, FastFlow [1] implements

its runtime system over non-blocking communication queues with

ready to use static and dynamic scheduling as well as offers the

possibility to customize the load balancing. To the programmer, it

provides building blocks to instantiate ready to use parallel patterns

(e.g., Map, Farm, and Pipeline) that can be easily nested to compose

other parallel patterns. Intel TBB [18] is an example of the enterprise

community. It is less flexible in terms of pattern composability and

load balancing compared to FastFlow. TBB is used in production

code and does not allow to change its very well optimized work-

stealing task scheduler. The challenge here is not judging which is

the better framework to always use, instead, it is to find a reasonable

way that we can get the best of the two worlds and other parallel

programming frameworks.

As can be seen, these frameworks vary among the design prin-

ciples and may perform better under applications with a certain

computational characteristic since theywere implemented using dif-

ferent workload scheduling techniques, communication and threads

48

https://doi.org/10.1145/3427081.3427088
https://doi.org/10.1145/3427081.3427088
https://doi.org/10.1145/3427081.3427088


SBLP ’20, October 19–20, 2020, Natal, Brazil Hoffmann and Griebler et al.

management, cache optimizations, or mutually-exclusive data ac-

cess. In the context of stream processing, it has been observed that

TBB’s functions particularly well with applications where the work-

load may not be predictable or constant [10, 11, 17]. Also, FastFlow

is very well optimized to deal with fine-grained stream compu-

tations and low latency requirements [4]. This demonstrates the

valuable efforts in the C++ parallel programming frameworks for

multi-core systems that have been made. Therefore, we are propos-

ing a methodology that enables the programmer to choose between

existing C++ parallel programming frameworks without changing

the source code. We are focusing on the stream parallelism domain,

using as a base for our research the domain-specific language called

SPar [9], which already generates FastFlow as a target framework.

Thus, our scientific contributions are summarized as follows:

• A methodology that assists programmers with high-level

C++ code annotations for stream parallelism exploitation and

aims to support different multi-core’s parallel programming

frameworks without changing the source code. It extends

the research work of SPar [9].

• An implementation of this methodologywith SPar to support

parallel code generation for the TBB runtime system, which

required the design of new transformation rules that were

implemented in the compiler tool.

• An experimental performance evaluation of our prototype

implementation in different real-world stream processing ap-

plication types (video, compression, and image), comparing

with the state-of-the-art parallelizations. We also discussed

the programmability paybacks.

The rest of the paper is organized as follows. Section 2 discusses

related works and Section 3 presents the specifics of the annotation

methodology and discusses the code generation process. Subse-

quently, Section 4 demonstrates the experimental results. Finally,

Section 5 presents the final remarks.

2 RELATEDWORK
During a period of three years (2015 - 2018), researchers involved

in RePhrase project worked on software engineering tools that aim

at decreasing the complexity of parallel programming in C++ lan-

guage [19]. The project covered concepts such as parallel pattern

composition, parallel programming abstractions, pattern recogni-

tion techniques, and semi-automated parallelization tools. Specifi-

cally, one of the main goals of this project was supporting paral-

lelism in data-intensive applications. It considers parallelism details

such as thread creation, communication, scheduling, data manage-

ment, etc. The pattern set defined in [3] is an important part of

the RePhrase project. In it, the researches present parallel patterns

suitable for offline or on-the-fly processing. Typically, offline pat-

terns can be represented by data parallelism whereas on-the-fly

processing is a continuous flow of data or data stream. The authors

implemented these parallel patterns in the FastFlow library. Using

FastFlow, they demonstrated the usability of the patterns by suc-

cessfully parallelizing pseudo and real-world applications. On the

other hand, our approach focuses on abstracting stream parallel

computation by means of source code annotations.

In [5], a parallel pattern based interface named GrPPI is pre-

sented. From a high-level perspective, their work provides a unified

interface for existing frameworks such as FastFlow or TBB. The

authors utilized C++ templates in order to generically encapsulate

the different patterns provided by other frameworks. Therefore,

GrPPI attempts to provide a C++ standard for parallel program-

ming by means of algorithmic skeletons. Comparatively, instead of

providing a unified interface, we aim at providing an abstraction

layer between the developer and TBB framework. Moreover, the

techniques applied to achieve this goal are different from GrPPI. We

used standard C++ annotations instead of C++ templates, and we

provided ways to compose/annotate programs while enabling the

programmer to abstract from the pattern implementation details.

A methodology to automatically identify potential parallel re-

gions in the source code could assist mitigating the cost of develop-

ing parallel programs. In [6], they investigated such technique to

help detect and annotate parallel patterns in C++ programs. They

employ a compile-time approach to reduce the costs of runtime

profiling tools. Furthermore, their method supports Farm, Pipeline,

and Map patterns, which are suitable for data intensive applications.

They use C++ annotations to mark the parallel patterns identified.

Overall, the tool was able to recognize a significant number of par-

allel regions in their test cases. Moreover, the authors state that

his approach may miss important parallel regions and add slight

performance overheads. Also, they do not provide a compiler tool

to parse the annotations inserted in the code. In contrast, we pro-

vide a compiler tool that is able to parse, check the semantics, and

generate parallel code for different runtimes (FastFlow and TBB)

The work presented in [12] evaluate source-to-source code par-

allelization compilers. They focus on shared-memory multi-core

architectures. Mainly, they consider AutoPar, Par4All, and Cetus

among other compilers for automatic parallelization. These are all

tools suitable for OpenMP parallelization. Although they function

on the outdated version of OpenMP 2.5, the author suggested ways

to utilize it with OpenMP 4.5, which is suitable for heterogeneous ar-

chitectures equipped with CPU and GPGPU. They test and compare

these compilers in order to assess their strengths and weaknesses,

performance, usability and suggest improvements. There is not

a clear evidence of a better compiler, while some perform better

than others in different situations. Another aspect is that these

compilers generate an AST (Abstract Syntax Tree) from the code,

perform the appropriate changes and transform it back to code. Our

work in contrast generates code for stream processing applications

on multi-core shared memory architectures. For that it uses Fast-

Flow (implemented in [9]) and TBB (added in this work) instead

of OpenMP. We also present the transformation rules required to

perform the source-to-source code transformations.

3 STREAM PARALLELISM ANNOTATIONS
This Section presents the methodology, syntax and semantics of

the code annotations, compiler design and transformation rules.

3.1 Methodology
In a nutshell, the proposed methodology aims to simplify the de-

velopment of stream parallel applications with different parallel

programming runtime using code annotations. Figure 1 illustrates

a high-level perspective of the proposed methodology. Firstly, the

developer must insert source code annotations to describe a stream
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parallel processing region. These annotations were developed to

provide nomenclature that feels familiar to the stream processing

domain [9]. The next step is to interpret the code annotations and

generate the proper parallel implementation. This task is accom-

plished using CINCLE (A Compiler Infrastructure for New C/C++

Language Extensions) tools [8]. CINCLE is a compiler infrastruc-

ture for generating new C/C++ embedded DSLs (Domain Specific

Language). It is not a compiler, but a support tool that provides

basic features and a simple interface to enable AST (Abstract Syntax

Tree) transformations, semantic analysis and source-to-source code

generation. The main goal is to simplify the processes of creating

high-level parallelism abstractions by using the standard C++11

attribute mechanism. Differently from C++ templates modeling

common parallel patterns, the annotations make possible to pre-

serve the original code structure. Furthermore, there is no need for

the developer to know about the specific underlying runtime mech-

anisms and API details. Instead, the parallelism can be expressed by

high-level annotations identifying stream parallel computations.

Figure 1: Proposed Methodology.

To put it simply, we use CINCLE’s support to transform the code

annotations into the proper parallel code of the supported runtime

(FastFlow, TBB, GrPPI, or OpenMP) and to generate the final paral-

lel code. Combined with the code annotations, the developer can

switch from one target framework to another and explore the differ-

ent performance results by simply changing a compilation flag. For

TBB this flag is -SPAR_TBB and, if not used, the default is FastFlow.

When switching from one system to another, the same parallel code

can be re-compiled to better meet the requirements of that new

system. This ability to alternate between runtime environments can

also be a option to improve application performance since it can

perform better under different circumstances or be more suitable

to a different kind of processing. As an example, OpenMP is better

suited for data parallelism on multi-core while FastFlow can be

better exploited when developing stream applications. As a bonus,

if there is no FastFlow available in the new system, the developer

can simply change to other supported runtime.

Finally, all of this process is handled with the transformation

rules applied during the compilation process. There are transforma-

tion rules to describe in which way to transform the code annota-

tions into the proper parallel code. Each underlying runtime has its

own independent rule set, which aims to cover the implementation

details for the stream domain of applications applied to the runtime

API. For this work, FastFlow and TBB have been supported into

the transformation rules for the compiler. FastFlow is the default

generation of code that was presented in [9] and TBB is first de-

veloped in this work. Hence, GrPPI and OpenMP are aimed for

targeting in the future. Although OpenMP works with similar idea

of annotations, it is only straightforward to annotate and parallelize

for loops without data dependencies. For stream parallelism, it is

quite complex, nonproductive, and requires the implementation of

low-level synchronization mechanisms as reported previously [8].

3.2 Syntax and Semantics
In order to simplify the stream parallelism, we used the anno-

tations proposed in [9]. These annotations are standard C++11

attributes mechanisms. They are delimited by double brackets

[[attr-list]], where a list of attributes are used. Furthermore,

the C++ standard grammar [14] states that annotations can be

placed almost anywhere in the code, allowing for the original code

structure to be maintained. However, the attribute implementa-

tion will determine if it can be used for types, objects, code blocks,

etc. With our annotations, the developer is able to express various

different stream parallel processing configurations. Furthermore,

limitations were imposed to ensure the correctness of the parallel

code transformations. We also considered two classes of attributes,

ID (identification) and AUX (auxiliary). Therefore, when using this

annotations it is mandatory to contain one ID as the first attribute

and optionally, a list of AUX (e.g. [[ID-attr,AUX-attr-list]]).
The whole attribute syntax utilizes 2 ID and 3 AUX, which are

briefly described below:

• ToStream: is an ID attribute used to identify the stream par-

allel computation region of the code;

• Stage: is an ID attribute used to identify a filtering/process-

ing stage of the stream processing region. It must be utilized

inside the scope of a ToStream;
• Input: is an AUX attribute that specifies which are the data

elements consumed by the ToStream parallel region or a

Stage;
• Output: is an AUX attribute to specify which data is pro-

duced for a subsequent Stage. Can only by utilized with

Stage ID attribute;

• Replicate: is an AUX attribute to marks a Stage to be exe-

cuted in parallel to improve performance. It takes as input an

integer number or, if left blank, defaults to an environmental

variable, which are used to represent the parallelism degree.

1 [ [ spar : : ToStream ] ]

2 for ( in t num=1 ;num<1000 ;num++) {

3 in t rev = 0 ;

4 [ [ spar : : Stage , spar : : Input ( num , rev ) , spar : : Output ( num , rev ) , spar : :

Replicate ( 4 ) ] ] {

5 in t t_num = num ;

6 while ( t_num != 0 ) {

7 rev = rev ∗ 10 + t_num % 1 0 ;

8 t_num = t_num / 1 0 ;

9 } }

10 [ [ spar : : Stage , spar : : Input ( num , rev ) ] ] {

11 i f ( num == rev )

12 s t d : : cou t << " The number " + s t d : : t o _ s t r i n g (num) + " i s a

pa l indrome . " << s t d : : end l ;

13 }

14 }

Listing 1: Example for using the code annotations.
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Relative to the semantics, a number of rules must be respected in

order to ensure the correctness when generating the parallel code.

Firstly, every annotation must be placed in front of an iteration or

compound statement. This ensures the scope of the parallel compu-

tation regions is properly defined. Additionally, the semantic rules

do not allow for nested ToStream annotations, which means it is

not possible to generate a stream flowing inside another stream.

However, the number of Stages inside a ToStream region is not

restricted. Both Input and Output must contain at least one argu-

ment. Consumer Input and producer Output attributes must have

matching arguments. Furthermore, Output can only be used with a

Stage attribute, whereas Input can be utilized with both ToStream
and Stage. Finally, the Replicate can be solely used with a state-

less operator, which means the associated computation stage can

not have unchecked critical/atomic code blocks.

With the example in Listing 1, we demonstrate the usability

of the annotations in the parallelization of a C++ pseudo-code

that discovers and prints palindrome numbers between 1 and 1000.

Firstly, ToStream is used to mark the parallel computing region

as the scope of the for iteration statement in line 2. In this case,

ToStream does not consume data from other parts of the code so

no Input is needed. Effectively, this means that the stream items

will be created and generated directly from ToStream region inde-

pendently from the rest of the code. The code situated between the

ToStream annotation and the first Stage is the generation stage of

the stream, which produces the numbers for the following stages.

This generation stage is the only code inside a ToStream that can
be left outside the scope of a Stage. In sequence, the computation

stage annotated in line 4 is responsible for reversing the number.

Here, the stage will consume num and rev in Input from the pre-

vious stage, which is the generation one. Then, it will perform its

computations and send the data to the following stage, which is

specified by the Output annotation. Additionally, the Replicate
attribute guarantees that the stage code will be executed in 4 dif-

ferent threads. In this case, it is safe to replicate the computation,

since this is a stateless stage. It does not require to access previous

states of the variables. Numbers are processed independently from

one another. Lastly, the Stage in line 10 consumes num and rev
from Input, checks if the number is palindrome and prints it. If the

input order should be preserved, a compilation flag has to be used

as we explain in Section 3.3.2.

3.3 Source-to-Source Code Generation
In this Section, we present the internal compiler design and trans-

formation rules.

3.3.1 Compiler Design. In this Section, we provide an overview

of the low-level details of the methodology. After the source code

is properly annotated, the following step is the code generation.

Figure 2 illustrates the compilation process, which is supported by

CINCLE. The compilation phase starts with a call to GCC compiler

to perform a semantic and syntax analysis of the C++ code. Then,

the scanner module produces the tokens that will be forwarded to

the parser to create the AST (Abstract Syntax Tree). This AST is

fully accessible, allowing for complete control of every node. This

way, the code transformations can be performed directly on the

tree during compilation time. Nodes can be removed or shifted

freely, allowing for any possible code transformation required to

generate the calls to the abstracted runtime. This is one of the main

advantages of CINCLE, since this operations would not be possible

just using the GCC compiler.

Scanner
Parser

Annotation
Analysis

A

B C

D E

AST

Binary
Generation

A

B F

D G

F
G

Transformations

Figure 2: Compilation Flow.

Subsequently, a semantic analysis module will check the cor-

rectness of the annotations. Here, the semantic rules previously

described are checked and inconsistencies are reported to the de-

veloper. It is important to point out that if a stage is annotated

as parallel, this step does not check for data races. The stateless

nature of the stage is a complete responsibility of the programmer.

Later, the code transformation step performs the appropriate trans-

formations directly on the AST. These consist of substituting the

annotations nodes in the tree with appropriate calls to abstracted

runtime API. This step must be performed with extensive care to

the C++ ISO, features as mistakes can easily brake the entire code.

The final steps can be expressed as the parallel code generation

from the transformed AST. After the end of this process, GCC is

called again to produce the final binary.

Inside the compiler, we create separately an AST for the annota-

tions such as depicted in Figure 3 to simplify the implementation of

the designed transformation rules after the semantic analysis. This

is a simplified view of the actual representation, which is based on

the tree generated from the code previously explained in Listing 1.

Each attribute is represented as a node in the tree that stores its

information about the arguments. The root node is a function defi-

nition node (FD) that is followed by a ToStream (T) node with an

identifier node (ID) of stages. Here, there are two Stage (S) each

with its own AUX (auxiliary attributes). One of them contains an

Input (I), Output (O) and Replicate (R) annotation and the other

just an Input. Starting from this AST, the compiler performs the

transformation according to the rules in the following Section.

Figure 3: Representation of the SPar annotations in the AST.

3.3.2 Transformation Rules. The goal of the compiler transfor-

mation phase is to generate the proper calls to the parallel runtime

(FastFlow or TBB) from the annotated code. A set of transforma-

tion rules is defined in order to respect the semantics previously

described. In order to clarify the rest of this Section content, we
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define some terms. A □ is a generic block of code and the scope

of the sentences is represented by {...}. Annotations are marked

as [[...]] and may contain a list of attributes as an argument. The

ID attributes are T (ToStream), and S (Stage). The AUX attributes

I (Input), and O (Output) take a list of arguments ai . Finally, R
(Replicate) takes n an integer variable or literal number greater

than zero as an argument.

There are two different transformation rule sets, one for Fast-

Flow and another for TBB. Each one of these rule sets aims to

cover the requirements for the stream parallelism domain applied

to each runtime. We start with FastFlow rule set definition. To ex-

press and generate parallel code for FastFlow, we used Pipeline

and Farm parallel constructs. These are suitable patterns for stream

processing applications. The Pipeline is defined as pipe(S1, S2, ...)
and is composed of a list of sequential computational stages Sn .
The Farm is defined as f arm(E,W ,C), where E is a sequential stage

that also distributes data items among the workers,W is a group

of parallel worker threads and C is an optional sequential data col-

lection stage. Any composition of these patterns may be used (e.g.

pipe(S1, f arm(E,W ), S2)).

Table 1: Definitions of the transformation rules for FastFlow
extracted from [9].

D0 An additional gatherer stageψ is generated when the last

block of code is annotatedwith S that contains in its attribute
list Rn and Oi .

D1 A generic block of code may appear as a pipe stage, as an E
orC stage in a f arm if its annotation list S does not contain

the attribute Rn . A block of code can be assigned to E when

the following block of code is assigned toW . A block of

code can be assigned to C when the previous block of code

is aW . Otherwise, the block of code is assigned to a pipe
stage.

D2 A generic block of code with an annotation list S containing

an Rn attribute may appear as aW stage in a f arm.

D3 AT is a f arm when there is a S in the attribute list that can

generate aW due to D2 where the block of code annotated

by T is the E.

D4 A T is a pipe when the first S is not aW due to D2 or when

there are more than two Ss.

D5 A f arm is a stage ofpipe whenD4 is applied first andmanda-

tory applies D2 while D1 is optional for E.

We demonstrated the definitions used to create the transfor-

mation rules in Table 1. The priority of the transformations rules

follows the growing order. Therefore, when the rules apply, a defi-

nitionDi will be chosen where i is the lowest possible. Additionally,
in some cases more than one definition Di may apply to the same

annotation. If more than one apply and the lowest i does not gen-
erate a direct call to the template, the following i may be used

instead. We also exemplify the use of these definitions in Rule 1,

which is the code previously described in Listing 1. This refers to

the annotations [[T0]]{□0, [[S0, I0,O0,Rn ]]{□1}, [[S1, I1]]{□2}}. In
this case, D0, D4, and D5 do not apply. D0 is used in rarer cases,

where the output of a replicated stage might be used outside of

the stream region. Then, the last annotation with [[S1, I1]] will be
the Farm’s collector to conform with definition D1. The second

annotation [[S0, I0,O0,Rn ]] will be in conformation with definition

D2, which results in □1 as the Farm’s worker. Lastly, [[T0]] applies
for definition D3, which generates a f arm with □0 as the Farm’s

emitter.

[[T0]]{□0, [[S0, I0,O0,Rn ]]{□1}, [[S1, I1]]{□2}}

⇓

f arm(E(□0), W (□1), C(□2))

(1)

Table 2: Definitions of the transformation rules for TBB.

D0 An additional gatherer filter ψ is generated when the last

block of code is annotatedwith S that contains in its attribute
list Rn and Oi .

D1 A generic block of code is a sequential filter in a pipe if its
annotation list S does not contain the attribute Rn .

D2 A generic block of code with an annotation list S containing

an Rn attribute is a parallel filter in a pipe .

D3 AT annotation is transformed into apipe when the attribute
list contains at least one S .

To express and generate parallel code for TBB we propose a new

rule set. In TBB, the pipeline(f ilter (S0), f ilter (S1), ...) template

was considered, which contains a list of filters with Si processing
stages. Each one of these filters may be seq (sequential) or par (par-
allel). The definitions are described in Table 2 and the priority of the

transformations rules follows the growing order. Again, more than

one definition may apply to the same annotation and a definitionDi
will be chosen where i is the lowest possible. Starting with Rule 2,

it is for transforming [[T0]]{□0, [[S0, I0,O0,Rn ]]{□1} sentence. D0

is not applied in any case of the annotation schema. D1 matches

solely for annotation [[S1, I1]], which generates a sequential filter.

Then the annotation with [[S0, I0,O0,Rn ]] generates a parallel filter
according to D2. The annotation [[T0]] matches for definition D3,

which generates the pipeline , receiving as argument the generated

stages from the previous definitions. Regarding to the sentence

[[T0]]{□0, [[S0, I0,O0]]{□1}, [[S1, I1,R1]]{□2}} (Rule 3), D0 is also

not applied. The [[S0, I0,O0]] annotation matches with the defini-

tion D1, generating a sequential filter. Then the [[S1, I1,R1]] anno-
tation matches for D2 to generate a parallel filter. Lastly, the [[T0]]
annotation matches with D3, which generates a pipeline receiving
as argument the stages generated from the previous definitions.

[[T0]]{□0, [[S0, I0,O0,Rn ]]{□1}, [[S1, I1]]{□2}}

⇓

pipeline(seq(□0), par (□1), seq(□2))

(2)

[[T0]]{□0, [[S0, I0,O0]]{□1}, [[S1, I1,R1]]{□2}}

⇓

pipeline(seq(□0), seq(□1), par (□2))

(3)

In addition to the previous transformation rules demonstrated,

TBB implementation also imposes a few other restrictions. Before
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Figure 4: Transformation case in the TBB filter.

that, it is necessary to understand TBB’s nature when handling the

pipeline flow. In TBB’s pipeline, a token is a processing element that

can be active during the execution. During the pipeline execution,

the tasks will associate themselves with a token and carry it for as

many consecutive filters as possible. If a sequential filter is already

occupied by another task, the other task will park its token there

and look to carry other tokens through other filters. Because of

that, every filter needs to operate in a non-continuous manner and

each time return a pointer to the task carrying this token.

Effectively, this imposes two restrictions to the first process-

ing filters, generally responsible for the data generation. They are

illustrated by 4. The first one defines that no initialization of pre-

processing variables is possible in the operator code since it would

overwrite the variable every time the operator is executed. The

second restriction is that the for loop can not be utilized in the

first stage as the generation loop. The reason is that the initializa-

tion field of the for would have the same initialization problem

previously described. In addition, the expression field would never

execute as the operator would return its value prior to that. These

transformations are performed by the compiler directly in the AST

and the programmer does not need to consider them when anno-

tating the source code. The remaining transformation are direct

calls to TBB’s API. We illustrate these situations and the transfor-

mations required to solve them in Figure 4. On the left side of the

figure, we exemplify two operators, operator1 with the for loop
limitation and operator2 with the initialization situation. On the

right, we demonstrate the required transformations to properly

accommodate the code in TBB’s API.

The maximum number of active tasks during the program execu-

tion is defined accordingly to the Replicate argument. This number

is also used to define the maximum number of concurrent TBB

tokens. Each TBB token is equivalent to one data processing ele-

ment active throughout the pipeline execution. That is an important

aspect for the performance of the application, where a very small

number can lead to idle processors waiting for tokens and too high

can utilize extra memory. As a solution, we define this number of

tokens with the number of active parallel workers times ten. In [11],

this was considered to be the overall best performing number of

tokens for the tested set of stream applications.

One final remark to be considered in the code generation is the

need for re-ordering data elements when a stage is replicated. This

is necessary to guarantee the integrity of the output data in some ap-

plications as data reaches the final stage in a non-deterministic man-

ner. For SPar, it does not require any code changes to be performed

and can be achieved using the compilation flag -spar_ordered. In
FastFlow’s case, it requires to generate code that instantiate a dif-

ferent template class, which is ofarm (ordered farm). On the other

hand, TBB requires us to generated a different filter type using

serial_in_order instead of the default serial_out_of_order
for the stages that are not replicated.

4 EXPERIMENTS
The experiments aimed to assess the performance of the anno-

tated methodology proposed in the previous Sections. We have per-

formed the tests using the Ferret (image similarity search), Bzip2

(compression), Lane Detection (video), and Person Recognition

(video) applications. These applications were first presented in [10]

and [11], where more low-level details can be found and input files

information.

The tests were performed in a machine equipped with 32GB

of RAM memory and two processors Intel(R) Xeon(R) CPU E5-

2620 v3 2.40GHz (total of 12 physical cores and 24 threads with

Hyper-Threading). The operating system was Ubuntu Server 64

bits kernel 4.15.0-88-generic, and GCC 7.4.0. The compilation was

also performed with the -O3 optimization flag. Other libraries are

Opencv version 2.4.13.6, TBB 2017 (INTERFACE_VERSION 9107),

and FastFlow (revision 2.2.0-45). Each plotted value on the graphs

is obtained from the arithmetic mean of 10 executions performed

for each parallelism degree value ranging from 1 up to 24. Addition-

ally, the standard deviation is also plotted in the form of error bars,

which may not be visible in most cases as its mostly negligible. For

each one of the applications, we tested SPar generating FastFlow

(spar) and SPar generating TBB (spar-tbb). Both these SPar versions

used the same annotations and no changes were required to switch

between the two. Additionally, we have also compared our anno-

tated implementations with versions utilizing Pthreads (pthread),

FastFlow (ff), and TBB (tbb). This way, we can showcase a perfor-

mance comparison with the generated code and state-of-the-art
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Figure 5: Ferret application.
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Figure 6: Bzip2 application.

manual implementations. Moreover, we guaranteed the correctness

of the parallel versions by comparing the hash value of the output

with the sequential version.

The graphs in Figures 5, 6, 7, and 8 showcase the performance

results achieved. They express the execution times of each appli-

cation in a logarithmic scale with base 2. Moreover, in all of the

resulting performance graphs, the 0 value of parallelism degree

is the sequential version of the program. As another important

aspect, the number of replicas in the x axis does not necessarily

represent the number of active threads in the system. Rather, each

pipeline stage may have one dedicated thread or, in the case of

parallel stages, a thread pool determined in size by the value of the

number of replicas.

With regards to the parallel Bzip2 results in Figure 6, we observe

an overall higher standard deviation. We think this situation is

due to the variations in disk accesses, which is inflated by the big

input file. Beyond that, the results were similar among all versions

throughout the execution. The exception is ff, which upon reach-

ing the 11 parallelism degree is affected by a load balancing issue

accentuated by the use of hyper-threading. A single thread situated

in one processor core process its workload faster than a physical

and a virtual thread sharing another processor core. That is because
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Figure 7: Lane Detection application.
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Figure 8: Person Recognition application.

the threads constantly switch CPU access between instructions to

better fill the hardware pipeline, which in theory may render slower

single thread performance but better overall program performance.

Since the scheduling is static, all the execution is halted until all

threads stop execution. This does not happen in the TBB versions,

which generate work-stealing scheduling. For the most, spar-tbb
achieves a very similar result to the manual tbb implementation.

The results of Ferret in Figure 5 demonstrate a similar situation

to Bzip2 in the ff and spar versions. On the other hand, the TBB

versions performed slightly better due to the work-stealing sched-

uling achieving a more balanced workload. Again, spar-tbb and
tbb were constantly similar. However, it is noticeable that pthread
is still the overall better performing implementation. Eventually,

other versions catch up in performance at the 24 parallelism degree.

Both Lane Detection (Figure 7) and Person Recognition (Figure 8)

showcase the same performance situation previously explained for

the ff version. However, spar and ff performed slightly better

and similar to pthread compared to the other versions on Lane

Detection before number of replicas 11. This is because Lane De-

tection computation and workload is naturally more well balanced

than in the other 3 applications. The cost of performing dynamic
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work-stealing scheduling is higher than the static scheduling alter-

native. Therefore, the Lane Detection application is a case where

lower cost for workload scheduling performs slightly better before

the number of replicas 12.

When evaluating the results, spar-tbb achieved a very similar

result to the manual tbb in all applications. Regarding spar-ff and
ff, they also achieved a very similar result in most cases. Finally,

we observed that by generating TBB code with SPar, we achieved a

superior performance result in Ferret, Lane Detection, and Person

Recognition applications, specially utilizing the hyper-threading

resource. In Table 3, we presented the total SLOC (Source Lines

Table 3: Total SLOC for each version

Version Ferret Bzip2 Lane
Detection

Person Recog-
nition

seq 223 1278 126 126

spar 258 1404 130 132

tbb 376 1483 170 175

ff 357 1607 164 174

pthread 623 1917 415 417

of Code) for each version, including the sequential implementa-

tion. The spar only contains one version since both spar-ff and
spar-tbb use the same annotations. Alone, SLOC is not expressive

enough to conclude which version is more productive. However, it

provides an overview of the code intrusion that each API generates.

Among all applications, spar achieved the lowest SLOC value. It

is closely followed by tbb and ff versions, which are an abstrac-

tion layer below. As expected, pthread obtained the highest SLOC

evaluation, since it is the most complex implementation. When

putting these results together with the performance results pre-

viously presented, it is possible to observe that the highest SLOC

implementations achieve the overall best performance results. This

is because, they provide more customization options that can be

leveraged by an experienced developer. Beyond reducing the SLOC

number, SPar reduces the complexity switching between runtime

versions (FastFlow and TBB). This allows for lower time-to-deploy

when changing from one system to another.

5 CONCLUSION
This paper discussed an approach to simplify the development of

stream parallel applications by means of source code annotations.

We also presented the proposed annotations schema and its us-

ability in a simple example. Furthermore, we presented the code

generation process, which operates through source-to-source trans-

formations performed directly in the SPar’s compiler AST. These

transformations aim at converting the annotations into the proper

calls to the supported parallel runtime. We have described these

transformation rules for two different runtimes: FastFlow and TBB.

Beyond that, we performed tests on a series of stream processing

applications, which demonstrated the performance viability of the

solution. The performance of the applications developed using our

solution was very similar to the performance achieved using the

manually developed versions. Moreover, by generating TBB, we

improved performance on three of four tested applications. Beyond

that, we also identified that our solution achieves the overall low-

est code intrusion through a SLOC analysis. For future work, we

intend to the expand the transformation rule set to support code

generation for GrPPI, SkePU, and OpenMP.
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