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Abstract—Although the industry has embraced the cloud com-
puting model, there are still significant challenges to be addressed
concerning the quality of cloud services. Network-intensive ap-
plications may not scale in the cloud due to the sharing of the
network infrastructure. In the literature, performance evaluation
studies are showing that the network tends to limit the scalability
and performance of HPC applications. Therefore, we proposed
the aggregation of Network Interface Cards (NICs) in a ready-to-
use integration with the OpenNebula cloud manager using Linux
containers. We perform a set of experiments using a network
microbenchmark to get specific network performance metrics and
NAS parallel benchmarks to analyze the performance impact on
HPC applications. Our results highlight that the implementation
of NIC aggregation improves network performance in terms
of throughput and latency. Moreover, HPC applications have
different patterns of behavior when using our approach, which
depends on communication and the amount of data transferring.
While network-intensive applications increased the performance
up to 38%, other applications with aggregated NICs maintained
the same performance or presented slightly worse performance.

Index Terms—Cloud Computing; NIC Aggregation; Network
Performance; Bonding; Linux Containers

I. INTRODUCTION

Cloud Computing (CC) is a model which provides ubiq-
uitous, convenient, on-demand network access for a shared
pool of computing resources that can be provisioned on-
demand and released with minimal efforts, requiring a network
connection [1]. This model is divided into three layers, known
as IaaS (Infrastructure as a Service), PaaS (Platform as a
Service) and SaaS (Software as a Service) [2]. As cloud com-
puting benefits have attracted attention from both academia
and industry fields, there is a great deal of research interest for
estimating the performance impact when moving applications,
environments, and server infrastructures to the cloud.

The observed benefits of using cloud computing came
at the price of performance unpredictability and potential
overheads [3], [4]. Performance losses in clouds occur mainly
due to the negative impact of virtualization layer as well as the
overhead of multi-tenants sharing/competing for resources. A
relevant aspect related to performance on cloud environments
is the network speed achievable by cloud instances. A fast
network interconnection enables rapid resources provision and
can potentially improve the quality of services for instances.

Nonetheless, the network performance is relevant for cloud
applications, mainly for distributed processing, load balance,
and high availability [5], [6].

Additionally, as previous research results [7] demonstrated,
performance challenges of HPC applications executing on
cloud environments are usually imposed by the network inter-
connection. Also, as CC is built on geographically distributed
data centers and clustered servers, its performance is highly
network-dependent and therefore can seriously affect the per-
formance of data-intensive and HPC applications [8].

In this work, we tackle this problem by proposing and pro-
viding a new implementation/validation using the aggregation
of multiple Network Interface Cards (NICs) working with bal-
ance round-robin mode. The goal is to improve network per-
formance for HPC applications executing on cloud instances.
For the experiments, we deployed a container-based cloud and
executed a network microbenchmark to evaluate throughput
and latency. We selected the NAS parallel benchmarks suite
to observe the advantages of our approach.

To the best of our knowledge, there is no other paper
in the literature that performs the same studies. The closest
investigation is from Rista et al. [9], which performs NIC ag-
gregation with bonding mode 4 (802.3ad) and its performance
was verified to a specific application from the big data field.
Our paper extends the contributions of this previous work.
We instead are using a different aggregation mode (mode 0 -
Balance Round-robin) and focusing on HPC applications. We
can, therefore, summarize the paper contributions as follows:

• A container-based cloud deployment approach using NIC
aggregation with balance round-robin mode that improves
both latency and throughput.

• An analysis of network performance impacts on HPC
applications, comparing the LXD deployment and the
native one with different number of NICs aggregated.

This paper is organized as follows. The related work is
described in Section II. The implementation and validation are
presented in Section III. Section IV presents an experimental
evaluation of the proposed solution with HPC applications.
Finally, Section V discusses and draws the paper’s conclusion
as well as future works.
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II. RELATED WORK

Provide network performance optimization for applications
executing in cloud environments is a relevant aspect. In
this work, we consider as related works those that tackle
network performance optimization for cloud environments.
The selected related works are described and compared to
our work. For instance, Vogel et al. [5] conducted a net-
work performance evaluation using CloudStack IaaS manager,
deploying KVM and LXC-based clouds. They measured the
network throughput and latency, and they indicated alternatives
for network performance improvements. They used vhost-
net module for optimizing the network performance. Results
showed that KVM achieves fair throughput rates but perfor-
mance degradation regarding latency. On the other hand, LXC
presented a better performance on latency but lacked support
and compatibility. In contrast, in this work, the focus is to
implement and validate NIC aggregation with different cloud
deployments for intensive HPC applications.

Shafer [10] evaluated network I/O performance in a private
cloud environment, which uses different Eucalyptus deploy-
ments. The experimental evaluation covered different native
OS and hypervisors (Ubuntu with KVM and CentOS with
Xen). Moreover, Shea et al. [4] analyzed the Xen hypervisor
architecture and the network performance of EC2 instances
on the geographically distributed area (WAN). Importantly,
Shea et al. [4] provided performance optimization for intensive
applications. Differently than Shafer [10] and Shea et al. [4],
in this work, we focus on providing performance optimizations
with NIC aggregation on different cloud deployments for
intensive HPC applications.

The study of Wang et al. [11] proposed the applicability
of the MultiPath TCP (MPTCP) protocol for improving the
performance of a distributed Hadoop/MapReduce architecture.
Their scenario exploited GPUs resources and shown the im-
pact of network bottlenecks on the application’s performance.
Noteworthy, the network link aggregation scheme reduced
data transfer time and, consequently improved the overall
performance of executing applications. In contrast, our work
focuses on applying/implementing NIC aggregation with net-
work bonding mode 0 known as balance round-robin in favor
of improving the network performance. Differently from other
works, our scenario covers HPC applications execting on real-
world cloud environments and assessing their performance
with different deployment scenarios.

Rista et al. [9] create an evaluation methodology of per-
formance measurements like bandwidth, throughput, latency
and completion times of Hadoop applications. In its evalu-
ation, they employed the Network Bonding mode 4 (IEEE
802.3ad) and executed Hadoop up to 3 instances concurrently
in LXC containers. As a result, they obtained performance
improvements in reducing the execution time of the Hadoop
applications in about 33.73%. Differently, we extended the
implementations for using more NICs with different environ-
ments and technologies. Besides, while Rista et al. [9] focus
on big data applications, we are targeting HPC applications.

III. IMPLEMENTATION

Cloud computing was built upon other consolidated tech-
nologies. The key among these technologies is the virtual-
ization, which dynamically abstract hardware resources such
as memory, CPU, storage, and even network for cloud in-
stances [12]. Although virtualization adds more complexities
regarding, e.g., management of resources, meaningful opti-
mizations and kinds of virtualization like lightweight virtu-
alization were created to avoid performance losses.

On the other hand, network interconnection is still a signif-
icant bottleneck for distributed workloads executing on cloud
environments and demands continuous performance charac-
terization and optimizations [5], [13], [7]. In this work, we
evaluate the feasibility of using NIC aggregation for improving
the performance of HPC applications.

A. NIC Aggregation

Considering the need for optimizing the network perfor-
mance for HPC applications, NIC aggregation is a potential
solution. First, we started our NIC aggregation configuration
in the native scenario1 by setting up the network bonding. This
configuration was performed in the Linux network service by
selecting up to four interfaces to be slaves from an aggregated
virtual interface. Then, the bond mode was selected that uses
the balance round-robin (balance-rr or mode 0).

Round-robin (RR) is a well-known and widely adopted
algorithm in network schedulers which stripes the packets
in sequential order, from the first available interface to the
last one [14]. This model was selected because it is the only
one (among Ethernet Bonding modes) that can turn a single
TCP/IP connection stream to use more than one interface,
potentially improving the throughput.

As we intended to use the bond implementation in virtu-
alized environments, which usually exploit Linux bridges to
provide network access to executing instances, the aggregated
interface was bridged. Finally, the routing table has also
been modified, making the bridged interface the default one
for incoming/outgoing traffic. The same configuration was
followed in the second host, and additional hosts could be
easily added by replicating this setup.

B. Cloud Deployment

OpenNebula 5.6.1 was configured in the first host acting
as the cloud manager, which orchestrated the containers,
and computing node. Then, we added the second host as
a computing node for supporting the cloud instances. We
configured OpenNebula to use the linux bridge interface
(previously created in the native scenario during NICs ag-
gregation configuration Section III-A) that provides network
connectivity. Thus, the LXD instances were able to exploit
potential optimizations from the aggregated NICs at the host
OS. It is important to note that any cloud instances that use
bridges interfaces for interconnection, such as, e.g., virtual
machines (VMs), could also benefit from the NICs aggregated.

1We defined as scenarios the native (without virtualization) and LXD-based
cloud and the deployed NIC aggregation environments with 1, 2, 3 or 4 NICs.
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Fig. 1. Scalable conceptual high-level model of NIC aggregation. Adapted
from [9].

In our approach, we used OpenNebula because it was
already deployed in our environment and also is a repre-
sentative private cloud manager. Linux containers were used
because of their smaller overhead compared to VMs using
full and paravirtualization. Containers offer lightweight OS-
level virtualization for instances to avoid processing penalties
caused by the abstraction of additional layers and hardware
emulation. Thus, the cloud environment can achieve near-
native performance [15].

The most recent Linux container open source project is
known as LXD [16]. It is built on top of LXC, providing
both improvements and new features with other functionalities
to create and manage containers with fine-grained control
and operational security. The conceptual model for creating
containers is the same employed by LXC, using namespaces
and cgroups and also Linux bridges for the network. However,
LXD provides a REST API over Unix socket that can also
be enabled over the network as well, to the management of
local/remote hosts.

As LXD has currently no native implementations upon
OpenNebula, we used the LXDone2 project to create and
manage LXD templates under version 3.0.3. One instance with
this template was deployed in each node. Besides, the de-
ployed LXD-based cloud had dedicated access to the hardware
resources. A representation of scalable conceptual model using
NICs aggregated for interconnecting a cloud deployment is
depicted in Figure 1, which highlights the possibility of using
several NICs in the form of computer infrastructure supporting
potentially large scale cloud environments.

C. Deployment’s Network Evaluation

To evaluate the implementations, we used a cloud environ-
ment composed by two HP ProLiant servers with identical
hardware configurations; each node has two six-core AMD
Opteron processor 2425 HE and 32GB of RAM, 4 Intel
Gigabit network interface cards (NICs) interconnected by a
Gigabit Switch. The operating system used was Ubuntu Server
18.04 64-bit (kernel 4.15.0-45). It is important to note that
the performance experiments use the network interfaces with
aggregated traffic in the containers. The native scenario that

2https://github.com/OpenNebula/addon-lxdone

uses an OS without cloud and containers layer also exploits
the aggregated interfaces.

The network speed was evaluated by executing Net-
Pipe benchmark between two hosts, which provide the re-
sults of throughput and latency. NetPipe (Network Protocol-
Independent Performance Evaluator) [17] is an intensive net-
work communication benchmark, which exposes the network
performance under a variety of conditions. It chooses the
message sizes at regular intervals and with variations to fully
evaluate the network. Also, latencies are calculated consider-
ing the round trip time (RTT).

In this evaluation, we used NetPipe 5.1 compiled with
MPI module to measure aggregated network throughput and
latency between the nodes. Also, the options async which
use asynchronous “MPI Irecv()” to pre-post and bdir which
send data in both directions (download and upload) at the same
time were used. Bidir option was used because multiple
overlapping unidirectional communication may become out
of sync. However, this option also outputs the combined
throughput. As the number of cores by each server is 12,
NetPipe was configured to use 24 processes simultaneously,
pinned to 12 processes in each server.

In Figure 2, the TCP latency is plotted and presented in
microseconds concerning the message size in kilobytes (kB).
To show more representative results, we choose the interval
of message size increasing of 1 to 100 kB and plotted the
latency with 2 and 4 NICs aggregated in native and LXD-
based cloud respectively. In general, latency performance has
been significantly improved on both LXD and native scenario
when more NICs are aggregated.

As can be seen, in the environment with 1 NIC, a similar
performance on both native and LXD-based cloud scenarios
was achieved. Besides, with two NICs, both LXD-based
cloud and native overcomes the baseline. LXD-based cloud
overcomes native scenario with message sizes about 10 to
30 kb. Between 40 and 60 kB, both have similar results.
With message size greater than 70 kB, the native scenario
shows improved performance. With 4 NICs aggregated, the
results show performance improvements compared to 2 NICs.
This aspect is relevant because it demonstrates that latency
has improved as more NICs were aggregated. When using 4
NICs, LXD-based cloud overcomes native scenario from about
10 kB message size. The difference between them increases
according to the message sizes.

The results of throughput are presented in Gigabits per
second (Gbps) concerning message size in kilobytes (kB)
in Figure 3 and shown that performance between 1 NIC
from LXD and native scenario has no significant differences.
However, both 1 NIC - native and LXD reaches almost 2 Gbps.
This performance is reached because NetPipe used the bidir
command line option, which outputs the combined throughput.
This parameter was used to represent real-world applications
that are network intensive, sending, and receiving data at the
same time.

In the evaluation with 2 NICs aggregated using message
sizes between 10 to 50 kB, the LXD scenario significantly
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overcomes the native one, reaching maximum performance
with 30 kB message size and 3.2 Gbps. After that, LXD-based
cloud starts to decrease performance until it is outperformed
by the native scenario with 65 kB. Regarding the 4 NICs ag-
gregation, when message size reaches about 10 kB, the LXD-
based cloud overcomes the native with significant difference
achieving the maximum throughput of 5 Gbps.

IV. EXPERIMENTAL EVALUATION

In Section III-C, we obtained a first perspective of how
NIC aggregation impacts in the network interconnection. We
designed our approach to evaluate representative applications
from real-world and verify if the applications can obtain
performance improvements provided by NIC aggregation.

A. Benchmarks and Methodology

We chose to conduct our evaluation using applications
from Numerical Aerodynamic Simulation Parallel Benchmarks
(NPB) suite [18] version 3.3.1 compiled with MPI. NAS
was designed to aid performance benchmarking of parallel
supercomputers. Derived from computational fluid dynamics

TABLE I
OVERVIEW OF THE NAS BENCHMARKS USED IN THE EVALUATION.

Name Description Focus Language
BT Block Tridiagonal Floating point performance Fortran
FT Fast Fourier Transform All to All communication Fortran
IS Integer Sort Integer performance C
SP Scalar Pentadiagonal Floating point performance Fortran

(CFD) applications, these benchmarks can represent a wide
variety of HPC applications.

NAS was compiled with class C problem size and all
five kernels (IS, EP, CG, MG, and FT) and three pseudo-
applications (BT, SP, and LU) were used. Also, the applica-
tions used 16 processes because each one of them requires a
specific division of work. The number of processors must be
a square root, or even it must be a power of two. As the nodes
have 12 cores, 8 processes were set to execute on each node
to balance the load distribution.

However, for the sake of space, we only present repre-
sentative tests from FT, IS, BT, and SP. These experiments
demonstrate whether network NIC aggregation can signifi-
cantly improve the performance of the applications. Table I
summarizes these benchmarks. Applications like EP, CG, MG,
SP, and LU shows no significant differences in performance
regarding execution time when they were executed in our 4
environments (1, 2, 3, and 4 NICs). Moreover, in this paper,
we are not focusing on the number of MPI processes that scale
the performance. Hence, we execute all applications with 16
processes to use a suitable value for the tested machines, which
generates enough communication and consequently, network
traffic for evaluating the network optimization.

The experiments were executed 10 times on dedicated
identical machines (described in Sectionn III-C) and presented
an average performance with the related standard deviation.
Moreover, to measure network usage, network NICs statistics
were collected using the ifstat utility.

B. Performance of HPC Applications

In Figure 4 and 5 are plotted the execution time of the BT
and SP applications under our two scenarios (native and LXD-
based cloud) with the four environments (1 NIC as a baseline
and 3 NICs using NIC aggregation). As can be seen, BT
and SP in native scenario obtained worse performance results
when aggregation is applied. BT and SP are applications
with executions under blocking operations (e.g., barriers).
Consequently, as a result of the BT and SP characteristics, the
network aggregation was not exploited by the low utilization,
which is the reason for not improving the performance even
when using several aggregated NICs.

FT kernel results are shown in Figure 6. This application
performs reduction operations and all to all communication,
which creates an extremely network utilization pattern [19]. FT
can significantly improve its execution time up to 36% with
3 NICs aggregated. This performance gain follows throughput
improvements with 3 NICs (about 97 MB/s). Moreover, per-
formance differences with 3 and 4 NICs between native and
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LXD-based cloud scenarios are most significant. With the help
of the right-hand side of Figure 6 is explicit that the throughput
plays a crucial role in the performance of these applications.

Figure 7 shows the experiments of IS, which is characterized
by intensive computations during the majority of its execution,
using the network intensively during reduce/accumulative op-
erations that gather results from all executing processes. IS
is also characterized by only negligible synchronization. In
resume, the IS executions using network aggregation improved
the performance by faster communicating and collecting re-
sults. The intensive use of the network by this application can
also be viewed in Figure 7. The performance gains can be seen
mostly in the LXD-based cloud scenario where the execution
time was reduced 38.95% with 4 aggregated NICS.

A comparison between results from NIC aggregation on
native and LXD-based cloud scenarios emphasize that LXD
achieved higher performance. The LXD performance opti-
mization (e.g., namespace isolation) enabled such scenario to
outperform the native one. Performance optimization of con-
tainers executing with multi-threaded/distributed applications
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is known in the related literature [5], [3]. The unexpected result
came from the native scenario, which has shown performance
loses when using 3 and 4 aggregated NICs. The reason for
degraded performance in the native scenario is related to the
combinations of the applications and the low-level aspects
from the network implementation.

The overhead related to NIC aggregation is due to the
re-transmission of packets. The balance-rr aggregation mode
stripes the network packets between the physical interfaces,
which resulted in additional unordered packets. Consequently,
the high number of unordered packages exceeded the conges-
tion buffer limit, then the TCP/IP’s congestion control flushed
unordered packets. Hence, the flushed packets had to be re-
transmitted, causing processing slowdown due to the commu-
nication delay and so reducing the application performance.
The re-transmission also caused additional network traffic.
This overhead of the native scenario mainly with BT and FT
using 3 and 4 NICs can be viewed in Table II, which shows
the total network traffic during the application’s execution.
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TABLE II
NETWORK TRAFFIC (DOWNLOAD + UPLOAD) IN MB GENERATED DURING

THE APPLICATION’S EXECUTION.

Native LXD
1 NIC 2 NICs 3 NICs 4 NICs 1 NICs 2 NICs 3 NICs 4 NICs

BT 6662 7060 7123 7208 6736 7016 7087 7145
SP 12106 12836 13065 13097 12170 12769 12823 13049
FT 22314 23105 23153 22101 22333 23320 23337 23174
IS 2714 2876 2761 2853 2703 2991 2971 2916

V. CONCLUSION

Considering that communication can cause overheads for
HPC applications executing on cloud environments, we aimed
at mitigating this problem by proposing an approach using
NICs aggregation. The results showed that our NIC aggrega-
tion approach integrated into the cloud significantly improved
the network performance by providing higher throughput while
reducing the latency. NIC aggregation showed the potential to
be easily integrated with other virtualization technologies that
use network bridging.

NICs aggregation for HPC application evinced performance
improvements and slight losses in other cases. IS and FT
applications make intensive use of the network, which enabled
to improve the performance up to 36% (FT with 3 NICs) and
38.95% (IS with 4 NICs) due to the faster communication as
more NICs were aggregated. On the other hand, BT and SP
applications present worse results when executed in the native
scenario. However, the same worse performance is not shown
when executing in LXD-based cloud.

The results achieved show that on scenarios where the
network infrastructure is scalable in terms of NICs, cables and
switch ports, straightforward implementations with a ready-to-
use integration to a cloud environment can provide significant
performance improvements. Although the experiments were
executed on two nodes, we expect that the performance trends
would be similar in large scale environments, especially when
executing applications that use the network intensively for
exploiting the optimization provided by NICs aggregation. We
argue that network optimizations are relevant for improving the
performance of computational intensive cloud environments.

In future works we plan to: (I) optimize the performance
of Round-robin algorithm to reduce the TCP congestion; (II)
evaluate network interference between multi-tenant instances;
(III) investigate the possibility to obtain higher network per-
formance with the MultiPath TCP.
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