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Abstract—The stream processing paradigm is used in several
scientific and enterprise applications in order to continuously
compute results out of data items coming from data sources
such as sensors. The full exploitation of the potential parallelism
offered by current heterogeneous multi-cores equipped with one
or more GPUs is still a challenge in the context of stream
processing applications. In this work, our main goal is to present
the parallel programming challenges that the programmer has to
face when exploiting CPUs and GPUs’ parallelism at the same
time using traditional programming models. We highlight the
parallelization methodology in two use-cases (the Mandelbrot
Streaming benchmark and the PARSEC’s Dedup application)
to demonstrate the issues and benefits of using heterogeneous
parallel hardware. The experiments conducted demonstrate how
a high-level parallel programming model targeting stream pro-
cessing like the one offered by SPar can be used to reduce the
programming effort still offering a good level of performance if
compared with state-of-the-art programming models.

I. INTRODUCTION

Stream processing [1], [2], [3], [4] is a popular computing

paradigm with a renewed diffusion in several applications

belonging to the Big Data domain. The idea underpinning this

paradigm is that input data are not immediately available in

the form of permanent data structures (as in traditional batch

processing), but they consist of an infinite sequence of elemen-

tary data items received from several sources with a potentially

variable input rate. Most of the modern stream processing

applications [5], [6] extract actionable intelligence from such

a transient data deluge, in order to run analytic tasks as well as

other more complex data mining/machine learning algorithms

while new inputs are incrementally received from the sources.

Although this is a modern definition and application of stream

processing systems, this paradigm has its roots in traditional

problems in parallel computing and data-flow programming,

where sequences of tasks must be efficiently scheduled to

properly exploit underlying computing resources.

Most of these stream processing applications can potentially

run on High-Performance Computing (HPC) servers, which

are massively parallel architectures due to the combination

of multi-core CPUs and many-core GPUs. We can easy

find them as rack servers such as the NVidia’s DGX-2 that

is composed of 16 GPUs in a single box. This powerful

computing resources only make sense if the software can

actually take advantage of the parallelism available. Conse-

quently, programmers have to follow parallel programming

methodologies and use suitable APIs (Application Program-

ming Interface) or parallel programming models. Our choice

in this paper was to follow the structured parallel programming

approach [7] since it has been proven to help programmers

to achieve productivity along with the support of high-level

parallel programming models or APIs. We picked-up SPar [3],

TBB [8], and FastFlow [4] for expressing parallelism on multi-

core as well as CUDA [9] and OpenCL [10] for expressing

GPU parallelism. These solutions are representative for the

industry and academy domains. Also, future work can extend

our parallel algorithms for other programming frameworks.

Our goal is to point out the main challenges for implement-

ing stream parallelism and evaluate the performance of the

outcome solutions. First of all, we intend to use a streaming

version of the Mandelbrot Set pseudo application to illustrate

the main parallel programming models’ challenges on multi-

core machines equipped with GPU accelerators. Afterward, we

intend to follow the best practices in the PARSEC’s Dedup

benchmark, showing up the robustness and providing new

performance insights because Dedup has not been imple-

mented for GPUs previously. Moreover, there are only few

works that tackle this problem. Most of them concentrate

on data parallelism exploitation for scientific applications or

data stream analytics (Section II). Differently, our applications

have a stream of data being processed in the CPU while data

operators are offloaded in the GPU to compute. Thus, the main

scientific contributions of this paper are highlighted as follows:

• A discussion of the parallel programming models’s chal-

lenges for the implementation of parallel stream process-

ing applications.

• A novel parallel implementation of the PARSEC’s Dedup

benchmark targeting multi-cores with GPUs.

• A set of experiments and performance evaluation for

several parallel programming models (SPar, CUDA,

OpenCL, TBB, and FastFlow).

This paper is organized as follows. Section II presents the

related work and highlights the main contributions compared

to the state-of-the-art. In Section III, we also introduce the
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parallel programming models and APIs used. After, Section IV

describes the parallel algorithms as well as discusses the

programing challenges to express the parallelism. Experiments

are demonstrated in Section V to evaluate the performance.

Finally, Section VI make the conclusions.

II. RELATED WORK

Our selected related researches are those targeting the

same applications and approaching the challenges for stream

parallelism exploitation on multi-core equipped with GPUs.

The performance of the Mandelbrot set pseudo application

on three platforms (CPU, GPU and Cell BE) was evaluated

by [11]. Instead of porting the algorithm for the platforms, they

used the Mandelbrot implementation provided by NVIDIA’s

CUDA SDK code samples and implementations for Cell BE

from “linux.conf.au 2008 hackfest”. The main outcome is that

this pseudo application scales very well on GPUs. Guo et

al [12] used their auto-parallelizing compiler for the Single

Assignment C (SAC) language in the Mandelbrot algorithm

and report speedups of ∼22×. SPOC (Stream Processing on

OCaml) [13] present interesting results in a 2-GPU environ-

ment: 134× speedup on OpenCL. This algorithm is used as

a case study of SkelCL library in [14] to compare the the

programming effort of CUDA, OpenCL, and SkelCL.

To the best of our knowledge, there is not parallelism

implementation for GPUs on PARSEC’s Dedup benchmark.

There are other Dedup applications such as Suttisirikul’s work

that has used Dedup in a cloud-based backup system [15].

It uses Sha256 hashing algorithm to identify repeated files

and blocks when running the backup. The backup system

was able to run at client’s machine GPU and transfer only

the necessary data to a cloud server. By running the Sha256

fingerprints on GPU, the speedup achieved was 53 when

compared to the CPU version. Bhatotia et al. also implemented

the parallelism in a different Dedup-based application for

storage systems [16]. Similarly to our work, the application

was structured as a pipeline in CPU. However, the strategy

was different, where content batches are offloaded to the GPU

for processing rabin fingerprints and Sha1. The performance

achieved was a speedup of 5. Moreover, no support for multi-

GPU was implemented and their focus was on optimizing

batch partitioning and memory transferring.

Finally, in the perspective of stream processing for stream-

ing analytics, we mention some relevant papers in this area.

Saber [5] is a GPU-based framework written in Java using

micro-batching to discretize the input stream. The system

offloads the processing of each batch on the GPU. The

framework supports relational algebra operators (e.g., select,

project, filter, join) and window-based aggregates by lever-

aging a mixed execution model, with both CPU cores and

GPU involved in the processing. G-Storm [6] extends Apache

Storm [17], a popular streaming engine, with support to GPUs.

G-Storm introduces the concept of GPU-Bolt, a general-

purpose streaming operator able to offload the processing on

a GPU device through a micro-batch processing.

III. PARALLEL PROGRAMMING MODELS

We present in a nutshell the parallel programming models

used to implement stream parallelism and further discuss their

challenges on multi-core machines equipped wth GPUs.

A. FastFlow

FastFlow is an emergent parallel programming framework

created in 2009 by researchers at the University of Pisa

and University of Turin in Italy. It provides stream parallel

abstractions from an algorithmic skeleton perspective. The

implementation is built on top of efficient fine grain lock-

free communication queues. During the last three years new

features were integrated for high-level parallel programming

for data parallel patterns (parallel “for”, Macro DataFlow,

stencil and pool evolution). Also, other architectures have been

supported such as clusters and hardware accelerators (GPU,

FPGA and DSPs) [4].

The FastFlow programming interface provides a C++ tem-

plate library whose classes can be viewed as a set of building

blocks. Although built for general-purpose parallel program-

ming, it provides suitable building blocks to exploit stream-

oriented parallelism in streaming applications that other frame-

works do not. For instance, it gives more freedom to the

programmer to compose different parallel patterns and build

complex communication topologies in shared memory sys-

tems. Also, the runtime support can operate in the blocking

and non-blocking mode and enables the programmer to attach

their customized task scheduler.

B. Threading Building Block (TBB)

TBB (Threading Building Blocks) is an Intel tool for

parallel programming. TBB is a library for implementing high-

performance applications in standard C++ without requiring a

special compiler for shared memory systems. It emphasizes

scalable and data parallel programming. The benefit is to

completely abstract the concept of threads by using tasks. TBB

builds on C++ templates to offer common parallel patterns

(map, scan, parallel for, among others), equipped with a work

stealing scheduler, which dynamically dequeues a stack of

tasks implemented in a FIFO-like order [8].

TBB and FastFlow are quite similar in many aspects, but the

runtime and programming interface approaches are different

regarding the design patterns and algorithmic skeleton. In fact,

the pipeline pattern is supported in both of them which allows

TBB to support stream parallelism exploitation. Although its

scheduler has been proven to achieve good performance in

several applications, TBB’s runtime does not allow one to

attach a customized scheduler. Another drawback is that it

only targets multi-core systems. Moreover, the performance

and compatibility with GPU parallel programming models like

OpenCL and CUDA is unknown.

C. SPar

SPar1 is a Domain-Specific Language (DSL) focused on

expressing stream parallelism [3], [18]. The main drivers

1SPar’s home page: https://gmap.pucrs.br/spar
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behind SPar are: (a) optimize programmer productivity by

not requiring sequential code rewriting to exploit parallelism;

and (b) offer efficient programming abstractions to avoid the

need for the programmer to work on low-level or architecture

dependent code. In SPar, the parallelism is expressed by means

of C++ annotations, which are part of C++ Standard since

2011 [19]. There are 5 attributes in the SPar language, 2 of

which are identifiers (ToStream and Stage) and 3 are auxiliary

(Input, Output and Replicate). These attributes are parsed

by the SPar compiler and source-to-source transformations are

performed to produce parallel code with FastFlow library calls.
The ToStream attribute identifies the region on which

stream parallelism should be employed, and must contain at

least one Stage annotation. This one identifies a computing

phase, analogous to a assembly line. The annotations Input

and Output are used to specify the variables that represent

stream items and other data needed on the stream region and

the stages. Eventually, Replicate specifies that the stage has

no internal state and multiple copies can be run in parallel, and

therefore it increases the stage parallelism degree (i.e., worker

replica number). Listing 1 presents the Mandelbrot Streaming

pseudo application annotated with SPar. We explain later in

Section IV.

D. CUDA
The CUDA architecture boosted GPGPU, bringing in many

professionals interested on harvesting the GPU computing

power [9]. Using the CUDA C language, combined with the

nvcc compiler, developers can define kernels to be called from

CPU and executed on the GPU by means of the global

declaration. Calling those kernels involves providing the three-

dimensional parallelism degree in a special syntax <<<...>>>

between kernel’s name and its parameters. This call launches

blocks of threads on the GPU, executing the kernel function.

Each thread has its own identifier, which can be obtained in-

side the kernel through the threadIdx, blockIdx e blockDim

special variables [20].

E. OpenCL
OpenCL aims to provide code portability among archi-

tectures and hardware designs [10]. Instead on focusing on

GPU programming, OpenCL proposes a generic API to use

all OpenCL-capable devices on computation. Therefore, the

proposed [21] workflow for a OpenCL program consist of

these steps: 1) discover the components on the heterogeneous

system, devices and their characteristics; 2) create kernels that

will run on the devices; 3) manage the devices and host’

memories to ensure that the data needed by the computation

are available; 4) execute the kernels and collect the results.

OpenCL devices has work-items organized into work-groups,

both of them also in a three-dimensional space. The thread’s

global identifier is obtained calling get global id function.

IV. PARALLEL STREAM PROCESSING APPLICATIONS

In this section, we first used the Mandelbrot Streaming

application to highlight the main challenges. Then, we applied

the same techniques on a robust application.

A. Mandelbrot Streaming
The Mandelbrot set consists of all points in a complex plane

that do not tend to infinity when iterating the function z ←
z2 + p, where p is a number that gives the position of the

point on the complex plane. As it is difficult to prove that a

point will not tend to infinity, the function is calculated up to

a given maximum number of iterations (niter). If p leaves a

circle of radius 2, it will certainly diverge [7]. When computing

coordinates of numbers that are in the Mandelbrot set, it is

necessary to compute all the niter iterations, while outside

coordinates diverge and quickly leave the circle of radius 2

[11]. In turn, this is an additional challenge to get performance

improvements on GPUs because minimize divergence among

threads of the same warp is an important concern.
The Mandelbrot set is commonly plotted in the form of

a fractal image where row and column positions represent

the numbers. In this paper, we approach the Mandelbrot set

streaming application, which processes each line of the fractal

as a distinct stream item, thus introducing the possibilty to

get partial results while computing. The pixel color is used to

identify if the corresponding point belongs to the Mandelbrot

set.
Listing 1 presents the Mandelbrot streaming algorithm an-

notated with SPar. The ToStream attribute in line 3 delimits

the streaming region. Lines 4 and 5 are responsible for the

stream management and for providing workload to the next

stages. These lines represent the first stage of the pipeline. The

first Stage annotation (line 6) is followed by the Replicate

auxiliary attribute, which represents the parallelism degree of

this stage. The second and last Stage attribute appears in

line 22 and collects the results of the previous stage, showing

the calculated line of the fractal image of the Mandelbrot in the

screen. The Input and Output attributes are used throughout

the code to provide information on data items that flows from

one stage to another.

1 void mandelbrot(int dim , int niter , double init_a , double
init_b , double range) {

2 double step = range /(( double)dim);
3 [[spar::ToStream , spar::Input(dim , init_a , init_b , step ,

niter)]]
4 for(int i=0; i<dim; i++) {
5 double im = init_b + (step * i);
6 [[spar::Stage , spar::Input(i, im, dim , init_a , step ,

niter , img), spar:: Replicate(workers)]]
7 for (int j=0; j<dim; j++) {
8 double cr;
9 double a = cr = init_a + step * j;

10 double b = im;
11 int k = 0;
12 for (k=0; k<niter; k++) {
13 double a2 = a * a;
14 double b2 = b * b;
15 if ((a2+b2) > 4.0) break;
16 b = 2 * a * b + im;
17 a = a2 - b2 + cr;
18 }
19 img[j] = (unsigned char) 255 -((k*255/ niter));
20 }
21

22 [[spar::Stage , spar::Input(img , dim , i)]] {
23 ShowLine(img ,dim ,i);
24 }
25 }
26 }

Listing 1. Mandelbrot Streaming with SPar.
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The Mandelbrot Streaming pseudo application was also

implemented in TBB and FastFlow using the pipeline parallel

pattern. Each stream item in the pipeline represents a single

line of the fractal image. The first stage allocates memory

and sends a stream item for each line of the fractal image.

The middle stage runs in parallel and performs the calculation

of each pixel in the row, sending computed data to the

last stage. To increase the degree of parallelism we used

tbb::filter::parallel in the class constructor for TBB,

and a vector of instances of the stage class in FastFlow with

the Farm pattern. The last stage is responsible for showing the

image and deleting unused memory.

Porting the Mandelbrot set application to GPUs seems to

present no special challenges to a programmer with knowledge

on CUDA and OpenCL. The logical way to provide GPU

parallelism support is to offload the computation of each pixel

in the row, mapping each thread index to a specific column of

the row. In Listing 1, this is done by removing the for loop in

line 7 and assigning each iteration of j to a given GPU thread.

For each kernel invocation, we also copy the data back from

the device memory to the host memory.

However, when testing this implementation for the machine

described in Section V with a fractal image of 2000x2000

and 200,000 iterations for each number, CUDA and OpenCL

versions present the same speedup of 3.1× (129s) for a single

GPU with respect to the sequential time (400s). This is much

worse than the 17× speedup from the CPU parallel version

with 20 threads.

Another option is to organize the execution grid of threads

and blocks to use more dimensions. However, when using

2D of threads and blocks, it presents even worse results. For

instance, 1.6× (250s) with respect to the sequential time as

shows Fig. 1. The bars in Fig. 1 represent the execution time

in log scale and are related to the left Y-axis. The right Y-axis

represents the speedup in times with respect to the sequential

version, which is plotted as a red dotted line. The standard

deviation is represented by black error-bars and is mostly

negligible.

When profiling the application, we find out that the large

number of launched kernels with small workloads impacts on

the performance, as the GPU is not fully utilized. To provide

enough workload for the GPU, we designed batches of lines

for each stream iteration. Listing 2 presents the Mandelbrot

Streaming CUDA kernel function modified to process with

batches in each kernel call. After obtaining the thread’s global

identifier in line 2, it calculates which is the fractal image

line number within the batch so that the thread knows the

corresponding memory address space (i batch in line 3).

This line number is positioned within the entire fractal image

(i in line 4). Thus, each thread will calculate a single column

of this line (j in line 5).

This kernel can also be easily ported to OpenCL. The

only modifications required is to configure threadIdGlobal

as the result of a call to get global id(0), exchanging

the global keyword to kernel, and adding the

global keyword to the img parameter variable.

1 __global__ void mandel_kernel(int batch , int batch_size ,
int dim , double init_a , double init_b , double step ,
int niter , unsigned char *img) {

2 int threadIdGlobal = blockIdx.x * blockDim.x +
threadIdx.x;

3 int i_batch = floor(( double)threadIdGlobal/dim);
4 int i = batch * batch_size + i_batch;
5 int j = threadIdGlobal - i_batch*dim;
6 if (i < dim && j < dim) {
7 double im = init_b +(step*i);
8 double cr;
9 double a = cr = init_a+step*j;

10 double b = im;
11 int k = 0;
12 for (k = 0; k < niter; k++) {
13 double a2 = a*a;
14 double b2 = b*b;
15 if ((a2+b2) > 4.0) break;
16 b = 2*a*b+im;
17 a = a2-b2+cr;
18 }
19 img[i_batch*dim+j] = (unsigned char)255-((k*255 /

niter));
20 }
21 }

Listing 2. Mandelbrot Streaming with batch processing.

Since the Titan XP GPU (compute capability 6.1) supports

2,048 active threads per streaming multiprocessor (SM) and

have 30 SMs, it has up to 61,440 resident threads across

the entire board. Consider also that each line of the fractal

image represents 2,000 numbers to calculate. To fully utilize

the GPU capabilities, we need to process 30.7 lines on each

kernel call, provided that this amount of threads does not fill up

the amount of registers (64,000) and shared memory (96 KB)

available on each multiprocessor. The compiler tells us that the

kernel function in Listing 2 uses only 18 registers, thus it is

not a limiting factor for achieving maximum GPU utilization.

Observe that we are not using shared memory. Moreover, by

sending batches of 32 lines to the kernel function, we can

achieve 44× speedup (9.1s) using OpenCL and 45× speedup

(8.9s) using CUDA compared to the sequential version as

presented in Fig. 1.

Fig. 1. Optimizing Mandelbrot Streaming application.

Further increasing the application performance is possible

by overlapping data transfer and computations in the GPU

device. In a single CPU thread, this is done by using asyn-

837



chronous memory copies and page-locked memory. To manage

dependencies between memory copies and kernel function

calls in CUDA, we used multiple cudaStream. In OpenCL, we

used multiple cl command queue and cl event. However,

this customization doubles the memory requirements of the

application since we need to allocate at least 2 memory spaces:

one for copying data and another to perform computations. It

yields 67× speedup (5.98s) compared to the sequential version

in CUDA and OpenCL.

We can allocate more than 2 memory spaces and use them in

a round-robin fashion to push the performance a little further.

Using 4× more memory than the sequential version it is

possible to obtain 74× speedup (5.4s) using both CUDA and

OpenCL. Allocating more memory spaces does not provide

performance improvements.

These memory spaces can be easily assigned to differ-

ent GPUs in a round-robin scheduling to enable multi-GPU

support. Using two Titan XP GPU with a single memory

space to each one (thus increasing by 2× the host memory

requirements with respect to the sequential version) provides

89× speedup (4.48s). Assigning 2 memory spaces to each

GPU (using 4× more host memory and 2× more memory on

each device) provides speedups of 132× (3.02s) with CUDA

and 130× (3.07s) with OpenCL. Fig. 1 shows the impact of

each optimization, presenting the execution times and speedup.

It is worth noting that we focused our investigations in the

data structures and task distribution inherent to streaming ap-

plications. Therefore, we do not discussed algorithm-specific

optimization for better use shared memory and cache levels

by implementing different data access patterns. Although the

Mandelbrot set is a simple code, efficiently using the GPU

always requires a significant parallel programming effort. The

main challenges faced are related to the management of

multiple asynchronous events on the GPUs, and to provide

enough workload to the devices using a single CPU thread.

The integration of multi-core libraries with GPU parallel

code also present unique challenges. The cl kernel objects

of OpenCL library are not thread-safe [10] and must be allo-

cated for each thread. In the multi-core framework codes using

OpenCL, we put a cl kernel and a cl command queue

object on each stream item, which are allocated by the first

stage of the pipeline. Additionally, the middle stage invokes

an asynchronous memory copy to transfer data from device to

host after computation and send a cl event to the last stage.

Then, the last stage calls a clWaitForEvents to wait for the

memory transfer to complete.

In CUDA, the cudaSetDevice function also has thread-side

effects, thus, it must be called after initializing each thread.

With respect to the implementations combining multi-core

(SPar, TBB, and FastFlow) with CUDA, we put a cudaStream

object for each stream item to properly define dependencies

between data transfer and kernel function calls. The middle

stage also invokes an asynchronous memory copy before

sending the stream item to the last stage. The last stage uses

cudaStreamSynchronize to ensure that the data transfer is

completed. There were no special challenges for the CPU-

only implementations as the Mandelbrot set is a relatively

small code. The main challenges when combining multi-core

(SPar, TBB, or FastFlow) with GPU (CUDA or OpenCL)

parallel code were identifying non-thread-safe objects and

correctly managing them. For the SPar with GPU support,

we implemented the CUDA and OpenCL code along with the

SPar annotations. All source codes are available online2.

B. Dedup

The parallel implementation for Dedup with SPar was based

on [22], which was adapted from the sequential version of

PARSEC’s Benchmark Suite [23]. That SPar implementation

produces a pipeline with 3 stages. The first stage is respon-

sible for the fragmentation of data based on rabin fingerprint

algorithm to create batches and later perform the compression.

The second stage performs SHA-1 hashing of blocks, which

is checking duplicated blocks based on SHA-1 hash and

is performing block compressing when necessary. The third

stage reorders data and write in the output. For the SPar

implementation, the second stage was replicated.

For our implementation on GPU3, we changed the frag-

mentation method. Instead of using Dedup’s rabin fingerprint

that generates different batch sizes, we made it to generate

fixed batch sizes (1MB) and generate different blocks sizes

with rabin fingerprint. This modification was necessary to best

benefit from GPU capabilities when a large batch of data has

to process. In order to still benefit from the rabin fingerprint,

we ran the algorithm on CPU and saved all the indexes where

the algorithm would fragment the data. These indexes were

used on all the stages to guarantee the equivalence with the

original implementation.

In Fig. 2, we illustrate how batch and block are processed

in this application. The batch consists of data chunks where

startPos (processed by rabin fingerprint) are the indexes of

the block for each batch. These indexes are necessary for the

Dedup algorithm find duplicated data.

A B C D A B C A B C D E

startPos: 0 
endPos: 4 

startPos: 4 
endPos: 7 

startPos: 7 
endPos: 12 

Batch

Block 1 Block 3Block 2 

Fig. 2. Batch for LZSS.

Moreover, instead of using the originally PARSEC’s com-

pression algorithms (Bzip2 and Gzip), we used the LZSS

compression algorithm as we already implemented it on GPUs

in [24]. Observe that the integration has other challenges

that will be discussed later. It also requires a new parallel

algorithm implementation. The SPar annotation schema was

also changed due to the GPU support implementation. Fig. 3

demonstrate the produced pipeline with five stages, which

2https://github.com/larcc-group/mandel-gpu-stream-parallelism
3https://github.com/larcc-group/dedup-gpu-stream-parallelism
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previously was with only 3 stages. Therefore, each one of

the stages perform as follows:

1) on CPU, this stage read the input file and generate

batches of 1MB. Over these batches, it run the rabin

fingerprint algorithm and generate blocks based on the

indexes of rabin fingerprint. The batches and the blocks

are sent to the next stage;

2) this stage transfers the blocks to GPU and generates

SHA-1 hashes. Our strategy was that each GPU thread

calculates the SHA-1 of one block. The result is saved

in an array and sent to the next stage. This stage is

replicated as many as necessary to offload computation

to the GPUs available;

3) it checks if blocks in the batch are duplicated and send

the results to the next stage;

4) it compress every not duplicated blocks on GPU. This

stage reuses data already on GPU to prevent unnecessary

data transfers;

5) it reorders the batches and writes it in the output.

Fig. 3. Dedup parallel activity graph using SPar with CUDA/OpenCL.

Since we achieved very good results when parallelizing

LZSS in our previous work [24], we followed the same

strategy when integrating into Dedup. However, after running

experiments, the performance achieved was very poor in

Dedup (see Fig. 5). Then, we find out that the problem

was actually in the LZSS parallel implementation. The GPU

kernel function has been invoked for too many times without

using efficiently the GPU resources. Therefore, we focused on

optimizing the number of times that the GPU kernel function

was called to avoid this overhead. In [24], this kernel is called

FindMatch. It is responsible for finding the longest match for

each element in the block being compressed. Our challenge

in this implementation was to use the same batch and blocks

from Dedup to run the compression in every block at once. To

achieve a good performance, we rebuild this kernel running

all the FindMatch operations in a single kernel function,

considering the startPos presented in Fig. 2.

Our new parallel implementation of the LZSS method

accepted as argument the input batch and the vector with

the startPos presented in Fig. 2. In Listing 3, we already

provide the optimized kernel for FindMatch, processing all the

blocks inside a batch at once. As we can not use bidimensional

vectors on GPU, we first need to find the block (start and

end position) that has the character being searched based on

the startPos (lines 4 to 10). The FindMatch operation uses

startPos and lastPos to guarantee that the search operation

is limited to the block of the element being compressed.

In CPU, we used the result of the kernel function to run

the compression on each block and generate the compressed

data. This improved the performance because the GPU kernel

functions invoked have enough workload to compute now.

1 __global__ void FindMatchKernel(unsigned char *input , int
sizeInput , int* startPoss , int startPosSize ,int*
matchesLength , int* matchesOffset){

2 int idX = blockIdx.x * blockDim.x + threadIdx.x;
3 if(idX >= sizeInput) return;
4 int startPos = 0;
5 int foundAt = 0;
6 for(int k = 0; k < startPosSize; k++){
7 startPos = startPoss[k] < idX + 1 ? startPoss[k] :

startPos;
8 foundAt = startPoss[k] < idX + 1 ? k : foundAt;
9 }

10 int lastPos =foundAt == breakSize - 1 ? sizeInput:
startPoss[foundAt +1];

11 int lengthPos = lastPos -startPos;
12 unsigned char* uncodedLookahead = input + idX;
13 int thisBatchI = idX - startPos ;
14 int longestLength = 0;
15 int longestOffset = 0;
16 for(int current = max(thisBatchI - WINDOW_SIZE ,0);

current < thisBatchI; current ++ ) {
17 if(current+ startPos < sizeInput && input[current+

startPos] == uncodedLookahead [0]) {
18 int j = 1;
19 while(lastPos > current+ startPos + j && current +

j< thisBatchI && current+ startPos + j < sizeInput
20 && idX + j < sizeInput
21 // limits the uncoded lookahead
22 && idX + j < lastPos
23 //find until start of uncodedLookahead
24 && input[current+ startPos + j] ==

uncodedLookahead[j]
25 ){
26 if (j >= MAX_CODED) break;
27 j++;
28 }
29 if(j > longest_length) {
30 longestLength = j;
31 longestOffset = Wrap(current , WINDOW_SIZE);
32 }
33 }
34 }
35 matchesOffset[idX] = longestOffset;
36 matchesLength[idX] = longestLength;
37 }

Listing 3. LZSS find match in batch.

As we discussed in Section IV-A, implementing multi-

GPU support using a single CPU thread involves a lot of

code refactoring, thus, we chose for not implementing it with

CUDA and OpenCL single threaded version. Our previous

optimization for Dedup already increased the performance, but

we also implementing memory overlap (identified as 2x mem.

spaces in the plots). We followed Mandelbrot set’s strategy

using 2 streams to process and copy data in Dedup for each

GPU device. Thus, creating multiple cudaStreams for CUDA

and command queues for OpenCL.
We faced three main challenges in this application for

implementing stream parallelism targeting multi-core equipped

with GPUs. The first challenge was to re-factor the code to

best benefit from GPU. This was the most time-consuming

task because the application was originally implemented for

CPU. The constraints in GPU are different, which required the

aggregation of a larger load in order to be worth when invoking

a kernel function. Another big challenge was to optimize the

LZSS algorithm to achieve good performance even for small
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block sizes. The last main challenge was to fix bugs regarding

the parallel implementation on GPUs. Most of the errors are

not intuitive when dealing with stream parallelism mechanism

such as queue, batch, and memory space management. In the

other hand, the use of SPar for multi-core is quite easy, simple,

and productive. Such an abstraction is highly demanded for

GPUs to increase coding productivity.

V. EXPERIMENTS

The experiments were carried out on a machine that has

a Intel(R) Core(TM) I9-7900X @ 3.3GHz (10 cores and 20

threads), 32GB of RAM memory and two Titan XP GPUs with

compute capability 6.1 and each one has 12GB of memory.

The system was running on Ubuntu OS (kernel 4.15.0-43-

generic). All programs were compiled using -O3 compiler

flags. The software used were G++ 7.3, NVCC 10.0.130,

OpenCL 1.2, SPar, TBB, and FastFlow. Arithmetic means and

standard deviations are computed over 10 samples.

A. Mandelbrot Streaming

Fig. 4 presents the execution time means and speedup com-

puted over the sequential version. The CPU-only experiments

were performed using 19 workers for the middle stage of

the pipeline while the multi-core with GPU versions used 10

workers. In TBB, we set the max number of live tokens

for CPU-only versions on 38 tokens (2×19 workers) and for

TBB with GPU versions we used 50 tokens (5×10 workers).

The GPU-only versions (CUDA and OpenCL) ran with 4×
more memory per GPU, as detailed in Section IV-A. These are

the best configurations and were chosen by empirical testing

the applications under different configurations.

Fig. 4. Mandelbrot results.

We obtained very similar performance results using SPar,

TBB, FastFlow, CUDA, and OpenCL in this application with

a scalable performance. With a closer look when using a single

GPU, we can observe that SPar with CUDA achieved the

same performance as CUDA and OpenCL solely as well as

better than other programming models and their combination

with OpenCL and CUDA. When using two GPUs, the single

thread on GPU degrades the performance since combining

SPar, TBB, or FastFlow with CUDA increases the perfor-

mance. Moreover, each programming model requires a very

different programming effort to implement the Mandelbrot

Streaming application efficiently. For instance, TBB and Fast-

Flow requires to implement every stage of the pipeline in a

different class, refactoring the sequential code. Additionally,

TBB required fine-tuning the number of live tokens to obtain

a speedup similar to FastFlow and SPar.

B. Dedup

We used 3 datasets to evaluate the performance in Dedup’s

parallel versions: 1) Input Large: Dataset used for PARSEC

Benchmark Suite to test the Dedup application, consisting

of 185MB; 2) Linux4: extracted from linux kernel source

code with 816MB; 3) Silesia5: is a corpus of data that rep-

resents real-world files (XML, DLLs, and many others) with

202.13MB. All the tests were repeated 5 times for each sample

to compute the throughput average and standard deviation. In

SPar, we fixed the number of replicas in 19 for CPU only as

well as single and multi-GPU.

In Fig. 5, the parallel versions with and without the batch

processing optimization and the use of 2× memory spaces

(see Section IV-B) are plotted. The versions with batch op-

timization increased significantly the throughput. The best

results were achieved combining SPar with CUDA in all

input datasets. It is important to highlight that we had to

reduce the batch size for OpenCL because the number of

items being processed resulted in a out of memory error.

Therefore, in OpenCL and CUDA versions we used batches

of 1MB instead of a batch with 10MB. We also observed

that the optimization of 2× memory space version increased

performance for OpenCL. However, it was not the case for

CUDA. We could not cover this limitation because CUDA

stream when performing asynchronous memory copies needs

to deal with page-locked memory allocations. Dedup uses

realloc in a memory buffer, which is not supported by CUDA

as well as requires several memory movements to work with

page-locked memory.

VI. CONCLUSIONS

This paper discussed the main challenges related to the

parallel implementation of stream processing applications on

multi-core systems equipped with GPUs. The main contribu-

tions are from the one hand a novel parallel implementation

of the PARSEC’s Dedup application and from the other side a

thorough evaluation of the performance obtained by different

parallel programming models. The results demonstrated that

the full exploitation of the available parallelism of current

heterogeneous multi-core systems is quite challenging. For

the Dedup application, we observed that the programming

model offered by the SPar provides suitable and productive

4Available in https://www.kernel.org/
5Available in http://sun.aei.polsl.pl/˜sdeor/index.php?page=silesia
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Fig. 5. Dedup results.

abstractions allowing to obtain performance comparable with

state-of-the-art programming models as well as performance

compatibility with CUDA and OpenCL when targeting GPUs.

As future work, we intend to automatically generate parallel

OpenCL and CUDA code through the SPar compilation tool-

chain. This should further increase the parallel programming

productivity when targeting heterogeneous multi-core systems.

Also, we plan to explore the opportunities for designing auto-

matic GPU memory optimizations to enhance performance.
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