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Abstract—Parallel applications of the same domain can present
similar patterns of behavior and characteristics. Characteriz-
ing common application behaviors can help for understanding
performance aspects in the real-world scenario. One way to
better understand and evaluate applications’ characteristics is
by using customizable/parametric benchmarks that enable users
to represent important characteristics at run-time. We observed
that parameterization techniques should be better exploited in the
available benchmarks, especially on stream processing domain.
For instance, although widely used, the stream processing bench-
marks available in PARSEC do not support the simulation and
evaluation of relevant and modern characteristics. Therefore, our
goal is to identify the stream parallelism characteristics present in
PARSEC. We also implemented a ready to use parameterization
support and evaluated the application behaviors considering
relevant performance metrics for stream parallelism (service
time, throughput, latency). We choose Dedup to be our case study.
The experimental results have shown performance improve-
ments in our parameterization support for Dedup. Moreover,
this support increased the customization space for benchmark
users, which is simple to use. In the future, our solution can
be potentially explored on different parallel architectures and
parallel programming frameworks.

I. INTRODUCTION

Benchmarks are relevant tools for several computing areas.

Either in the industry or in the academia, benchmarks are

synthetic programs with real-world characteristics used for

evaluating and comparing the performance of hardware and

computing systems [1]. Hence, benchmarks contribute for

improving the existing technologies as well as for developing

new hardware and software systems. Many benchmarks are

available with different characteristics and purposes, divided

in two main categories: benchmarks and microbenchmarks. A

microbenchmark is designed for evaluating a specific part of

a system [2]. On the other hand, a benchmark (a.k.a. applica-

tion benchmark, synthetic benchmark) is more complex and

elaborated, composed by actual application traces combined

with functions demanding different system performance.
The performance of a benchmark can be affected by several

aspects [2]. The performance of benchmarks is mostly affected

by the the processing architecture, which can be slower or

faster. Also, the performance can vary according to the used

technologies and execution environments. In order to limit the

scope, some benchmarks are used only for evaluating the per-

formance capabilities of the architectures. However, the code

functions and variables of benchmarks also have performance

variations because the codes can be customized simulating

different behavior during execution. These benchmark be-

haviors simulate real application’s characteristics resulting in

performance variations, caused by: different instructions, code

variables, several data types and sizes, and different processing

algorithms. The application characteristics are also relevant to

be simulated and evaluated. However, deal with several char-

acteristics relevant for performance may be a difficult and time

consuming task for benchmark users. One way for reducing the

complexities involved, is enabling parameterization support in

benchmarks [2].

Stream processing application [3], [4], [5], [6] became a

significant workload in our computing systems, represented by

the processing of images, audio, video, signals, etc. The stream

processing applications have unique processing behaviors that

is a result of the combination of different aspects, such as:

sliding windows, communication channels, buffers, continuous

flow of data [5]. Moreover, Hirzel et al. [5] highlighted

the need for research and optimization of applications and

benchmarks for the stream processing context.

Considering the related literature, Eigenbench [7] is a mi-

crobenchmark for evaluating transactional memory systems.

In Eigenbench, the goal is to simulate application behaviors

through parameters defined by the user before the execution

of the microbenchmark, enabling users to simulate realistic

application behaviors. Although Eigenbench is a paramet-

ric microbenchmark, it does not represent the domain of

stream parallelism and consequently, there is no support to

evaluate realistic behaviors for stream processing. Moreover,

StreamIt [8] is a programming language and compiler targeting

stream processing applications, the language provides pro-

gramming abstractions and the compiler applies performance

optimizations. Although StreamIt environment (benchmarks

and architecture) provides parametric configurations, such

benchmarks are not fully portable by only supporting the

StreamIt language and architecture. Moreover, StreamIt bench-

marks represent only the dataflow and data stream scenario.

Differently, in this work we focus on stream parallelism

abstractions on representative benchmarks from PARSEC,

providing additional stream processing metrics, parameters,

and input sets.

The PARSEC benchmark suite [9] is the state-of-the-art for

evaluating multi-core computing architectures. On one hand,

stream processing application are characterized with fluctua-

tions regarding: execution behavior, environment, input rates,
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and the types of data processed. On the other hand, PARSEC

executions are characterized with a static and regular workload

trend, not able to fully represent the characteristics of stream

processing applications. In this work, we aim at implementing

and evaluate the feasibility of turning stream processing more

realistic through the implementation of parametric benchmarks

not addressed by previous efforts. The main contributions of

this work are the following:

• Evaluation of stream parallelism characteristics
present in the PARSEC suite. Although there are

studies available [10], [11], [12] showing that PARSEC

benchmarks can be optimized, such works do not ad-

dress stream processing characteristics. This study goes

beyond parallel programming frameworks and parallelism

strategies. We identified characteristics that affect the

applications’ behavior and we demonstrated how such

characteristics may be tuned.

• Support to new parameters in the PARSEC suite from
stream processing applications. Dedup is a benchmark

of the PARSEC suite that have characteristics relevant

for the stream parallelism context. Consequently, these

benchmarks were customized and extended for sup-

porting a parameterizable execution. The original ver-

sion only supported parameters regarding the number of

threads and input size. Our implementation supports the

customization on the buffer sizes, queues size, size of

stream elements and sliding window size, as well as more

data formats and input sizes are now supported.

• A performance analysis of how the parameterization
affects the execution of PARSEC benchmarks The

evaluation compares the proposed implementation to the

default benchmark implementations. We implemented a

monitoring mechanism that traces the benchmark execu-

tion considering relevant metrics for stream parallelism,

such as throughput, latency, and service time.

This paper is organized as follows. Section II shows the

implemented strategies. The evaluation methodology as well

as the results are presented in Section III. Finally, Section IV

emphasizes this study’s conclusions.

II. DESIGN AND IMPLEMENTATION

Stream parallelism is a concept related to the paradigm of

stream processing [5], [8]. Dedup was chosen in this work

for exploiting and extending stream parallelism characteristics.

Dedup was modified in their original POSIX threads imple-

mentations in order to enable new parametric executions.

Figure 1 shows relevant stream processing characteristics

that can be parametric. Considering the stream processing sce-

nario and the benchmark used in this work, the sliding window

represents the number of elements handled in stages queues.

The operations are performed when a given computation has to

pop or push elements in the queues. Usually, buffered stages

use a buffer size close to the sliding windows size, Dedup

implements buffers for communicating between stages.

Dedup is a benchmark of the data compression and dedupli-

cation domain, which combines techniques of local and global

Fig. 1. The highlighted regions represent characteristics parameterizable on
stream parallel applications.

compression. The original POSIX Threads version implements

a pipeline with five stages. The first stage performs the files

reading with its their fragmentation. The second stage per-

forms a refined data fragmentation and create chunks that are

sent to next stage. The third stage (DD in Figure 2) generates

hash identification for each chunk. The identification are stored

in a global table which are compared to the other hashes. When

a duplicate hash is found, the chunk related to this hash is

sent to the last stage. The fourth stage receives the chunks

that are not duplicated and performs a local compression of

them. This compression is sent to the last stage. The last stage

is in charge of reordering the out-of-order chunks as well as

writing an output file. The input set provided by PARSEC

is formed by 6 TAR files containing only DAT and ISO file

formats. The TAR files vary in size from 10 KB to 705 MB.

Moreover, the default implementation supports only one input

file per execution.

Figure 2 represents the new Dedup version to support the

parameterization. This was necessary to use files larger than

1GB as well as for reading directories with several files instead

of reading a single file. The new version reads in the first stage

from the directory provided as argument, represented by the

stage input in Figure 2.

The characteristic of only processing TAR files from the

original version was maintained. However, in order to process

more files concurrently, the first fragmentation performed in

the INPUT stage was removed for avoiding the creation of an

internal state (stateful) in the next stages. The fragmentation

in the first stage was performed to reduce the cost of disk

reading by creating static chunks of 128MB [9]. Additionally,

the search for deduplication performed in the DD stage was

optimized with a dedicated HASH table for each file. Each file

has a HASH table to avoid the counter-productive (e.g., very

large data bases) comparison of chunks from different files.

The evaluation of the new Dedup implementation demanded

additional input sets. We created 4 new input sets organized

in classes named Test Class, Light Duty Class, Heavy Duty
Class and Free Class. The input classes Light Duty and Heavy
Duty are divided in 4 subclasses according to the file formats

supported: L1 (Light) and H1 (Heavy) and 1 referring to

images, L2 and H2 text files, L3 and H3 audio and video

files, and LS and HS (shuffled) composed by a mix of file

formats and sizes. Moreover, the Light Duty is meant for

computing architectures with limited resources (e.g., PCs or

small servers). Heavy Duty is supposed to be used on high-
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Fig. 2. Overview of Modified Dedup. First Stage Input. Second Stage Fragment Refine (FR). Third Stage Deduplication (DD). Fourth Stage
Compression (COMP). Fift Stage Reorder (RR). Arrows: ordered stream. Dashed stages are parallel. The illustration represents Dedup with a parallelism
degree of 2.

performance architectures. The Test Class is suitable for using

when the goal is to only test if the input works, while the Free
Class is customizable by the user to specify the file format

as well as the number of files. On each class, the user may

define the number of input files according to the number of

files inside the read directory.

The default size of the queues in Dedup is fixed with over

1 million positions. The number of queues between the stages

scales proportionally to the number of replicas used. The

queues size was maintained the default configuration, because

this aspect is not considered as relevant as the buffer sizes

and the sliding window for the stream processing scenario.

Consequently, we supported the customization regarding the

buffer sizes, which also sets the sliding window size.

Another relevant aspect in Dedup is its chunk size. In data

compression, the chunk represents the data granularity used. In

stream processing, a chunk is handled as one stream element.

For our stream processing scenario, we enabled a parametric

chunk size to the end users. The chunk size affects the size

and amount of data processed, which is defined in the BSW

fragmentation algorithm [13] inside the second stage. Table I

describes the new arguments supported by Dedup execution

and usage examples.

TABLE I
OVERVIEW OF PARAMETERS SUPPORTED ON DEDUP.

Argument Description and Options
parsec stream Manager script. Options: -i, -r, -p, -a

-i Input Classes. Options: free,test,h1,h2,h3,hs,l1,l2,l3,ls
-r Number of replicas
-p Program. Ex: -p dedup
-a Actions for programs parameterization:

Dedup
fr Buffer and sliding window (SW) output of fragmentation stage

dd Buffer and SW Deduplication stage

comp Buffer and SW Compression stage

rr Buffer and SW Reorder Stage

chunk Window Size for fragmentation algorithm (Element size)

trace
notrace

Examples: $ parsec stream -p dedup -r 12 -i h1 -a chunk 2048 fr 40 dd 40 comp 40 rr 40 notrace
$ parsec stream -p dedup -r 12 -i h1 -a chunk 2048 fr 40 dd 40 comp 40 rr 40 trace 1

III. RESULTS

In this section we present results obtained using the pa-

rameterized implementation on Dedup comparing with the

original version, used as a baseline. All code versions use

the C language and parallelism is exploited using the POSIX

Threads library. The benchmarks were modified for enabling

parametric requirements of stream processing characteristics

as well as for supporting different workload trends at run-

time. Moreover, customization were needed for implementing

performance metrics that are relevant for this application

domain, such as throughput, latency, and service time [14].

A. Methodology

Dedup was evaluated considering throughput, latency, and

service time. The performance was measured and presented as

an average of 10 runs along with its standard deviation.

The Heavy Duty class was used in the benchmark execu-

tion with its subclasses described in Section II. The Dedup

subclasses were customized with files duplicated in order

to increase the input set and maintain a similar size in all

subclasses. In Table II are showed all subclasses used in the

test and the stream characteristics that are parameterizable in

Dedup. The proportion of subclasses was chosen aiming to

approximate the total size of the sets on each subclass. For

instance, to achieve a size of 6GB in the HS we needed to

add more files, because our goal was to vary input rate and

type.

The tests were run in a machine with two processors Intel

Xeon E5-2620 v3 working at 2.40 GHz (12 cores and 24

threads), 32 GB of RAM. Moreover, Ubuntu Server 64 bits

(kernel 4.4.0-121-generic) was the operating system used. The

benchmarks were compiled with GCC 5.4.0 using the compiler

flag -Os1.

The baseline used the values of default PARSEC version,

which are: sliding window (SW) with value 20; buffer size of

20 indices, and window size (WS) 32. PARSEC documentation

lacks information and reasons for using such values. The

Dedup version with parametric support was run with the

following characteristics: sliding window (SW) with value 40;

buffers with maximum of 40 indices and the window size (WS)

used was 2048 (fragmentation algorithm). The buffer sizes are

1Adds size optimizations, -Os also includes all -O2 optimizations.
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TABLE II
PARAMETRIC SCENARIO FOR DEDUP.

Parameterizable Stream
Characteristics

sliding window, queue, buffer,
stream element size (chunk fragmentation),
stream data type (text, image, video, audio)

Input H1 H2 H3 HS
Number of

Files 15 15 15 34

Total size (GB) 6.2 6.5 6.3 6.0

related to the input and output on the stages. In the FR stage,

only the output buffer is adjusted because the input buffer is

used for work scheduling. On the other hand, in the reorder

(RR) stage only the input buffer was adapted, which occurs

in the last stage.

The Figure 3 shows the throughput and service time on

Dedup parameterized with the input set H1. This result shows

that the parameterized version enabled Dedup to improve its

throughput rate as well as reducing its service time. Dedup is a

benchmark were throughput is the most relevant performance

metric [15]. Consequently, the latency results are not presented

due to space limitations.
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Fig. 3. Dedup performance using the H1 input.

Dedup tends to achieve a scalable performance with differ-

ent input sets. The use of hyper-threading on executions with

6 replicas shown to reduce the performance in both scenarios.

In Dedup, the parallelism degree is defined as an argument

and represents a value smaller than the number of threads

allocated by the system. This calculation considers: 3 + 3n,

where n is the minimum number of threads defined by the

user for a given stateless stage.

Applications using pipeline parallelism naturally demand

intensive communication between active threads. The use of

8 replicas was the degree of parallelism that achieved the

highest throughput due to the balance between computations

and communication. Using 8 threads, the bottleneck of the

slower stages was reduced by replicating them, avoiding per-

formance degradation caused by too many threads competing

for resources. The parameterized version of Dedup improved

the performance by reducing the number of chunks (larger

sizes) and consequently, the amount of communication. More

computations were done at the price of less communication.

Moreover, larger buffer sizes were tested, which also reduced

the communication among stages and avoided recurrent ac-

cesses to the communication channels that are shared by the

replicas. Such shared communication channels are managed by

locks. The buffers may be viewed as dedicated queues where

each replicas can access it without needing locks.
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In Figure 4 is shown the results from Dedup with the other

input set. Despite the contrasts between the inputs provided,

the performance trends are similar. The parameterized version

outperformed the baseline default PARSEC version. The one

exception occurred in the H3 with 12 replicas, where the

baseline was slightly better than the new version.

Table III shows the Dedup results considering the different

scenarios and input sets. Despite the fact that the parameterized

implementation used larger chunks that in some cases can

reduce the precision, the parameterized version achieved a

better precision in 50% of cases. Additionally, the parametric

version was more effective by reducing the data size after com-

pression. Moreover, another aspect showing the parameterized

implementation is performing well is the fact that it created

less chunks, which improved its performance and efficiency.

In our experimental results was shown that the implemen-

tation provided to users a starting point for indicating which

relevant stream parallelism characteristics can affect the behav-

ior and performance of their applications. The implementations

and the results presented are meant for users concerned with

their application behavior and performance. Consequently,

several behaviors of the application in a given environment

can be evaluated and predicted using benchmarks. A relevant

example of using the implementations provided is on resource

slicing in a dynamic and flexible environments (e.g., cloud

environment) for stream processing applications. In case of a

user with no performance expertise, a parametric benchmark is

a tool that provides meaningful insights of performance in the

context of stream parallelism, where realistic characteristics

are defined as benchmark parameters.

IV. CONCLUSION

In this work, we supported a stream processing bench-

mark with customizable configurations, enabling application

programmers to exploit representative executions. This was
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TABLE III
DEDUP RESULTS OVERVIEW.

Input
Set Chunks Chunks

Duplicated
Chunks Medium Size (KB)/

STDev (KB)
Output Size After

Deduplication (GB)
Output Size After
Compression (GB)

B P B P B P B P B P
H1 1653279 1078412 5.86% 1.17% 3.91 / 5.11 6.00 / 4.13 5.98 6.10 5.86 5.97
H2 1436500 1156488 22.40% 35.52% 4.70 / 4.95 5.84 / 3.76 4.29 4.28 3.69 3.65
H3 1645041 1092186 31.54% 28.23% 3.98 / 5.13 6.00 / 4.16 4.34 4.48 4.31 4.44
HS 1477071 1055706 26.39% 27.89% 4.23 / 4.93 5.92 / 3.87 4.19 4.37 3.98 4.15

B: Baseline. P: Parameterized

performed by implementing parametric funcionalities and per-

formance metrics that improved the usability and can be easily

used by application programmers. Relevant characteristics

of stream parallelism were implemented as parameters for

supporting customization to users. We implemented the para-

metric capabilities to the benchmark Dedup from the PARSEC

suite. Moreover, new input sets and classes were provided in

order to simulate a more representative workload for stream

processing applications. These inputs were tested in different

implementations and compared to default PARSEC version.

Using this new test scenario, the benchmark provided a better

representation of stream processing applications. Based on our

implementations and results achieved, we conclude that when

considering the scenario of stream parallelism, the PARSEC

benchmarks should be more parametric to support different

and custom application characteristics.

In the original version, the PARSEC goal is to evaluate the

multi-core architectures, while we consider as a relevant aspect

the application characterization and benchmark in a given

execution environment. The implementation demonstrated that

it is possible to customize existing benchmarks toward a more

recent and representative application’s characteristics. We have

shown that it is possible to collect performance metrics at

run-time, such as throughput, latency, and service time. The

metrics can be collected and visualized during the execution

by only setting a trace flag. However, all these metrics

may be only relevant for the stream processing scenario.

We contributed with performance aspects of stream parallel

applications as well as with the work of the PARSEC suite. We

aim at extending this work in terms of additional parametric

functionalities for stream parallelism in other benchmarks

from the PARSEC suite. Additional performance tuning can be

achieved in the PARSEC suite by improving data locality and

by optimizing the degree of parallelism on replicated stages.

ACKNOWLEDGMENT

This study was financed in part by the Coordenação

de Aperfeiçoamento de Pessoal de Nivel Superior - Brasil

(CAPES) - Finance Code 001, FAPERGS 01/2017-ARD

project PARAELASTIC (No. 17/2551-0000871-5), and PUCRS

School of Technology. We would like to thank Laboratório
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