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Abstract—GPUs have been used to accelerate different data
parallel applications. The challenge consists in using GPUs
to accelerate stream processing applications. Our goal is to
investigate and evaluate whether stream parallel applications may
benefit from parallel execution on both CPU and GPU cores. In
this paper, we introduce new parallel algorithms for the Lempel-
Ziv-Storer-Szymanski (LZSS) data compression application. We
implemented the algorithms targeting both CPUs and GPUs.
GPUs have been used with CUDA and OpenCL to exploit
inner algorithm data parallelism. Outer stream parallelism has
been exploited using CPU cores through SPar. The parallel
implementation of LZSS achieved 135 fold speedup using a
multi-core CPU and two GPUs. We also observed speedups in
applications where we were not expecting to get it using the same
combine data-stream parallel exploitation techniques.

I. INTRODUCTION

A significant amount of stream processing applications

have been developed in the last decade [1], [2]. The Internet

of Things (IoT) is one of the main reasons of the raising

importance of stream processing since the number of devices

and users exchanging information and communicating to each

other have grown exponentially. In addition, also the amount of

data generated and transferred through the network increased

as well as the need to store and process information in real-

time. Data compression applications are of paramount impor-

tance for this new IoT and stream processing scenario in order

to save storage space. Usually, data compression is done online

in backup and storage systems [3] continuously receiving data

from one or many data sources. The computational cost for

several state-of-the-art compression algorithms is high [4], [5],

[6], [7], [8], and the use of high-performance hardware allows

Quality of Service (QoS) to be achieved in these applications.

High-performance computing systems are no longer re-

stricted to highly specialized super computing centers. For

instance, a single box such as an Nvidia’s DGX-21 offers

high computational power and consumes less energy than

several traditional computer clusters. These kinds of computer

architectures combine multi-core (CPU - Central Processing

Unit) and many-core (GPU - Graphics Processing Units). The

efficient targeting of this heterogeneous and highly parallel

hardware still represents a challenging task, taking into ac-

count that it requires different programming frameworks.

1https://www.nvidia.com/en-us/data-center/dgx-2/

General-purpose libraries and domain-specific language

(DSL) for parallel programming haven been designed and

implemented to help programmers in this non trivial task [9].

Stream parallel programming frameworks targeting multi-

cores include languages such as StreamIt [10], libraries that of-

fer stream parallel patterns such as FastFlow [11], GrPPI [12],

and TBB [13], and DSL that offer abstractions trough annota-

tions like SPar [14]. To the best of our knowledge, there is no

specific stream parallelism abstraction targeting GPUs. The

most suitable options to target GPUs are low-level libraries

such as CUDA [15] and OpenCL [16], and libraries that offer

data parallel patterns such as SkePU [17] and SkelCL [18].

In this paper, we choose SPar because it offers higher-level

abstractions for stream parallelism in multi-cores and it has

never been used with GPU or with CUDA and OpenCL.

To represent the data compression application domain, we

chose Lempel-Ziv-Storer-Szymanski (LZSS) [19]. Our moti-

vation is to investigate how stream parallelism can be imple-

mented in data compression application for parallel computer

architectures with multi-core CPU and GPU. In the literature,

the parallelism exploitation for multi-core CPU and GPU in

LZSS have been separately studied without considering the

stream processing scenario and the possibility to use multi-

GPUs [5], [6], [7], [8], [3]. The main goal of this work

is to show how to improve performance and scalability for

data compression applications and to discuss the associated

limitations. In particular, the main contribution consists in:

• New parallel algorithms supporting the implementation

of LZSS applications in parallel on multi-core CPUs and
multi-GPUs.

• Experiments demonstrating the feasibility and scalability

of the new parallel algorithms with different parallel

programming frameworks (SPar, CUDA, and OpenCL).

This paper is organized as follows. Section II discusses

relevant related work. Section III describes the new parallel

algorithms for implementing stream parallelism in LZSS with

multi-core and multi-GPU support. Subsequently, Section IV

highlights the performance achieved and discusses the limi-

tations. Finally, Section V concludes this paper and outlines

future work perspectives.
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II. RELATED WORK

LZSSPrevious studies implemented LZSS in parallel ex-

ploiting GPUs.Our research focused on the stream parallelism

exploitation on CPU (multi-core) combined with data paral-

lelism exploitation on single or multiple GPUs.

Ozsoy et. al. have exhaustively studied different ways to

accelerate the LZSS application on GPUs, achieving a speedup

of 34 [7], [20], [8]. The goals were to exclusively use CUDA

and Nvidia hardware as well as to implement the parallelism

in GPU for the substring matching and encoding operations.

Only pre-processing and post-processing were implemented

in parallel on the CPU using POSIX threads. The parallel

algorithms designed did not consider stream parallelism and

multi-GPUs environments as we did in our studies. A sort of

streaming data compression was implemented in [20], were

a pipeline was structured inside the GPU code without sig-

nificant performance improvements. In their implementations,

the original substring matching algorithm required additional

modifications to allow the parallelism support. Ozsoy et. al.

proposed two versions for it: 1P) the input data are read

chunk by chunk and assigned to a block of threads to be

compressed in parallel; and 2) each GPU thread searches the

longest match in the chunk and compression is performed in

the CPU. In addition to our stream parallelism implementa-

tion, we followed [7], [8]’s second approach in the substring

matching algorithm. Our algorithm is different since we do

not optimize the control-flow divergence. We used a different

strategy for searching the longest match, and we provided

the multi-GPU parallelism support. Moreover, we achieved

better performance and compression ratios (same compression

efficiency as the original serial version).

Zhou et. al. developed Parallel Matching Lempel-Ziv-

Storer-Szymanski (PMLZSS) using CUDA [6]. The main goal

was to avoid branch divergence and increase performance. The

paper proposed a new strategy called matrix matching for this

compression application. However, their algorithm lead to a

poor compression ratio compared to the original version as

well as to poor performance compared to [7], [8]’s and to

our work. In addition, neither stream parallelism nor usage of

multiple GPU were considered. Another issue reported was

that their implementation uses an extra amount of memory.

[5] implemented a better version of [7]. Zu et. al. identified

the drawbacks of the previous algorithm and created the

GLZSS. They implemented a strategy using hash-table to

reduce the algorithmic complexity and accelerate the locating

of duplicated substrings. The drawback of their algorithm is

the length of the matches, which are limited by the length of

the stored data in the hash-table. This reduces the compression

ratio of the algorithm. According to [5], they achieved up

2x better performance than [7]. However, the actual speedup

was about 4.6 in their machine and [7]’s code was 2.2

faster than the CPU serial version. Note that Zu et. al. do

not support stream parallelism, nor they support multi-GPUs,

while achieving lower performance and efficiency with respect

to our work (see Table I).

In Table I, we compare the related studies regarding

the compression ratio in GPU (smaller is better), the best

GPU speedup, the parallel programming framework used, and

the machine processing settings. This table highlights the

achievements and contributions of our work. We improved

the compression efficiency in the parallel version, improved

the performance (speedup of 72.3 for single GPU and 135.9

for multi-GPU), our code has multi-GPU scalability support,

platform portability support (not only Nvidia GPUs) with

different parallel programming frameworks (OpenCL, CUDA,

and SPar). Our experiments ran in a more sophisticated

machine environment, but unfortunately, we were not able to

run the codes from other related works to achieve more precise

comparisons as these codes were not available and none of the

authors replied to our contacts.

TABLE I: State-of-the-art performance comparison for LZSS.

Work Ratio GPU Tool Machine

[7] 62% 34x CUDA
GPU GTX 480,CPU Intel
i7 CPU 920 2.67GHz

[6] 87% 16x CUDA
GPU C2070, GTX480,
GTX580. Intel i7 990x

[5] 38% 4.6x CUDA
CPU AMD A8-3870,
GPU GTX590

Our work 31% 135.9x
SPar,CUDA,
OpenCL

2 GPUs Titan Xp, Intel
Core I9-7900X 3.30GHz

III. STREAM PARALLELISM IMPLEMENTATION

LZSS [19] is a compression algorithm from the Lempel-Ziv

family and has been used in many compression applications

like RAR and PkZip [21]. This compression application uses

previous data as a dictionary to find similar data occurrences.

Every character is searched in the data already read from the

file. When an occurrence is found in the dictionary, called

sliding window, we just save the reference and length of this

piece of data in the sliding window. In addition to the four

characters in the compressed file, there are encoded data. Once

the sliding window is filled during the input data reading, we

can reproduce the original file by reading the result file and

remounting the sliding window so that it can be decompressed.

The sliding window has a fixed size (WSIZE in Algo-

rithm 1) in the LZSS application, which is 4096 bytes. Each

interaction of the algorithm updates the sliding window adding

the last processed byte and removing the 4096th byte. The

size of the search has until 4 bytes to find a match. To this

search work, the next 4 bytes must be loaded too, which is

the uncoded lookahead that is updated for every new byte

read. Therefore, the sliding window is used by the LZSS

algorithm to find the longest match of the uncoded lookahead.

In Figure 1, we illustrate how the slide window is working

with a reduced size. The window size has 4 characters and

the uncoded lookahead contains 2 characters. Each epoch

presented is one interaction of the LZSS algorithm.

The sequence of operation in the LZZS application can be

structured as a pipeline with three potential stages, which are

described as follows:
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Fig. 1: LZSS sliding window behavior.

• Read: reads byte per byte from the input file into data

chunks with the size of BSIZE (see Algorithm 1) for

sending to the next stage.

• Find Match: receives one data chunk per time and

searches the longest match (limited by MAX in Algo-

rithm 1), saving the sliding window reference and length

of the match to send to the next stage. It also keeps the

sliding window and the uncoded lookahead updated.

• Write: receives the result of the match to test how to write

the result in the file. If the match length was greater than

1, the encoded data is written in the file. Otherwise, only

the unchanged bytes are written in the file.

To introduce stream parallelism with SPar2 for CPUs, we

only annotated the code as illustrated in Figure 2. We used

SPar because it was specifically designed to simplify the

stream parallelism exploitation in C++ programs for multi-

core systems [14]. It offers a standard C++11 annotation

language to avoid sequential source code rewriting and the

SPar compiler generates parallel code using source-to-source

transformation techniques. The ToStream attribute repre-

sents the beginning of a stream region, which tags where a

stream parallel region starts in a given program. The Stages

are defined inside the ToStream region to tag the computing

phases where stream items will be processed, like workstations

in an assembly line. Input or Output attributes are inserted

to define the input and output data dependencies. The attribute

arguments can be one or more variables from different data

types, which are the stream items that will be consumed or

produced by a given region. Finally, the Replicate attribute

may be inserted in the attribute list of Stage to define the

degree of parallelism in this region.

Observe that we replicated the Find Match stage such

that each replica can find the matches for each data chunk.

However, the original serial Find Match cannot execute in

parallel due to the updates in the sliding window for each

new byte. To overcome this limitation, we modified the Find
Match. We can see in Figure 1 that the sliding window is

always made of the N bytes read before the current byte

being searched, where N is the sliding window size. We keep

the sizes of the original algorithm and load a larger data

2SPar’s home page: https://gmap.pucrs.br/spar

chunk in order to enable the search for every byte in parallel.

After, we can process the whole data chunk in the last

stage. However, this modification let the algorithm heavier

since it will perform unnecessary searches. For example,

in Figure 1, the algorithm would not require to run the

2nd and 4th epoch, because the matches at the 1st and 3th

epoch would already have been encoded the next characters.

Fig. 2: LZSS with SPar. Fig. 3: SPar with GPU.

Algorithm 1 is our implementation of the FindMatch proce-

dure to support parallel execution through the elimination of

the sliding window. The lhead(uncoded lookahead) is created

from the data chunk (batch) itself in line 5 and 6. Instead of the

search performed in the sliding window array, it operates over

the item that would have been in the sliding window in line 7
and 9. In order to avoid data losses, we have to transform the

offset of the match (result) in line 13 such as it would have

been transformed performing in the sliding window original

algorithm. In line 14 and 15, we save the offset and length
of each longest match inside a list to send to the next stage.

This list is relative to each data chunk to be compressed. We

also implemented in the next stage a filtering operation that

ignores duplicated encoded data.

Algorithm 1 Finding Match modified

1: WSIZE ← 4KB, BSIZE ← 1MB, MAX ← 15
2: procedure FINDMATCH(batch, bindex)

3: for each integer i until BSIZE do
4: index←WSIZE + i
5: for each integer j until MAX do
6: lhead[j]← batch[index+ j]

7: for each integer b until WSIZE do
8: k ← 0
9: while k ≤MAX ∧ lhead[k] ≡ batch[i+ b+ k] do

10: k ++

11: if k > length then
12: length← k
13: offset← (bindex+ i)%WSIZE + j

14: matchOffset[i]← offset
15: matchLength[i]← length

Once stream parallelism was implemented by using SPar,

we implemented a parallel algorithm to exploit data paral-

lelism inside the FindMatch procedure for GPU. Algorithm 2

presents our strategy for using both CUDA and OpenCL

libraries along with SPar. This algorithm is the kernel code

being offloaded to the GPU. Each thread executes a search for

one item in the batch. We guarantee the thread mapping by

getting the global index of the threads in line 2.
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Algorithm 2 Finding Match for GPU

1: WSIZE ← 4KB, BSIZE ← 1MB, MAX ← 15
2: procedure KERNEL(batch, bindex,mOffset,mLength)

3: i← getGpuGlobalIndex()
4: index←WSIZE + i
5: for each integer j until MAX do
6: lhead[j]← batch[index+ j]

7: for each integer b until WSIZE do
8: k ← 0
9: while k ≤MAX ∧ lhead[k] ≡ batch[i+ b+ k] do

10: k ++

11: if k > length then
12: length← k
13: offset← (bindex+ i)%WSIZE + j

14: mOffset[i]← offset
15: mLength[i]← length

Figure 2 illustrates the parallel activity graph when imple-

menting stream parallelism with SPar on GPUs. The second

stage has been replicated as many times as the number of

GPUs available in the target machine. SPar itself automatically

creates on the CPU one thread per replica to manage each

used GPU. Consequently, the application may take advantage

of both single or multi-GPU to increase the scalability. Data

management is not represented in our algorithms, however, we

implemented it inside the replicated stage. Since SPar automat-

ically generates a round-robin scheduler, no extra scheduling

implementation was required. Moreover, SPar automatically

implements data reordering when replicating the stages, thus

no extra implementation was required due to the multi-GPU

parallelism support.

Our parallel algorithms are generic enough to be used

along with other stream-based parallel programming frame-

works such as FastFlow, TBB, and GrPPI. Also, the stream

parallelism strategies developed in this work for combining

CPU and single/multi-GPU could be extend to other data

compression applications [22] or real-world stream processing

applications [23].

IV. EXPERIMENTS

Our performance evaluation was performed in a computer

machine equipped with two GPUs Titan XP (each one with

12GB of RAM), an Intel(R) Core(TM) i9-7900X CPU (20

threads with hyper-threading), 16GB of RAM, 2TB of stor-

age, Ubuntu Server 18.04 operating system (Kernel 4.15.0-

38-generic). The source codes for all implementations are

available online3. For the version using only SPar, we ran

samples using 1 to 20 replicas. The applications’ source code

were compiled using -O3 flag, g++ 7.3.0, nvcc V10.0.130,

CUDA 9.2, OpenCL 1.2, and SPar4. In the versions with SPar

and CUDA/OpenCL, we ran samples from 1 to 2 replicas,

which represent the number of GPUs available in the target

3Source codes: https://github.com/larcc-group/lzss-gpu-stream-parallelism
4Downloaded from https://github.com/dalvangriebler/SPar

machine. Each sample was repeated 10 times to compute the

speedup and standard deviation. The speedup is computed over

the sequential version of the application source code running

in the CPU. In our experiments, we also implemented two

ways to load and store our workloads. The default mode

is to read from and write to the disk. The second mode is

to read from and write to the RAM memory. We used the

following real-world data sets: Linux Source5 that is a tar

file of 797.57MB from the Linux kernel version 4.16-rc4, and

Silesia6 is a corpus of data (total of 202.13MB) that represents

real-world files (XML, DLLs, and many others).

We present the efficiency of the data compression for the

parallel versions on CPU and GPU in Table II. The compres-

sion ration is the same after adding parallelism support and

modifying parts of the code. In the related studies (Section II),

the parallel code version was always less efficient concerning

the compression ratio. During the design of our parallelism

strategies, we were seeking for efficiency.

TABLE II: LZSS data sets overview (the smaller is the best).

Dataset File Size Ratio with CPU Ratio with GPU
Silesia 202.13MB 44.56% 44.56%
Linux Source 797.57MB 31.26% 31.26%

(a) (b)

(c) (d)

Fig. 4: Performance for the LZSS application.

Figure 4 presents the graphs of the performance results

achieved in different circumstances and parallel implementa-

tion versions for the LZSS application. Figure 4(a) and 4(b)

are showing the results using the Linux Source workload

while Figure 4(c) and 4(d) are showing the results using the

Silesia workload. We observe that when using SPar only,

5Available in https://www.kernel.org/
6Available in http://sun.aei.polsl.pl/ sdeor/index.php?page=silesia
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our best case scalability was limited to a speedup of 10.66

(Figure 4(a)). This is a good result if we consider that the

machine have actually 10 physical cores available. Yet in

Figure 4(a), we achieved good results working with a single

replica for the Find Match stage, using a single GPU. Since

that the data is loaded and stored in the disk for this scenario,

we can observe that the performance is not scaling as expected

using two GPUs. This is due to the disk bottleneck. The data

loading is not fast enough to achieve the GPU processing

capacity. In Figure 4(b), when loading and storing data in

memory, the performance scales as expected for 2 GPUs.

However, our speedup for single GPU has dropped due to the

sequential version that is also faster when loading and storing

in memory (Figure 4(b) and 4(d)).

The performance results were very similar among CUDA

and OpenCL frameworks in the Linux Source workload.

The only big difference among these frameworks was for

the Silesia workload in Figure 4(c), which was loading and

storing data in the disk. However, there are higher standard

deviations in the samples. Silesia is a smaller workload than

Linux Source, which explains the lower speedups for Silesia
workload. Again, Figure 4(d) highlights the disk bottleneck in

Figure 4(c) when using 2 GPUs. Finally, these experiments

revealed the great importance of the combined exploitation of

stream parallelism and GPUs to improve the performance in

the LZSS application (increase 135.91 times in the best case

scenario).

Although we achieved satisfactory results with these initial

version, there are opportunities for improving the performance

results in this application. As an example, we plan to modify

the current code to try to eliminate branch divergence in the

GPU kernel algorithm, which may come at the price of a

decreased compression efficiency. Also, memory management

in GPU could be improved with data coalescing.

V. CONCLUSION

This paper discussed the combined exploitation of multi-

core CPUs and GPUs in the implementation of LZSS ap-

plications, using different parallel programming frameworks

(SPar, CUDA, and OpenCL).The performance achieved is

much better than the one achieved with state-of-the-art imple-

mentations. Additionally, our experiments revealed that multi-

GPU scalability in LZSS may be not so good when loading

and storing data in the disk. In the future, we plan to run

experiments in a machine such as Nvdia’s DGX-2, which

runs with 16 GPUs and to find opportunities to optimize the

parallelism exploitation.
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