Structured Stream Parallelism for Rust

Ricardo Pieper
School of Technology, PUCRS
Porto Alegre, Brazil
ricardo.pieper@edu.pucrs.br

ABSTRACT

Structured parallel programming has been studied and ap-
plied in several programming languages. This approach has
proven to be suitable for abstracting low-level and architecture-
dependent parallelism implementations. Our goal is to pro-
vide a structured and high-level library for the Rust language,
targeting parallel stream processing applications for multi-
core servers. Rust is an emerging programming language
that has been developed by Mozilla Research group, focusing
on performance, memory safety, and thread-safety. However,
it lacks parallel programming abstractions, especially for
stream processing applications. This paper contributes to
a new API based on the structured parallel programming
approach to simplify parallel software developing. Our ex-
periments highlight that our solution provides higher-level
parallel programming abstractions for stream processing ap-
plications in Rust. We also show that the throughput and
speedup are comparable to the state-of-the-art for certain
workloads.

KEYWORDS

Programming Language, Parallel Programming, Multi-core,
Stream Processing, Parallel Patterns, Structured Parallelism

ACM Reference Format:

Ricardo Pieper, Dalvan Griebler, and Luiz Gustavo Fernandes. 2019.
Structured Stream Parallelism for Rust. In XXIII Brazilian Sym-
posium on Programming Languages (SBLP 2019), September 23-27,
2019, Salvador, Brazil. ACM, New York, NY, USA, 8 pages. https:
//doi.org/10.1145/3355378.3355384

1 INTRODUCTION

In the latest years, the number of CPU cores increased sig-
nificantly [10]. The need for more processing power also
brought new architectures to the market (e.g. GPUs, TPUs).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

SBLP 2019, September 23-27, 2019, Salvador, Brazil

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-7638-9/19/09...$15.00
https://doi.org/10.1145/3355378.3355384

Dalvan Griebler
School of Technology, PUCRS
Porto Alegre, Brazil
dalvan.griebler@edu.pucrs.br

54

Luiz Gustavo Fernandes
School of Technology, PUCRS
Porto Alegre, Brazil
luiz.fernandes@pucrs.br

This wealth of options brought a challenge for application
programmers. Consequently, it is not trivial to create high-
level abstractions and still provide competitive performance.
Many APIs for parallel programming are not following a
structured approach, requiring a deep understanding of the
underlying operating system and architecture. This is a chal-
lenge for separation of concerns and code maintainability.
Programmers have to handle task distribution, synchroniza-
tion and write optimized code for different architectures.

The structured parallel programming approach describes
design patterns and algorithmic skeletons to separate the con-
cerns between application and system programmers [2, 10].
In this approach, application programmers are those that use
high-level abstractions. McCool [10] describes patterns such
as Map and Reduce, which allows the application program-
mer to implement data parallelism.

Stream parallelism imposes additional challenges since
data is often produced continuously and irregularly. Stream
parallelism also comprises a substantial fraction of today’s
workloads [5, 6]. A common abstraction for stream paral-
lelism is the Pipeline pattern, where the computation is struc-
tured in a sequence of stages that may run independently and
in parallel. For C++, the application programmer may use
libraries such as Thread Building Blocks [15] and FastFlow
[1]. Using these libraries, programmers still have to signifi-
cantly refactor the existing application code. This problem
is addressed by SPar [4], in which C++11 annotations can
be used to implement parallelism with minimal code rewrit-
ing. However, C++ is a language in which memory must be
manually allocated and deallocated, and threads can mutate
shared states. This error-prone approach may cause bugs
such as memory leaks, use-after-free, and others.

In contrast, Rust [12] is a language that implements mem-
ory safety without garbage collection, and is data-race free
[8]. This allows system programmers to explore parallelism
safely by relying on the language semantics and compiler
checking. APIs for task and data parallelism have been devel-
oped for Rust, such as Tokio [18] and Rayon [14]. However,
abstractions for stream parallelism in Rust are still lacking.

In this paper, our goal is to provide a solution where pro-
grammers can quickly implement structured stream paral-
lelism in Rust without the need to understand low-level
details related to the operating system and computer archi-
tecture. Therefore, we present the following contributions:

SBLP 2019, September 23-27, 2019, Salvador, Brazil

e A new API for Rust that supports structured stream
parallelism.

e A runtime system supporting linear and non-linear
pipeline pattern implementation.

e Experiments assessing performance and discussing
programming abstractions with respect to the state-of-
the-art libraries.

We structured this paper as follows. In Section 2 we present
the background of this work, including an overview of the
Rust language and the Structured Parallel Programming ap-
proach. Section 3 highlights the related works, describing
available libraries for parallel programming in Rust. Section 4
introduces our approach for structured stream parallelism in
Rust, including a description of the API and the underlying
runtime. Finally, Section 5 discusses the results of perfor-
mance and API usage experiments and Section 6 concludes
this paper.

2 BACKGROUND

In this section, we present an overview of the Rust language.
Additionally, we also present the Structured Parallel Pro-
gramming approach.

The Rust Programming Language

Rust [12] is a general-purpose, statically typed program-
ming language designed for reliability, performance, and
ergonomics. It uses LLVM for machine code generation and
optimization. Rust supports a large number of platforms and
can be used in browsers, servers, and embedded devices. Rust
is being used in key parts of the Mozilla Firefox browser and
is being maintained by Mozilla Research [9]. The language
has common elements found in other languages, such as
struct, traits (similar to interfaces in Java), lambda func-
tions, and modules. Since Rust is relatively new, we provide
an overview of the language and its features.

The main feature of Rust is its ownership and borrowing
system [11]. This feature allows for automatic memory man-
agement without a garbage collector. C++ developers may be
familiar with RAII (Resource Acquisition Is Initialization), a
pattern in which resources are deallocated at the end of their
scope. This helps prevent many classes of errors arising from
incorrect usage of memory, (e.g. use-after-free, double-free,
memory leaks). However, the programmer is responsible for
implementing RAII correctly, and any potential errors are
not caught by the compiler. In contrast, RAII is enforced by
Rust’s ownership system at compile time.

Every value in Rust has a type, a mutability modifier,
an owner, and a lifetime. The owner is often the scope in
which the value was declared, but ownership of the value
can change by passing a value to other functions. A lifetime
begins when the value is created and ends when the value

55

Pieper and Griebler, et al.

is dropped. The compiler tracks lifetimes of every reference
(borrow) to ensure all references are valid (i.e., the value
could not possibly be dropped before using the reference,
preventing a use-after-free error), and lifetimes are tied to
the scope in which a value exists.

In Figure 1, we provide a visualization of Rust’s ownership
and borrowing system in action. The code creates an array,
creates a reference (borrow), and mutates the array while
still being its owner. The ownership of the array is then
transferred to another scope. This causes the code to fail
compilation due to invalid usage of a dropped value after the
block containing the new_owner variable.

fn main() {

let mut arr = vec![1,2,3];

let borrow = &arr;
printin!("borrow: {:?}", borrow);

arr[e] = arr[0] + 1;
printin!("arr: {:?}", arr);

{

let new_owner = arr;
println!("new_owner: {:?}", new_owner);

}

}
[Lifetime of variable "arr"

] End of lifetime for variable "arr", value moved to another scope
. Compiler error, invalid usage of dropped value "arr"

Figure 1: Ownership and borrowing

In Rust, a value is borrowed when a reference to a value
is created. Passing a reference to a function or variable does
not transfer ownership of the original value. A value can be
borrowed mutably only once at a time or immutably mul-
tiple times (with no mutable borrows). This feature avoids
data races when values are passed to threads by disallow-
ing multiple mutable borrows or simultaneous mutable and
immutable borrows.

The compiler only accepts programs that follow Rust’s
rules for ownership and borrowing. However, due to the limi-
tations inherent to static checking [11], some valid programs
may cause the compilation to fail. To circumvent these limi-
tations, the language provides pointer types to perform bor-
row checking at runtime, such as reference-counted pointers
(atomic and non-atomic), and cells.

Rust can also be used for cases where low-level pointer
operations are needed. This is called Unsafe Rust [13]. In
Unsafe Rust, the same ownership and borrowing rules ap-
ply, but programmers can also dereference raw pointers, call

Structured Stream Parallelism for Rust

unsafe functions, mutate static variables, and implement un-
safe traits. Programmers must explicitly mark unsafe code
with the unsafe keyword. This feature allows using Rust’s
memory safety guarantees while allowing unsafe operations
in a limited context.

Rust also implements a macro system. The feature is ex-
tensively used by the standard library itself. Macros are pro-
cessed after the AST is constructed, making it a powerful tool
to construct abstractions. Differently, in C++, macros (pre-
processor directives) are processed before building the AST.
In this work, we use macros to simplify the construction of a
parallel pipeline, which is a structured parallel programming
pattern that will be introduced in Section 2.

Structured Parallel Programming

Sequential code can grow in performance by leveraging im-
provements in clock rate and ILP (instruction-level paral-
lelism). However, there are practical limitations for improve-
ment in these areas, and these problems are collectively
known as the three walls: the power wall, ILP (instruction-
level parallelism) wall, and the memory wall. Additionally,
automatic parallelization can be done only sometimes, as
language semantics often introduce limitations on automatic
discovery of parallelism opportunities.

Furthermore, parallel programming is often a difficult task,
as explained by McCool et al. [10] and Cole [2]. Program-
mers must deal with task distribution and synchronization.
Incorrect implementations of parallelism may also introduce
deadlocks and data races. Moreover, the non-deterministic
behavior of parallel programs makes them harder to reason
about when compared to sequential programs: operations
often do not execute in the same order, and similar tasks may
take different amounts of time to execute, leading to non-
deterministic behavior. Such programs may become complex
and hard to maintain.

In contrast, sequential programs are simpler to reason
about since serial code is often deterministic, always per-
forming the same operations in the same order. Authors of
[2, 10] proposed pattern-based methods to bring some char-
acteristics of serial programming into parallel programming.
McCool et al. [10] also argue that such techniques must en-
able programs to scale in performance as the number of cores
grows. Thus, such techniques would make parallel code ben-
efit from future hardware improvements, if the trend of core
count growth continues.

Cole [2] first introduces “algorithmic skeletons”. They
are considered high-level abstractions for parallel program-
ming and generalized as parallel patterns today. Additionally,
McCool et al. [10] describe a set of parallel patterns with
more detail along with the structured parallel programming
approach, which makes the use of composable patterns to
exploit parallelism in an efficient and platform-independent

56

SBLP 2019, September 23-27, 2019, Salvador, Brazil

way. Structured parallel programming is usually discussed
for data parallelism, which is the subdivision of a problem
into multiple subproblems that can be solved in parallel. Ex-
amples are Map and Reduce patterns. Map is a pattern where
a function is applied in parallel over a list of independent
items. Reduce combines all items of a list into a single item
using an associative function.

There are also patterns for stream parallelism, which are
used to exploit parallelism over continuous data flow pro-
cessing. Examples are Farm and Pipeline patterns. Farm has
a scheduler called emitter, worker replicas, and a collector
that gathers results from the worker replicas. Pipeline is built
with a sequence of stages that perform as an assembly line,
where each stage processes a different task/item in parallel.
Stateless stages can be easily replicated to build a nonlinear
pipeline composition. All different patterns can be arbitrarily
nested and composed in order to extract the maximum paral-
lelism in the underlying hardware combining either stream
or data parallel patterns [3].

In the literature, many frameworks, languages, and li-
braries have been created for the structured parallel pro-
gramming approach. For the stream parallelism domain, pro-
grammers may use libraries such as Intel TBB or FastFlow,
which implement efficient parallel patterns. Higher-level ap-
proaches are DSLs like SPar [4] and Streamlt[17]. With SPar,
programmers only need to annotate sequential code by using
a set of C++11 attributes. The SPar compiler automatically
generates parallel code with calls to FastFlow library tar-
geting shared-memory multicore architectures. As in C++,
our challenge is to allow structured parallel programming
for stream parallelism on top of the Rust Standard Library,
which has primitives such as threads, mutexes, and atomics.
Additionally, it provides MPSC (Multiple Producer, Single
Consumer) queues that can be used by multiple threads.

3 RELATED WORK

Since Rust is a relatively new language (first stable release
dating back to May 2015), there are few works on parallelism
abstractions. In this section, we will review some of the
available tools for parallel programming in Rust, including
tools that do not fit in the structured parallel programming
model/approach.

Sydow et al. [16] implemented a graphical programming
model and runtime for safe stream parallelism based on the
dataflow model. The tool generates parallel skeletons of Rust
code based on a graphical representation of the program.
The tool is coupled with the Intelli] IDEA IDE. The authors
of [16] focused on a visual overview of the code, while our
work focuses on coding for programming languages without
coupling to a specific IDE.

The de-facto library for data parallelism in Rust is Rayon
[14]. Rayon includes common data parallelism patterns such

SBLP 2019, September 23-27, 2019, Salvador, Brazil

as Map and Reduce, and the runtime implements a work-
stealing thread pool. The level of parallelism can be con-
trolled by configuring the global thread pool size, or by in-
stantiating a new thread pool. Rayon implements parallel
iterators that extend the sequential iterators on the standard
library. This approach allows programmers to easily paral-
lelize existing sequential code written using Rust iterators.
However, Rayon does not support parallelism for iterators
with unknown size, and pipelines for iterators with a known
size can be imitated by implementing chained map functions.
In our work, we focus on stream parallelism, but we include
Rayon in our comparison tests due to its ubiquity on the
Rust ecosystem.

Tokio [18] is a Rust library for asynchronous program-
ming. Tokio is entirely based on futures, which represent
abstract units of work that might complete in the future,
and they execute in a work-stealing thread pool. Tokio pro-
vides a different approach for stream parallelism, called asyn-
chronous streams. The API provides a Stream trait, which
is analogous to a stage of a pipeline in a structured parallel
programming approach. Stream implementations can have
mutable state and the pipeline can be implemented by lin-
early connecting streams together. For stream parallelism,
the programmer needs to manually spawn futures in each
stage and create a channel to return a result. Tokio can
not be considered as a structured parallel programming ap-
proach due to the low-level parallelism control (futures and
channels). We built a parallel pipeline in Tokio using asyn-
chronous streams in Section 5 for performance evaluation.

In Table 1, we compare the main feature set of each library.
The column Ours refers to our work, which focuses on struc-
tured stream parallelism. For Tokio, we mark Stream Paral-
lelism and Data Parallelism with “Yes” because the user can
build it from scratch by using futures and channels. Although
Tokio provides fewer abstractions, it is flexible enough to
support all types of parallelism. Moreover, Tokio and Rayon
implement a work-stealing scheduler. Work-stealing is very
good for task and data parallelism. However, it may present
performance drawbacks for stream processing since threads
are not dedicated to each stage of the pipeline, which may
cause latency problems [3]. Work-stealing implementation
can help to improve resource utilization but not necessarily
improve performance. When analyzing the available parallel
programming options for Rust, we observed that none of
them offer structured stream parallelism for ready-to-use in
parallel programming.

4 STREAM PARALLELISM FOR RUST

Rust offers several features that put it as a candidate to be
used for HPC applications in the next years. Some of them
are memory safety, thread-safety, and LLVM optimizations.
Therefore, we designed a high-level programming library

57

Pieper and Griebler, et al.

Table 1: A comparison of Rust parallel programming APIs.

Characteristics Tokio Rayon Ours
Stream Parallelism Yes* No Yes
Data Parallelism Yes* Yes Yes
Task Parallelism Yes No No
Work-stealing Yes Yes No

based on structured stream parallelism for Rust, which allows
users to quickly express parallel stream operators through
the pipeline pattern using few building blocks. This section
will discuss the design principles, API of the library, and
runtime system.

Design Principles

Our programming interface was designed based on TBB
(Thread Building Blocks) [15], FastFlow [1], and SPar [4]
because they follow the structured parallel programming
approach as well. In TBB, each stage of the pipeline is called
a filter, which are classes that extend the tbb: : filter class.
Differently, FastFlow provides the ff_node_t generic class
that can be used as building blocks to instantiate Farm or
Pipeline patterns. SPar provides code annotations to mark
stream parallelism regions, stage, input/output dependencies,
and stage replication. We want to be as close as possible to
the abstraction level provided by SPar with the implementa-
tion principles (library) of TBB and FastFlow. Therefore, our
design principles are summarized as follows:

o Avoid the use of Unsafe Rust in the API and the run-
time.

e Do not expose synchronization, task scheduling or any
system related programming to application program-
mers.

o Application programmers must be able to specify the
end of the stream for bounded streams and choose
whether a stage receives items in the order that they
were initially produced.

Our design focuses on type-safety and thread-safety. Each
stage in the pipeline indicates the data type of their inputs
and outputs. At compile-time, during macro expansion, the
links between stages are established, and any type errors are
caught by the compiler during type-checking. Additionally,
we use Rust’s thread-safety guarantees to prevent data races
by having each replica of a parallel stage contain its own
isolated state. A replica cannot access the state of another
replica. If this becomes necessary, the programmer will be
forced by the compiler to use synchronization primitives.
This approach allows the programmer to have a limited form
of mutable state. The following steps might guide application
programmers to introduce stream parallelism on existing
sequential code using our library:

Structured Stream Parallelism for Rust

(1) Identify code regions that could execute in parallel.

(2) Isolate these regions inside functions and identify their
inputs and outputs.

(3) Wrap the functions using the API to build the pipeline

(4) Identify the primary input of data.

(5) Determine whether the program should wait until all
items are processed.

Rust-SSP Programming Interface

In this section we describe our API (public available 1), which
has the following elements:

e A macro called pipeline! to setup a pipeline.

e parallel!, sequential! and sequential_ordered!
macros to define stages in the pipeline.

e post, collect and end_and_wait methods to control
pipeline execution.

e In and InOut trait objects to define the code executed
by the stage.

In Listing 1 we implemented a pipeline that resizes a
stream of images and waits until all images are processed. A
pipeline is composed of a Pipeline object and one or more
stages (LoadImage, Resize and SaveToDisk). Each stage is
defined using a macro. The code of a stage can be defined
using one of the following methods:

e A function name or a lambda function for stateless
stages.

e A struct that implements InOut or In traits for state-
ful and stateless stages.

The example shown in Listing 1 uses struct that im-
plement InOut and In traits. These traits are the building
blocks of the API, which are wrappers for sequential code.
The InOut trait declares a process function that takes a
value from the stream and returns a new value, as shown
in Listing 2. The In trait declares a process function that
takes a value from the stream, but does not return a result.
The code for In has been omitted for brevity, but it is very
similar to InOut. Both trait objects allow the user to mutate
internal state.

To define a stage, three macros are available:

e parallel!(stage, threads): defines a stage that
can be replicated for parallelism.

e sequential! (stage): defines a stage that runs in a
single thread.

e sequential_ordered! (stage): defines a stage that
runs in a single thread, receiving items in the order
they were initially produced.

The last stage in the pipeline must be a sequential! or
sequential_ordered! stage that receives an In trait object.
Listing 1 shows the use of the post method, which is used to

1Rust-SSP source codes: https://github.com/GMAP/rust-ssp

SBLP 2019, September 23-27, 2019, Salvador, Brazil

send items to the pipeline. In this example, we are interested
in collecting the results after processing all images in a direc-
tory (bounded stream computation). The results can be col-
lected by calling the collect method. Also, it encompasses
the “end” signal to notify the alive threads waiting for items
in the shared queues. When a thread process the “end” signal,
it stops producing items to the next steps. This signal is prop-
agated to the other threads and other steps, which eventually
causes all threads to finish. There is a end_and_wait method
if the programmer does not want to collect the results. If
the programmer forgets to call end_and_wait or collect,
the library automatically sends an end signal and waits for
all threads to join. This is done by implementing the Drop
trait, which is similar to a C++ destructor. In the case of an
infinite stream where the programmer uses an infinite loop,
the threads will never finish, and there is no need to signal
the end of the stream.

Listing 1: Pipeline example: resizing images.

let threads = num_cpus::get();

let pipeline = pipeline![
parallel! (LoadImage ::new (), threads),
parallel! (Resize ::new(), threads),
parallel! (SaveToDisk ::new (), threads),
sequential! (Collector::new())];

let image_paths = load_from_dir ();
for entry in image_paths {
pipeline . post(entry).unwrap ();

}

let result = pipeline.collect ();

Listing 2: Creating an InOut stage.

struct LoadImage;
impl InOut<PathBuf, Image> for Loadlmage {
fn process(&mut self, input: PathBuf) —> Image {
//code for loading image omitted

}

Rust-SSP Runtime

In this section, we describe how stages are connected to each
other; how the output of a stage is sent to the next stage;
the synchronization mechanism for work queues; and how
threads are spawned. As described in Section 4, the build-
ing blocks of our API include In and InOut trait objects.
Internally, these trait objects become a PipelineBlock. A
PipelineBlock is a Rust trait that requires its implementa-
tions to provide a process method. There are 2 implemen-
tations: InOutBlock and InBlock. These traits and imple-
mentations are described in Figure 2. Some details of these
structures have been omitted for simplicity.

SBLP 2019, September 23-27, 2019, Salvador, Brazil

| InBlock<TInput> |

l work_queue: BlockingQueue<TInput> I

| trait PipelineBlock<TInput> |

lfn process(&self, value: WorkItem<TInput>) —> () I

| InOutBlock<TInput, TOutput> |

next_step: PipelineBlock<TOutput>

work_queue: BlockingQueue<TInput> ’

Figure 2: Pipeline block implementations.

All InOutBlock objects own the object of the next block,
which are implementations of PipelineBlock. The imple-
mentation of process in InOutBlock and InBlock simply
enqueue the WorkItem in the work_queue, which is a FIFO
queue. InOutBlock executes the stage code and passes the
result to the next stage (next_step) by calling the process
method. InBlock only executes the stage code, as it repre-
sents the end of the pipeline. By using generic types, Rust can
prevent type errors at compile-time, since the input type of
next_step of InOutBlock needs to match the output type.

The threads that read items from the work_queue are
spawned by the stage definition macros. The macros gener-
ate the necessary code to transform the external API stage
objects into internal pipeline blocks, spawns all the neces-
sary threads and register them for joining if the programmer
needs to wait for the end of stream processing.

The stage code is defined using Rust traits. In Rust, struct
fields and function parameters must have a known size at
compile time. Traits have unknown size, and cannot be stored
in structures or declared as function parameters. Rust re-
quires the programmer to “box” the value to store it in the
heap, which can be done with the Box API. The program-
mer would have to manually create the box, and transfer
ownership of the data to the box. Instead, we use macros
to generate the necessary boxing code. Therefore, applica-
tion programmers can simply pass the trait object without
manual boxing. Another way to solve this problem would be
to store a reference to a trait object. However, the program-
mer needs to specify lifetimes when storing a reference in a
Rust struct, which makes the library code more complex.
In languages like C++, these limitations do not exist since
abstract class objects and references can be freely passed
to methods and stored in class fields. However, the lifetime
and memory allocation of these objects must be carefully
thought by the programmer. In contrast, Rust is more strict
regarding passing abstract objects to methods and structs.

59

Pieper and Griebler, et al.

Overcoming these restrictions can be challenging, and Rust-
SSP overcomes this by using macros.

Macros are also used to link together all blocks of the
pipeline. If we had opted for a manual linking approach,
where the programmer must construct the stages and con-
nect them using a method call, the ownership system would
require the linking of the blocks to be done in a counter-
intuitive reversed order. If a pipeline sequence has stages
in the order s1, s2 and s3, the programmer would have to
create links in the order s2.1ink_to(s3);s1.1link_to(s2);
because the subsequent stage is owned by the previous stage.
This effectively ends the scope of the object, preventing it
to be used again. The macros allow the stages to be defined
in the intuitive order. Although the reverse linking could be
performed by a function instead of a macro, we would face
the aforementioned problem with unknown-size arguments,
requiring the user to create a Box object before passing it
into the function.

FIFO Queue
o
FIFO Queue

Figure 3: Flow of data in the runtime.

A general visualization of the runtime is shown in Figure
3, representing an abstract application that follows the well-
known Farm (with emitter, worker, and collector) pattern.
In order to provide parallelism, we store all work items in
a double-ended queue protected by a Mutex. When an item
is added, a condition variable is used to notify that an item
was enqueued. In the case of a sequential ordered stage, we
store items in an ordered set, where the key is the tag of
the item. The tagging process is done by the post method,
and the tag value is assigned by an internal counter that
increments each time the post method is called. Work items
are then dequeued in order, blocking if the next item is not
in the queue yet. This ordering algorithm was based on [7].
Section 5 evaluates the performance of our implementations.

5 RESULTS

In this section, we present a performance evaluation and
discuss programming abstractions. Our library was named
as SSP-Rust. All tests were run in a machine with 2 Intel(R)
Xeon(R) CPU E5-2620 v3 @ 2.40GHz (12 cores, 24 threads)
with 32GB of RAM memory. The operating system used was
Ubuntu 16.04 64 bits with kernel 4.4.0-146-generic. The code
was compiled using Rust 1.34.1 using the —-release flag.

Structured Stream Parallelism for Rust

The tests involved 2 applications:

(1) Calculate a 1000x1000 Mandelbrot Set.
(2) Fetch a stream of images and apply a sequence of 6
filters.

For the Mandelbrot Set, we calculate multiple lines of the
image in parallel, resulting in 1000 work items. This test
shows that SSP-Rust can also be used for simple data paral-
lelism workloads. We also test Tokio and Rayon on the same
workload. For the Image Filter test, we applied 6 filters in
each image following this order: Saturation, Emboss, Gamma
Correction, Sharpen, Grayscale, and Resize to 500px width.
Some filters may take longer than others to complete, and
the images have different sizes. This workload will test how
the system behaves when the load is not balanced. For this
test, we compared SSP-Rust and Tokio. We do not compare
with Rayon because it does not support stream parallelism.

We ran each benchmark 5 times to take the average. The
standard deviation was less than one percent. Take into ac-
count that some comparisons are unfair: Rayon and Tokio
have different runtimes and implement work-stealing thread
pools which are expected to use resources more efficiently.
For this version of Rust-SSP, we implemented shared queues
controlled with mutexes to communicate between stages. We
do not implement any optimization for lock contention and
cache. Therefore, we expect that Rayon and Tokio perform
better than Rust-SSP.

-

SSP-Rust Unordered S
SSP-Rust Ordered

Tokio Unordered
—— Ideal

Rayon
Tokio Ordered

2 4 6 8 10 12 14 16 18 20 22 24
Parallelism Level

Figure 4: Mandelbrot with Speedup Comparison.

Figure 4 shows a speedup graph for the Mandelbrot Set
benchmark. For Tokio and SSP-Rust, we also test the ordered
and unordered options. We observed similar performance
across all parallelism levels. Rayon varies more across all
tests. This is a behavior that we attribute to the implementa-
tion of its work-stealing scheduler. Tokio and SSP-Rust show
less variation and similar performance.

In Figure 5, we show two graphs displaying the throughput
of Tokio and SSP-Rust. Both libraries show approximately

60

SBLP 2019, September 23-27, 2019, Salvador, Brazil

the same peak throughput and a similar curve. For Tokio, we
observed that by configuring only 1 pending future on each
stage, there are no performance improvements. A speedup
was only achieved when the stage is configured to work with
2 or more pending futures. Tokio did not exhibit the same
behavior in the Mandelbrot Set benchmark because there is
only 1 stage. It is difficult to analyze the behavior since the
buffer size in Tokio does not necessarily mean the number
of threads that are running.

—»— SSP-Rust

Images/sec

=
ONPBPBOOOON
l 1 1 1 1 1

Seq 2 4 6 8 10
Threads per stage

—— Tokio

12 A
10 A
8 .
6 -
4
2 -
Seq 2 4 6 8 10
Buffer size per stage

Images/sec

Figure 5: Image Processing Throughput Comparison.

It is worth to discuss also the abstractions when imple-
menting the parallelism for the Mandelbrot Set benchmark
in terms of source lines of code added beyond the sequential
source code. Therefore, we measured the code intrusion. For
Rayon, we measured 4 lines of code. Tokio requires 14 lines
of code, and SSP-Rust takes 7 lines of code. The effort of
parallelization in Rayon is very low since it follows Rust’s
Iterator API design in order to provide easy ways to work
with collections of data. For existing single-threaded code
that already uses the Iterator API, migrating to Rayon is
trivial. For Tokio, most of the effort is in spawning a future
and creating a oneshot channel to retrieve the results. This
process takes approximately 7 lines of code.

SBLP 2019, September 23-27, 2019, Salvador, Brazil

The programming effort in SSP-Rust is larger than Rayon,
and the code is shown in Listing 3. However, the code itself
is simple because it only defines a pipeline, adds items to the
stream, and waits for the stream processing termination.

Listing 3: SSP-Rust Mandelbrot Set.

let pipeline = pipeline![
parallel! (calculate_line , threads),

simew ())];

sequential! (RenderLine
for i in 0..lines {
pipeline . post(i).unwrap ();

}

let rendered_lines = pipeline.collect ();

For the Image Processing benchmark, we used an external
library called raster to apply a filter to each image. Each
filter takes 2 lines of code. The Tokio implementation takes
68 lines of code, and SSP-Rust takes 30 lines. To use Tokio, it
is necessary to use almost twice the number of lines of code
to provide stream parallelism when compared to SSP-Rust.
To alleviate this, we created a simple macro to perform the
setup, reducing the line count to 46 lines, which is still 55%
more lines of code than SSP-Rust.

6 CONCLUSIONS

This paper introduced a new parallel programming library
for structured and safe stream parallelism. The API exposes
only a few methods that provide important features in stream
parallelism without calling Unsafe Rust methods. Our ab-
straction provides high-level and structured mechanisms,
simplifying the parallel software development for stream
processing applications. Although a fair comparison is hard
to achieve due to the different design goals of the available
tools, we provided similar performance and demonstrated
simpler parallel programming abstractions for stream pro-
cessing applications.

Besides concluding the important steps, we visualize fu-
ture works. First, more benchmarks with real-world appli-
cations could be performed to obtain more data regarding
performance and programming effort. Second, performance
improvements could still be applied in the work queues by
using non-blocking mechanisms. Third, support arbitrary
nesting of data and stream parallel patterns. Fourth, support
more advanced stream processing techniques, such as sliding
window. Lastly, support for other architectures such as GPU
could be implemented in the runtime.

ACKNOWLEDGMENTS

This study was financed in part by the Coordenacéo de Aper-
feicoamento de Pessoal de Nivel Superior - Brasil (CAPES) -
Finance Code 001, the FAPERGS 01/2017-ARD project called
PAarRAELASTIC (No. 17/2551-0000871-5), and the Universal
MCTIC/CNPq No. 28/2018 project called SParCloud (No.

61

Pieper and Griebler, et al.

437693/2018-0). We also thank Laboratoério de Alto Desem-
penho (LAD) from PUCRS for the computing resources.

REFERENCES

[1] Marco Aldinucci, Marco Danelutto, Peter Kilpatrick, and Massimo
Torquati. 2014. FastFlow: High-Level and Efficient Streaming on Multi-
core. In Programming Multi-core and Many-core Computing Systems
(PDC), Vol. 1. John Wiley & Sons, 14.

[2] Murray I Cole. 1989. Algorithmic Skeletons: Structured Management
of Parallel Computation. University of Glasgow, Glasgow, United
Kingdom.

[3] Dalvan Griebler. 2016. Domain-Specific Language & Support Tool for
High-Level Stream Parallelism. Ph.D. Dissertation. Faculdade de Infor-
matica - PPGCC - PUCRS, Porto Alegre, Brazil.

[4] Dalvan Griebler, Marco Danelutto, Massimo Torquati, and Luiz Gus-
tavo Fernandes. 2017. SPar: A DSL for High-Level and Productive
Stream Parallelism. Parallel Processing Letters 27, 01 (2017), 1740005.

[5] Dalvan Griebler, Renato B H Filho, Marco Danelutto, and Luiz Gustavo
Fernandes. 2017. Higher-Level Parallelism Abstractions for Video Ap-
plications with SPar. In 3rd International Workshop on Reengineering for
Parallelism in Heterogeneous Parallel Platforms (2017-09-01) (RePara’17).
IOS Press, Bologna, Italy.

[6] Dalvan Griebler, Renato B H Filho, Marco Danelutto, and Luiz Gustavo
Fernandes. 2018. High-Level and Productive Stream Parallelism for
Dedup, Ferret, and Bzip2. International Journal of Parallel Programming
(2018), 1-19. https://doi.org/10.1007/s10766-018-0558-x

[7] Dalvan Griebler, Renato B. Hoffmann, Marco Danelutto, and Luiz Gus-
tavo Fernandes. 2018. Stream Parallelism with Ordered Data Con-
straints on Multi-Core Systems. Journal of Supercomputing 75 (July
2018), 1-20. https://doi.org/10.1007/s11227-018-2482-7

[8] Ralf Jung, Jacques-Henri Jourdan, Robbert Krebbers, and Derek Dreyer.
2017. RustBelt: Securing the Foundations of the Rust Programming
Language. Proc. ACM Program. Lang. 2, POPL, Article 66 (Dec. 2017),
34 pages. https://doi.org/10.1145/3158154

[9] Mozilla Research Link Clark. 2019. Inside a super fast CSS engine: Quan-

tum CSS (aka Stylo). Retrieved May 2, 2019 from https://hacks.mozilla.

org/2017/08/inside-a- super-fast-css-engine-quantum- css-aka-stylo

Michael McCool, Arch D. Robison, and James Reinders. 2012. Structured

Parallel Programming: Patterns for Efficient Computation. Elsevier,

Waltham, MA.

Mozilla Research. 2019. Rust Book. Retrieved May 2, 2019 from

https://doc.rust-lang.org/book/

Mozilla Research. 2019. Rust Programming Language. Retrieved May

2, 2019 from https://www.rust-lang.org

Mozilla Research. 2019. The Rustonomicon. Retrieved May 2, 2019

from https://doc.rust-lang.org/nomicon/

Rayon. 2019. Rayon. Retrieved May 12, 2019 from https://github.com/

rayon-rs/rayon

James Reinders. 2007. Intel Threading Building Blocks (first ed.). O’Reilly

& Associates, Inc., Sebastopol, CA, USA.

Stefan Sydow, Mohannad Nabelsee, Helge Parzyjegla, and Paula Herbe.

2018. A Safe and User-Friendly Graphical Programming Model for

Parallel Stream Processing. Euromicro International Conference on

Parallel, Distributed, and Network-Based Processing (2018), 239-243.

William Thies, Michal Karczmarek, and Saman P. Amarasinghe. 2002.

Streamlt: A Language for Streaming Applications. In Proceedings of the

International Conference on Compiler Construction. Springer, Grenoble,

France, 179-196.

Tokio. 2019. Tokio - The asynchronous runtime for the Rust programming

language. Retrieved May 12, 2019 from https://tokio.rs

[10

—

(11

—

[12

—

[13

[t

(14

[l

[15

—

(16

=

(17

—

(18

[

