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Summary

Stream processing is a parallel paradigm used in many application domains. With the

advance of graphics processing units (GPUs), their usage in stream processing appli-

cations has increased as well. The efficient utilization of GPU accelerators in stream-

ing scenarios requires to batch input elements in microbatches, whose computation

is offloaded on the GPU leveraging data parallelism within the same batch of data.

Since data elements are continuously received based on the input speed, the big-

ger the microbatch size the higher the latency to completely buffer it and to start

the processing on the device. Unfortunately, stream processing applications often

have strict latency requirements that need to find the best size of the microbatches

and to adapt it dynamically based on the workload conditions as well as according

to the characteristics of the underlying device and network. In this work, we aim

at implementing latency-aware adaptive microbatching techniques and algorithms

for streaming compression applications targeting GPUs. The evaluation is conducted

using the Lempel-Ziv-Storer-Szymanski compression application considering differ-

ent input workloads. As a general result of our work, we noticed that algorithms with

elastic adaptation factors respond better for stable workloads, while algorithms with

narrower targets respond better for highly unbalanced workloads.

K E Y W O R D S

data compression algorithms, dynamic reconfiguration, parallel programming, service level

objective, stream parallelism, stream processing

1 INTRODUCTION

Streamed data compression algorithms are used in several real-world systems such as data storage services, web protocols, and in many mobile

ad hoc network protocols. In the context of Internet of things (IoT), data compression is frequently used to improve data transferring1 due to

limited network bandwidth. Based on the specific technological scenario where data compression is employed, it might require different nonfunc-

tional requirements concerning either performance (latency and/or throughput) or power consumption2 (eg, when data compression is applied on

embedded devices). Such nonfunctional requirements can often be satisfied by leveraging heterogeneous multicores equipped with accelerators

specialized in compression activities.3 When such specialized coprocessors are not available, graphics processing units (GPUs) still represent inter-

esting candidates for offloading data compression tasks, also because they are becoming popular in IoT embedded systems.4 However, the efficient

exploitation of GPU devices is considered challenging in the context of stream processing,5 in particular when the target performance metric to

Abbreviations: FAF, fixed adaptation factor; GPU, graphics processing unit; LZSS, Lempel-Ziv-Storer-Szymanski; MBAF, multiplier-based adaptation factor; PBAF, percentage-based adaptation

factor; SLO, service level objective.
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optimize is latency. This is because GPUs generally work well when a high volume of data is available at the same time, condition that in stream

processing applications can be obtained by properly batching input data before processing them as a whole.

Several studies6-8 proposed new parallel data compression algorithms with the aim of maximizing GPU usage. One of the most effec-

tive ways to increase the system throughput is to organize the computation as a pipeline where one or more stages offload batches of input

data elements into the GPU. This approach has been pursued in our previous work for the Lempel-Ziv-Storer-Szymanski (LZSS) compres-

sion algorithm.8 We observed that the size of the offloaded batch plays an important role having a significant impact both on the system

throughput and on its end-to-end latency.5 The ideal batch size depends on several factors, among them, the current workload and the input

data rate. The effect of using large batches is generally to increase the system throughput at the expense of higher latency due to a longer

buffering phase.9

In real stream processing scenarios, the optimal microbatch size, that is, the one achieving the desired trade-off between throughput and

latency, is not a constant value. Workload fluctuations on stream processing applications are very common, changing the frequency at which

new inputs are received by the system and the average computational cost of the processing of each individual input element. This problem

can be tackled using dynamic techniques that adapt the microbatch size based on the measured behavior of the system with the goal of

achieving a desired service level objective (SLO).2 Generally, we intend SLO in this article has an acceptable value for a given configuration

parameter that keep the average latency within a desired region, that is, lower/higher than a maximum and a minimum threshold identified by

the user.

It is widely acknowledged that implementing dynamic adaptations to meet specific SLOs is a complex problem to face. GPU accelerators add

further complexity with respect to CPUs-only dynamic adaptation,10-12 because the number of underlying parameters to consider become greater.

In GPU-based systems, the dynamic thread creation and synchronization can add significant overheads because the hardware has been mainly

designed for data parallelism, where a batch of data is processed synchronously by many lightweight threads. Furthermore, most of the current

heterogeneous systems are based on PCI interconnects that make the overhead of data transfers significant if not properly dealt with References

13,14. Only a small number of research articles implemented adaptive microbatching for stream processing applications (a discussion of them is

presented in Section 2). A significant fraction of the proposed algorithms and strategies were designed to reach the maximum performance as pos-

sible on a target platform primarily in terms of sustained input rate (throughput). For example, GASSER15 automatically tunes the microbatch size

to optimize throughput. However, it does this by assuming a stationary workload (eg, stable input rate) and once the optimal size has been found it

is never recomputed.

In this work, we study the problem of providing adaptive microbatching solutions. To this end, we focus on data compression applications (and

in particular to LZSS) due to their importance in IoT domains. Our idea is that the application user is in charge of expressing the desired SLO latency

requirements, and the underlying system is able to meet such requirements automatically over the entire computation. To do that, we use a mix

of reactive adaptation approaches and closed-loop control algorithms that represent the core contribution of this article. Finally, we validate the

proposed techniques using real-world workloads in order to provide a credible analysis.

This article is structured as follows: Section 2 discusses the related work. Section 3 describes the scenario and the design choices, the streamed

data compression application adopted, our strategy based on a dynamic loop control for adapting microbatches at run-time, and the four reactive

algorithms proposed. Section 4 provides a description of the experiments conducted by using different workloads and the evaluation of the obtained

results Finally, Section 5 concludes this article and briefly presents future directions.

2 RELATED WORK

When reviewing the literature, we identified only few works tackling the problem of microbatch adaptation in stream processing applications.

Some of them focused on multicore architectures,9,11,12,16 while others tackled a similar problem for window-based streaming operators on het-

erogeneous systems equipped with GPUs.15,17 To the best of our knowledge, this article presents the first attempt to provide algorithms for the

dynamic adaptation of the microbatch size for stream processing applications running on GPU-based systems to meet a user-defined target latency

requirement.

Das et al9 explored the performance impacts of the microbatch size. They aimed at increasing the robustness of the application by adapting the

batch to the changes at run-time. Their strategy was based on the fixed-point iteration method to find the intersection between batch processing

time and batch interval. However, the algorithm assumes the existence of a specific batch interval where the processing rate matches the data input

rate. If there is no such point, the algorithm will not converge with important implications on the application's performance (unbounded running

time to find a stable solution).

Dynamic block and batch sizing algorithm (DyBBS)16 is a proposed technique that tries to minimize the end-to-end latency of batched stream

systems, by dynamically adjusting the block and batch size based on the input rate. The input data is grouped in blocks, which are sized according

to proper heuristics. Historical measurements collected for the same data rate and block interval are fed to the Isotonic Regression18 algorithm to

calculate the optimal batch interval. There are three parameters in the algorithm: a constant value used to control how frequent are the changes
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of the batch and block intervals, the block interval incremental step size, and the data injection rate discretization. The DyBBS algorithm has been

evaluated in the Spark Streaming framework,19 which is a batch-based stream processing system for distributed architectures.

GASSER15 is a new system targeting window-based streaming operators on heterogeneous multicores. It offloads the execution of

sliding-window operators on local GPUs by using CUDA. The runtime is based on the FastFlow library.20 It implements an online learning model to

find the optimal value of parallelism (number of CPU threads) and batch size (configuration in the sequel), improving the system throughput and

maintaining at the same time the latency as lower as possible. The basic strategy involves generating random configurations (within a given range

depending on the number of cores and on the system features of the GPU) by using a low discrepancy generator. Then, these values are tested while

the application is running by monitoring the system throughput. Finally, the prediction model is refined by using the measured data until it finds the

optimal values that maximize throughput and minimize the latency. Differently from GASSER, our work targets stream-based data compression

applications focusing more on the aspect of reducing the end-to-end latency rather than improving the system throughput.

In GStream,21 the batch size is controlled by an elastic API bounded by two user-defined parameters called minimum (min) and maximum (max),

where the default values are 1 and 4096. The communication between two distinct operators of the work-flow graph is implemented through

data queues. The batch size is controlled by the pop operation on the input queue of a given operator: if there is less than min elements in the

queue, the processing stage blocks and waits for the producer to enqueue more data; if there is more than min but less than max elements in the

queue, all elements in the queue are removed to be processed; if there is more than max elements in the queue, max elements are removed for

processing.

Both Saber17 and G-Storm22 aim to utilize the GPU for parallel stream processing. Saber17 presents a scheduling strategy to execute stream-

ing window-based SQL queries on both CPU and GPU. G-Storm22 integrates with Apache Storm to support GPUs using JCUDA. Both of them

use batching of data tuples before offloading them to the GPU. However, they do not adapt dynamically their batch size to improve a given

latency target.

Table 1 presents a summary of the related work to highlight the main differences among them. Microbatch adaptation in general is provided by

Das et al9 and DyBBS16 for a distributed stream processing system while G-Storm22 just implemented GPU support for Apache Storm using JCUDA.

TA B L E 1 Related work summary

Reference

Microbatch stream

processing approach GPU support Goal Used technologies

Das et al9 Microbatch sizes are defined by

the time intervals.

No Adaptive algorithm to find the

minimum batch size that is

smaller than the batch

processing time to ensure the

system stability.

Spark streaming19

DyBBS16 Data are grouped in blocks to be

grouped in microbatches, which

are defined by the time intervals.

No Adaptive algorithm to minimize

the end-to-end latency by batch

and block sizing while ensuring

system stability in the Spark

Streaming system.

Spark streaming19

G-Storm22 Microbatch size is defined by the

number of tuples.

Yes GPU support for Apache Storm. Apache Storm and JCUDA23

Saber17 Window-based streaming SQL

queries.

Yes A hybrid stream processing

engine for heterogeneous

architectures.

Java

GStream21 Microbatch sizes are defined by

the speed of the previous

pipeline stage and bounded by

user-defined parameters.

Yes Provide high-level abstractions

for stream processing on GPUs

C++ templates and CUDA

GASSER15 Sliding-window operators. Yes Adaptive algorithm to find the

best concurrency level and

batch size for improving

throughput (windows

processed per second) and

minimizing latency.

FastFlow20 and CUDA

This work Microbatch sizes are defined by

the data length.

Yes Adaptive algorithms that meet a

target latency expressed by the

application programmer.

SPar24,25 and CUDA
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Both Saber17 and GStream21 systems deal with data stream processing on GPUs without the adaptive microbatching support. Only GASSER15 pro-

posed the adaption of batch size for stream processing on GPUs, however, the adaptation was not elastic. Furthermore, it is worth noticing that none

of the previous research works aimed at meeting a target SLO expressed by the application programmer by using C++ attributes. They followed

the classical high-performance approach with the objective to extract the maximum performance possible from the parallel architectures at hand

providing the application programmer with a scalable solution.

3 ADAPTIVE MICROBATCHING FOR STREAM PROCESSING ON GPUS

Stream processing applications are characterized by the continuous processing of data coming from one or more input streams. These input

streams are usually infinite, where the data are generated continuously by sources such as sensors, financial tickers, or social media. The data

input rate usually varies over the time, influenced by several different factors. Historically, programmers write these kinds of applications using

smart sequential algorithms. Often, such applications need to be parallelized to fully utilize the resources available on modern heterogeneous

architectures and accelerate the application execution to sustain the current input pressure without introducing bottlenecks in the streaming

pipeline.

One of the available tools that can be used to quickly parallelize sequential stream processing applications by using high-level paral-

lel abstractions is SPar3. SPar is a domain-specific language (DSL) focused on expressing stream parallelism.24,25 It provides a set of five

attributes that can be expressed as C++ annotations to label: (i) a stream parallelism region in the sequential code (using the attribute

ToStream); (ii) the code of each computing phase (Stage attribute); (iii) the data items passed from one stage to another (Input and Output

attributes); (iv) and the degree of parallelism (Replicate attribute), which defines the number of replicas of a given Stage. The SPar com-

piler parses these attributes, and then source-to-source transformations are performed to produce parallel code leveraging the FastFlow parallel

library.20

In our previous work,5 we identified the need for creating microbatches of stream items to properly exploit many-core accelerators like

GPUs with SPar. This raised the problem of properly identifying the microbatch size to improve the performance of stream processing appli-

cations. The ideal batch size depends on several characteristics, such as the current workload and input rate. It also depends on the low-level

features of the underlying platform. In some cases, a large batch size allows achieving high throughput because of the better exploitation of

the available data transfer bandwidth. However, a large batch might significantly increase the end-to-end latency to produce new results.9

In addition to that, the unbalancing workload may also interfere in the latency time, making useless any attempts to adapt to these changes

proactively.

When developing parallel stream processing applications with a high-level framework like SPar, which aims at simplifying parallel program-

ming, it is of foremost importance that these factors are considered to comply with user requirements in terms of latency or throughput.

Due to that, we represent the user requirements with a high-level concept called SLO.2 By using SLO annotations, the SPar application pro-

grammer specifies a performance goal in a stream parallelism region (ie, a SPar's ToStream). The syntax and semantics of the SPar language

were already extended for adding the possibility to express SLOs with standard C++ attributes in the sequential source code.2 Therefore,

we just reuse this definition to focus on the algorithm design for adapting the batch size at run-time. Listing 1 provides an example of our

idea and how the user interacts with the underlying adaptive run-time system, which was developed using a control loop strategy driven by

reactive algorithms that elastically adapt the microbatch size. The user needs only to specify the target latency value (set-point) as shown

in the first line, using the slo::Latency attribute. The proposed algorithms in this article are not exposed to end-users since the SPar

will generate them at compile time. Furthermore, if the user expresses an unreachable latency set-point, our algorithms apply a best-effort

approach by default. The code example in Listing 1 is just a high-level representation of the use-case application that will be further explained

in Section 3.1.

[ [ s p a r : : ToStream , s l o : : Latency ( 5 0 0 ) ] ]

w h i l e ( ! EndOfStream ) {

batch [ s i z e ] ;

batch = Read ( stream ) ;

[ [ s p a r : : Stage , s p a r : : I n p u t ( batch ) , s p a r : : Output ( batch ) ] ] {

batch = FindMatch ( batch ) ;

}

3 SPar's home page: https://gmap.pucrs.br/spar

https://gmap.pucrs.br/spar
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[ [ s p a r : : Stage , s p a r : : I n p u t ( batch ) ] ] {

Write ( F i l t e r ( batch ) ) ;

}

}

Listing 1: SPar example of a latency-aware SLO fixed to 500 ms.

3.1 Use case: The LZSS application

LZSS26 is a compression algorithm belonging to the Lempel-Ziv family, which has been used in many compression applications like RAR and PkZip.27

In this article, we use the parallel implementation on GPU presented in Stein et al.8 This LZSS version exploits GPU parallelism by using CUDA, and

leverages SPar to target CPU cores and to coordinate the different parts of the algorithm. The LZSS application is a valuable candidate because it

represents a notable stream processing application. It has important characteristics such as pipeline parallelism on CPU, data parallelism on GPU,

data streaming, and unpredictable workload variations. Our strategies and algorithms can be applied in other stream processing applications that

present the same pipeline computation/workflow characteristics, such as Dedup and Bzip2 compression algorithms. However, in this article, we

focus on this important use case in detail.

The compression phase uses previous elaborated data as a dictionary to find similar data occurrences. For each byte, the algorithm searches

in the previous bytes the longest occurrences available and writes in the resulting file the references to these occurrences instead of the bytes

themselves, thus reducing the total size of the file. The LZSS algorithm limits the size of the bytes that it will search by using a specific window size.

In our case the window size is 4096 bytes. The higher the window size the higher the space to write compressed data. We choose this value because

it is a balance between different workloads, which can be more or less compressed. With this size we also are able to save the compression index

using only 12 bits in order to optimize the storage space. Furthermore, to preserve data consistency, the last window of the previous microbatch

is always concatenated to the next microbatch, because it will be used by the first bytes in the next microbatch for the match operation. In the

GPU LZSS version, although the microbatch size of the data items can vary, the result will be always consistent with the original serial version. In

both Figure 1 and Listing 1, we sketch the high-level workflow of the LZSS algorithm. It is a three-staged pipeline whose stages can be described

as follow:

• Read: it reads the input file and creates microbatches. Each microbatch consists of the last 4096 bytes from the last batch and the next bytes to

be processed (of a variable size to be properly tuned and adapted);

• FindMatch: in this stage the microbatch is transferred to the GPU and the operations to find the longest match within the window is performed

for each byte. Each GPU thread runs the operation for one byte. The results are then transferred back to CPU and sent to the next stage;

• Filtering + Write: the last stage takes the results produced by the previous stage for each byte and then creates the resulting file.

The FindMatch stage is the most expensive and may have different execution times depending on the characteristics of the input data. Each byte

has to be searched in a specific block of data. The more the data can be compressed, the more time the GPU will take to process the whole batch.

3.2 Closed-loop control strategies

Stream parallel applications are largely implemented employing the pipeline pattern. The closed-loop (also referred as feedback) control

strategy28 adopted by SPar to adapt the internal configuration, acts according to the MAPE loop (Monitor, Analyze, Plan, and Execute) shown

in Figure 1. Such closed-loop strategy has been introduced in the SPar DSL by Griebler et al.2 The last stage of the pipeline monitors

specific metrics of the processed streaming items (eg, elapsed latency) and sends them back to the first stage, which is in charge of analyzing the

actual measurements to make the correct decisions, that is, by properly adapting the microbatch size to keep track with external variations.

F I G U R E 1 The
Lempel-Ziv-Storer-Szymanski parallel
implementation with the feed-back loop control
strategy
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GPU-based stream processing applications usually need to leverage dynamic microbatch sizes to process a continuous flow of data. As already

hinted before, the size has a direct correlation with the latency of output results. As we will see in Section 4, increasing the microbatch size also

increases the latency. Therefore, the closed-loop control strategy implemented has to monitor the current latency obtained by using a given micro-

batch size. If the latency requirement provided by the user is not respected, the size is changed according to the planning algorithm. The execution

phase is in charge of changing the batch size configuration for the next batch of items that have to be computed. This is usually done without block-

ing the stream to avoid downtimes in the processing. The closed-loop strategy is executed for each new item entering the pipeline to take corrective

actions promptly without delays.

We developed four different planning algorithms to make the decision in the control loop named as: fixed adaptation factor (FAF),

percentage-based adaptation factor (PBAF), PBAF without threshold (No Threshold), and multiplier-based adaptation factor (MBAF). These algo-

rithms are presented in the following subsections. The user always defines the target latency to be obtained, and all the proposed algorithms

consider the following two parameters: (a) a threshold, which represents an acceptable percentage of variation in the target latency (this thresh-

old aims to reduce the number of corrections on the microbatch size when the measured latency values are within an acceptable range); and (b) an

adaptation factor, which defines the granularity of the adapting operations of each Plan phase. All designed algorithms compare the current latency

with the user target latency set-point plus the acceptable threshold parameter in order to either increase or decrease the microbatch size accord-

ingly. A decrease happens when the latency crosses the upper-bound threshold and an increase when the latency value becomes smaller than the

lower-bound threshold. In Section 4, we evaluate the performance for different combinations of these parameters so that we can find the best

configurations for our use case.

3.2.1 Fixed adaptation factor (FAF)

The FAF algorithm tries to reach the target latency by simply changing the microbatch size in fixed steps until the measured latency crosses the

acceptable threshold bounds. When the latency reaches a value higher or lower than the SLO threshold, we use a fixed parameter called adaptation

factor to increase or decrease the batch size. The Algorithm 1 shows the pseudocode of the FAF planning algorithm. The input for the function is the

LastLatency , which represents the last latency collected by the monitoring phase. Based on this measured latency, we choose to increase or decrease

the batch size observing the thresholds (lines 3 and 6). The microbatch adaptation is applied using fixed steps with a fixed size of the adaptation

factor (line 4 and 7).

Algorithm 1. Fixed adaptation factor

1: UpperLim ← Target ∗ (1 + Threshold), LowerLim ← Target ∗ (1 − Threshold)
2: procedure PLAN(LastLatency,MicroBatchSize,AdaptationFactor)

3: if LastLatency > UpperLim then

4: return MicroBatchSize − AdaptationFactor

5: end if

6: if LastLatency < LowerLim then

7: return MicroBatchSize + AdaptationFactor

8: end if

9: return MicroBatchSize

10: end procedure

While the latency is a user-defined parameter, which is directly related to the application and the user requirements, the AdaptationFactor

parameter defines the granularity of the operations. A higher AdaptationFactor provides better results when the measured latency is far from the

desired range. However, it is hard to make fine-grained modifications. On the other hand, a smaller AdaptationFactor applies a fine tuning of the

latency but at the expense of a longer time to respond to big workload spikes (settling time in the control theory jargon).

3.2.2 Percentage-based adaptation factor (PBAF)

Since the FAF algorithm (Section 3.2.1) works with a FAF, it may not respond so fast to high workload variations. Therefore, we conceived the PBAF

algorithm, which uses a percentage of the adaptation factor based on how far the measured latency is from the target.

In this algorithm, the adaptation factor parameter represents the maximum possible adaptation factor. The solution will use the whole

adaptation factor when the variation is higher than 60% of the target (MaxGrowBoundary variable) and reduce the adaptation factor
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as the latency reaches a value close to the target. This means that when the measured latency is far from the target, the algorithm

behaves just like FAF, but when small adjustments are necessary it uses just a fraction of the adaptation factor to be more precise. There-

fore, we expect that the PBAF algorithm will behave better with bigger adaptation factors, which is the worst-case scenario for the FAF

algorithm.

The pseudocode of PBAF is reported in Algorithm 2. We divide the measured latency by the target in line 3 to calculate how far we are from the

desired set-point. Based on this number, the algorithm calculates an adaptationPercentage in line 5 (for latency bigger than the threshold) and line 9

(for latency smaller than the threshold), limited to 100% of the adaptation factor.

Algorithm 2. Percentage-based adaptation factor

1: UpperLim ← Target ∗ (1 + Threshold), LowerLim ← Target ∗ (1 − Threshold), MaxGrowBoundary ← 0.6

2: procedure PLAN(LastLatency,MicroBatchSize,AdaptationFactor)

3: Perc ← LastLatency∕Target

4: if LastLatency > UpperLim then

5: AdaptationPercentage ← min((Perc − 1)∕MaxGrowBoundary,1)
6: return MicroBatchSize − AdaptationFactor ∗ AdaptationPercentage

7: end if

8: if LastLatency < LowerLim then

9: AdaptationPercentage ← min((1 − MaxGrowBoundary)∕Perc,1)
10: return MicroBatchSize + AdaptationFactor ∗ AdaptationPercentage

11: end if

12: return MicroBatchSize

13: end procedure

3.2.3 PBAF without threshold

The FAF and PBAF algorithms do not change the microbatch size unless the latency is outside the threshold bounds. This means that the latency

tends to stay near the higher or lower bounds of the threshold for both the strategies. Since the algorithm for changing the batch size is not par-

ticularly expensive, another possible approaches could try to track the target latency value more precisely, even when the latency measurements

are within the desired thresholds. This algorithm, which actually ignores the threshold values, is presented in Algorithm 3. Differently from the two

previous approaches, this strategy aims to react better to small unbalances in the workload, changing the microbatch size before the SLO is violated

(so acting more proactively in this sense).

Algorithm 3. PBAF without threshold

1: MaxGrowBoundary ← 0.6

2: procedure PLAN(LastLatency,MicroBatchSize,AdaptationFactor)

3: Perc ← LastLatency∕Target

4: if LastLatency > Target then

5: AdaptationPercentage ← min((Perc − 1)∕MaxGrowBoundary,1)
6: return MicroBatchSize − AdaptationFactor ∗ AdaptationPercentage

7: end if

8: if LastLatency < Target then

9: AdaptationPercentage ← min((1 − MaxGrowBoundary)∕Perc,1)
10: return MicroBatchSize + AdaptationFactor ∗ AdaptationPercentage

11: end if

12: return MicroBatchSize

13: end procedure

Instead of testing the measured latency against the upper and lower bounds, in lines 4 and 8 of Algorithm 3 we compare it directly to the target

latency. The rest of the algorithm is the same as in the PBAF one.
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This algorithm keeps trying to improve the latency even if it is already inside the threshold (SLO hit). This can cause fluctuations in the measured

latency, which can be seen as a drawback. This might happen because the microbatch size is continuously adjusted to try to match the target. To

avoid this behavior, we used a PBAF.

3.2.4 Multiplier-based adaptation factor (MBAF)

Finding the right adaptation factor for adjusting the batch size dynamically and reactively is challenging in general. In all the

previous algorithms, a small adaptation factor limits the capability of the algorithm to adapt to sudden changes in the work-

load. Aiming at accelerating the convergence of the microbatch size to match the target latency, we propose the MBAF planning

algorithm.

In this algorithm, the goal is to converge to the desired latency as fast as possible. To this end, when the value is higher than the upper bound,

we use the formula Target∕LastLatency∗AdaptationFactor . When it is lower, we change the formula to (Target + Target − LastLatency)∕Target . The

LastLatency is the last latency collected and Target is the target latency expressed by the application programmer by using the slo::Latency

attribute. By using these formulas, we can converge to the target latency faster because when the latency is far from the target, this algorithm

produces a larger adaptation factor.

In Algorithm 4 is reported the pseudocode for MBAF, where lines 4 and 8 represents the formula to generate a multi-

plier for the adaptation factor. In lines 5 and 9, the AdaptationMultiplier generated by the formula is multiplied by the adaptation

factor.

Algorithm 4. Multiplier-based adaptation factor

1: UpperLim ← Target ∗ (1 + Threshold), LowerLim ← Target ∗ (1 − Threshold)
2: procedure PLAN(LastLatency,MicroBatchSize,AdaptationFactor)

3: if LastLatency > UpperLim then

4: AdaptationMultiplier ← Target∕LastLatency

5: return MicroBatchSize − AdaptationFactor ∗ AdaptationMultiplier

6: end if

7: if LastLatency < LowerLim then

8: AdaptationMultiplier ← (Target + Target − LastLatency)∕Target

9: return MicroBatchSize + AdaptationFactor ∗ AdaptationMultiplier

10: end if

11: return MicroBatchSize

12: end procedure

4 EXPERIMENTS

We executed the experiments with all the algorithms described in Section 3 by using the LZSS compression application and its GPU parallelization

already proposed in Stein et al.8 All the experiments were carried out on a single machine with a CPU Intel(R) Core(TM) I9-7900X @ 3.3 GHz (10

cores and 20 threads), 32 GB of RAM memory and a Titan XP GPU with compute capability 6.1 and 12 GB 2400MHz of memory. The system was

running on Ubuntu OS (kernel 4.15.0-43-generic). All programs have been compiled using -O3 compiler flags. The software we used were G++ 7.3

and NVCC 10.0.130 compiler and SPar.

4.1 Workloads

We tested the algorithms with four datasets as input to the processing pipeline:

• Enwikibulleted: it is a dump of the Wikipedia website in English having a size of about 14 GB;

bulleted Available in https://dumps.wikimedia.org/enwiki/20190701/enwiki-20190701-pages-meta-history1.xml-p30017p30303.bz2

https://dumps.wikimedia.org/enwiki/20190701/enwiki-20190701-pages-meta-history1.xml-p30017p30303.bz2
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• Custom: it is a custom dataset that we created to have a specific behavior with spikes, having a size of about 1.6 GB. This was designed

by generating random alphabetic characters with repeated file sections that combine 1 to 9 identical data slots. The goal was to simu-

late workload peaks in the application since LZSS requires more computational work when there are identical data slots (compressible

data);

• Linuxbulleted: it is a tar image of the Linux source code having a size of about 816 MB. To have a longer processing time, we repeated this dataset

eleven times;

• Silesiabulleted: it is a corpus of data that represents real-world files (XML, DLLs, and many others) having a size of about 202 MB. We repeated this

dataset eleven times to increase the load.

We first ran the application with static batch sizes to analyze the latency variations for each workload. Figure 2 shows the latency

results of each workload over the time by using static microbatch sizes of 4, 8, and 12 MB. We noticed that both the EnWiki and

Custom datasets have a regular behavior, with some spikes of relative small duration. The Linux dataset takes about 30 seconds to

be processed (in this experiment, the original dataset is repeated 11 times). It has two consecutive big spikes at around one-third of

the processing time, both lasting about 3 seconds. Finally, Silesia represents a challenging dataset to deal with dynamically adaptation

on the batch size to optimize latency. It takes only 10 seconds to be processed, it has a medium and a big spike both lasting about

2.5 seconds.

4.2 Behavior of the algorithms

This section aims at presenting the differences in the algorithm behavior with the same configuration parameters. In addition to the target latency

expressed by the application programmer and the threshold values, the algorithms also have the adaptation factor parameter. However, each

algorithm performs differently under different adaptation factors. Some of them perform better with small values while others perform better with

big values of the parameters.

To understand the behavior of each algorithm, we chose EnWiki as it is a real dataset while the other three have been somehow customized (ie,

by repeating the original dataset). Figure 3 shows the results obtained with EnWiki for 1 second latency SLO and 5% threshold using an adaptation

factor of 128 kB. The latency measured during the experiments is plotted as a solid blue line. The target latency is plotted as a solid black line and

the upper and lower bounds of the latency are plotted as dashed orange lines. The evolution of the batch size in MegaBytes (MB) is reported as a

dotted green line and it is related to the right Y-axis.

The FAF algorithm, discussed in Section 3.2.1, remains mostly stable during the execution. However, it has some SLO violations after hav-

ing converged to the target latency. This is mainly due to the FAF, which forces the algorithm to apply large variations of the microbatch size.

The first plot from the right-hand side presents the results of the PBAF algorithm, which we discussed in Section 3.2.2. As expected, the ini-

tial convergence phase is equal to the previous algorithm, as it uses 100% of the adaptation factor until it converges to the target latency.

The SLO violations are avoided until the latency decline right after the 40th second of execution. After that point, the algorithm takes a long

time doing small variations of the batch size to stabilize again within the boundaries. The algorithm would need a bigger adaptation factor to

converge faster.

The PBAF without threshold is represented by the second plot from the left-hand side, which shows a behavior similar to the PBAF: the conver-

gence is in general faster when the latency is below the target but takes some time to adapt when the latency is higher than the target. There is also

an SLO violation at the 70th second of the execution when the algorithm had just increased the microbatch size to try to reach the target latency

because of a workload variation, violating the upper bound threshold. The last plot of Figure 3 shows the behavior of the MBAF algorithm, which

represents our best result for the given target latency and threshold. The initial convergence is faster as this algorithm multiplies the adaptation

factor according to the distance to the target latency. The latency remains stable except for the decline and the peak halfway of the execution, for

which the algorithm presents a quick reaction.

4.3 Performance of the proposed algorithms

This section aims at presenting a comprehensive overview of the results with the LZSS data compression application. Our goal is to

understand how the algorithms work with different configurations and SLOs. We performed experiments using three latency targets (0.5, 1, and

bulleted Available in https://www.kernel.org/
bulleted Available in http://sun.aei.polsl.pl/~sdeor/index.php?page=silesia

https://www.kernel.org/
http://sun.aei.polsl.pl/~sdeor/index.php?page=silesia
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F I G U R E 2 Latency variation over time with static microbatch sizes

F I G U R E 3 Algorithms behavior in EnWiki with target 1 second, threshold 5% and adaptation factor 128 KB
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TA B L E 2 Best algorithm according to SLO hit (%)

Custom

Target 0.5 s 1.0 s 1.5 s

Threshold 5% 10% 15% 20% 5% 10% 15% 20% 5% 10% 15% 20% ×

FAF 90.39∗ 99.09∗ 99.32∗ 99.39 78.83∗ 94.81 96.27 96.60 68.22 93.65∗ 92.55 95.74∗ 6

PBAF 86.37 98.39 99.15 99.45∗ 77.10 95.28 96.46∗ 96.59 63.56 89.61 92.59 95.65 2

No Thresh. 71.41 92.10 99.16 99.37 52.72 80.04 94.15 96.63 50.58 76.22 89.22 93.20 0

MBAF 90.22 98.28 99.25 99.30 77.22 96.01∗ 96.32 97.00∗ 71.31∗ 89.49 94.66∗ 95.62 4

EnWiki

Target 0.5 s 1.0 s 1.5 s

Threshold 5% 10% 15% 20% 5% 10% 15% 20% 5% 10% 15% 20% ×

FAF 83.44 94.40∗ 95.78 97.15 69.26 88.93∗ 88.67 92.47 58.29 83.15 88.07 90.37 2

PBAF 81.62 93.95 95.64 97.15 70.87 81.35 89.77 92.31 53.14 85.55∗ 88.07 90.37 1

No Thresh. 58.39 86.89 92.04 95.34 45.68 71.21 83.60 87.25 38.89 58.76 81.56 86.83 0

MBAF 83.66∗ 92.66 96.30∗ 97.24∗ 76.60∗ 86.67 92.03∗ 93.02∗ 63.54∗ 80.56 92.35∗ 92.35∗ 9

Linux

Target 0.5 s 1.0 s 1.5 s

Threshold 5% 10% 15% 20% 5% 10% 15% 20% 5% 10% 15% 20% ×

FAF 51.64 79.18∗ 88.36∗ 90.44∗ 63.77 68.62 73.04 78.50 59.02 67.39 70.13 81.15 3

PBAF 63.80∗ 77.75 85.39 89.71 67.29∗ 74.21 77.34 83.23 64.44 72.57 76.72 84.91 2

No Thresh. 44.63 70.16 84.12 86.42 57.11 77.19∗ 81.71∗ 84.02∗ 57.38 74.57∗ 79.75∗ 82.90 5

MBAF 58.18 77.19 86.56 89.37 67.04 74.13 76.92 82.53 64.62∗ 71.56 74.73 85.92∗ 2

Silesia

Target 0.5 s 1.0 s 1.5 s

Threshold 5% 10% 15% 20% 5% 10% 15% 20% 5% 10% 15% 20% ×

FAF 10.41 17.49 25.29 36.33 8.28 18.09 30.16 48.31 15.66 30.81 45.96 57.84 0

PBAF 13.85 24.22 33.13 44.29 14.89 21.13 35.64 48.08 13.66 29.26 47.15∗ 60.00 1

No Thresh. 18.12 32.06∗ 47.65∗ 54.91∗ 19.01∗ 30.71∗ 41.43∗ 53.54∗ 20.45∗ 35.23∗ 46.02 54.24 9

MBAF 18.83∗ 29.51 35.89 42.58 12.16 20.22 32.59 49.82 12.95 30.53 47.12 64.25∗ 2

Abbreviations: FAF, fixed adaptation factor; MBAF, multiplier-based adaptation factor; PBAF, percentage-based adaptation factor; SLO,

service level objective.
∗Boldface numbers represent best algorithm in that specific set of requirements.
×Number of times the algorithm was the best in that specific set of requirements.

1.5 s), four different thresholds (5%, 10%, 15%, and 20%), and four adaptation factors (64, 128, 256, and 512 kB) to evaluate the impact of these

parameters.

In order to summarize the experimental results5, we calculated the average SLO hit considering all datasets, proposed algorithms, target latency

values, thresholds, and adaptation factors. We define the SLO hit as the percentage of processed microbatches that fall within the threshold bounds.

A summary of the best SLO hit we achieved is also presented in Table 2 as well as the best performing adaptation factor for each algorithm in Table 3.

Figures 4 to 6 present the SLO hit for each algorithm with targets 0.5, 1, and 1.5 seconds, respectively. The three-dimensional (3D) plots present the

impact of the different adaptation factors and thresholds on each target latency and algorithm. As expected, the higher the thresholds the higher

the SLO hit rates.

For the target 0.5 second, presented in Figure 4, the algorithms obtained better results with smaller adaptation factors. This is due to the fastest

convergence at the beginning of the execution, thus requiring only small changes in the batch size to keep the latency within the SLO boundaries.

5 We evaluated all the combinations of the parameters, which generated 768 experiments in the total.
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TA B L E 3 Adaptation factor on best algorithm versions (kB)

Custom

Target 0.5 s 1.0 s 1.5 s

Threshold 5% 10% 15% 20% 5% 10% 15% 20% 5% 10% 15% 20%

FAF 64∗ 128∗ 128∗ 128 128∗ 128 256 256 128 512∗ 256 512∗

PBAF 256 128 128 256∗ 128 512 256∗ 256 256 512 512 512

No Thresh. 64 64 64 64 128 64 128 256 128 128 256 256

MBAF 64 128 256 256 64 256∗ 128 256∗ 128∗ 128 512∗ 256

EnWiki

Target 0.5 s 1.0 s 1.5 s

Threshold 5% 10% 15% 20% 5% 10% 15% 20% 5% 10% 15% 20%

FAF 64 64∗ 128 256 128 256∗ 256 512 256 512 512 512

PBAF 256 64 128 256 512 256 256 512 512 512∗ 512 512

No Thresh. 128 128 64 64 512 128 256 256 256 128 256 512

MBAF 64∗ 64 64∗ 128∗ 128∗ 256 256∗ 256∗ 256∗ 512 512∗ 512∗

Linux

Target 0.5 s 1.0 s 1.5 s

Threshold 5% 10% 15% 20% 5% 10% 15% 20% 5% 10% 15% 20%

FAF 64 128∗ 256∗ 256∗ 128 256 256 64 128 512 256 128

PBAF 64∗ 64 256 256 128∗ 128 128 64 128 256 256 256

No Thresh. 64 64 64 64 64 64∗ 128∗ 256∗ 128 256∗ 256∗ 512

MBAF 64 64 256 256 128 128 128 64 256∗ 256 128 128∗

Silesia

Target 0.5 s 1.0 s 1.5 s

Threshold 5% 10% 15% 20% 5% 10% 15% 20% 5% 10% 15% 20%

FAF 128 128 64 64 64 64 64 128 512 512 512 512

PBAF 64 64 64 64 256 256 256 128 512 512 512∗ 512

No Thresh. 64 64∗ 64∗ 64∗ 128∗ 256∗ 256∗ 256∗ 512∗ 512∗ 512 512

MBAF 128∗ 64 64 64 256 128 128 128 256 512 512 512∗

Abbreviations: FAF, fixed adaptation factor; MBAF, multiplier-based adaptation factor; PBAF, percentage-based adaptation factor.
∗ Boldface numbers represent best algorithm in that specific set of requirements.

MBAF was the best algorithm for the thresholds 5% and 10% (with 62.52% and 74.37% SLO hit, respectively), however, the No Threshold algorithm

performed better with thresholds 15% and 20% (with 80.74% and 84.01% SLO hit, respectively). All these results have been obtained using an

adaptation factor of 64 kB.

In Figure 5, we present the results of the experiments targeting 1 second latency. The MBAF algorithm outperforms all other ones for

5% and 10% thresholds (with 57.53% and 68.72% SLO hit, respectively). The No Threshold and PBAF algorithms show the best results

for 15% threshold (with 74.79% SLO hit using an adaptation factor of 128 kB and 74.78% SLO hit using an adaptation factor of 256 KB,

respectively). The No Threshold algorithm also presents the best result for the 20% threshold (with 80.36% SLO hit using an adaptation factor

of 256 kB).

The last target latency tested was 1.5 seconds, whose results are presented in Figure 6. All algorithms have to spend a significant amount of

time in the initial convergence phase to reach the target latency expressed by the application programmer. Therefore, bigger adaptation factors

provide better overall results. Notable exceptions are MBAF and FAF with 5% threshold and an adaptation factor of 512 kB, which present a low

SLO hit. This occurs because with such a narrow target and big adaptation factor these algorithms are unable to perform the small microbatch size

adjustments required to stay within the threshold bounds. Nevertheless, MBAF was still the best algorithm for the 5% threshold, with 51.92% SLO
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F I G U R E 4 Average service level objective hit among all workloads targeting 0.5 second latency

hit using 128 kB adaptation factor. For 10% threshold, PBAF and FAF provided the best results both using an adaptation factor of 512 kB (68.76%

and 68.75% SLO hit, respectively). MBAF provided the best results for 15% and 20% threshold and an adaptation factor of 512 kB (with 77.13% and

82.65% SLO hit, respectively).

In the Custom workload (described in Section 4.1) the FAF, PBAF, and MBAF algorithms had very similar results. However, FAF had better

overall results, mostly in 0.5 second target because of the smaller initial time to converge. The MBAF algorithm is dominating in the EnWiki

workload. Only three exceptions were found, where FAF algorithm was better in two cases and the PBAF algorithm was better in one, but

with very narrow margins. In the Linux workload, the No Threshold algorithm provides better results for bigger targets and thresholds, while

FAF provides better results for the 0.5 second target. PBAF presented the best results for the 5% threshold experiments for both 0.5 and

1.0 second targets, with very small differences with MBAF in the 1.5 seconds target. Finally, the No Threshold algorithm provides the best over-

all results for the Silesia workload, which is the most challenging one. In fact, only half of the microbatches proposed by the algorithm reached

the SLO.

In summary, we can highlight that MBAF is the best algorithm for the closed-loop control strategy when the input datasets feature low workload

fluctuations at run-time. The algorithm can quickly converge to the target SLO and it is also able to adapt the microbatch size when small changes

in the workload occur. For workloads with higher fluctuations, the No Threshold algorithm provided, on average, the best results among all the

proposed algorithms.

4.4 Impact of the workloads

In the previous section, we analyzed the average SLO hit among all the workloads for each target latency. In this section instead, we will analyze the

impact of the workloads in the SLO hit to understand how the algorithms perform with different workloads. Figures 7 to 10 present the average SLO

hit among all the targets for each algorithm with threshold 5%, 10%, 15%, and 20%, respectively. The 3D plots present the impact of the different

adaptation factors and workloads on each threshold configuration and algorithm.
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F I G U R E 5 Average service level objective hit among all workloads targeting 1 second latency

Figure 7 presents the results obtained using a threshold of 5%. Smaller adaptation factors obtain better SLO hit in general, which can be

explained by the small tweaks that are necessary to keep the latency within the tighter bounds. For the Custom workload, the FAF and MBAF algo-

rithms with an adaptation factor of 64 kB obtain the best results (78.58% and 78.01%, respectively). The MBAF with an adaptation factor of 128 kB

has the best SLO hit (70.25%) for the EnWiki workload. For the Linux workload, the PBAF algorithm obtains the best SLO hit (62.36%) using an adap-

tation factor of 128 kB. The best SLO hit (14.33%) for the Silesia workload with 5% threshold is obtained by the No Threshold algorithm using an

adaptation factor of 512 kB.

Figure 8 shows the SLO hit rates obtained using 10% threshold. The MBAF algorithm has the best SLO hit rates for the

Custom (94.08% using an adaptation factor of 128 kB) and EnWiki (84.02% using an adaptation factor of 256 kB) work-

loads. However, for the Linux workload the PBAF algorithm performs better (74.42% of SLO hit) with an adaptation factor of

256 kB. For the Silesia workload, the best SLO hit (25.7%) is obtained by the No Threshold algorithm with an adaptation factor

of 256 kB.

For the 15% threshold experiment, which is presented in Figure 9, the MBAF algorithm achieves the best SLO hit rate (96.62%) in the Custom

workload, using an adaptation factor of 256 kB. For the EnWiki and Linux workloads, PBAF obtains better results (89.82% and 79.79%, respectively),

using 512 and 256 kB, respectively. For the Silesia workload, the No Threshold algorithm has the best SLO hit (42.05%) using an adaptation factor

of 128 kB.

Figure 10 presents the results of the experiments using a threshold of 20%. The MBAF algorithm has the best SLO hit for the Cus-

tom (97.3% with an adaptation factor of 256 kB) and Linux (85.03% with an adaptation factor of 128 kB) workloads. For the EnWiki

workload, the PBAF and MBAF algorithms have the best SLO hit (92.26% and 92%, respectively), both with an adaptation factor of

512 kB. Finally, for the Silesia workload, the No Threshold algorithm again obtains the best SLO hit (52.62%), with an adaptation factor

of 256 kB.
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F I G U R E 6 Average service level objective hit among all workloads targeting 1.5 second latency

In general, the plots show that higher thresholds seem to favor higher adaptation factors. This is partly explained due to the lower

probability of an overreaction of the algorithm, given that even if the reaction exceeds the target latency the measured latency is still

inside the threshold. It is also worth noting that Silesia is the most challenging dataset, as previously discussed, which can be perceived

by the lower SLO hit in Figures 7 to 10. Nevertheless, the No Threshold algorithm obtains the best SLO hit for this workload with all

the threshold values. This can be explained by the highly unstable nature of the workload, combined with the highly active nature of the

algorithm.

As already pointed out, each algorithm behaves differently with respect to the adaptation factor. However, the best adaptation factor also

depends on the target latency (provided by the user) and the acceptable threshold percentage. Therefore, in Table 2, we classified the experimental

results according to the workload, target latency, and threshold. The table presents the best SLO hit for each algorithm, using the best adaptation

factor for that SLO. The best algorithm for the workload and the SLO is shown in boldface and marked with an asterisk. Finally, we present the adap-

tation factor used in all these versions in Table 3. In summary, FAF was the best algorithm in 11 cases (most of it in Custom workload), PBAF was the

best algorithm in six cases, No Threshold was the best algorithm in 14 cases (most of it in Silesia workload), and MBAF was the best algorithm in 17

cases (most of it in EnWiki workload).

5 CONCLUSION

This article proposed four novel algorithms for a closed-loop control strategy that tries to meet a given target latency through the dynamic adapta-

tion of microbatches offloaded to GPUs. Our solution is integrated into a high-level parallel programming abstraction for stream parallelism called

SPar, where the user can easily express in the source code a target latency using standard C++ attributes. The experiments were carried out with

a real-world and representative streamed data compression application (LZSS). The main advantage of our solution is that it tries to use only the

necessary computing resources to meet a target latency by adapting the size of the microbatches. Furthermore, to the best of our knowledge,
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F I G U R E 7 Average service level objective hit among all targets with 5% threshold

F I G U R E 8 Average service level objective hit among all targets with 10% threshold



STEIN ET AL. 17 of 19

F I G U R E 9 Average service level objective hit among all targets with 15% threshold

F I G U R E 10 Average service level objective hit among all targets with 20% threshold
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our solution is the only one able to adapt elastically and reactively at run-time so that it can respond to unpredictable workload fluctuations. We

observed a trend that algorithms with elastic adaptation factor respond better for more stable workloads, while algorithms with narrower targets

respond better for highly unbalanced workloads.

Although we tested the algorithm on experiments using a real-world streamed data compression application, our performance results cannot

be generalized to all stream processing applications. These experiments also depend on the CPU and GPU architectures as well as on the Operating

System. As future work, it is possible to evaluate our strategy and algorithms on other stream processing applications, as well as testing using other

frameworks like OpenCL. Our strategy and algorithms could also be implemented and tested for a multi-GPU environment. Finally, we believe that

there is space for improving the current strategy and algorithms by creating new strategies and also triggering different adaptation techniques

based on specific behavior of the application.
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