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The NAS Parallel Benchmarks (NPB), originally implemented mostly in Fortran, is a consolidated
suite containing several benchmarks extracted from Computational Fluid Dynamics (CFD) models. The
benchmark suite has important characteristics such as intensive memory communications, complex
data dependencies, different memory access patterns, and hardware components/sub-systems over-
load. Parallel programming APIs, libraries, and frameworks that are written in C++ as well as new
optimizations and parallel processing techniques can benefit if NPB is made fully available in this
programming language. In this paper we present NPB-CPP, a fully C++ translated version of NPB
consisting of all the NPB kernels and pseudo-applications developed using OpenMP, Intel TBB, and
FastFlow parallel frameworks for multicores. The design of NPB-CPP leverages the Structured Parallel
Programming methodology (essentially based on parallel design patterns). We show the structure of
each benchmark application in terms of composition of few patterns (notably Map and MapReduce
constructs) provided by the selected C++ frameworks. The experimental evaluation shows the accuracy
of NPB-CPP with respect to the original NPB source code. Furthermore, we carefully evaluate the
parallel performance on three multi-core systems (Intel, IBM Power, and AMD) with different C++
compilers (gcc, icc, and clang) by discussing the performance differences in order to give to the
researchers useful insights to choose the best parallel programming framework for a given type of
problem.
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1. Introduction In this ecosystem of complex hardware resources, parallel

programming has evolved with the availability of frameworks

Parallel programming enables high-performance applications
to leverage the capabilities offered by modern parallel hardware,
i.e. shared-memory architectures like multicores and NUMA of
multicores, and distributed-memory architectures like clusters,
where shared-memory nodes are interconnected via fast net-
working technologies. The complexity of the available hardware
has increased considerably over the years, with processors en-
hanced with out-of-order computing capabilities, memory hier-
archies composed of different coherent private and shared levels
of caches, and interconnection networks equipped with smart
network interface cards used as co-processors for accelerating
networking tasks.
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that support the user in the development of parallel applications
and in taking advantage of the underlying hardware in a pro-
ductive way. Nonetheless, the so-called programmability wall [1]
is still the main challenge in parallel programming. Developing
parallel applications productively requires high-level programming
tools that hide the complexity of coping with complex hard-
ware. Furthermore, they should enforce performance portability,
e.g., they shall achieve satisfactory performance on different ma-
chines, both in terms of absolute performance like IPS/FLOPS as
well as scalability with more processes/threads composing the
parallel computation.

For shared-memory architectures, Intel TBB [2] (in C++) and
OpenMP [3] (C++ and multi-language support) are popular pro-
gramming solutions, with the former used for task-based parallel
programming while the latter to annotate the sequential code
with pragma-based directives for loop parallelization and, starting
from the 4.0 standard, providing a task-based model similar to
TBB. In addition, the research community has proposed other
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families of programming tools fostering high-level abstractions.
Notably, algorithmic skeletons [4-6] (generally belonging to the
field of Structured Parallel Programming), applied by some C++
research frameworks like FastFlow [7] and SkePU [8], are worthy
of consideration, with active communities promoting this parallel
programming style.

Assessing the effectiveness of parallel programming frame-
works in terms of performance portability on new hardware
architectures, which have become available day by day, requires
proper benchmark suites composed of workloads with sufficiently
heterogeneous features to stress different hardware
components/sub-systems (e.g., caches, floating-point units, mem-
ory bandwidth). Examples of benchmark suites are PARSEC [9],
SPLASH [10], SPEC [11], which include workloads from different
domains but all focusing on High-Performance Computing.

Among the existing benchmark suites, we are interested in
the NAS Parallel Benchmarks [12] (briefly, NPB). NPB is a set of
programs originally developed by NASA Advanced Supercomput-
ing division to evaluate the performance of parallel machines.
The benchmarks in the suite (three pseudo-applications and five
basic kernels) are derived from Computational Fluid Dynamics
(CFD) models and can be configured to work with predefined
problem sizes (called “classes”). The official implementation of
NPB is written in Fortran, with parallel programs developed in
OpenMP (based on the Fortran code) for shared-memory systems
and MPI (Message Passing Interface) for clusters. NPB has been
used over the years for different kinds of research activities. An
overview of such works will be given in Section 2.2. Despite the
wide use of NPB, no comprehensive porting of all the kernels and
pseudo-applications in C++ has been released and made publicly
available. The C++ language has become the standard for imple-
menting high-performance code nowadays, and this justifies the
effort conducted in this paper to provide a full C++ version of
NPB (named NPB-CPP) for evaluating C++ parallel programming
frameworks.

The main goal of this paper is to show how the whole NPB
suite can be designed and implemented using the structured
parallel programming approach, by describing how each NPB
kernel and pseudo-application can be designed in terms of com-
position of the parallel patterns available in modern C++ parallel
frameworks. This contribution has a two-fold justification: (i) it
allows the evaluation of the expressive power of pattern-based
approaches to parallel programming, in analogy with prior works
in the literature but based on a benchmark suite never studied
before in this perspective (e.g., the work in [13] was based on
PARSEC [9]); (ii) the patterned description of NPB allows it to
be easily implemented with several different C++ parallel pro-
gramming frameworks providing the same used patterns, which
represents a significant code refactoring effort paying off in terms
of code modularity.

The source code of NPB-CPP is provided within a repository
made accessible to the community.! NPB-CPP is licensed under
the terms of the MIT license and has recently been used by
other independent research works as a baseline for experimen-
tal comparisons [14-20]. It highlights the importance of having
a reliable C++ implementation of the distinguished NPB suite.
Other works [21,22] are using NPB-CPP for assessing different
parallel architectures and programming abstractions, showing
NPB’s extensiveness for supporting sophisticated evaluations on
specialized computer architectures and systems, such as GPUs
and clusters.

The main research contributions of our work can be summa-
rized as follows:

1 NPB-CPP's source code: https://github.com/GMAP/NPB-CPP.
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We provide a thorough translation (i.e. which respects the
original sequential code structure in terms of data struc-
tures, loops and original programming style) of the five
kernels and the three pseudo-applications from the original
serial Fortran code to C++, making NPB-CPP usable and
extendable also for future works.

We implement the entire benchmark suite with different
C++ parallel frameworks. In addition to the original OpenMP
version (currently maintained by NAS?), which is available
in Fortran, we provide novel parallel implementations with
Intel TBB and FastFlow, aiming at covering both a consol-
idated and a research-based parallel programming frame-
work.

We show how the concept of structured parallel program-
ming [23] can be applied for efficiently parallelizing NPB-
CPP. We model each one of the parallel benchmarks in
NPB-CPP using compositions of Map and MapReduce par-
allel patterns. This is a higher-level programming approach
whose expressiveness and flexibility is discussed in this
paper for OpenMP, Intel TBB and FastFlow.

We provide a careful analysis of the performance obtained
by NPB-CPP on different multicore machines and compil-
ers, demonstrating the quality of the porting from the (se-
quential and parallel) performance and functional correct-
ness perspectives. Experiments were carried out on a set
of platforms (Intel Xeon, AMD Epyc, and IBM Power8) to
show the performance portability on different multi-core
architectures.

It is worth mentioning that our research work has first started
in [24]. For this article, significant changes and improvements
are made: (i) by re-implementing all the sequential kernels to
be compliant with the last NPB version (v3.4); (ii) we complete
the sequential porting with the three pseudo-applications that
were not studied in our prior work; (iii) we re-implement the
five kernels to adhere to the structured parallel programming
style, so building the new kernel implementations and the three
pseudo-applications parallel code, in terms of parallel patterns
(Map and MapReduce), while our prior parallel implementations
were based on low-level parallelization approaches; (iv) NPB-CPP
can be configured to use all the workload sizes (classes) of the
original suite, while the kernels in our prior work supported only
small class sizes (up to class B).

The outline of the paper is the following. Section 2 provides a
summary of the NPB kernels and pseudo-applications to make the
paper self-contained, and provides an overview of past research
activities where NPB has been used in the experimental evalu-
ation for different purposes. Section 3 discusses our implemen-
tation, both the sequential porting from Fortran to C++ and the
design of parallel versions using C++-based parallel frameworks.
Section 4 shows and discusses the results of our experimental
analysis. Section 5 presents a summary of our findings, while
Section 6 concludes our work.

2. Background

In this section, we briefly explain the basic structure of NPB in
terms of kernels and pseudo-applications. Then, we will review
some recent papers that used NPB.

2 https://www.nas.nasa.gov/publications/npb.html.
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2.1. NAS Parallel Benchmarks (NPB)

The NPB suite has five kernels and three simulated appli-
cations. The code poses several different challenges, as far as
performance is concerned, such as irregular memory accesses,
complex data dependencies, and short- and long-distance data
communications [12], where the former stresses data locality
while the latter memory bandwidth capacity. The five kernels, all
in Fortran except IS which is in C, are described as follows:

Embarrassingly Parallel (EP). It generates a large number of
Gaussian random deviates and enumerates them to compute
the Gaussian deviation by utilizing the acceptance-rejection
method. Finally, the number of pairs that lie in the square
annulus is computed. This method is useful to measure
the capacity of the floating-point operations of the target
architecture [12].

Multi Grid (MG). It utilizes the V-cycle MultiGrid method
to compute a 3D scalar Poisson equation where the kernel
continuously computes restriction and prolongation when
alternating between coarse and fine grids. The goal is to
stress short- and long-distance data communications [12,
25].

Conjugate Gradient (CG). It computes an approximation of
the smallest eigenvalue of a large, sparse, and unstructured
matrix, utilizing the Conjugate Gradient method. This ker-
nel stresses data communication mechanisms as well as
memory locality and caches [25].

Discrete 3D Fast Fourier Transform (FT). It computes a Fast
Fourier Transform (FFT) of a 3D partial differential equation
using the spectra and inverse methods in an iterative loop.
It simulates an intensive long-distance communication [12,
25].

Integer Sort (IS). It performs an integer sorting among a
sparse set of numbers, which simulates an important com-
putation for particle-in-cell applications. By default, it is
based on the Bucket-Sorting algorithm. This kernel simu-
lates and measures integer computation and data commu-
nication capabilities [12].

The pseudo-applications implement three different iterative
methods to solve a 3D Navier-Stokes system of differential equa-
tions describing the flow of incompressible fluids. We summarize
them as follows:

e Block Tri-diagonal solver (BT). It is an expensive implicit
algorithm to numerically solve 3D Navier-Stokes equations.
The solution is based on an Alternating Direction Implicit
(ADI) factorization on a 3D matrix, which produces block-
tridiagonal systems that, along each direction, solve the
unknown vectors using the back substitution method [25].
Scalar Penta-diagonal solver (SP). It wuses the
Beam-Warming approximate factorization to decompose
the 3D matrix. The output consists of a particular case
of band matrices known as Scalar Pentadiagonal matrices.
Then, the tridiagonal matrix algorithm is applied over the
block-tridiagonal systems and the back substitution method
solves the remaining vectors [25].

Lower-Upper Gauss-Seidel solver (LU). It utilizes the Sym-
metric Successive Over-Relaxation (SSOR) method, which
combines two SOR computations. The latter is a variation
of the Gauss-Seidel method that solves a linear system of
equations. First, a forward SOR sweep is performed followed
by a backward SOR sweep to update the unknown variables
in reverse order.
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2.2. NPB in prior works

The current available official NPB version is implemented in
Fortran, which was elected over other languages considering its
popularity in CFD applications. The selected papers for discussing
and comparing are those based on C language. Previous works,
such as [26,27] and [28], have used NPB for evaluating specific ar-
chitectures and systems. The authors of [26] have ported the NPB
to C and re-implemented the applications in OpenCL, to leverage
heterogeneous architectures equipped with GPUs. However, no
information about how the conversion was performed is given.
Also, the authors did not consider the largest NPB workloads
(e.g., class C) because of the limited memory capacity of the GPU
considered (GeForce GTX 480). More recently, a new research has
extended this work by proposing an improved GPU version for
OpenCL and CUDA [27]. Again, no information about the pitfalls
of the porting was provided, while the focus was only on the
parallelization. The performed evaluation demonstrates increased
performance compared to the original version on GPU-based
platforms, while no results have been presented on standard
multicore platforms.

A prior work [28] presents a methodology to improve a strong
scalability evaluation for OpenMP. They implemented the
methodology in the PCERE (Parallel Codelet Extractor and RE-
player) tool that extracts and executes OpenMP parallel regions.
Their evaluation was performed on a C version developed starting
from an early NPB version (2.3) [29], which was later made avail-
able. Some research works have focused on the Unified Parallel
C (UPC) language, an extension of the C programming language
designed for HPC platforms. A version of NPB was ported to the
UPC language, and it is composed of two main parts. The first
contains all the five NPB kernels and was developed by the HPC
Laboratory from the George Washington University as part of the
Berkeley UPC Compiler project [30,31]. The second contains the
three pseudo-applications and was developed by the NASA Ames
Research Center [32]. This NPB-UPC version is distributed with
the Berkeley UPC project. The five previous research works [26-
28,30,32] put a significant effort to convert and extend the NPB
towards C-based languages.

In recent studies, C-based NPB versions have been used for
evaluation purposes. The work in [19] investigates the perfor-
mance and potential of the parallel STL (Standard Template Li-
brary) using NPB kernels. Parallel STL is an Intel library developed
using Intel TBB as a backend for parallel algorithms. This work
used our previous version of the NPB ported to C++ [24], which
was limited to the five kernels without the pseudo-applications. It
also highlights the importance of having such sequential porting
in C++. In our work, besides completing the NPB porting, we study
the performance of NPB directly implemented using Intel TBB
without the additional layer provided by Parallel STL, for a fairer
comparison with OpenMP and FastFlow.

The work in [20] uses the NPB to evaluate five auto-
parallelizing compilers (Cetus, Par4all, Rose, ICC, and Pluto). Also
in this case, the authors used our previous version of the NPB
ported to C++. An optimized memory allocator for the Single-
Assignment C (SaC) compiler was proposed in [33]. The authors
re-implemented the NPB in SaC to evaluate their optimizations.
A tool that systematically analyzes shared-memory accesses of
UPC applications has been proposed in [34]. The authors tested
NPB kernels and applications to fine-tune data redistribution,
and for enhancing the use of private variables for improving
local accesses. A locality-aware framework for thread affinity
placement based on hierarchical data locality has been presented
in [35]. The authors selected four NPB kernels (IS, FT, CG, and MG)
for covering a wide range of communication patterns. Hardware
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support mechanisms to efficiently manipulate PGAS address map-
ping and to improve data access overhead have been introduced
in [36]. Experiments were conducted on a subset of NPB kernels.

Among the previously cited papers, we selected five papers
that are closely related to our work for comparing specific fea-
tures. Table 1 provides a summary of the characteristics of those
five papers and this work. The first and second columns report the
reference and the year of publication. The third column reports
the target kernels and pseudo-applications supported. The fourth
column shows the NPB version on which they are based. The
fifth column shows the language used and the sixth column re-
ports the adopted parallel programming frameworks. The seventh
column highlights the targeted parallel architectures.

In past papers [26,27], the authors have translated all the
kernels and applications of the NPB 3.3 targeting the C language.
In [28] and [30] authors used an outdated NPB version. In [32]
authors have implemented three pseudo-applications using the
NPB 3.3 version to target the UPC programming language. Dif-
ferences are also observed concerning the target architectures.
Although [28] is targeting multicores as our work, their version
is a raw translation to test a compiler tool. Most significantly,
none of these previous works aimed to provide a consistent and
generic NPB version (kernels and pseudo-applications) in C++
that is platform agnostic (see Section 3). Our benchmark code
can be easily extended to support other computer architectures
through the use of existing C++ parallel programming frame-
works. Furthermore, new C++ compiler tools can also use our
NPB-CPP to evaluate the impact of new code optimization and
auto-parallelization techniques, which represents an additional,
indirect contribution of our work.

2.3. Parallel programming frameworks

Several consolidated parallel programming frameworks are
available with the C++ programming language. Most of them are
based on the structured parallel programming paradigm, in which
few patterns/constructs are provided as basic building blocks to
develop easily and productively parallel code (e.g., parallel-for,
reduce, map, and so forth). In the following, we introduce three
popular parallel programming frameworks: OpenMP, Intel TBB
and FastFlow.

OpenMP. OpenMP [3] is a parallel programming framework for
multicores. It is based on pragma annotations to be applied di-
rectly on the source code before regions that take a significant
portion of the overall execution time, like for and while loops. The
OpenMP compiler is in charge of transforming the annotations
in a code leveraging multicores by using threads that split the
execution of the loop iterations. Recently, starting from the 4.0
standard, OpenMP supports the task-based parallelism paradigm
with proper pragmas to create tasks and link them with de-
pendencies. This allows the programmer to create a task, e.g. a
portion of code plus its surrounding data environment, which can
be scheduled for the execution on an available thread provided
that all its input dependencies are satisfied.

Intel TBB. TBB [2] is the Intel suite for parallel programming on
multicores. In the original idea, TBB provides the programmer
with abstractions to create tasks connected by dependencies and
to schedule them transparently on a pool of threads. Complex
work-stealing techniques have been adopted to balance the par-
allel workload in an effective and cache-friendly manner. A higher
level of abstraction has been added to represent graphs of special
importance in the parallel programming practice, like pipelines
of filter stages.
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FastFlow. FastFlow [7] is an open source structured parallel pro-
gramming framework. It provides the application programmer
with a variety of ready-to-use stream and data parallel pat-
terns that may be freely composed and customized to implement
complex parallel applications. FastFlow is a header-only library
implemented on top of POSIX Pthread and C++11 features, and
parallel patterns are used by instantiating proper classes of the
library. The framework has been designed to target multicores
with two main goals in mind: performance and programmability.

3. Implementation

The goal of this section is twofold. First, we describe how the
porting has been developed, and the principles behind our thor-
ough translation from Fortran (C in case of IS) to C++. Then, in the
second part, we show the strategies we followed for parallelizing
NPB with different C++ parallel programming frameworks. Our
design choices aim at simplifying the usability and extensibility of
NPB-CPP. Therefore, we provide C++ code that can be easily con-
verted to C-like code with minimal modification effort. We target
C++ because there is a plethora of important solutions available
only for this programming language. Many of these solutions [37]
exist for a long time and yet never had the opportunity to be
evaluated using the NPB suite.

3.1. C++ porting conventions

Our porting was conducted following the official documen-
tation [12,25]. When implementing the C++ code of NPB, the
first guideline was: every time a global array is declared in the
Fortran code, we allocate it as dynamic memory in C++. Static
memory accesses are faster than dynamic memory accesses [38].
However, dynamic memory allocation is a recommendation from
the official reports of NPB since it uses very large arrays that
may result in memory stack overflow errors. Also, dynamic mem-
ory allocation is the main feature introduced in the NPB 3.4
version. Furthermore, we implemented the global arrays to be
allocated in one single dimension for all kernels and pseudo-
applications. However, for internal multi-dimensional accesses,
we perform conversions from linear to multidimensional indexes.
NPB reports do not recommend the use of fixed multidimensional
arrays because the benchmarks implement different data access
patterns. In our design, we use linear arrays as the main layout
for our data structures because, although it is not necessarily the
best choice to optimize the cache hierarchy utilization (given the
irregular access pattern of some of the benchmarks), our goal
is to provide a generic code that can be extensible for a wide
spectrum architectures. Nonetheless, the user can disable those
features through a compiler flag, where static multidimensional
arrays are created.

Another important guideline was to follow as much as possible
the original Fortran code semantics during the sequential code
porting. However, it was not always possible to literally translate
the code. In particular, we often needed to modify the ordering
of accesses to arrays. The reason is that Fortran is column-major
ordered (each complete column of the matrix is stored before
the next one), while C++ is row-major ordered. NPB code has
also many goto statements, which have been removed by imple-
menting while and for loops with proper stop conditions. Such
change is useful for different reasons: first, because the use of
goto is alegacy feature in C++ (inherited from raw C); second, the
use of traditional loops helps the introduction of parallel patterns
(e.g., parallel-for and map) during the parallelization described
later in the paper.

Although the IS kernel was already implemented in C, it uses
some Fortran routines shared with other kernels. During our port-
ing to C++, we re-implemented such routines in C++. The porting
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Table 1
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Summary of past papers using NPB in their experimental evaluation.

Reference  Year  Benchmarks NPB version Languages Parallel versions Target architecture
[30] 2002 CG, EP, FT, IS, MG NPB 2.4 UPC UPC Cluster

[32] 2009 BT, LU, SP NPB 3.3 UPC UPC Cluster

[26] 2011 BT, CG, EP, FT, IS, LU, MG, SP NPB 3.3 C OpenMP, OpenCL GPU

[28] 2015 BT, CG, EP, FT, IS, LU, MG, SP NPB 2.4 C OpenMP Multicore

[27] 2019 BT, CG, EP, FT, IS, LU, MG, SP NPB 3.3 C OpenMP, OpenCL, CUDA  GPU

Ours 2021 BT, CG, EP, FT, IS, LU, MG, SP NPB 3.4 C++ OpenMP, FastFlow, TBB Multicore

Map parallel pattern on OpenMP Map parallel pattern on FastFlow

1. #pragma omp parallel for
2. For(i=0; i<m;i++){

1. ff::ParallelFor pF;

2. pf.parallel_for(0, n, 1, chunk, [&](int i){
3. 3.

4.} 4.},

5.} 5. nworkers);

Map parallel pattern on TBB

1. tbb::parallel_for( tbb::blocked_range <size_t> (0,n,chunk), [&](const
tbb::blocked_range <size_t>& r){

2. For (i=r.begin(); i<r.end(); i++){

3.

4.}

s )

(a) Map

MapReduce parallel pattern on OpenMP MapReduce parallel pattern on FastFlow

1. #pragma omp parallel for reduction (+:x)
2. For(i=0; i<m;i++){

3

4}

5.}

1. ff::ParallelForReduce <double> pf;
2. pf.parallel_reduce(x,0, n, 1, chunk, [&A](int i){

3.
4.}, [&A](int i, double& x) { x += A[i];},
5. nworkers);

MapReduce parallel pattern on TBB

1.Z = tbb:parallel_reduce( tbb::blocked_range <size_t> (0,n), 0.0, [&](const tbb::blocked_range
<size_t>&r, double x){

2. For (i=r.begin(); i<r.end(); i++){

3

4}

4. returnx;

5.}, std::plus<double>());

(b) MapReduce

Fig. 1. Basic routines to implement the Map and MapReduce parallel patterns
using OpenMP, FastFlow, and Intel TBB.

to the FT kernel required a substantial code refactoring effort to
remove the batch mechanism which gathers a set of FFT oper-
ations to increase the computational granularity. Consequently,
there is no need to manually specify the batch size parame-
ter. Other code modifications (e.g., removing data dependencies,
nested loops, low-level cache optimizations) were necessary to
keep the coherence between the sequential and OpenMP code
structures for FT and IS since they were the only kernels having
different sequential and OpenMP versions. This contributes to
have a fair performance comparison when parallelizing the code.
Finally, this set of features provided in our porting facilitates
the implementation of the NPB in other architectures such as
GPUs [21], lowering the amount of refactoring. For instance, GPU’s
parallel software development require linear arrays that are al-
ready provided in our NPB version, otherwise, the programmer
would need to provide additional routines for transforming the
data layout. Those features are not provided by other works in
the literature [26,28].

3.2. Parallel implementation

The original NPB code in Fortran is shipped with an official
OpenMP parallel version optimized by NAS experts. The NPB-
CPP’s OpenMP parallel version follows a structured parallel pro-
gramming approach with Map and MapReduce data-parallel pat-
terns. Our C++ porting allows the evaluation of implementations

747

based on different parallel programming frameworks available in
C++. As said before, we consider Intel TBB [2] and FastFlow [7].
We chose FastFlow because we compare it against state-of-the-
art solutions for shared-memory architectures like OpenMP and
TBB, and the results of this comparison also help to improve other
higher-level APIs and DSLs (Domain-Specific Languages) that rely
on FastFlow as its parallel runtime [39-41].

3.2.1. Parallel patterns in NPB-CPP

Parallel patterns can be separated in two concepts: their high-
level semantics and their low-level implementation strategies.
The semantics concern when and where a parallel pattern can
be used in the sequential code and its possible usage limita-
tions (e.g., to avoid breaking the sequential code semantics).
The pattern implementation instead is rich of low-level details
abstracted to the user, such as which kinds of communication
queues, synchronization protocols, and scheduling decisions are
used internally to implement the pattern. By looking at the high-
level semantics, a programmer is able to parallelize an application
without getting involved with low-level and complex parallelism
details. Each parallel programming framework offers its own
implementation of parallel patterns (and a slightly different API
to instantiate them). Indeed, parallel patterns can vary in terms of
usability and efficiency since they may use contrasting interface
design, and internal implementations.

We will adopt the following guidelines during the paralleliza-
tion design: (1) the first goal is to follow the structured parallel
programming approach and parallelize the benchmark applica-
tions using only the Map and MapReduce data-parallel patterns
(Fig. 1) (2) our second goal is to be uniform in the design,
by providing semantically equivalent implementations as well
as making use of the features available. For example, although
we have intrinsic mechanisms such as std: :mutex in C++, we
choose tbb: :mutex from Intel TBB; (3) our third goal is to avoid
architecture-specific optimizations and let the code be portable
on a range of different platforms. However, people interested
to obtain the maximum performance on specific architectures
or parallel programming frameworks may in the future easily
extend NPB-CPP to implement their specific optimizations. Ex-
amples of them are the use of custom task-parallelism patterns,
memory and thread affinity strategies, or even targeting different
platforms like distributed architectures (e.g., clusters) or GPUs
(see [21]).

OpenMP, TBB, and FastFlow provide different parallel pro-
gramming APIs to instantiate their own patterns. In order to
generalize the presentation, we describe them using abstract Map
and MapReduce data-parallel patterns as well as Critical Sections
and Barriers that are all present in the different frameworks with
different internal implementations. They are introduced in the
following list:

e The Map pattern [23] consists of the replication of a func-
tion that applies over all elements of an indexed set. This
can be used to parallelize for loops when iterations are
independent. OpenMP, TBB, and FastFlow offer an API called
“parallel for” for this purpose, see Fig. 1(a). In OpenMP, pro-
grammers annotate parallelizable for loops using compiler
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pre-processor directives. In TBB and FastFlow, programmers
replace parallelizable for loops using routines that are im-
plemented by a C++ template library. The main difference
is that the parallel region for OpenMP and TBB has the
thread-private feature while FastFlow does not have. The
scheduling type is optional, however, OpenMP and FastFlow
apply by default a static assignment of iterations to the
underlying threads, while TBB uses a dynamic distribution.
The MapReduce is the union of a Map and a Reduce pattern.
According to [23], the Reduce pattern combines all the ele-
ments from a collection and produces a single element using
an associative binary operator. Therefore, in the MapReduce,
every element of the Map is combined into a single element.
This pattern can be used to parallelize for loops when
iterations exhibit specific data dependencies and a syn-
chronization is required. OpenMP, TBB and FastFlow offer
an API called “parallel_reduce” as shown in Fig. 1(b).
In OpenMP, programmers use reduction along with the
parallel for directive for specifying the operation type
and the reduced variable. This parameter only accepts pre-
defined types. In TBB and FastFlow, programmers replace
the target for loop with a specific routine receiving as
arguments a set of parameters such as the lambda functions
implementing the Map and the Reduce steps.

The Barrier is a synchronization primitive for a group of
threads [23]. The barrier guarantees a synchronization point
where any thread must stop and cannot proceed until all
other threads reach the barrier. The barrier definition con-
siders both implicit and explicit barriers. By default, im-
plicit barriers are found at the end of Map and MapRe-
duce patterns on all the considered parallel programming
frameworks. OpenMP has a nowait directive that allows
threads to avoid this synchronization. However, TBB and
FastFlow do not have this option. Explicit barriers are im-
plemented when synchronization is required across threads.
In OpenMP we used the #pragma omp barrier. In TBB
and FastFlow, we used the standard Pthread library barrier
mechanisms since they do not support such low-level pro-
gramming techniques while it was necessary for expressing
parallelism.

Table 2 shows the number of instances of the parallel pat-
terns and synchronization primitives that have been used in
our NPB-CPP parallelization with the three parallel programming
frameworks. The FastFlow and TBB versions show a different
number of patterns and synchronization primitives in some ker-
nels and pseudo-applications (MG, CG, IS, and LU). The reason
is that some instances of Map and MapReduce do not bring any
performance improvement (their loop body does very small com-
putation). Better performance can be achieved with the TBB and
FastFlow version by removing such fine-grained Map and MapRe-
duce instances. OpenMP presents less overhead and is able to
exploit such fine-grained parallelism, mostly paying off in bigger
workload classes. Other minor asymmetries in the implemen-
tation with the different frameworks are very specific to each
kernel and pseudo-application, and we omit to describe them
since they do not represent a central point for this discussion.

In the rest of this section, we describe the main aspects of the
parallelization for each kernel and pseudo-application.

3.2.2. EP kernel

The EP kernel has a single compute-intensive code region that
we parallelized using a MapReduce with static scheduling. This
choice has been applied in all our implementations for the dif-
ferent parallel programming frameworks. Additionally, this ker-
nel needs a special synchronization at the end of the paral-
lel computation. As the default MapReduce implementation (de-
scribed in Section 3.2.1) accepts only standard types and there
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Table 2
Structure of each NPB benchmark in terms of parallel patterns in FastFlow(FF),
OpenMP (OMP), and Intel TBB (TBB).

Benchmark  Map MapReduce Barriers
FF OMP TBB FF OMP TBB FF  OMP TBB

EP 1 1 1 1 1 1 1 1 1
MG 1 11 10 1 1 1 1 11 10
CG 7 18 7 4 6 4 7 11 7
FT 8 8 8 1 1 1 8 10 8

IS 6 7 6 1 1 1 6 7 6
BT 23 23 23 - - - 23 23 23
SP 19 19 19 - - - 19 19 19
LU 22 23 22 1 1 1 22 19 22

is a reduction over an array, we manually implemented the data
synchronization in OpenMP, TBB, and FastFlow.

3.2.3. MG kernel

The MG kernel uses the multigrid V-cycle operation with a
residual computation. The strategy adopted is to parallelize with
Maps the intensive computational regions of the V-cycle method,
which are the restriction, prolongation, residual, and smoother
routines. Then, we also parallelized some less intensive routines
such as the communications along borders (with a Map) and the
approximation to the L2 and uniform norm values (with a MapRe-
duce). This last MapReduce needed special care since threads
synchronize on two variables for different operation types (sum
and max). In OpenMP, this is done with two different reduction
directives, while in FastFlow and TBB we manually implement
the MapReduce. Finally, we point out that the MG kernel exhibits
limited scalability with more threads, as it will be shown in the
experimental part. The reason is that the main computational
step works on a small grid and requires non-local accesses to the
memory, leading to poor cache exploitation.

3.2.4. CG kernel

The most computationally demanding step in CG is the sparse
matrix-vector multiplication ¢ = Ap of the Conjugate Gradient
method, which we parallelize using a Map. In this case, the static
scheduling works well although CG has an irregular workload.
This is because the workload follows a random Gaussian distri-
bution, and when the slices are statically divided they tend to
store equally balanced workload. Furthermore, we used multiple
Maps and MapReduces to parallelize other less compute-intensive
steps, as in Table 2. The consequence of including several Map and
MapReduce is that synchronization barriers are implicitly added
to the code, and this synchronization overhead dominates the
small improvement obtained by introducing such parallel steps.
We mitigated this in OpenMP, where some implicit barriers in the
Maps were removed using the nowait directive.

3.2.5. FT kernel

This kernel contains three independent symmetric FFT rou-
tines to compute each dimension, which we parallelized using a
Map. However, communications may represent a bottleneck since
the kernel must decompose slices of the main 3D matrix into a
1D local array each time it applies an FFT resolution, and then it
requires to copy the results back. In addition, we manually im-
plemented the MapReduce for computing the checksum in all the
parallel programming frameworks. This needs special treatments
because the reduce operation is applied over complex numbers.
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3.26. IS kernel

The IS kernel uses the bucket sorting approach. The sequential
code (originally written in C) has a synchronization protocol for
the parallel OpenMP version. This protocol needs to be adapted
for TBB and FastFlow. To this end, we adapted the semantics of
the default Map (described in Section 3.2.1) by using it just to
replicate the same function without specifying which elements
of the indexed set are computed in parallel. Then, the scheduling
is performed manually inside the threads’ private region. This
splits the computation and determines which indexes of the set
each thread computes. An explicit Barrier is added after each
instance of the modified Map for synchronization. We point out
that in Table 2 the number of Maps in IS matches the number of
Barriers for this reason. We also instantiated the standard Map
in some loops, as for the sorting operation inside the buckets.
In this case, we used the dynamic scheduling approach to better
balance the workload between buckets. Finally, we instantiated
the MapReduce to implement the verification function after the
computation.

3.2.7. BT and SP pseudo-applications

Implicit methods are typically used to get an approximation
of the solution in CFD equations through iterative techniques,
as implemented in the BT, SP, and LU pseudo-applications. Be-
sides the divergent factorization methods used for BT and SP,
those pseudo-applications were very similarly designed. Both
are originally implemented from a parallel viewpoint. Therefore,
their data have already been organized to avoid dependencies.
In OpenMP, FastFlow and TBB, we only instantiated sequence of
Maps to parallelize them, as shown in Table 2. A practical example
of the data organization’s importance concerning performance
is found in BT and SP for the residual computation routine.
Dimensions x and y are implemented with a single Map due to
the lack of data dependencies since data are organized along the
z direction. However, the z dimension itself is fragmented to
avoid data dependencies, requiring six Maps instead of a single
one as in x and y directions. Finally, the most compute-intensive
steps of both BT and SP, along with the residual computation,
are the three solving functions for computing each of the three
dimensions. We parallelized them instantiating the Map pattern
in the outermost loops.

3.2.8. LU pseudo-application

The LU pseudo-application implements the Symmetric Suc-
cessive Over-Relaxation (SSOR) method. This algorithm extends
the Gauss-Seidel method to solve a linear system of equations.
Its intensive computation relies on the decomposition of the
3D matrix system in triangular lower/upper matrices and then
solving this matrix system. Both computations, upper and lower,
are performed in two similar steps on the same iteration. Previous
studies [25,32] suggest two main ways to parallelize the LU
application: hyperplane and pipelining. In the first, points from
the same hyperplane defined by [ = i 4+ j + k can be computed
in parallel. The so-called pipeline strategy instead implements a
synchronization structure using data-parallelism mechanisms to
control the computational flow in a way that mimics a multi-
dimensional pipeline. The LU cannot be parallelized efficiently
with traditional data-parallelism techniques because all three
dimensions must deal with data dependencies. This means that
any modification would send a lot of update messages between
threads, impairing parallel scalability.

We adapted the original OpenMP parallelization in FastFlow
and TBB. First, we modify the Map as we did for the IS kernel
(see Section 3.2.6). We also implemented synchronization mech-
anisms using locks to control the data flow in FastFlow and TBB,
where a thread starts the computation only when its previous
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Fig. 2. The parallel data flow illustration for LU.

neighbor has finished. OpenMP uses a different approach based
on omp flush directives. We graphically show the parallel data
flow outcome in Fig. 2. Parallelism is achieved when for each
advance along the k direction, a new thread starts computing the
next block of elements from the indexed set.

4. Experiments

The set of experiments was carried out on three different
multicore platforms, namely: Xeon, Epyc, and Power8. We used
three compilers in the analysis: GNU compiler (gcc), Intel com-
piler (icc) and clang. The architectural specifications and envi-
ronment settings of the three machines are reported in Table 3.
The NPB workload sizes are expressed through classes, where
classes A, B, and C are standard test problems having about 4x
larger size increase going from one class to the next one. In the
evaluation, we mainly focus on the performance obtained with
class C, which represents a good compromise between memory
occupancy and computational granularity for our machines. More
details about the several parameters that each class problem
has can be found in [42]. We also report experimental results
with a smaller size (class B) to observe the impact of the run-
time overhead characterizing the different C++ parallel program-
ming frameworks. For compiling the benchmarks, we specified
-std=c++14 and -03. Each experiment configuration was re-
peated 5 times. The plots are reporting the arithmetic mean value
and the standard deviation using error bars. We also apply statis-
tical analysis using 95% of reliability to compare the differences
in the execution times. We ensure the functional correctness of
the results provided by NPB-CPP using the built-in verification
functions implemented in the NPB. Such functions compare the
results obtained in one execution with the correct ones stored
within the benchmark. The execution is considered successful
when the result is within a certain error range (e.g., CG tolerates
less than 10719). In all cases, our C++ porting successfully passes
all those verification checks.

We will first discuss the performance of the sequential ver-
sions. Second, we examine the performance of the parallel porting
using the same OpenMP runtime (distributed within compilers).
Then, we discuss the performance obtained by using Intel TBB
(2020.1) and the FastFlow (3.0.0) library. Finally, we compare
the performance against a previous implementation of the five
kernels developed in our prior work.

4.1. Sequential porting

In this section, the goal is to evaluate our sequential porting,
observing the performance behavior of NPB-CPP compared to
the original NPB. Although we only present the plots for the
Xeon platform, we also describe in a the outcome for the other
two platforms. Fig. 3 shows the results obtained with the GNU
gfortran/g++ compilers on the Xeon platform. X-axis presents
the NPB benchmarks in both graphs, while the Y-axis presents
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It has a Dual-socket Intel Xeon E5-2695 Ivy Bridge CPUs running at 2.40 GHz, featuring 24 cores (12 per socket). Each hyper-threaded core

has 32 KB private L1, 256 KB private L2 and 30 MB of L3 shared with the cores on the same socket. The machine has 64 GB of RAM.
System. Linux 4.15.0-72, Ubuntu 18.04.3LTS. Compilers. GNU gcc 9.1.0, Intel icc 19.0.5.281, and clang 10.0.0

It has a Dual-socket AMD EPYC 7551 CPUs Zen micro-architecture running at 2.40 GHz, featuring 64 cores (32 per socket). Each core has 2

HW threads, 64 KB private L1, 512 KB private L2 and 8 MB of L3 shared with other three cores. Each socket has 4 NUMA nodes. The
machine has 128 GB of RAM. System. Linux 4.15.0-101, Ubuntu 18.04.4LTS. Compiler. GNU gcc 9.1.0

It has a Dual-socket IBM server 8247-42L with two Power8 processors each with ten cores organized in two CMPs of 5 cores working at

3.69 GHz. Each core (8-way SMT) has private L1d and L2 caches of 64 KB and 512 KB, and a shared on-chip L3 cache of 8 MB per core. The
total number of cores per CPU is 20 physical and 80 logical ones. The machine has 64 GB of RAM. System. Linux 4.4.0-47, Ubuntu 16.04.

Table 3
Multicore platforms and their environment settings (OS and compilers).
Name Description
Xeon
Epyc
Power8
Compiler. GNU gcc version 9.1.0.
Sequential Version (GNU Compiler on Xeon)
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Fig. 3. Comparing the performance of NPB vs NPB-CPP on the Xeon platform
using the GNU compiler with Class C.

the execution time in seconds (using a logarithmic scale) in one
plot while the other shows the relative difference in percentage.
The relative difference is obtained by normalizing the NPB-CPP
execution times with respect to the original NPB ones, where
positive bars stand for C++ faster and negative bars the opposite.

On average, the C++ version achieves similar performance
compared with the original Fortran code. The normalized dif-
ference is less than 1.5%, except for BT, LU, and FT. One of the
major differences between NPB-CPP code with respect to NPB is
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that we dynamically allocate single dimensional arrays, while in
NPB they were allocated statically using multiple dimensions. As
already explained in Section 3, we use linear arrays to provide a
generic code that can be extensible for a wide spectrum architec-
tures. Also, since the benchmarks implement irregular data access
patterns, using linear memory allocation is less intrusive than
multi-dimensional arrays for this purpose. In BT, this modification
has a positive impact - C++ is 7.43% faster than Fortran — while in
LU the impact is negative, since C++ is 4.3% slower. Concerning FT,
the C++ version is 2.15% slower than the Fortran version, mainly
because of the complex type (intrinsic data type only in Fortran).

To observe the performance using different compilers on the
same platform, Fig. 4 shows the execution time in seconds (using
a logarithmic scale) obtained with the Intel compiler on the
Xeon platform. The relative differences between Fortran and C++
are also shown. In this case, the differences between the two
versions are more evident. The FT kernel presents the biggest
difference: the C++ version is 27.49% slower than the Fortran
one. The MG kernel also shows a high normalized difference: the
C++ version is 18.26% faster than the Fortran version. Both FT
and MG are the two benchmarks that allocate more memory and
stress long-distance data communications (see Section 2.1). We
observed that the most significant performance differences are in
those benchmarks that are more memory intensive. Besides the
FT and MG Kkernels, the C++ version of the BT and SP pseudo-
applications are 7.13% and 5.83% slower than the Fortran ones.
These pseudo-applications are faster when using ifort than
gfortran, while the C++ version (g++ and icpc) is similar for
both compilers, which explains the small increase in the differ-
ence. For the remaining benchmarks, the average difference is less
than 3%.

The analysis can be extended by considering the impact of a
different open-source compiler: clang. clang does not offer an
official Fortran compiler. For this reason, we show in Fig. 5 the
performance difference obtained by running NPB-CPP (with class
C) using all the available C++ compiler technologies on the Xeon
platform. As shown in the graph, the performance varies among
the compilers and each one is able to optimize the code better
than the others depending on the benchmark. Similar to the be-
havior observed in previous Fig. 4, the biggest variations occur in
FT and MG, where both execute memory intensive computations.
In FT, the standard deviation is high and gcc achieves the best
results, where icc and clang are respectively 55.9% and 31.5%
slower than gcc. Similarly, in MG the icc and clang compilers
are respectively 50.9% and 19.2% slower than gcc. However, in
the EP benchmark gcc is the fastest and achieves up to 34.8%
better execution time than others. In LU, clang is up to 24.7%
slower than others. In the remaining benchmarks the difference
is smaller, achieving less than 10% difference between compilers.

The experiments conducted for the other two platforms using
the GNU compiler are summarized as follows. We present the
percentage numbers normalizing the difference between NPB-
CPP and NPB execution times. The outcome is that NPB’s bench-
marks are on average 0.86% faster than NPB-CPP ones in Epyc. In
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Fig. 4. Comparing the performance of NPB vs NPB-CPP on the Xeon platform
using the Intel compiler with Class C.

Power8, NPB-CPP’s benchmarks are on average 0.73% faster than
NPB ones. As discussed for the Xeon platform, the differences are
less than 1% on average. We can conclude that the sequential
porting of NPB-CPP is reliable and efficient compared to the NPB
in different compilers and platforms.

4.2. Parallel porting

This section aims at comparing the performance of the par-
allel porting on shared-memory architectures, which was first
implemented with OpenMP in Fortran by the NAS experts. The
OpenMP version in C++ follows the parallel design implementa-
tion described in Section 3.2.1. Consequently, we are comparing
the behavior of OpenMP parallelism between NPB-CPP and NPB
benchmarks. Graphs in Fig. 6 show the execution time in seconds
(using a logarithmic scale), varying the number of threads from
1 to 48 on the Xeon platform and with workload Class C. The
plots have a second Y-axis to report the normalized difference in
percentage between NPB-CPP and the NPB using bars. A positive
difference means that the NPB-CPP version is faster than the NPB,
negative values vice-versa.
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Fig. 5. Comparing the performance of the NPB-CPP benchmarks on the Xeon
platform using all compilers and Class C.

To better evaluate the differences for each parallel execution,
we colored the bars with red and green colors. The assigned color
is the result obtained by the p-value statistical analysis [43].
The smaller the p-value, the stronger the evidence that the
null hypothesis should be rejected. Before running the statistical
test, we ran the homogeneity test to evaluate if the sample
(5 repetitions) is in a normal distribution using the Shapiro-
Wilk test. This test allows to identify, even with a small sample,
which kind of hypothesis test to perform (parametric or non-
parametric). We ran the paired T-test when both samples of
Fortran and C++ were normal distributed. Otherwise, we ran the
paired Wilcoxon test. In our statistical analysis, the null hypoth-
esis (Hp) is NPB=NPB-CPP (e.g., the NPB-CPP provides the same
level of parallel performance of the original NPB). The alternative
hypothesis (H;) is then NPB#NPB-CPP. To reject Hy, the p-value
must be less than 0.05 (this is a commonly used threshold in
the literature for software experiments). When Hy (green color)
is rejected, we assume H; (red color). In this way, it is pos-
sible to quickly identify which results are statistically different
considering 95% confidence in Fig. 6.

As sketched in Fig. 6, the performance among NPB and NPB-
CPP benchmarks are very close. The EP and MG kernels (Figs. 6(a)
and 6(b)), followed by BT and LU pseudo-applications (Figs. 6(f)
and 6(h)), are the benchmarks presenting more cases with sig-
nificant statistical difference. For LU the primary reason is that
the NPB-CPP sequential version is, on average, 4.3% slower than
the NPB version. This difference persists in the parallel ver-
sion (Fig. 6(h)). In BT, while in the NPB-CPP sequential version
was 7.43% faster, the parallel version shows that NPB-CPP with
OpenMP configured with one thread is 4.15% slower than NPB,
which is in Fortran. The BT and SP pseudo-applications are both
bounded to the sequential PDE solver. However, in the Xeon
platform, only SP stops scaling around 12 threads, which explains
why its results tend to diverge less.

FT and MG benchmarks presented larger performance differ-
ences. The first in favor of the NPB-CPP version whereas the
second in favor of the NPB version. Something similar happens
to CG, where results are different since it executes over irregular
workloads that require memory locality. For IS, on average, the
execution time is similar except for the low and high parallelism
degree. Finally, in the EP kernel, NPB-CPP is slightly faster than
NPB in all cases.

To observe how the performance is impacted by the use of
different compilers, Table 4 summarizes the best parallel execu-
tion times obtained on the Xeon platform using the gcc, icc,
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EP with OpenMP (NPB-CPP vs NPB)

MG with OpenMP (NPB-CPP vs NPB)

Future Generation Computer Systems 125 (2021) 743-757

CG with OpenMP (NPB-CPP vs NPB)

Cix
Fortran ——

20%
O | 2%

C.
Fortr Fortran ——

©
19

15%

|

10%

-
R

64

Bl

Fortran

>

Difference (%]

-5%

y

Execution time [sec]

®

Execution time [sec]

%2 { -10%

5%

=
=2

Fortran

Fortran

-5%

Difference [%)]
Execution time [sec]
Difference [%)]

P

e S

q -15%

-10%

%y

-20%

-16%

aart W)

4 8 12 16 20 24 28 32 36 40 44 48
Number of Threads

(a) EP

FT with OpenMP (NPB-CPP vs NPB)

4812162024283236404448_
Number of Threads

(b) MG

IS with OpenMP (NPB-CPP vs NPB)

-20%

4 8 12 16 20 24 28 32 36 40 44 48
Number of Threads

(c) CG

BT with OpenMP (NPB-CPP vs NPB)

[
Fortran ——

[P
c —— Forl

5%

Fortran

B

Difference [%]

T

q -5%

5%

Fortran

E}
e
=

Execution time [sec]

-10%

-5%

Difference [%]
Difference [%]

g
32 \QT\‘)N

-15%

-10%

ey

-15%

M gan T

-2
4 8 12 16 20 24 28 32 36 40 44 48
Number of Threads

(d) FT

SP with OpenMP (NPB-CPP vs NPB)
1024

an ——

C+
Fort

a
o

|
\
gm@@@

\

N
a
3

Fortran

|

Execution time [sec]

N
®

-

4 8 121620242832364044487
Number of Threads

(8) SP

4 8 121620242832364044487
Number of Threads

(e) IS

Difference [%]
Execution time [sec]

-20%
4 8 12 16 20 24 28 32 36 40 44 48

Number of Threads

(f) BT

LU with OpenMP (NPB-CPP vs NPB)

1024 20%

Cos ——
Fortran ——

15%

1 10%

TR |
|

-10%

Fortran

-5%

Difference [%]

i T

-15%

-20%
4 8 12 16 20 24 28 32 36 40 44 48
Number of Threads

(h) LU

Fig. 6. Experimental results for NPB-CPP and NPB benchmarks parallelized with OpenMP on the Xeon platform by using the GNU compiler and workload Class C.
Lines show the execution time in seconds (using log scale) while bars show the normalized difference. Bar's colors show if this difference is significant from the
statistical standpoint under 95% of reliability: green color means NPB=NPB-CPP whereas red means NPB#NPB-CPP.

and clang compilers with workload Class C. For gcc and icc, on
average the results are close to each other, except for EP, FT, and
MG. EP executes 25.6% faster with icc than gcc. Both FT and MG
stress long-distance data communications and their performance
relies mainly on how much the compiler is capable of optimizing
memory accesses. The explanation of MG and FT also applies to
clang. Besides, clang results are varying for the three pseudo-
applications. In LU, the sequential execution time is almost 25%
higher for clang than the others. However, in BT and SP clang
optimizes better the PDE solvers and achieves better results for
similar degrees of parallelism.

After presenting and discussing these experiments, we can
conclude that the parallel porting achieved reliable results and
efficient performance compared to the original version. The sta-
tistical analysis revealed that 58.8% of the tests (combining the
number of threads and benchmarks) stand equal for NPB and
NPB-CPP. In addition to that, we can see that the differences were
small in average. The next section will extend the parallelism
performance analysis on other parallel programming frameworks.

4.3. NPB-CPP with Intel TBB and FastFlow

As the previous experiments highlighted the reliability and
efficiency of the sequential and parallel porting, this section will
evaluate and discuss the performance scalability outcomes of the
benchmarks for other parallel programming frameworks, which
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now can be tested on these benchmarks due to our work. There-
fore, we used as baseline the performance results of NPB-CPP
with OpenMP (previously discussed) to compare with the NPB-
CPP code parallelized using Intel Threading Building Blocks (TBB)
and FastFlow (FF) (see Section 3.2). Since our experimental en-
vironment uses NUMA architectures, thread affinity can signifi-
cantly affect performance. We used the default configuration for
each parallel programming framework. Therefore, OpenMP and
Intel TBB let the OS handle thread affinity while FastFlow places
threads to physical cores first from 0 to N in ascending order.

The experiments were executed using all the three multicore
platforms described in Table 3. The methodology is similar to the
one previously described in Section 4.2. Therefore, we executed
5 repetition for each configuration from 1 to maximum degree
of parallelism in each platform. The results present the best av-
erage execution time in seconds and the standard deviation. The
table shows the degree of parallelism where we achieve the best
speedup. The speedup is calculated using the ratio between NPB-
CPP’s sequential version and the best execution time achieved
for each parallel programming framework. To investigate the
behavior of the benchmarks, platforms, and parallel frameworks
on different classes we used the workloads from Classes B and
C. Table 5 reports the best speedups of each version computed
over the NPB-CPP sequential version, the best execution time in
seconds, the number of threads used, and the standard deviation.
These metrics are presented for the three platforms.
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Table 4
The best execution times among NPB and NPB-CPP benchmarks on the Xeon
platform by using gcc/icc/clang compilers with workload Class C on OpenMP
versions.

Bench. Metrics GNU GCC Intel ICC clang
C++ Fortran C++ Fortran C++
N Threads 48 48 48 48 48
EP Time (s) 13.60 13.75 10.40 10.35 12.99
Std. Dev. 0.01 0.05 0.03 0.05 0.05
N Threads 16 21 41 22 22
MG Time (s) 7.94 7.28 8.35 8.02 7.66
Std. Dev. 0.12 0.24 0.17 0.24 0.39
N Threads 48 48 47 24 45
CG Time (s) 19.27 19.18 19.32 18.29 20.02
Std. Dev. 0.18 0.34 0.67 091 0.57
N Threads 48 48 48 47 47
FT Time (s) 20.67 20.54 22.11 23.71 23.38
Std. Dev. 0.08 0.23 0.99 0.40 0.86
N Threads 48 48 47 47 47
IS Time (s) 1.03 0.96 1.02 1.08 1.00
Std. Dev. 0.01 0.01 0.01 0.01 0.03
N Threads 47 48 24 23 23
BT Time (s) 71.74 68.61 71.96 66.16 64.18
Std. Dev. 0.59 0.23 0.89 0.53 0.67
N Threads 14 14 14 14 14
SP Time (s) 90.75 91.20 90.05 88.86 85.92
Std. Dev. 1.49 0.69 0.58 0.74 0.44
N Threads 47 47 45 45 40
LU Time (s) 45.72 4418 45.72 44.88 57.52
Std. Dev. 0.29 0.38 0.22 0.21 0.12

EP is an embarrassingly parallel computation implemented
by a single MapReduce pattern. As expected, it reaches its best
speedup by using all the available cores of the machines in all par-
allel programming tools and platforms. TBB exhibits the highest
speedup due to its work-stealing scheduling. In Class B, Fast-
Flow is slightly faster because TBB’s runtime overhead is more
evident for the small workload. The MG kernel requires access
to non-linear addresses in memory, preventing the best cache
utilization. Since Power8 has a higher memory bandwidth [44],
it provides better results. FF and OMP provide higher speedup,
mainly due to the static scheduling policy of loop iterations
adopted. The main difference between OMP and FF is that OMP
creates a parallel region where threads are always active while
FF disables and enables them each time a new parallel Map is
executed.

The CG kernel requires a large number of synchronizations,
primarily because it uses many MapReduce for sharing partial
results (see Table 2). This periodically interrupts the computation
and decreases the maximum performance achievable. CG has
irregular data accesses, which benefit of bigger last-level caches
shared between more cores. This explains why the results are
better on the Xeon and Power8 platforms. The OMP version
exhibits the highest speedups, mainly because we were able to
add nowait directives to remove implicit barriers. Between the
other two, TBB achieves better results than FF because it balances
better the irregular workload using a work-stealing scheduler,
while FF uses a static round-robin assignment.

In the FT kernel, data communication phases have a significant
impact on performance. Each FFT resolution copies a slice of data
from the main 3D-matrix to a local 1D-array, solves it, and then
copies it back into the main matrix. In the Xeon platform, results
are similar for all versions because the memory bottleneck hides
other sources of overhead. However, in the Epyc and Power8
platforms, although speedups are similar, the obtained sequential
execution time in the Epyc machine is an order of magnitude
faster than the one obtained in the Power8. This explains the
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better scaling in the Power8, specifically for the TBB version.
It benefits from its dynamic work-stealing scheduling policy,
which achieves a good workload balancing among the threads.
However, since the computation in FT is fine grained, the extra
overhead of such dynamic scheduling does not payback on the
Epyc platform. As IS kernel is also memory bound, it explains the
higher speedups in Power8. The IS sequential code runs faster in
Epyc than in Power8. This is the reason why FF and TBB obtain
the best speedup earlier than OMP as the execution time is short
(in the order of seconds) and the runtime overhead has a higher
impact. In the Power8, FF’s thread pinning to cores mechanism
showed poor performance for this benchmark.

As already discussed, BT and SP use analogous PDE solvers.
Despite both are bound by the PDE solver, taking into account
that they execute a different factorization, the bottleneck occurs
in different situations. This explains why BT has a higher speedup
than SP and why they stop scaling when the sequential bottleneck
of the solver is reached. For SP, we parallelized it by using the
same strategy for all parallel programming frameworks, imple-
menting only Maps. Therefore, the maximum speedup is very
close in all implementations. In Class C, TBB achieves the best
speedups for Epyc and Power8 because it balances better the
workload. However, the small workload of Class B swaps the
results and OMP obtains the better speedups mainly due to the
smaller runtime overhead. For BT, the PDE solvers bottleneck is
evident in the Epyc platform while not in Xeon and Powers8.
Concerning the runtime systems of the parallel programming
frameworks, the static iteration scheduling employed by the OMP
and FF versions provide better speedup with respect to the
dynamic scheduling used by the TBB version. Specifically, the
execution time is reduced significantly if the iteration space is
equally divided among all threads. In the Power8 platform, this
happens with 160 threads.

The LU pseudo-application has been parallelized by using
an implicit multidimensional pipeline implemented with Maps.
It uses the static scheduling policy for the iteration space and
proper lock mechanisms for synchronizations. In all platforms,
the maximum speedup is low because the benchmark is limited
by the sequential resolution of the linear system of equations. For
FF and TBB, the execution flow management is done in the thread
scope while for OMP it is done inside the loop iteration scope.

In summary, we conclude that different parallel program-
ming frameworks can be effective on NPB-CPP benchmarks by
using equivalent pattern-based implementations, achieving good
performance as shown in Table 5. The results highlight that
the performance of different parallel programming frameworks
depends on the shared-memory architecture design and applica-
tion characteristics. OpenMP is considered the de-facto standard
framework for these environments, however, it does not always
achieve the best speedups. These insights open space for future
investigations regarding parallelism optimizations.

4.4. Comparison with our prior work

In this section, we provide the performance comparison be-
tween NPB-CPP and our prior work [24] which, as already ex-
plained in Section 1, was based on the five kernels only and on
an outdated version of NPB.

In terms of parallel implementation, the IS and FT kernels
exhibit the most significant differences between the new code
in NPB-CPP and the old one. In IS, we implement a new parallel
strategy for FF and TBB designed from scratch. This strategy uses
a single Map for parallelizing the complete compute-intensive
region of the sorting routine using buckets. In contrast, the pre-
vious one used four Maps and serialized the synchronization
between buckets, generating extra overhead. Furthermore, the
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Table 5
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Experimental results for NPB-CPP showing the best execution time (in seconds) and speedup using Class B and Class C for Xeon, Epyc, and Power8. The speedup
is calculated using the ratio between NPB-CPP’s sequential version (no parallel framework) and the best execution time for each tool. Colored cells highlight the

winner speedup.

Bench. Metrics Xeon Epyc Power8
Class B Class C Class B Class C Class B Class C
TBB FF OMP TBB FF OMP TBB FF OMP TBB FF OMP TBB FF OMP TBB FF OMP
N Threads 48 47 48 48 48 48 128 128 120 128 128 124 152 160 148 160 160 160
EP Time (s) 3.39 3.78 3.42 13.52 15.04 13.60 1.26 125 1.42 4.92 5.02 5.36 224 2.15 241 8.58 10.27 8.89
Speedup 41.10 36.90 40.08 41.20 37.02 40.94 120.05 120.24 106.67 128.77 126.35 118.38 62.06 64.71 57.68 124.03 103.60 119.74
Std. Dev. 0.00 0.04 0.01 0.01 0.11 0.01 0.02 0.00 0.04 0.01 0.01 0.11 0.10 0.01 0.11 0.06 0.26 0.29
N Threads 10 16 14 19 16 16 8 9 8 8 9 16 5 4 6 64 156 64
MG Time (s) 1.34 0.89 0.87 10.18 7.69 7.94 1.82 139 1.26 14.76 15.28 13.64 143 1.96 1.40 18.28 20.73 15.83
Speedup 4.27 6.40 6.58 5.15 6.82 6.60 2.19 2.88 3.17 225 2.17 2.43 3.16 2.30 323 16.51 14.55 19.05
Std. Dev. 0.02 0.04 0.01 0.03 0.18 0.12 0.03 0.08 0.06 0.57 1.36 1.10 0.05 0.03 0.03 0.14 0.14 0.02
N Threads 35 23 48 48 48 48 40 6 40 56 6 24 72 68 112 152 68 120
G Time (s) 7.84 9.16 6.86 20.11 20.52 19.27 14.16 1491 14.56 37.03 38.88 35.62 9.80 12.18 8.66 34.80 35.19 30.47
Speedup 14.95 12.80 17.09 16.99 16.65 17.73 2.99 2.84 291 3.09 294 321 10.02 8.06 11.34 28.81 28.49 32.90
Std. Dev. 0.04 0.15 0.01 0.08 0.52 0.18 0.11 0.34 1.65 0.52 131 4.66 0.17 0.14 0.43 0.31 0.36 0.32
N Threads 45 48 48 48 48 48 124 124 128 56 124 128 152 128 140 160 152 140
FT Time (s) 5.21 471 4.80 20.62 20.06 20.67 3.02 2.86 PA70] 12.00 11.42 11.00 4.65 4.90 4.71 20.60 2351 25.10
Speedup 18.18 20.12 19.71 21.32 21.92 21.28 40.86 43.06 44.11 64.44 67.71 70.23 14.54 13.80 14.36 72.70 63.73 59.72
Std. Dev. 0.04 0.02 0.10 0.05 0.11 0.08 0.01 0.05 0.03 0.08 0.19 0.16 0.05 0.01 0.03 0.10 0.25 0.31
N Threads 46 47 48 48 47 48 48 84 128 28 24 124 52 156 88 140 160 148
Is Time (s) 0.25 0.25 0.21 121 1.06 1.03 0.32 0.3 0214 132 1.16 0.87 0.26 0.23 0.22 1.09 127 0.98
Speedup 17.67 17.67 20.83 14.95 17.06 17.56 14.27 15.23 21.35 13.97 15.94 21.16 6.26 7.31 7.50 4381 37.6 48.53
Std. Dev. 0.00 0.00 0.01 0.02 0.03 0.01 0.01 0.00 0.00 0.03 0.08 0.02 0.01 0.01 0.01 0.02 0.03 0.04
N Threads 46 47 20 41 46 47 60 100 104 52 104 100 36 100 108 160 160 160
BT Time (s) 22.56 17.44 18.70 86.31 68.15 71.74 13.96 13.14 12.27 60.70 60.34 59.63 18.99 18.46 15.54 210.73 105.69 86.60
Speedup 12.27 15.88 14.81 13.67 17.32 16.45 13.62 14.47 15.49 12.84 12.92 13.07 13.77 14.17 16.84 29.05 57.93 70.70
Std. Dev. 0.13 0.04 0.17 0.36 0.31 0.59 0.09 0.24 0.33 0.25 153 1.11 0.23 0.16 0.58 0.75 2.02 0.78
N Threads 22 22 20 13 14 14 20 9 11 8 7 12 20 12 12 40 32 32
sp Time (s) 18.85 17.18 16.26 97.69 93.35 90.75 27.27 22.06 21.05 107.81 113.49 112.21 19.89 22.49 18.94 166.52 172.85 171.95
Speedup 9.69 10.63 11.23 7.82 8.18 8.41 4.13 5.10 534 4.14 3.94 3.98 7.61 6.73 7.99 16.78 16.16 16.25
Std. Dev. 0.18 0.13 0.08 122 2.65 1.49 0.21 0.77 0.83 1.92 7.48 13.41 0.56 0.06 0.29 0.31 1.30 3.56
N Threads 35 38 47 41 46 47 20 28 36 28 24 32 12 52 104 80 80 80
w Time (s) 13.85 12.50 12.45 47.96 43.64 4572 13.26 12.07 10.23 47.21 47.89 47.21 23.68 22.95 12.71 85.89 88.24 82.92
Speedup 14.37 1591 15.98 17.42 19.14 18.27 9.35 10.28 12.13 11.45 11.29 11.45 7.09 7.31 13.20 34.08 33.17 35.30
Std. Dev. 0.07 0.03 0.15 0.23 0.15 0.29 0.20 0.22 0.37 0.58 0.80 2.60 128 0.02 0.37 0.35 175 0.97
previous implementation was not implemented in TBB due to Table 6

issues related to getting the thread identifiers, which was not
possible with task-based parallelism for TBB. In the FT kernel,
we modified some routines such as the evolve and checksum,
and included others like the initialization for warming up all
data before execution. We identified an extra loop suitable to
be parallelized using a Map. Additionally, in the CG kernel we
identified four extra Maps that provide performance benefits with
large problem sizes (starting from class C).

Table 6 shows the performance improvements between our
two versions. Since the code in prior work does not work on large
problem sizes starting from class C, we restricted the comparison
with experiments using class B. Considering this workload size is
relatively small (see [42]), we do not expect large performance
differences. The table presents the best execution times for the
five kernels on the Xeon platform with the GNU compiler. For
the EP kernel, the implementation in NPB-CPP is faster than the
prior one in all the considered parallel programming frameworks,
more distinct in FF. The main reason is that our previous imple-
mentation was affected by false-sharing problems, which we have
fixed in the NPB-CPP implementation using proper padding of
our data structures and arrays (configured to automatically work
in any multicore platform by reading the cache line sizes from
the operating system). Also in the MG kernel, the new version is
faster in all the tools. The main reason is that we standardized the
implementation of linear arrays to all kernels, which work better
in this case for MG’s fine-grained workload and irregular memory
accesses. In the old implementation we used multidimensional
arrays.

In CG, FF and TBB had different performance result because
we now parallelized more loops than before. In FF, we used a
different scheduler than the one used in the other tools, because it
works better with its thread pinning mechanism in CG. However,
it payoffs with bigger workloads as shown in Table 5, where FF
is similar to the others. TBB also shows a higher overhead than
OMP in CG. However, TBB overhead is much more evident in FT
since it is the only tool configured to use a dynamic scheduler
(work-stealing). Additionally, in FT we modified considerably the

Comparison with our prior work: best execution times on Xeon with Class B
using the GNU compiler.

Bench.  Metrics Current work Previous work [24]
FF OMP  TBB FF OMP TBB
N Threads 47 48 48 48 48 48
EP Time (s) 378 342 3.39 507 345 3.41
Std. Dev. 0.05 0.01 0.00 0.03 000 0.01
N Threads 16 14 10 21 16 9
MG Time (s) 0.89 087 134 1.01 0.90 1.40
Std. Dev. 0.04 0.01 0.02 0.02 0.00 0.06
N Threads 23 48 35 48 48 47
CG Time (s) 916 686 7.84 794 676  9.04
Std. Dev. 0.15 0.01 0.04 0.03 0.14 0.07
N Threads 48 48 45 48 47 48
FT Time (s) 471 480 5.21 499 543 536
Std. Dev. 0.02 0.11 0.04 0.06 0.11 0.06
N Threads 48 48 48 48 48 -
IS Time (s) 0.25 0.21 0.25 0.26 0.21 -
Std. Dev. 0.00 000 0.00 000 000 -

code, and consequently, all the new versions are faster. The IS
execution time is very small, close to 250 ms, and the overhead
of the parallel runtime becomes more evident. The difference
between the FF versions is close to 5%, which depends on the new
parallel strategy that paybacks even more with larger workload
sizes. Finally, this new version allows the Intel TBB parallelization
of IS, not available before.

5. Final remarks

In this section, we present a summary of our findings. For
most benchmarks, the Map and MapReduce patterns exhibited
the required semantics for expressing parallelism in the code.
Only in the IS kernel and the LU pseudo-application we intro-
duce a small alteration of the pattern semantics. Consequently,
these two benchmarks contain extra hand-written synchroniza-
tion strategies that are not abstracted by the Map or MapReduce,
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and the application programmer must provide them manually.
In IS, although not ideal and error-prone, introducing parallelism
is easier because NPB’s sequential version already implements
the entire routine for synchronizing neighbors after parallel ex-
ecutions. In OpenMP this routine can be used along with the
parallel and for pragma directives, which are executed inde-
pendently. However, in TBB and FastFlow we must adjust the Map
and MapReduce pattern semantics to overcome their API limita-
tions (see 3.2.6), while in OpenMP it remains the same. For the
LU pseudo-application, the same happens. However, achieving
parallelism is more difficult because synchronization is needed
between parallel instances during execution time. Unfortunately,
the Map and MapReduce patterns lack expressiveness, and a
programmer must manually implement the spinning lock mech-
anism for synchronizing the data flow. This parallel pattern se-
mantic problem applies to all the three frameworks considered
in our work.

Another high-level semantic limitation we observed concerns
the MapReduce reduction operation. The problem relates with the
lack of expressiveness for implementing Reduce routines. Specif-
ically, the default MapReduce pattern abstractions provided by
the existing frameworks are not ideal for modeling common re-
duction operations. For example, in many NPB benchmarks there
are reductions executed over dynamic arrays and custom data
types. Using the features available in the frameworks turn the Re-
duce implementation non-trivial, again engaging the application
programming with low-level parallelism.

In terms of performance, Table 5 presented a summary of
our findings regarding the low-level pattern implementations.
Problems and limitations in the parallel pattern implementa-
tion semantics are directly connected to performance drawbacks.
Although in TBB and FastFlow the Map adjustments were re-
quired, OpenMP achieved better performance. In LU, OpenMP did
not achieved the best results in one situation because it relies
in a coarser-grained lock strategy than TBB and FastFlow. Fur-
thermore, the removing of implicit barriers is only available for
OpenMP, which due to that achieves better results. However, TBB
has a better load balancing mechanism, achieving linear speedup
in EP and better scaling in other benchmarks.

As shown in Table 5, we discover that many benchmarks do
not scale well. Although this derives from several implementa-
tion and architectural reasons, such as cache misses, floating-
point unit, and memory bandwidth constraints, some perfor-
mance drawbacks are also related to the Map and MapReduce
patterns themselves. We highlight two major drawbacks that
should be considered for further research: (1) in many situations
the overhead introduced by the Map pattern is higher than the
benefit of exploiting such fine-grained parallelism; (2) the thread
mapping lacks data flow awareness. OpenMP and TBB let the
0S to choose where threads will be allocated while FastFlow
provides a default and custom one. Contrasting the overall results,
there is room for improving thread mapping.

6. Conclusions

This paper provided the NPB-CPP benchmark suite with paral-
lel implementations following a structured parallel programming
approach and using OpenMP, Intel TBB, and FastFlow for shared-
memory architectures. To the best of our knowledge, this work
is the first attempt to provide equivalent pattern-based imple-
mentations among different parallel programming frameworks in
C++ using the NPB suite. Furthermore, we presented a compre-
hensive discussion about the benchmarks, the implementation,
and also our parallel design choices for justifying all the results.
For evaluating the C++ parallel programming frameworks, we first
obtained a C++ version of the NPB, named NPB-CPP. Moreover,
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we characterized the basic structure of the benchmarks and their
distinguished importance in the research, which relies on the fact
that NPB contains many irregular workloads stressing different
components of the underlying multicore architecture.

We evaluated NPB-CPP by performing a set of experiments
using popular platforms nowadays (Xeon, Epyc, and Power38)
with three different compilers (GNU GCC, Intel ICC, and Clang).
The performance evaluation was guided using statistical analysis.
The results demonstrated that there are minor performance dif-
ferences among the sequential versions. OpenMP versions (NPB
vs NPB-CPP) have shown a reliable outcome, presenting a similar
pattern of behavior. Additionally, with 95% of confidence, the
statistical analysis evaluating the parallel porting revealed that,
at least, 58.8% of the samples stand for NPB-CPP not significant
different from the NPB benchmarks.

Finally, NPB-CPP’s extensibility and its importance to the sci-
entific community were shown in the experiments of the parallel
versions using FastFlow and TBB. Other related abstractions can
be evaluated, including those that were designed for distributed
and heterogeneous parallel architectures. The experiments, us-
ing Xeon, Epyc, and Power8 revealed that the performance of
the kernels and pseudo-applications varies among the platforms,
benchmarks, and parallel frameworks. The main performance
bottleneck in the benchmarks was due to the caches and memory
bandwidth among the platforms, resulting in different behaviors
between the parallel programming frameworks.

Nonetheless, our experiments highlight some trends to help
other programmers choosing the best approach depending on the
workload. FastFlow obtained better performance for Xeon when
comparing among other platforms. Intel TBB obtained better per-
formance in a few benchmarks and platforms mainly due to its
optimized scheduling for balancing the irregular workload among
threads. Although OpenMP is considered the state-of-the-art for
multicores, this work revealed many situations in which TBB and
FastFlow are more optimized and can perform better.

Researchers can use NPB-CPP to improve parallel program-
ming abstractions based on the insights already revealed in this
research. Possible future works are: (1) provide NPB-CPP with
other parallel programming frameworks for shared, heteroge-
neous, and distributed memory architectures; (2) assess the per-
formance of NPB-CPP by providing different parallel patterns or
compositions of them; (3) perform experiments on other related
multicore architectures such as ARM processors; and (4) assess
compilers and new code optimizations techniques.
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