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ABSTRACT
The removal of Cr(VI) from wastewater by adsorption from agro-industrial residues remain
an attractive option since combines reasonable cost with the quality of effluents treated.
This paper employs of parboiled-rice husk ash (RHA) and parboiled-rice husk ash chemically
treated (RHAHþ) as adsorbents for Cr(VI). The RHA and RHAHþ were characterized. It was
studied the adsorption efficiency on adsorbent dosage, pH, chromium concentration, and
interaction time. RHAHþ presented superior Cr(VI) removal, although both adsorbents have
shown satisfactory results. The best results are obtained at pH 1.0, presenting 90.9% and
97.7% of Cr(VI) removal for RHA and RHAHþ, respectively, in 5mg L�1 of Cr(VI) concentra-
tion at about 30minutes. The adsorption of RHAHþ is governed by the Freundlich isotherm
(R2adj ¼ 0.989) and kinetically by the pseudo-second order model (R2adj ¼ 0.991). The rice
rusk ash represents an alternative low-cost and environment-friendly material that efficiently
removes Cr(VI) from dilute aqueous solutions.

KEYWORDS
Adsorption; agro-industrial
residue; Cr(VI); hexavalent
chromium; parboiled-rice
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1. Introduction

Contamination by heavy metals is a permanent
environmental and health concern. Chromium is
a transition metal that can exist in different oxi-
dation states and is potentially harmful. In aque-
ous systems, the stable species Cr(III) and Cr(VI)
are profuse (da Silva Ries and Silveira 2019),
being Cr(VI) around 300 times more harmful
than Cr(III), which makes it a risk for human
health and the environment (Lin et al. 2018).
Genotoxicity tests have shown that the hexavalent
species causes mutagenic and carcinogenic effects
on living organisms (Bielicka et al. 2005). In add-
ition, it is bioaccumulative and non-biodegrad-
able even at low concentrations (Burakov et al.
2018). Cr(VI) is typically associated with
anthropogenic contamination from several indus-
trial processes such as leather tanning, metallurgy
and galvanization, chemical and petrochemical
industries, textile dyeing, paint and pigment pro-
duction, agricultural fertilizers, wood

preservatives, among others (Altun and Kar 2016;
Lin et al. 2018). Particular care is required in
handling and treating effluents containing Cr(VI)
since it can easily flow into groundwaters and
oceans, eventually compromising sources of
drinking water. In effect, environmental agencies
have established strict policies to comply with the
concentration requirements of these species in
wastewater. In Brazil, the maximum limits estab-
lished for industrial wastewater discharge into
water bodies are 0.1mg L�1 for Cr(VI) and
1.0mg L�1 for Cr(III) (CONAMA 2011).

In this sense, studies have been carried out to
reduce wastewater generation and develop meth-
ods for removing these species in effluents, which
include adsorption, ion exchange, chemical pre-
cipitation, ultrafiltration, electrochemical meth-
ods, reverse osmosis, bioremediation, membrane
separation, among others (Aguiar et al. 2002;
Burakov et al. 2018; Lin et al. 2018). However,
each technique has its advantages and disadvan-
tages and may in some cases be inefficient or
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very costly (Dotto and McKay 2020) when
applied to remove heavy metals in low concentra-
tions. In that case, adsorption using commercial
activated carbons is one of the most conventional
technologies due to high efficiency, simplicity,
and ease of operation. The adsorption process, at
the same time, involves relatively high costs of
the activated carbons as adsorbent. In recent
years, the use of non-conventional adsorbents
like lignocellulosic residues has arisen. These
materials are typically available in large quantities
from agro-industrial operations, and they repre-
sent a viable economic alternative of unexplored
resources (Burakov et al. 2018).

Brazil is one of the largest rice producers in
the world (approximately 12 million tons in
2019), with more than 25% corresponding to par-
boiled rice. The increasing incorporation of this
grain in the diet is due to better nutritional prop-
erties compared to the white rice (Paraginski
et al. 2014). In this manner, the increase in pro-
duction leads to a rising amount of residue. Rice
husk ash (RHA) is an abundant by-product
obtained from the combustion of rice husk in
parboiling and rice processing industries. RHA is
chemically constituted by a mixture of oxides in
which silica is the major compound, either in the
amorphous or crystalline form. The rice husk
represents around 20% of the total grain mass
(Lopes and Lopes 2008). This percentage
becomes significant considering the annual world
production of about 770 million tons of rice in
2018, which corresponds to approximately 154
million tons of rice husk residues (Food and
Agriculture Organization 2018). Currently, the
disposal of large volumes of these solid residues
has become a noticeable environmental problem
to be managed. In particular, rice husk ash is a
concern due to its fine structure and silica-rich
chemical composition (average concentrations
above 72–91% of SiO2, influenced by edaphocli-
matic conditions) that makes its decomposition
in the soil very slow (Salas et al. 1986; Della
et al. 2006).

The increasing concern with the environment
has headed several organizations and research
institutions to seek technological alternatives that
sustainably contribute to economic development.
The application of residues as a raw material in

other processes can minimize the negative
impacts on the environment. Using rice husk ash
as adsorbent offers a potentially economic alter-
native for the removal of chromium from water
(Foletto et al. 2005; Moayedi et al. 2019). Rice
husk ash has been previously researched for the
production of low-cost adsorbents, employing
thermal and/or chemical treatments to modify
the surface, increasing the selectivity and the
adsorption capacity. Leaching processes using
acids, bases, or organic solvents have been used
to remove impurities. The surface and morpho-
logical aspects of the adsorbents have been modi-
fied through strong acids like hydrochloric,
sulfuric, and phosphoric acids, the most used
ones for this purpose (Wan Ngah and Hanafiah
2008; Fernandes et al. 2017).

Hexavalent chromium removal from aqueous
solutions, especially at low concentrations, is a
subject where innovations and cleaner and more
economical methods are fundamental to deepen
the current knowledge. The assessment of the
parboiled-rice husk ash as adsorbent material can
lead to cleaner technologies, linking the removal
of one heavy metal from wastewater to an abun-
dant and economic adsorbent. The interactions
of the adsorbent and the contaminant must be
evaluated to provide the basis for any potential
technology of using parboiled-rice husk ash
(RHA) as an efficient adsorbent for Cr(VI).

The present study aims to examine the feasibil-
ity of employing rice husk ash, an agro-industrial
residue from the parboiling process, for removing
hexavalent chromium from synthetic aqueous
solution. A series of assessments were carried
out, including the dependence of acid treatment
on the adsorbent performance. Besides, the influ-
ence of experimental parameters like adsorbent
dosage, pH, initial Cr(VI) concentration, and
interaction time were studied. The isotherms
models were fitted to investigate the adsorption
capacity on the removal of chromium from dilute
aqueous solution and the kinetic mechanism of
the adsorption process was also assessed employ-
ing the parboiled-rice husk ash modified by sul-
fur acid (RHAHþ). Thus, two environmental
problems can be solved simultaneously, the
removal of chromium from effluents and the dis-
posal of rice husk ash.
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2. Material and methods

2.1. Materials and chemicals

The parboiled-rice husk ash (RHA) used in this
work was provided by Cooperja Agroindustrial
Cooperative, located in Brazil, in Santo Antonio
da Patrulha city, state of Rio Grande do Sul.
Deionized water and analytical grade reagents
were used in the experiments.

2.2. Preparation of adsorbents

The parboiled-rice husk ash was milled and
passed through a sieve (mesh 28) to ensure uni-
form particle size. Subsequently, the adsorbent
was dried at 105 �C for 24 hours to achieve con-
stant mass. This starting adsorbent material was
named rice husk ask (RHA).

A fraction of the parboiled-rice husk ash was
subjected to acid treatment using H2SO4 (1% v/v)
to modify the surface characteristics. This treat-
ment resulted in the adsorbent called rice husk
ash chemically treated (RHAHþ). The mixture of
parboiled-rice husk ash and H2SO4 (solid-liquid
ratio ¼ 1:10) was kept in a laboratory autoclave
at 121 �C and 1 atm for 60minutes to prepare the
RHAHþ. Deionized water was used to wash the
RHAHþ adsorbent until neutral pH, and later it
was kept at 105 �C in the drying oven for
24 hours to achieve constant mass. Samples were
stored into a desiccator for further experiments.

2.3. Adsorbents characterization

The surfaces of the prepared adsorbents described
in Sec. 2.2 were subjected to morphological char-
acterization by scanning electron microscopy
(JEOL JSM 6060). All images were taken at 8 kV
of accelerating voltage.

X-ray diffraction (XRD) was used to obtain the
crystalline and non-crystalline nature of the
materials. XRD patterns were obtained in a
Siemens diffractometer D500, using Bragg-
Brentano geometry. The equipment has Cu Ka
radiation (Ka1 ¼ 1.5406Å and Ka2 ¼ 1.5444Å),
a curved graphite monochromator and it was
calibrated with polycrystalline silicon. A scan step
of 0.05� in 2h ranging from 8� to 100�, and a
time interval of 1 second was used for the

measurements. Structure refinement was obtained
by the program FullProf (Roisnel and Rodr�ıquez-
Carvajal 2001), and starting unit cell parameters
were taken Wright and Leadbetter (1975).

The relative crystallinity was estimated accord-
ing to Weidinger and Hermans (1961) with the
ratio given by Eq. (1).

xc ¼ Ac

Ac þ Aa
(1)

where Ac and Aa are the total crystalline and
amorphous areas of the diffractogram. X-rays will
be scattered in several directions in the amorph-
ous phase, not showing high intensity narrow
peaks, but a broad peak distributed over a wide
range (2h).

Transmission infrared spectroscopy analysis
was employed to identify the specific surface
functional groups. FTIR was performed in a
Nicolet 6700 FTIR spectrometer, using KBr as
support. The spectral range varied from 4000 to
400 cm�1 and the spectrum was obtained with 32
scans and 4 cm�1 of resolution.

The specific surface area and pore size distri-
bution were estimated based on nitrogen adsorp-
tion-desorption isotherms, obtained at 196 �C in
a Micromeritics Tristar II Kr 3020 equipment.
BET (Brunauer, Emmett and Teller) and the
Horvath-Kawazoe methods were applied to esti-
mate the surface area and the pore size distribu-
tion, respectively.

2.4. Adsorption experiments

2.4.1. Preparation of solutions
Potassium dichromate (K2Cr2O7) was used as a
base reagent for the preparation of synthetic
Cr(VI) solutions, after drying at 105 �C to achieve
constant mass, and stored into a desiccator for
further use. The Cr(VI) stock solution (200mg
L�1) was obtained by dissolving the salt into
deionized water, while Cr(VI) concentration of
the synthetic solutions changed from 5 to 100mg
L�1, by diluting the stock solution. The pH of
the Cr(VI) solutions was measured employing a
pH meter (Digimed DM-31) before adsorption
assays and the adjustment of pH was realized by
50% NaOH or 50% H2SO4 additions.
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2.4.2. Batch adsorption assays
The assays were performed in batch mode
employing both adsorbents (RHA and RHAHþ)
in 200mL of synthetic solution. A conical flask of
250mL was used to contain the solution and it
was shaken at 25 �C and 180 rpm on a thermo-
static shaker (Solab, SL-223). Under these condi-
tions, it was investigated the effects on Cr(VI)
adsorption with respect to the adsorbent dosage
(5 and 15 g L�1), pH solution (pH 1.0, 3.0, 5.0
and 7.0), initial Cr(VI) concentration (5, 20 and
45mg L�1) and interaction time (0.25, 0.50, 1, 2,
3, 4 and 24 hours).

Each experiment was executed in duplicate
and the mean value was considered for data ana-
lysis. After the adsorption interaction time, the
mixture was centrifuged for 15minutes at
3000 rpm (Nova T�ecnica NT 810). The super-
natant was collected, and then the residual
Cr(VI) concentration was quantified via colori-
metric analysis according to the standard APHA
method (American Public Health Association
1995) with a UV-Vis spectrophotometer (Perkin-
Elmer Lambda—265 UV/Vis). Absorbance was
measured at a wavelength of 540 nm. Cr(VI)
reacts with 1,5-diphenylcarbazide in acid solu-
tion, producing a purple colored complex.

The adsorption efficiency of both adsorbents
(RHA and RHAHþ) was calculated by Eq. (2):

Adsorption efficiency %ð Þ ¼ C0 � Cf

C0
� 100 (2)

where C0 (mg L�1) is the initial concentration
and Cf (mg L�1) is the final concentration
of Cr(VI).

2.5. Adsorption isotherms study

The ability of an adsorbent to accumulate on its
surface a certain amount of the adsorbate under
equilibrium conditions is estimated by adsorption
isotherms. They can provide significant informa-
tion on the surface properties and affinity of the
adsorbent to reach its highest adsorption cap-
acity. Adsorption isotherms can be expressed
graphically or by equations that relate the
amount of the adsorbed species, such as heavy
metals on a solid adsorbent, at a given tempera-
ture (Attari et al. 2017).

The equilibrium data obtained from Cr(VI)
adsorption on RHA and RHAHþ were analyzed
employing Langmuir and Freundlich models, the
most used ones to describe experimental data.

The experiments for the evaluation of the
adsorption isotherms were conducted using solu-
tions with 5, 20, 45, 52.5, 60, 72.5, 85, and
100mg L�1 with 5 g L�1 of adsorbent in pH 1.0
and 24 hours of interaction time. The adsorption
capacity of Cr(VI) is given by Eq. (3).

qe ¼ C0 � Ceð Þ � V
m

(3)

where qe (mg g�1) is the amount of adsorbed sol-
ute per gram of adsorbent, C0 (mg L�1) is the
initial Cr(VI) concentration, Ce (mg L�1) is the
Cr(VI) concentration at the equilibrium, V (L) is
the volume of Cr(VI) solution used and m (g) is
the mass of the adsorbent applied.

2.5.1. Langmuir isotherm model
The adsorption process was assessed via the
Langmuir isotherm, given by Eq. (4). This model
assumes that there is a definite number of sites
with equivalent energy and the molecules do not
interact with each other. It also assumes that
adsorption takes place on a monolayer and uni-
form surface and that each site contains only one
adsorbed molecule (Nascimento et al. 2014).

q ¼ qmax � KL�Ce

1þ KL�Ce
(4)

where q (mg g�1) represents the amount of
adsorbed solute per gram of adsorbent, qmax (mg
g�1) the maximum adsorption capacity, KL (L
mg�1) the adsorbent–adsorbate interaction con-
stant and Ce (mg L�1) is the equilibrium adsorb-
ate concentration.

The separation coefficient (RL) is a dimension-
less parameter of the Langmuir isotherm defined
by Eq. (5) (Khandaker et al. 2017):

RL ¼ 1
1þ KL�CO

(5)

where C0 (mg L�1) is the initial Cr(VI) concen-
tration and KL (L mg�1) the adsorbent–adsorbate
interaction constant. The favoring of the adsorp-
tion process is indicated by RL value in unfavor-
able (RL > 1), linear (R¼ 1), favorable (0<RL <

1) and irreversible (RL ¼ 0).
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Another parameter related to the Langmuir
isotherm relevant to interpret the adsorption pro-
cess is the surface covered fraction (Ɵ), expressed
by Eq. (6).

h ¼ KL � CO

1þ KL � CO
(6)

where KL (L mg�1) is the Langmuir constant, CO

(mg L�1) is the initial Cr(VI) concentration and
Ɵ is the surface coverage.

2.5.2. Freundlich isotherm model
The amount of adsorbed solute and the concen-
tration of the solute in the solution are related
through the Freundlich isotherm, an empirical
model that can be employed to multilayer
adsorption, and non-ideal systems. This model
considers that the adsorbent surface (solid phase)
is heterogeneous and the adsorption sites present
different energy distributions. That is, it is
assumed that the sites are distributed logarith-
mically, therefore, the solute (adsorbate) binding
to the solid phase surface occurs more strongly
in some sites than in others (Nascimento et al.
2014). Freundlich’s isotherm is described by Eq.
(7).

qe ¼ Kf � C1=n
e (7)

where qe (mg g�1) is the amount of adsorbed sol-
ute per gram of adsorbent, Ce (mg L�1) is the
equilibrium concentration of the solute, 1/n is
the surface heterogeneity constant referring to
adsorption intensity, and Kf (mg1�(1/n) g�1 L1/n)
is the Freundlich constant concerning the adsorp-
tion capacity.

2.6. Kinetic study

In order to assess the adsorption process mech-
anism a series of essays were developed using the
best conditions defined in the previous steps,
such as pH 1, amount of adsorbent of 5 g L�1

and amount of adsorbate of 45mg L�1. The tem-
perature evaluated was 25 �C. Samples were col-
lected at 0.25, 0.50, 1, 2, 3, 4 and 24 hours.
Kinetic mechanisms of pseudo-first order and
pseudo-second order were used to evaluate the
results obtained.

2.6.1. Pseudo-first order
The model of pseudo-first order is given by Eq.
(8) (Nascimento et al. 2014; Martini et al. 2020):

@qt
@t

¼ k1 qe � qtð Þ (8)

where k1 is the pseudo-first order adsorption
rate constant (min�1), qe and qt (mg g�1) are
the amount of ions adsorbed per gram of adsorb-
ent at equilibrium and at time t, respectively, and
t is the interaction time between adsorbent and
adsorbate. To find the value of k1, it was used
the linearized equation (Eq. (9)) and the plot of
ln qe � qtð Þ versus t:

ln qe � qtð Þ ¼ lnqe � k1t (9)

2.6.2. Pseudo-second order
The pseudo-second order model is expressed by
Eq. (10) (Nascimento et al. 2014; Martini et al.
2020).

@qt
@t

¼ k2 qe � qtð Þ2 (10)

where k2 is the pseudo-second order adsorption
rate constant (g mg�1 min�1), qe and qt are the
amount (mg g�1) of ions adsorbed at equilibrium
and at time t, respectively. The linear form of Eq.
(10) is shown below (Eq. (11)) and a linear fit of
t=qt versus t gives k2 value.

t
qt

¼ 1
k2q2e

þ t
qe

(11)

3. Results and discussion

In this section, the results of the characterization
and adsorption assays of RHA and RHAHþ

adsorbents are presented and discussed.

3.1. Adsorbent characterization

3.1.1. Scanning electron microscopy (SEM)
The SEM allows the visualization of the surface
microstructures of the materials. The SEM images
for both adsorbents are exhibited in Figure 1.
The surface of RHA (Figure 1A) is rugged with
irregular cavities of various dimensions that can
indicate the presence of partially burned materi-
als. The surface roughness is attributed to the
oxidation and/or evaporation of organic
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compounds that were converted into gases during
the combustion process. A similar observation
concerning the presence of rough surfaces was
also observed by Mor et al. (2016) when studying
rice husk ash for the removal of phosphate from
the wastewater. In contrast, this material when
chemically treated (RHAHþ) acquires a highly
heterogeneous surface, with a series of cavities
and channels of varying sizes and fine pores
arranged randomly throughout the material
structure (Figure 1B). In general, materials result-
ing from acid treatment present greater irregular-
ity and a larger number of cavities on their
surfaces. The increase in heterogeneity is assigned
to matrix deterioration after thermal and chem-
ical treatments, due to the partial decomposition
of cellulose, hemicelluloses, and lignin. The large
number of cavities, channels, and surface disorder
found in RHAHþ is closely linked to the effi-
ciency of the adsorption process. Micropores are
formed, expanding the internal surface area and

enhancing the accessibility of reactive centers on
the adsorbents. During the adsorption assays car-
ried out under agitation, it is assumed that cav-
ities and channels serve as access to the
micropores where interaction with the active sites
and adsorption can occur.

3.1.2. X-ray diffraction (XRD)
The X-ray diffractograms (Figure 2) reveal Bragg
reflections (2h) in 22.5� and 36.5� for both
adsorbents, characteristic of lignocellulosic mate-
rials (El Halal et al. 2015). The crystallinity is 6%
± 2% for RHA and 9% ± 2% for RHAHþ, thus,
both adsorbents are mostly amorphous.

The Rietveld refinements demonstrate the
presence of SiO2 with a cubic crystalline

Figure 1. SEM images (A: RHA and B: RHAHþ). Figure 2. The relevant part of the X-ray powder diffraction
pattern for (A) RHA and (B) RHAHþ adsorbents. Observed
data are depicted by open circles. Rietveld refinement (calcu-
lated pattern) is given by the red solid line. Green bars indi-
cate Bragg reflections. Residual intensity is plotted as the
blue line.
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structure, called b-cristobalite, with Fm 3� d space
group. The cell lattice parameters are a¼ 7.03(1)
Å and a¼ 7.03(4) Å for RHA and RHAHþ,
respectively. The standard deviation of the meas-
urement is given by the numbers in parentheses
on the last decimal presented. The analyzes do
not show relevant Bragg reflections beyond
50 degrees.

Crystallinity is favored by the increase in com-
bustion temperature and residence time of the
adsorbents. The degree of crystallinity also influ-
ences the adsorption process, where predomin-
antly amorphous structures are the most used for
this process due to higher heterogeneity in their
structure (Xiong et al. 2009).

3.1.3. Fourier transform infrared spectroscopy (FTIR)
Figure 3 shows the infrared analysis of RHA
material, before the adsorption assay. The spec-
trum shows a typical silica profile, with Si-O
bond, and stretching modes at 795 and
1100 cm�1 (Costa et al. 1997; Fidalgo and Ilharco
2001). The band with a maximum around
3445 cm�1 is interpreted as a consequence of the
superposition of hydroxyl stretching bands of
silanol groups and adsorbed water. The band at
1636 cm�1 is by virtue of the bonding of physic-
ally adsorbed water (Costa et al. 1997). Therefore,
the infrared spectrum reveals that the RHA
material is predominantly silica, with an appre-
ciable amount of silanol on the surface since
water is adsorbed thereon. The silanol groups,
when acid-activated, play an important role as

adsorbent (Ahmaruzzaman and Gupta 2011;
Singh and Singh 2012; Ghosh 2013; Mor et al.
2016). Similar behavior was obtained for the
RHAHþ (not shown).

3.1.4. Bet surface area analysis
The most significant characteristics regarding the
adsorption capacity of materials are the surface
area and porosity (Song et al. 2018). Aiming to
clarify and quantify the surface of the ash, a tex-
tural analysis was performed, before and after the
acid treatment. The nitrogen adsorption iso-
therms are shown in Figure 4(A). The isotherms
present type II profile, typical of non-porous
materials. However, they present slight inflections
at low relative pressures (P/P0 < 0.1) that dem-
onstrate a fraction of micropores, with a diameter
lower than 2 nm (Gregg and Sing 1982). The esti-
mated BET surface area values were 34 and
39 ± 2 m2 g�1 for RHA and RHAHþ, respectively.
The Horwath-Kavazoe pore size distribution

Figure 3. Transmission infrared spectrum for RHA adsorbent.

Figure 4. Textural analysis: (A) Nitrogen adsorption isotherms
(B) Horwath-Kawazoe pore size distribution.

CHEMICAL ENGINEERING COMMUNICATIONS 7



curves are shown in Figure 4(B), confirming the
microporosity of the adsorbents studied.

3.2. Adsorption experiments

3.2.1. Effect of adsorbent dosage
Adsorbent dosage on the removal of Cr(VI) in
aqueous solution was investigated by experiments
using 200mL of Cr(VI) solution at an initial con-
centration of 5mg L�1. Two dosages of adsorb-
ents were added (5 g L�1 and 15 g L�1), at 25 �C,
pH 3.0, agitation speed of 180 rpm, and inter-
action times up to 4 hours.

Figure 5(A) and 5(B) shows the removal effi-
ciency of Cr(IV) over time for the two dosages of
both adsorbents (RHA and RHAHþ). The
adsorbent chemically treated, for the dosage of
15 g L�1, presents a significant efficiency com-
pared to the dosage of 5 g L�1 (Figure 5B). This
is because since the higher adsorbent dosage the
higher specific surface area available for

adsorption, resulting in larger interaction between
adsorbent and adsorbate. Similar results were
reported by Altun and Kar (2016), Babel and
Kurniawan (2004), and Enniya et al. (2018), who
investigated the removal of hexavalent chromium
in aqueous solution on adsorbent materials pre-
pared from various biomasses. Figure 5(B) reveals
that RHAHþ presents 100% of efficiency, for the
dosage of 15 g L�1, and 76.2% for the dosage of
5 g L�1, after 2 hours of interaction.

The values of chromium removal efficiency for
both adsorbents are quite different mainly due to
the effects of surface modification by acid treat-
ment. It was not evidenced for RHA the same
potentiating effect of the higher adsorbent dosage
on the chromium removal. This finding may be
related to the obstruction of active sites by solid
particle conglomerates, which make it difficult
for chromium species to interact on the surface

Figure 5. Chromium(VI) removal efficiency using parboiled-rice
husk ash (A: RHA and B: RHAHþ) at different adsorbent dos-
ages. Conditions: 5mg L�1 of Cr(VI); 25 �C; pH 3.0; 180 rpm.

Figure 6. Chromium(VI) removal efficiency using parboiled-rice
husk ash (A: RHA and B: RHAHþ) at different pH values.
Conditions: 5mg L�1 of Cr(VI); 5 g L�1 of adsorbent dosage;
25 �C; 180 rpm.
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of the adsorbent (Kannan and Sundaram 2001;
Raposo et al. 2009). A similar result was obtained
by Wu et al. (2017) who worked on the adsorp-
tion of chromium onto bamboo charcoal.

Due to the effect observed with the RHA, the
subsequent experiments were defined using 5 g
L�1 of adsorbent in each assay.

3.2.2. Effect of pH
The dependence of the adsorption process on the
pH is explained by the adsorbent surface charge
and the speciation of the adsorbate in the solu-
tion. The effect of pH on the Cr(VI) removal by
RHA and RHAHþ adsorbents was conducted at
pH values ranging from 1.0 to 7.0. The experi-
ments were performed with 200mL of Cr(VI)
solution at a concentration of 5mg L�1, adsorb-
ent dosage of 5 g L�1, at 25 �C, agitation speed of
180 rpm, and interaction times up to 4 hours.

The results depicted in Figure 6(A) and 6(B)
show that the removal efficiencies of both
adsorbents clearly amplified while pH varied
from 7.0 to 1.0. At pH 1.0 and about 30minutes
of interaction time, the Cr(VI) adsorption effi-
ciency is 90.9% for RHA, and 97.7% for RHAHþ.
At pH 5.0 and 7.0, only the RHAHþ showed sig-
nificant removal values, 77.1% and 73.5% respect-
ively, in about 4 hours. RHAHþ always presents
higher adsorption percentages compared to RHA,
indicating the superior performance of the
adsorbent chemically treated with H2SO4.

As described previously (Ahmed et al. 2012;
Altun and Kar 2016; Kieling et al. 2019; Mitra
et al. 2019; da Silva Ries and Silveira 2019), the
lower the pH of the solution the higher the chro-
mium removal. This trend is explained by a
highly protonated adsorbent surface obtained in
strong acidic conditions, which leads to a high
adsorption of anionic Cr(VI), because of the
strong electrostatic attraction constituted
(Bielicka et al. 2005). The stability of Cr(VI)
anionic forms depends on the pH of the solution
(Hamadi et al. 2001; Zhao et al. 2005; Liu et al.
2007). At pH 1.0, the chromium exist as H2CrO4,
however in the pH range from 1.0 to 5.0 different
forms of chromium ions coexist, of which
HCrO4

� remains the predominant one
(Srivastava et al. 2013; Zeljkovic et al. 2015;
Enniya et al. 2018). This interpretation explains
the high Cr(VI) adsorption efficiency at an acid
solution. As pH increases, HCrO4

� is replaced by
CrO4

2� and Cr2O7
2� ions (Zhao et al. 2005). The

protonation intensity of the material surface
(RHA and RHAHþ) decreases while the concen-
tration OH� ions increases, which leads to the
reduction of electrostatic attraction between nega-
tively charged chromium ions and the adsorbent
surface. The result of this charge balance is a
depletion in the chromium removal efficiency as
the pH of the solution increases. Due to better
adsorption results at pH 1.0, the subsequent
experiments were conducted at this pH value.

3.2.3. Effect of initial chromium concentration
The removal of Cr(VI) ion by RHA and RHAHþ

adsorbents was assessed through adsorption
assays employing initial concentrations of 5, 20,
and 45mg L�1 on each adsorbent. The

Figure 7. Chromium(VI) removal efficiency using parboiled-rice
husk ash (A: RHA and B: RHAHþ) at different Cr(VI) concentra-
tions. Conditions: 5 g L�1 of adsorbent dosage; pH 1.0;
25 �C; 180 rpm.
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experiments were performed using 200mL of
Cr(VI) solution, an adsorbent dosage of 5 g L�1,
pH 1.0, at 25 �C, agitation speed of 180 rpm, and
interaction times up to 4 hours. Figure 7(A) and
7(B) presents the effect of the initial Cr(VI) con-
centration on the adsorption efficiency as a func-
tion of the interaction time.

With the increment of the initial concentration
of Cr(VI), the adsorption capacity (mg g�1),
given by Eq. (3), also increases for the two
adsorbents. After a interaction time of 1 hour, the
adsorption capacities are 0.9772, 1.284 and
1.638mg g�1 for RHA and 1.000, 2.075 and
3.960mg g�1 for RHAHþ for initial concentra-
tions of 5, 20 and 45mg L�1, respectively. The
observed improvement in the adsorption capacity
of chromium with its concentration in the solu-
tion is probably a consequence of the augmenta-
tion in the driving force of the concentration
gradient (Enniya et al. 2018).

Figure 7(A) and 7(B) shows that chromium
adsorption increases over time, initially at a high
rate, and then tends to reach equilibrium. At low
concentrations, the ratio of active sites is larger,
so the removal occurs at a higher rate. However,
when the concentration increases, the ratio of
sites is lower, showing noticeable reduction in
chromium removal efficiency. Similar results
were reported previously for charcoals prepared
from different sources of biomass (Karthikeyan
et al. 2005; Altun and Kar 2016; Enniya
et al. 2018).

The RHAHþ showed higher removal efficiency
than RHA, for the three concentrations studied,
probably because of the higher availability of
active sites generated by acid treatment.
Efficiency of 100% is achieved at the concentra-
tion of 5mg L�1 in 2 hours for RHA and in
1 hour for RHAHþ.

3.2.4. Effect of interaction time
Interaction time is a relevant parameter regarding
the removal of a pollutant. The interaction time
effect on the removal of Cr(VI) by both adsorb-
ents was assessed through a series of adsorption
experiments employing concentrations of 20 and
45mg L�1 on each adsorbent. The concentration
of 5mg L�1 was not explored because it already

reached 100% efficiency removal in about
1–2 hours of interaction time (Figure 7).

Data were collected at interaction times of
0.25, 0.50, 1, 2, 3, 4, and 24 hours. The latter time
is not viable for industrial plants, it was included
just to perform mathematical modeling.

The experiments were performed using 200mL
of Cr(VI) solution, adsorbent dosage of 5 g L�1,
pH 1.0, at 25 �C, agitation speed of 180 rpm, and
interaction times up to 24 hours. The effect of the
interaction time is shown in Figure 8(A) and
8(B) for both adsorbents. Chromium removal
increased with interaction time as expected. At
the beginning of the process, high adsorption
rates were recognized, because of the abundance
of sites favorable to adsorbent-adsorbate interac-
tions. The surface is quickly saturated with chro-
mium ions during the early stage of adsorption.

Figure 8. Estimation of interaction time to reach adsorption
equilibrium at 20mg L�1 and 45mg L�1 of Cr(VI). (A: RHA and
B: RHAHþ). Conditions: 5 g L�1 of adsorbent dosage; pH 1.0;
25 �C; 180 rpm.
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In the later stages, the rate of adsorption
decreases as ions diffuse into the micropores,
resulting in greater resistance due to higher steric
hindrance, and thus requiring long interaction
times (Altun and Kar 2016). The adsorption effi-
ciency for the RHA, in 24 hours, was 60.2% and
35.6% for 20 and 45mg L�1, respectively.
Whereas RHAHþ showed 100% and 98.1% for 20
and 45mg L�1, respectively. A mathematic func-
tion was adjusted to the experimental data to
evaluate the adsorption process. Both adsorbents,
RHA and RHAHþ, reach the equilibrium before
24 hours. Figure 8(A) shows that RHA reach
equilibrium at 22.2 hours (60.0% removal effi-
ciency) for 20mg L�1 and at 18.2 hours (35.0%
removal efficiency) for 45mg L�1. The enhanced
performance of the adsorbent chemically treated
was verified. RHAHþ exhibited equilibrium at
15.9 hours (100% removal efficiency) and at
17.2 hours (97.0% removal efficiency) for 20 and
45mg L�1, respectively.

3.2.5. Adsorption isotherms
Adsorption isotherms were plotted in a wide
range of chromium concentrations (from 5 to
100mg L�1), for RHAHþ, an adsorbent dosage
of 5 g L�1, pH 1.0, agitation speed of 180 rpm,
and 24 hours of interaction time. The equilibrium
data were analyzed via Langmuir and Freundlich
isotherms models. Table 1 presents the results
found for both adsorption isotherms.

The Freundlich isotherm fits more appropri-
ately to the experimental data (R2

adj ¼ 0.989)
than the Langmuir isotherm (R2

adj ¼ 0.951). The
maximum calculated Freundlich isotherm adsorp-
tion capacity (KF) is 27.896mg1�(1/n) g�1 L1/n.
Nevertheless, both isotherms can be used to
explain the adsorption mechanism. There is a
trend in the literature to adjust the adsorption
behavior of rice husk ask to the Freundlich iso-
therm for different adsorbates (Ahmed et al.
2012; Rahaman et al. 2015). This trend may be

associated with the high surface heterogeneity of
this adsorbent, a consequence of thermal and
chemical treatments, as evidenced by the scan-
ning electron microscopy (Figure 1).

Values for the separation factor (RL) can be
obtained with the Langmuir isotherm. For the
entire range of chromium concentration studied
(from 5 to 100 ppm) the RL values found were
between 1 and 0 (0<RL < 1), according to
Figure 9(A), demonstrating the favorability of the
chromium adsorption process by RHAHþ. The
chromium adsorption process can also be eval-
uated using the surface coverage (Ɵ ) parameter.
The coverage factor was plotted as a function of
the initial Cr(VI) concentration in Figure 9(B).
Initially, a large increase occurs with the increase
in concentration, and then a gradual decrease at
the rate is observed, with the theta value (Ɵ )
tending to 1 from 20mg. L�1 of the chromium

Table 1. Langmuir and Freundlich isotherms parameters for
the adsorption of chromium on RHAHþ adsorbent.
Equations Parameters RHAHþ R2

adj

Langmuir qmax 27.354mg g�1 0.951
KL 5.004 L mg�1

Freundlich Kf 27.896mg1�(1/n) g�1 L1/n 0.989
n 2.167

Figure 9. The separation factor, RL, (A) and the surface cover-
age, Ɵ , (B) parameters against the initial concentration on
Cr(VI) adsorption for RHAHþ adsorbent.
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concentration. These results have shown that
RHAHþ is an efficient adsorbent to remove
Cr(VI) from the dilute aqueous solution.

Table 2 presents a comparison of previous
studies about Cr(VI) removal with the present
work. The data illustrate the adsorption capacity
presented by the parboiled-rice husk ash chem-
ically treated, demonstrating the ability of this
material to act as a promising adsorbent of chro-
mium ions in wastewaters.

3.2.6. Kinetic analysis
The two kinetic models applied showed good
correlation for the generated results. Among
them, the pseudo-second order presented a better
fit and a higher R2

adj, demonstrating that the
data are more appropriately adjusted to this kin-
etic model. The pseudo-first order and pseudo-
second order constants and the corresponding
correlation values are shown in Table 3.

According to Ho and Mckay (2000), the
pseudo-second order kinetic model describes the
processes that involve a chemisorption. Based on
the pseudo-second order kinetic model assump-
tions the reaction rate is proportional to the
number of active sites on the adsorbent surface
and the chemical adsorption can be the step rate-
limiting of the process (Agrafioti et al. 2014).
This result is in agreement with other works
reported in literature for Cr(VI) removal by dif-
ferent biosorbents (Georgieva et al. 2015; Ding
et al. 2016; Singh et al. 2021).

4. Conclusions

The cost-effective adsorbents from the ash of the
parboiled-rice husk (RHA and RHAHþ), for

removing chromium(VI) from dilute aqueous sol-
utions were assessed. The parboiled-rice husk ash
(RHA) and parboiled-rice husk ash chemically
treated (RHAHþ) were used as adsorbent materi-
als, the latter exhibiting higher removal potential.
The morphological, chemical and structural char-
acterizations performed via scanning electron
microscopy (SEM), X-ray diffraction (XRD),
Fourier transform infrared spectroscopy (FTIR),
and BET (Brunauer, Emmett and Teller) surface
area analysis showed that RHAHþ adsorbent has
a considerable heterogeneity, a typical silica pro-
file, tendency to amorphic structure, low surface
area and presence of micropores.

In the adsorption assays performed, in general,
the increase of the amount of adsorbent favored
the removal of Cr(VI). A higher removal ten-
dency at low pH values was verified for both
adsorbents, where best results are obtained at pH
1.0, presenting 90.9% and 97.7% for RHA and
RHAHþ, respectively, in 5mg L�1 of chromium
concentration and about 30minutes of inter-
action time. At pH 5.0 and 7.0, only the RHAHþ

showed significant removal values, corresponding
to 77.1% and 73.5% respectively, in about
4 hours. The increase in the initial Cr(VI) con-
centration (from 5mg L�1 to 45mg L�1) showed
the need for longer interaction time between
adsorbent-adsorbate to establish equilibrium. A
significant higher performance was obtained for
the adsorbent chemically treated (RHAHþ).

Table 2. Adsorption isotherms and parameters for the removal of chromium by RHAHþ and other adsorbents found in
the literature.
Adsorbent Langmuir isotherm (qmaxÞ Freundlich isotherm (Kf ) Reference

Parboiled-rice husk ash chemically treated (RHAHþ) 27.35 27.90 This research
Rice husk ash 1.70 1.43 (Kieling et al. 2019)
Rice husk 11.40 2.98 (Mitra et al. 2019)
Calcined rice husk 0.085 13.04 (Srivastava et al. 2013)
carbonized pineapple leaves 18.77 0.06 (Ponou et al. 2011)
Coconut shell 18.70 3.46 (Singha and Das 2011)
Magnetic biochar of sugarcane bagass 43.12 21.29 (Yi et al. 2019)
Magnetic biochar of rice straw 33.23 20.82 (Yi et al. 2019)
Treated waste newspaper 36.32 11.84 (Dehghani et al. 2016)
Sugar cane bagasse 13.23 0.26 (Sharma and Forster 1994)
Sawdust 1.93 – (Hamadi et al. 2001)
Hevea Brasilinesis sawdust activated carbon 44.05 25.48 (Karthikeyan et al. 2005)

Table 3. Parameters of kinetic modeling for Cr(VI) adsorption
by RHAHþ.
Pseudo-first order Pseudo-second order

K1 (min�1) R2adj K2 (g mg�1 min�1) R2adj
�0.266 0.979 0.165 0.991
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Adsorption data were examined via Langmuir
and Freundlich isotherms. Although both are effi-
cient to describe the Cr(VI) adsorption process,
Freundlich isotherm presented higher R2

adj for
RHAHþ as adsorbent, since it characterizes better
adsorption into heterogeneous surfaces. The data
evaluated in this work showed that adsorption of
Cr(VI) can be better described by the pseudo-
second order kinetic model demonstrating the
chemical adsorption that occurs between the
adsorbent and adsorbate.

The use of an abundant and low-cost adsorb-
ent, parboiled-rice husk ash, for removing
Cr(VI), is a promising alternative for application
in effluent treatment. Notwithstanding, further
studies are still needed to evaluate the technical
and economic feasibility of applying the technol-
ogy to large wastewater treatment plants.
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