
Source code comprehension and appropriation by
novice programmers: understanding novice

programmers’ perception about source code reuse
Luana Müller

Escola Politécnica
PUCRS

Porto Alegre, Brazil
luana.muller@acad.pucrs.br

Milene Selbach Silveira
Escola Politécnica

PUCRS
Porto Alegre, Brazil

milene.silveira@pucrs.br

Clarisse Sieckenius de Souza
Departamento de Informática

PUC-Rio
Rio de Janeiro, Brazil
clarisse@inf.puc-rio.br

Abstract—Software development practices rely extensively on
reusing source code written by other programmers. One of the re-
curring questions about such practice is how much programmers,
acting as users of somebody else’s code, really understand the
source code that they inject it in their programs. The question
is even more important for novices, who are trying to learn
what programming is and how it should be practiced on a
larger scale. In this paper we present the results of an ongoing
research using a semiotic approach to investigate how novice
programmers reuse source code, and how, through messages
inscribed in the source code of the programs they write or reuse,
they communicate, implicitly or explicitly, what such source code
"means" to them and others. We carried out three studies with
novice programmers, and results suggest that source code reuse
may impact what programmers take their source code to mean.

Index Terms—Source code reuse, Semiotic Engineering, novice
programmers, metacommunication

I. INTRODUCTION

While learning how to program, novice programmers need
to face the difficulties of learning how to think computationally
[1]. According to Keheller and Pausch [2], apart from learning
how to create structured solutions to their problems and under-
standing how programs are executed, novice programmers also
need to deal with syntax, and the meaning of programming
languages commands from programming languages, and they
have problems to translate their intentions to the computer.

As an alternative to help them during this learning process,
novice programmers commonly use source code examples
to support their activities, and several times, they opt for
reusing this code [3], integrating it into their own source code
and performing the necessary adjustments to achieve their
goals. Examples can be used for several purposes, such as to
introduce a programming language, to develop an algorithm to
solve a problem, or to demonstrate a programming pattern [3].
Furthermore, examples are often used to show the importance
of some concepts. Students must comprehend the importance
of the concept, otherwise, they will continue programming
without applying the concept to their source code [4].

According to Gaspar and Langevin [5], when solving a
problem, students start by identifying the keywords presented

in the software specifications, and they use these words to try
to identify problems previously solved by them. Moreover, the
Internet now offers a wide range of content that can be easily
accessed by programmers. Such content may have source code
examples that match a programmers’ intentions very well, if
not entirely.

The use of examples is a continuous practice during pro-
grammers’ professional lives. Neal [3] observes that program-
mers with several levels of experience build code by studying,
reusing, or revising software (or parts of software) written
by others. To benefit from an example, programmers must
understand it and also understand the concepts embodied by
it [6]. However, examples are often reused without a full
understanding of what they do or mean [7].

Software reuse is the process of creating software from
an existing one, instead of building it from scratch [8].
Hoadley [9] proposes that software reuse may occur in three
different ways: (1) as code invocation, when functions and
procedures are reused; (2) as code cloning, when source code
lines are copied from an example and edited to achieve a
new goal; and (3) templates reuse, when learned patterns are
applied in other situations. There are other kinds of classi-
fications for software reuse. One is proposed by Sojer [10],
who distinguishes two kinds of source code reuse: (1) snippet
reuse, and (2) component reuse. The former is the equivalent
of code cloning in Hoadley’s approach. However, the author
adds two branches to cloning. Code scavenging amounts to
replicating several continuous lines from source code, and
design scavenging, in turn, occurs when a structure composed
by a large block of source code is used as a framework. Sojer’s
second general kind, component reuse, amounts to making
use of components that have been developed, tested, and
documented specifically for this purpose, such as Application
Programming Interfaces (APIs), for example. These definitions
complement one another, as shown in Figure 1.

In this paper, we take a semiotic perspective on program-
ming and examine what novice programmers "communicate"
through their source code. Thus, programs are viewed as
message-carrying interfaces capable of communicating intent



Fig. 1. Source code reuse approaches

and content. As a result, programmers who reuse code be-
come "users of somebody else’s program(s)". Following the
perspective of computers as media [11]–[13], in the computer-
mediated communication (CMC), a system’s interface com-
municates its designer’s intentions to users. Then, it is the
user’s task to interpret this source code and try to understand
the meanings of the designer’s message. This phenomenon is
named metacommunication and has been extensively investi-
gated and developed by the Semiotic Engineering theory [11].

In the case addressed by this paper, we observe that the
source code is acting as an interface [14], mediating the
communication between programmers and, just like a tradi-
tional interface, which needs to be appropriated for one to
make better use of an interactive system. We believe that
the interface represented by the source code of software also
needs to be understood and appropriated by the programmers
who, somehow, aim to use it. Thus, we are interested in the
reuse of source code by invocation and cloning, and, in case
of reuse by code cloning, we aim to understand how novice
programmers perform this reuse, if and how they interpret the
meaning of this source code and how they integrate it to their
source code, and, we are also interested in understanding the
metacommunicative impacts of this reuse.

The motivation for this research came from our own
teaching practices, where we often observe students injecting
other programmers’ code into their programs. It is crucially
important for teachers and learners to understand how injected
code is (or can be) appropriated by novice programmers. This
motivation leads us to some questions:
Q1. Why and how do novice programmers choose to reuse

source code?
Q2. Considering the reuse through tools properly developed

to this purpose, such as APIs, how do they learn how to
interact with it?

Q3. Do they understand their own source code when it is
built by reusing someone else’s code?

Q4. Considering the possibility of communicating with
someone else through their program’s source code, with
whom do novices believe they are communicating?

Q5. How do they understand the message delivered through
their program’s source code to other users?

This paper is an extended version from the paper published
by the authors in the Proceedings of the 17th Brazilian

Symposium on Human Factors in Computing Systems [15].
In this work, we present the results of three qualitative studies
carried out to answer these questions. We look at how novice
programmers reuse source code, how they understand them,
and how they integrate them into their source code. Finally,
we discuss the results given the importance of the program’s
metacommunication understanding by programmers and the
elements that might help programmers, researchers, and teach-
ers to evaluate and analyze the levels of understanding and
appropriation a programmer has about a source code.

The following sections will present our Theoretical Back-
grounds, the Research Design, and our Findings. Next, we
present a Discussion and Conclusions regarding the results
we found.

II. THEORETICAL BACKGROUNDS

In this section, we present the theoretical background of
Semiotic Engineering and Appropriation.

A. Semiotic Engineering

Semiotic Engineering [11] is a specialized semiotic theory
mainly based on Peirce’s [16] and Eco’s [17] general semiotic
theories. Its main study object is metacommunication between
software producers (designers or developers) and software
consumers (users). According to the theory, metacommu-
nication occurs when users interact with software because
messages expressed by the interface ultimately communi-
cate how, when, where, and why users should communicate
(hence "meta") with software. Users’ purposes must be in
line with the design views contemplated by designers and
implemented by programmers, who thus become the senders
of the metacommunication message. This theory defines the
following abstract model (or template) of the semantic content
of metacommunication:

"Here is my understanding of who you are, what I’ve
learned you want or need to do, in which preferred ways,
and why. This is the system that I have therefore designed for
you, and this is the way you can or should use it in order to
fulfill a range of purposes that fall within this vision".

This Metacommunication happens while the receivers (that
is, software consumers) interact with the user interface. The
interface represents producers at interaction time and enables
their communication (mediated by the software) with their
consumers. The main difference from Semiotic Engineering
compared to other Human-Computer Interaction (HCI) theo-
ries is that it postulates that software designers and developers
participate (mediated by the interface) in users’ interaction
processes.

In this research we extended the metacommunication pro-
cess to software internal development layers, bringing it from
the HCI field into the Human-Centered Computing (HCC)
[18]–[20] field (where questions related to human interpre-
tation and communication cover human processes, even if
these subjects are not end users, but rather programmers,
software architects, system analysts, etc.) [20]. In our study
of metacommunication process among programmers through



software source code, we have made two adaptations to
the original Semiotic Engineering definitions. The first one
refers to the receivers of metacommunication (from now on,
programmers rather than typically non-technical end users).
The second adaptation refers to the interface itself (from now
on, a piece of code, with both its textual and executable facets,
rather than the end user interface).

B. Appropriation

From the sociocultural perspective, appropriation is defined
as the process of taking something that belongs to others and
making it one’s own [21]. From the technological perspective,
appropriation is defined as how users evaluate and adopt, adapt
and integrate technology into their daily practices [22]. Never-
theless, appropriation of technologies may not be interpreted
as only a phenomenon that occurs when the software is being
used in its expected domain, but also interpreted as a set
of continuously activities performed by users to make this
software works in a new environment, taking this artifact as a
material and a significant object [23].

According to Dourish [24], appropriation is similar to
customization, though, it refers to the adoption of technology
standards and its transformation n a deeper level. Appro-
priation involves customization (which means the explicit
reconfiguration of a technology to make it fits a specific need)
but also may only involve making use of technology to a
different purpose from which it was developed to attend.

In a similar way that technology is capable of shaping users’
practices, it is also shaped by the users. Carroll et al. [22]
defined a Model of Technology Appropriation, composed by
three levels: the first level starts at the moment that the
technology is presented to the users, and they face the decision
of use it or not. After choosing to use this technology, users
start the appropriation process in which they test, evaluate,
and adapt this technology to their needs. Finally, the last
level occurs when users integrate this technology into their
practices, and it is considered stabilized.

Within this scope, software source code are technologies,
and, for this reason, users need to appropriate from them to
make better use. In this paper, we take the source code of
software not only as words written in a programming language,
through which we can solve a computational problem. We
observe it from the Semiotic Engineering perspective, which
considers software interfaces as a mean of communication
between the interface designer and its users.

III. RELATED WORKS

Regarding source code reuse, the work from Rosson, Ballin,
and Nash [25] approaches the challenges and opportunities
for informal programming activities performed by professional
programmers, who developed and maintained online content
as part of their daily tasks. The authors observed that par-
ticipants from their study used a few times the copying and
pasting strategy. However, they used source code from other
programmers as a pattern to something they were trying to
learn. One participant cited the copying and pasting strategy as

an opposite of learning, by reporting that "I don’t like to copy
because I like to learn how to do it myself". The authors defend
that, once source code is used as a learning tool, development
tools should support questioning regarding how a source code
works in order to make more accessible the learning and the
reuse.

The work from Ichinco and Kelleher [26] focus on novice
programmers and aims to understand more about the chal-
lenges related to reusing examples, and to list the existent
barriers and strategies used by these programmers to use
a source code example. During the study they performed,
participants received six programs to be completed, each
focused on a different programming concept, and participants
should change the given program in order to create a specific
animation. Participants were also provided with a code exam-
ple for each task they should perform. One of the barriers
observed by the authors was related to understanding the
example, which made it difficult to reuse it. In some cases,
participants did not even understand how the example was
related to the task they were performing, and, due to that, they
did not consider using it to help them. Other barriers were
related to understanding their source code: sometimes they
believed to knew how to complete the task; however, their
ideas were incorrect or, sometimes, they did not understand
how their source code works since it did not behave like
expected. Besides, the authors noted that participants were
slow to reach the "realization point", which is the moment
when participants realized which part of the example could
be used in their tasks, because they concentrated on running
the example, rather than reading the example and trying to
understand it.

Also related to our research, the work from Hoadley et
al. [9] presents two studies regarding when, why, and how
novice programmers reuse source code. During their studies,
the authors have as goal to observe if the act of performing a
summarization of source code would increase the probability
of reuse and if there was a relationship among the quality of
this summarization and the reuse. Besides that, they investi-
gated if the programmers’ beliefs about reuse could influence
somehow their performance.

The authors observed that programmers must believe that
reuse is possible and desirable to, in fact, reuse a source
code while solving new problems. Around 20% of partici-
pants rejected the idea of source code reuse. Some of them
understand it as a form of plagiarism, and some of them
did not trust the source code written by others. Consistent
with these beliefs, these same participants performed reuse in
only 5% of the cases. On the other hand, 80% of participants
remained neutral or in favor of reusing, claiming that source
code reuse is an efficient practice, which reduces complexity
and makes debugging tasks simpler. In this second group, it
was observed that the understanding a programmer has about
a source code would influence the frequency and the ways he
will reuse it. Participants from the studies were required to
perform a summarization of a source code according to their
understanding of it. The source code summarized abstractly



was more reused than those summarized algorithmically, and
the source code summarized on an algorithmic level was
less reused than those incorrectly summarized. The authors
classified the summarizations as abstract (those in which
participants correctly described the relationship among inputs
and outputs, regardless of how it was done), algorithmic (those
in which participants correctly described the actions of the
function, without specifying the relationship among inputs
and outputs) and incorrect [9]. It suggests that reuse-favorable
beliefs, combined with the abilities to provide abstract summa-
rizations, may increase source code reuse. Finally, the authors
suggest that computer science courses must emphasize the
understanding of source code as a matter to "improve" reuse.
This work shows that exists a direct relation among source
code understanding and reuse.

Software reuse can also be performed through APIs. Robil-
lard [27] carried out a research with 80 professional program-
mers from Microsoft addressing questions about barriers that
may difficult the use of an API. From this group, 49% were
programmers from junior to intermediate levels. Regarding
the ways they learn how to interact with an API, 78% of
them pointed the API documentation, 55% pointed the use
of examples, 34% said they made experiments using the API,
30% of them read papers, and, 29% of them used to ask for
coworkers help.

With the arrival of the HCC area, issues related to hu-
man aspects have been raised concerning the several stages
and artifacts used during software development process. The
Semiotic Engineering theory has been contributing to the
HCC area by researching and providing means to support the
study of communicative aspects in these artifacts. In Afonso’s
[28] research, the author examines APIs as a process of
communication among API designers and the programmers
who are using it. In this communication, the designer expresses
to the programmer an encoded message through which he
explains how the programmer must use the API functionalities.
His work proposes a conceptual framework based on semi-
otic and cognitive theories, which highlights the pragmatic
aspects involved in this communication. The framework can
be used as an epistemic tool to support the development
of APIs. The work from Afonso helps to compose the
book Software Developers as users: Semiotic Investigations in
Human-Centered Software Development [29], which presents
contributions to the advancement of the HCC area by using
Semiotic Engineering theory, and, provides a set of conceptual
and methodological tools to support research on how human
meanings are manifested during software development and
use.

IV. RESEARCH DESIGN

In order to investigate how novice programmers reuse
source code and if this reuse affect their understanding about
the software they built, we conducted three qualitative studies,

detailed as follows 1. In table I, we present the relationship
between each study and the research questions they helped
answer. These studies are part of a more extensive ongoing
research which aims to support novice programmers during
the reuse of source code. All participants provide access to
their produced source codes, and they signed the Informed
Consent Form. More details regarding the research design and
the findings are available in the Ph.D. thesis from Müller [31].

TABLE I
RELATION AMONG RESEARCH QUESTIONS AND STUDIES

Question Study One (S1) Study Two (S2) Study Three (S3)

Q1 X X X
Q2 X
Q3 X X
Q4 X X
Q5 X

A. Study One

1) Context and Goal: The S1 was carried out with the
students from the introductory course about algorithms and
programming offered to the undergraduate programs of Com-
puter Science and Information Systems. The course’s teacher
proposed an exercise where students needed to build a program
to manage a bookstore. As an example, the teacher made
available to students, through the course’s website, a solution
to this exercise. A couple of weeks later, the students should
build a program to register users’ evaluations about educational
games. We checked the delivered programs, and we identified
that some parts of the programs were exactly like parts from
the bookstore project. This fact led us to wonder how the
appropriation process happens when programmers reuse code.

The study’s goal was to understand general aspects of code
reuse by code cloning. Furthermore, in the cases in which the
example was reused, we aim to comprehend if the students
understand their source code and observe if they appropriate
from it.

2) Study procedure: This study was conducted in two steps,
described as follows:

• Analysis of students’ delivered source code in order to
check if and how they reused the example: to analyze
the source code of the 23 students involved in the study,
we used Moss2, a tool provided by Stanford University,
that calculates metrics on texts’ similarities. In our study,
these texts comprised the source code from the students
and the source code from the Bookstore example. Then,
we invited to an interview the two novice programmers
who produced source code that were the most like the
example and the two novice programmers who produced
source code that were the least similar to the example.

1Some steps from the studies will be omitted due to the fact that they are
related to a research about self-expression through source code [30] and they
are not relevant to the goals of this paper

2https://theory.stanford.edu/ aiken/moss/



• Interview with the four students selected according to
results from the first step: during this interview we asked
the participants to (a) explain some chunks from their
produced source code (due to the size of the entire
source code (between 585 and 4100 lines), we have
selected some representative sections of each); (b) answer
questions related to their initial steps to develop a new
software, when and why they look for a source code
example, how they search for a source code example,
and their perceptions about their program as a mean of
communication (related to that, we asked them about
who they might be communicating with); (c) fill out
the metacommunication template offered by the Semiotic
Engineering.

3) Participants’ profile: The profile of the participants we
interviewed is presented in Table II.

TABLE II
S1 INTERVIEWEES’ PROFILE

Participant Graduation Program Similarity index

S1P1 Computer Science 44%
S1P2 Mathematics 33%
S1P3 Computer Science 3%
S1P4 Information Systems 1%

B. Study Two

1) Context and Goal: The study was conducted at the
end of an introductory course about programming offered to
students of the Civil Engineering and Production Engineering
undergraduate programs. The goal of this study was to deepen
our knowledge about the subject of source code reuse by
code cloning. The teacher shows, as an example, a source
code that calculates and presents the initial 20 terms from the
Fibonacci sequence. This example included a screen prototype
responsible for presenting the result to the user. A few classes
later, she asks the students to develop a program that calculates
the sum of N initial terms from the Fibonacci sequence,
on which N is a number provided the program’s user. We
observed that the students reused the example of the teacher,
reusing even the screen prototype and keeping the variable’s
and component’s name patterns from the example.

2) Study procedure: This study was conducted in two steps,
described as follows:

• Analysis of students’ delivered source code in order to
check if and how they reused the example: to analyze
the source code of the 30 students involved in the study,
we used the JPlag tool3, which, such as Moss, calculates
metrics of text similarities, to analyze the similarity
between the source code example and the source code
provided by the students. After, we invited all the students
to participate in an interview, six out of 30 students agreed
to engage in.

3At the time we were conducting this study, the tool Moss, used in the
previous study, was facing an instability. Due to that, in this study, we used
JPlag tool (https://jplag.ipd.kit.edu/)

• Interview with the six students who accepted the invita-
tion: during this interview we asked the participants to (a)
explain their produced source code (the source code pro-
duced by them had less than 20 lines of code each.); (b)
answer questions related to their initial steps to develop a
new software, when and why they look for a source code
example, how they search for a source code example,
and their perceptions about their program as a mean of
communication. Related to that, we asked them who they
might be communicating with (the questions answered by
them were the same from S1). During this study we did
not ask the participants to fill out the metacommunication
template offered by the Semiotic Engineering, since the
code they produced was not intended to build a software
solution but to solve a simple logical problem.

3) Participants’ profile: About whose that participated from
the interview, their profile is presented in Table III.

TABLE III
S2 INTERVIEWEES’ PROFILE

Participant Graduation Program Similarity index

S2P1 Civil Engineering 84%
S2P2 Civil Engineering 84%
S2P3 Civil Engineering 84%
S2P4 Production Engineering 71%
S2P5 Civil Engineering 22%
S2P6 Production Engineering 18%

C. Study Three

1) Context and Goal: The study was carried out with high
school students who are participants from a programming
course offered by a Brazilian University. The main goal of
the course was offering free classes to students from public
schools, about logic, programming concepts, mobile develop-
ment, marketing, design thinking, technology tendencies, and
prototyping. The study’s goal was to learn and to understand
more about source code reuse by code invocation in a scenario
of mobile development, where the use of APIs is frequent.

2) Study procedure: During this study, we conducted semi-
structured interviews carried out with groups of four partic-
ipants each time. Differently from the previous studies, in
this one, we did not perform a similarity analysis of the
codes developed by the participants. The interview addressed
questions about their initial steps to develop a new software,
their needs for external tools (libraries, frameworks or APIs),
their experiences with this kind of tools, how they learn how
to interact with the tools they used, and their need for source
code examples.

3) Participants’ profile: The profile of the participants is
presented in Table IV.

V. FINDINGS

In this section, we will present the results obtained from the
studies.



TABLE IV
S3 INTERVIEWEES’ PROFILE

Participant Group Age Previous programming experience

S3P1 1 16 Yes
S3P2 1 17 No
S3P3 1 18 No
S3P4 1 17 Yes
S3P5 2 16 No
S3P6 2 18 No
S3P7 2 16 Yes
S3P8 2 17 No
S3P9 3 18 No
S3P10 3 17 No
S3P11 3 16 No
S3P12 3 16 Yes
S3P13 4 22 Yes
S3P14 4 16 Yes
S3P15 4 17 No
S3P16 4 18 No
S3P17 5 16 No
S3P18 5 17 Yes
S3P19 5 17 Yes
S3P20 5 17 Yes

A. Why and how do novice programmers choose to reuse
source code? (Q1)

Regarding how novice programmers search for source code
examples, we found from S1 that they often search for
examples that the domain is similar to that of the application
they are building. If they did not find an example with
this characteristic, then they would search for examples that
implement the internal operations they need to develop. The
interviewee S1P2 reported that he only seeks for an example
from the same application domain, though, he justified that "I
use a source code example as a base that can be improved until
the goal is achieved."4. He also mentioned that this kind of
example could be used as a frame to help him to start building
his own application arguing that "many times this frame allows
only the replacement of objects by those that are pertinent to
the required subject".

S2 shows us that novice programmers frequently use ex-
amples provided by their teachers and source code previously
developed during classes. We summarize their searching ap-
proaches and present in Figure 2.

Fig. 2. How novice programmers search for examples

Related to why they need examples (Figure 3), S1P3 men-
tioned she uses examples to "understand the problem’s logic.

4The sentences presented in this paper were translated from Portuguese by
the authors.

If it is a question regarding the programming language, I will
search for examples that represent the situation, apart from the
subject. If it is a question regarding the problem’s logic, I try to
locate examples that can be applied in the situation, apart from
the programming language or the subject.". Participant S1P4
mentioned he uses examples to "solve some logic problems"
and when he is stuck in a problem, and he considers that "all
alternatives of code variations were tried".

Some participants from S2 mentioned that they use ex-
amples to understand the problem and to optimize their
applications. Regarding the need to understand the problem,
S2P5 mentioned that he might need an example to understand
more about a load cell, for instance, and "to know some of the
variables the problem will expose to me". Still, about problem
understanding, S2P2 told us: "I have the examples provided by
the teacher during the classes, and when I am developing an
application, I take a look at the teacher’s example to check
the logic used on it to achieve the results". About how the
examples are used, S2P4 mentioned that she uses it to improve
her source code (she refers to the use of examples to perform
an optimization): "I check [the example], and I work on what
I have done. In fact, at this time, I already built the program,
and then I fix it".

Fig. 3. Why novice programmers need examples

Regarding the ways they use the examples, they can be
used as a framework that might be modified and improved
in order to achieve a specific goal. As presented before, this
strategy is named design scavenging. During S1, S1P1, S1P2,
and S1P3 reported that they use example through the copying
and pasting strategy. However, S1P1 mentioned that, according
to the example being used, he might change his approach:
"Small source code, which requires few changes, I reuse them,
changing what is necessary. To deal with more complex source
code, which is usually longer, I use them as a reference.
Although, even this way, I copy small parts of the example.".
The copy of small fragments of the example is defined as a
code scavenging approach.

S2 has shown that novice programmers often reuse source
code by cloning them to their own source code. Concerning
that, S2P1 reported that "in the first few times I copy and paste,
however, after doing it several times, this gets etched in my
brain, and then, I do not need to copy anymore." This same
participant also mentioned that he used to perform copying and
pasting by copying line by line, reading, and writing the lines.
According to him, this is his approach to learn programming.



A different approach was observed in S1. Participants men-
tioned they use this source code as a reference to be consulted
when it is needed. The same approach of source code reuse
was mentioned during S2. About it, S2P3 reported: "it is easier
for me to use the source code as a reference; otherwise, I let
something passes, like an operation or a variable that were
not supposed to be there. So, I use it only as a reference".
During this study, participant S2P1 mentioned that he reuses
source code to save time. According to him "during the class,
we do not have much time, and sometimes the teacher asks
us several things that we have to do. However, when you are
trying to learn by yourself, using your free time, I believe you
will try to do differently from the teacher".

Corroborating with the findings from studies One and Two,
during S3, participants reported that they used to copy and
paste small chunks of source code (code scavenging), and
they also copied source code from video tutorials, used as
a reference. According to them, when finding examples, they
usually realize that they did not need the entire code, but only a
few parts from it, that could be adapted to being reuse. About
it, S3P9 mentioned that "usually the example was not fully
the code we needed, but part of this was. Then, we reused the
code but needed to edit it." and S3P8 mentioned "you can edit
the code and make it the way you need". They also mentioned
that they do not have enough trust in the material they found
on the Internet because "usually lines are broken, something is
wrong" (S3P7). Such as mentioned by a participant from S2,
one of the groups reported that after reusing a source code
several times, they learn how to solve a kind of task, being
able to code without the example. Figure 4 presents a summary
of the ways novice programmers reuse source code.

Fig. 4. How novice programmer use examples

Additionally, during S2, we observed a programming ap-
proach, not related to reuse, but that corroborates with the
previous observations, which show those novice programmers
often not spend much time trying to understand what they are
building. The development of source code by trial and error
approach was mentioned by S2P4 "sometimes, I did not have
a basis, so I had to go by intuition. I was developing it by
trial and error, coding and fixing". Still, S2P6 mentioned "I
develop in a way I think it will work.".

B. Considering the reuse through tools properly developed to
this purpose, such as APIs, how do they learn how to interact
with it? (Q2)

The results presented in this section are exclusively from
S3, due to the fact that the primary goal of the final project
is the development of a mobile application, we found that
such projects had great potential for code reuse through
APIs. Participants from this study mentioned that their first
steps while building a mobile application are planning and
prototyping the app. During the planning, they chose priority
features to be built, taking into consideration participants’
knowledge, their available time, and the importance of the
feature to the entire project. Further, they also search for APIs
that may help them during development.

Regarding the use of APIs (source code reuse by code
invocation), most participants mentioned they need to use
these tools, especially the APIs provided by Google and
Facebook, which were used to build the application login, and
other APIs to developed different features of their projects.
They also reused libraries provided by other programmers. A
participant from Group 2 (S3P7) reported that the API was
the kernel of application developed by his group. Besides that,
all participants mentioned they had never used APIs or other
external sources before the course.

About the ways they have learned to interact with the APIs,
they used the API documentation, such as tutorials offered by
this documentation, online forums, examples provided by their
teachers, and video tutorials. These findings corroborate with
the findings presented by [32], who observed that the Internet
has being used as a tool to support learning about technologies
that programmers were not familiar with. Additionally, our
findings are aligned with the work of [27], who observed that
programmers used to learn about how to use an API through
its documentation and by examples, experiments, papers, and
help from other people.

We also questioned participants about how they search for
materials to help them to interact with the API. During this
study, we observed that they discovered their need for an API
while searching for how to fix some problem or develop a
specific feature, focusing on the goal they want to reach instead
of the algorithmic solution they need to achieve this goal. Only
one group mentioned that they usually had an understanding
about which algorithmic strategy they need, and they used
it to guide their search. In this case, they reported that they
seek an example only after already had developed their own
source code in order to check if it is possible to improve their
solution.

Finally, regarding their understanding of the reused source
code, they mentioned that they invested time and effort trying
to understand them. However, they were satisfied in understand
only the essentials for being able to use it. Participant S3P9
mentioned "we know what it does, but we do not know how it
works". This is because usually, APIs works as a black box, it
means, it is only possible for users to know about the required
inputs and expected outputs, without knowing how it works



internally.

C. Do they understand their own source code when it is built
by reusing someone else’s code? (Q3)

During S1 and S2, we asked the participants to explain their
source code. Regarding S1, two participants high reused the
Bookstore source code. Participant S1P1 was not sure about
what his code does in several moments. He could neither talk
about the operation of selected pieces of code nor from which
part of the source code they come from. His explanation was
shallow, and most of the time, he was only reading the code
line by line, focusing on some details of syntax and semantics,
but not details related to the role of that piece of code on his
program.

On the other hand, S1P2, who also had a program that
was very similar to the Bookstore project, gave a different
explanation. His explanation was highly detailed, showing
awareness of the role and location of the pieces of code inside
the entire program and about the new lines inserted into it. This
fact showed us a different level of understanding in relation
to S1P1 because S1P2 was not only using the example code
as a frame to create his own program, but he was also able to
extend it to add extra features.

About S2 participants, from whose had source code similar
to the source code example (S2P1, S2P2, S2P3, and S2P4),
only S2P3 was not able to explain how his program works or
explain how the Fibonacci sequence is calculated. With regard
to the remaining participants, the one that caught our attention
was S2P1, who started his explanation telling: "I cannot talk
too much about this one, because it was practically copied
because she (the teacher) had already done it. It would be
a waste of time because I had already understood how the
code was working, and I only had to add the sum operation
and nothing else.". Even so, this same participant was able to
explain several aspects of his source code.

D. Considering the possibility of communicating with some-
one else through their program’s source code, with whom do
novices believe they are communicating? (Q4)

Another question we addressed during the interviews was
regarding the system as a mean of communication. We asked
the participants with who they could be communicating with
through their systems and which characteristics they believed
the receiver of this communication could perceive.

About S1, only participant S1P2 mentioned the possibility
of communication with another programmer. He reported that
he was communicating with "possible users or programmers
located in different parts of the world". Both participants S1P1
and S1P3 reported they believed they were communicating
to the users of their systems. During S2, some participants
mentioned they were communicating with other programmers:
"I believe I am communicating only with students from the
same area as mine, or someone who has questions and uses
my source code as an example" (S2P3). This participant
complements by telling that "I believe that programming must
be clear and shared, I believe it can be used as an example to

others, such as it served to me". It calls our attention that one
of the participants mentioned that she was communicating with
nobody. However, when explaining the reason, she mentioned
the possibility of a communicative breakdown that could
happen while communicating with another programmer: "I
believe that another person will not understand it because
I used X and Y" (S2P4). The reused examples were using
variables named X, Y, and Z, and some participants who
reused them kept the nomenclature pattern and even believing
that this pattern would make it harder for another programmer
to understand the content of such variable, the participants
did not change it. Additionally, S2P1 and S2P5 mentioned a
communication through the system’s interface: "I believe that
I am communicating with the general audience, the clients"
(S2P1) and "I worry about the screens, I do not know if is
this, but the main goal is to make the person understand what
is being done there" (S2P5).

Regarding the characteristics that the receiver of the mes-
sage could perceive, S1P1, S1P2, and S1P3 mentioned the
ways the information is presented to the users. S1P2 mentioned
that, while asking some information to the users, he often uses
informal sentences, similar to communication with friends.
S1P3 reported as characteristics of her writing style and the
way she organized the system. Although he mentioned that he
believed to be communicating with the user, S1P1 told that
a meticulous person would use more methods and controls,
or a person with a broader view would think of less likely
problems, predicting this way unexpected situations. These
characteristics are more likely to be perceived by another
programmer who will read this source code than a final user
who will only use it.

Like that, participants from S2 mentioned as perceived
characteristics the way that graphical items are presented into
the interface, and they reported some coding characteristics,
such as code structure and variables’ nomenclature pattern.

E. How do they understand the message delivered through
their program’s source code to other users? (Q5)

At the end of S1, we invited the participants to fulfill the
metacommunication templates from the Semiotic Engineering
theory. We did not mislead them about who the user might
be (an end user, another programmer, or even the teacher),
because we wanted to observe who the user was in their
interpretation. We split the template into four parts, as follows,
and the participants should complete the four sentences from
the template based on their own developed programs:

• Here is my understanding of who you are...
• What I’ve learned you want or need to do, in which

preferred ways, and why...
• This is the system that I have therefore designed for you...
• This is the way you can or should use it in order to fulfill

a range of purposes that fall within this vision...
About the first sentence, which goal is to define the user who

would be interacting with the system, participants S1P2, S1P3
and S1P4 were able to clearly identify the users they were
communicating with, describing the user as "a person who



is seeking for new tools to didactic application" (S1P2), "an
ordinary person, a student or a teacher",(S1P3) or "a teacher
evaluating a new teaching tool or a research administrator an-
alyzing the results of all evaluations" (S1P4). We can observe
in their sentences that they were aware that the appraisers
could be people involved with education (such as a teacher
or even a student). S1P4, who created different areas in his
program, considered the existence of a researcher who would
manipulate the information inserted by appraisers. On the other
hand, S1P1 described the users from his application with a
generic and incorrect sentence: "somebody who works with
register of games and players". The application aims to register
educational games and teachers’ opinions regarding the games.
However, the registration of players was not required by
the system’s specification and was not developed in S1P1’s
system.

Regarding "What I’ve learned you want or need to do, in
which preferred ways, and why", participants S1P2 and S1P3
reported that their users "need to select an application that fits
to their students’ needs and which has a satisfactory knowl-
edge level to be clearly and objectively conveyed to them, using
a nice interface which calls the students’ attention" (S1P2),
and that their users "want to store and handle information
regarding games" (S1P3). Once again, S1P1’s answer was
generic and referred to nonexistent features from the system:
"to register games and players, to correlate the data taking
some parameters into consideration".

Participants S1P2 and S1P4 reported that they designed "a
system which allows you to identify from where are the other
users who are using certain application, their ages, their quali-
fications and their opinions about the application", (S1P2) and
a system with which "the administrator can manage a small
database regarding the participants, being able to organize
and transform these data into useful information." (S1P4).
This last-mentioned participant created a system with two
modules: one for administrator, and other for evaluators and he
complements his sentence, by adding that "to a regular user,
the system was projected to offer a simple and effective way
to expose his perceptions regarding the evaluated educational
tools".

The sentence reported by S1P2 draws attention to the fact
that he understood the kind of information his program is
managing. If we compare his sentence with the sentence
from the other participants (whom all provided satisfactory
answers), we can see that he was the one who provided more
details about what his program does, even more than those
who created an entirely original program.

With respect to how the users can fulfill these systems
purposes, participants S1P2 claims that the system needs to be
"offered in educational institutions that have computer labs or
that are developing applications with this goal [development of
educational games]", or they can achieve it only by following
the menus (S1P3 and S1P4). About it, S1P4 says that "you can
follow the menus intuitively. Initially, you will have to register
the respondents and the games. From this, the questionnaires
can be answered (by the respondents, about the games).

Finally, you will be able to consult the information generated
from statistics and reports". Regarding the answers from S1P1,
once again, it was vague, with no details about the system’s
features. He reported: "to insert the ordered data and verify
if there is any option related to what you want to know".
The answers from participants S1P1 were generic and with
little information about the system, and this characteristic was
observed in some S1P4 sentences too. However, the answers
from S1P2 and S1P3 were accurate, clear and objective, and
showed their ownership of the messages they were delivering
to their users.

From these participants, S1P1 and S1P2 were those who
reused the example provided by the teacher as a framework
to build their own source code. Although both have used the
example in the same way, we observe that S1P1 was not fully
aware of the message his application was delivering, and he
did not have a full understanding of how his own source code
works.

About S1P1 messages, by taking the point of view from the
Semiotic Engineering theory, we observe that the designer’s
metacommunication message delivered by the system’s in-
terface to its users is composed of two messages: the one
from the Bookstore project designer and the one from S1P1.
However, although these messages complement each other,
they are disconnected once S1P1 did not properly appropriate
from the message used as a basis to his system. On the other
hand, S1P2 showed that he was appropriate from the message
delivered by his system, and he was aware of how his own
system works.

It draws our attention to the fact that, when comparing the
metacommunication messages from all S1’s participants, the
answers from S1P2 stands out, once his metacommunication
message was as accurate as those from the participants who
built their systems from scratch. Differently from the S1P1
case, the message delivered by S1P2’s system is also com-
posed of the same two messages, and in this case, the messages
are connected to each other.

The following is a metacommunication message that, in our
opinion, appropriately represents the systems developed. This
message was elaborated based on the union of the answers
given by the participants S1P2 and S1P3:

"You are an ordinary person, a student or a teacher (S1P3)
who is seeking for new tools to didactic application (S1P2).
You need to select an application that fits to their students’
needs and which has a satisfactory knowledge level to be
clearly and objectively conveyed to them, using a nice interface
which calls the students’ attention (S1P2). Then, I designed for
you a system which allows you to identify from where are the
other users who are using certain application, their ages, their
qualifications and their opinions about the application (S1P2).
Then you can follow the menus intuitively. Initially, you will
have to register the respondents and the games. From this, the
questionnaires can be answered (by the respondents, about the
games). Finally, you will be able to consult the information
generated from statistics and reports (S1P3)".

This section presented the results we found through the



performed studies. We presented general aspects regarding
source code examples and reuse, such as how they search
examples to help them, why they need these examples and,
when they decide by reusing it, how this reused is done. We
also addressed questions regarding communication, and we
found that novice programmers often consider the possibility
of being communicating with other programmers through the
source code in a scenario where their source code is being
used as an example. Besides that, we presented findings
about the impacts that source code reuse might have on the
understanding and the metacommunication that programmers
have about their own source code.

F. Discussion

Learning how to program and how to develop the Com-
putational Thinking [1] may be a complex task. Beyond the
regular challenges from this learning process, programmers
often must work using source code written by others. In
the case of experienced programmers, they frequently need
working with someone else’s source code during software
development process [33]. Software reuse practices are widely
disseminated as a means of raising productivity using APIs
and function, project patterns, and chunks of source codes [8].
In the case of novice programmers, they need source code
examples to show how to develop an algorithm to solve a
problem, to demonstrate programming patterns, or to present
some aspects from a programming language [3]. Such as the
experienced programmers, the novices, also reuse source code
examples [3], including this code into their source code, and,
carrying out the necessary adjustments to achieve their goals.

We conducted our investigation regarding source code reuse
by novice programmers by using the Semiotic Engineering
theory and its recent contributions to the HCC area, and
we visualize the source code as an interface through which
the programmer who wrote the source code "talks" with the
programmer who is reusing it. By using this perspective, we
are allowed to see this source code as an implicit discourse
that incorporates the programmers’ intentions regarding how,
whom, and where this source code may be used. We conducted
three studies regarding source code reuse, including questions
about programmers’ understanding about their own discourse.
The results of these studies could help us to deepen our
understanding about the appropriation of source code dur-
ing reuse. By analyzing the results, we could identify three
distinct scenarios. The authorial scenario, in which are the
participants who developed their source code from scratch.
The non-authorial scenario, composed by those participants
that reused the example, but were not aware about how it
works, and which is the metacommunication message being
delivered. Finally, a co-authorial scenario, composed by those
that, despite the reuse of an example, were aware about how
their source code works and the metacommunication message
being delivered.

Taking as example cases of reuse observed during S1,
despite both S1P1 and S1P2 had widely used the example,
we identified different understandings about the code they

produced, and the message they are communicating through
this code.

As we observed, S1P2 had the same accuracy in his descrip-
tions (such as S1P3 and S1P4 who built their programs without
using the provided example). This participant was able to
describe the commands we showed them as a unique concept,
according to the command’s goal, and specify essential details
about their metacommunication.

The results we found introduced a reflection about the
differences presented by S1P1 and S1P2 during the S1.
Both participants fulfilled their goals by building a functional
program that executed the required tasks. However, S1P2
showed a more precise understanding about the program, as
precise as the understanding of those who created the source
code without any external reference. Thus, we considered
S1P2 a co-author of the program he built with the example’s
programmer (in this case, the teacher). He was not only reusing
the code, but he also interpreted and understood its operation,
and then reused it, aware of several meanings encoded inside
this code.

During this research, we reflected about the "meaning of
the meanings". It becomes clear that every piece of code,
regardless of its creator, bears several meanings that will be
decoded by the one who will use it. This user is the one
that will define what the code means. Such signification, as
well as the appropriation of this code, depends on the level of
understanding the user has.

About levels of understanding, we observed, through the
studies, that there are:

• A low level, where a programmer only paraphrases or
explains what the code does by "translating" it to a
natural language, line-by-line. This approach is named
algorithmic summarization [9]

• An intermediate level, where a programmer has an ab-
straction level on the program’s syntactic structure, being
able to explain a set of commands as a unique concept
based on this code’s goal. This approach is named ab-
stract summarization [9]. We observe that, in this level,
there can occur two sublevels:

– Without application domain references: it means that
the programmer knows what the code does. How-
ever, this programmer is not capable of identifying
pragmatic aspects, such as for what this code can be
used.

– With application domain references: unlike the pre-
vious one, the programmer in this level is capable of
identifying some aspects about the source code, such
as application domains and business rules to which
it can be applied.

• An advanced level, where the programmer is not only
able to do an abstract summarization of the code but
also add elements, which refer to the intentions associated
with programming. The level can present two sublevels:

– Without referring users’ intentions: it means that the
programmer can identify the message passed through



a source code and the intentions encoded on it.
However, the programmer is not able to identify the
user who is expected to consume this message.

– Referring users’ intentions: Unlike the previous one,
the programmer in this level is capable of under-
standing the intentions of the users who will consume
this code, by knowing who they are, what they expect
and/or how they intend to use the program.

About appropriation, it is not ontologically defensible if
the programmer is not aware of the specific aspects of his
development situation since these aspects are connected to
pragmatics. Therefore, we understand that appropriation only
happened from the level Intermediate II of understanding.
Before this level, the programmer can manifest understanding,
but not explicit appropriation.

Thus, we identified the levels of appropriation as only two
possible ones:

• A lower level, which only happens when the program-
mer is able to transfer the code to the user’s required
domain, but not to make explicit his own intentions or
the intentions that his user must have.

• A higher level that will happen when the programmer
is also able to identify some elements related to the
intentionality behind the code (his own intentions or
users’ intentions). We also understand that programmers
on Advanced I and Advanced II levels have the same
design acumen. The fact that a programmer is not able to
refer to intentional elements related to the user will not
make his appropriation "worse" than the other case. It is
possible that the program built by this programmer has
less usability or communicability; however, it cannot be
considered an appropriation problem.

In Table V, we presented a set of elements to support
the classification of understanding and appropriation levels,
as described before. These classifications are the result of
observations made during the studies, and they can be used in
order to analyze reuse made by programming professionals or
even programming students or lay users.

Another result of this work was to show the metacom-
munication template from Semiotic Engineering, originally
proposed to build and/or evaluate interfaces, being used in
a more HCC perspective. We used the template to support our
investigation, which showed us its potential and possible usage
in research about reuse by professionals, computer science
students, or even lay users who use programming in order
to achieve some task. Besides that, the template is what made
us able to observe how a programmer or any kind of end user
sees the intentions he encoded in a program and its source
code. Moreover, the information provided by the participants’
answers about the template was crucial during the research
to establish the understanding and appropriation levels we
defined.

Regarding the understanding and appropriation during the
reuse of code, we identified from each understanding and ap-
propriation level are the studies’ participants (those who reused

the bookstore code), according to the skills they presented
during the studies.

From S1, participant S1P1 and participant S1P2 were those
who reused the example provided by the teacher. S1P1’s
explanations regarding his system’s working process and re-
garding the metacommunication template showed to us that
he was able only to perform an algorithmic summarization.
Thus, we can classify his understanding level as low and his
appropriation level as no appropriation. On the other hand,
participant S1P3 not only provided an abstract summarization,
as he mentioned several aspects regarding the business rules of
his system. Besides that, this participant was able to identify
metacommunicative aspects of his system, referring to who its
users would be and which could be their intentions regarding
the system being used. Based on this, we can classify his
understanding level as advanced II and his appropriation level
as higher.

Related to S2’s participants, those who reused the example
were S2P1, S2P2, S2P3, and S2P4. During this study, due to
the small size of the application they developed, we did not
ask them to fulfill the metacommunication template. Without
this information, we cannot establish if they were in advanced
levels of understanding or higher levels of appropriation.
However, as we already mentioned, only S2P3 was not able to
explain his own source code. In this case, he did not provide an
algorithmic summarization, but he tried to perform the abstract
summarization, without success. Based on this, we frame this
participant as low level of understanding and no appropriation.

Regarding the remaining participants, they could perform an
abstract summarization, though at no moment they mentioned
anything regarding business rules once the system specification
had only one goal. Therefore, we have no information to
classify them as more than an intermediate I level of under-
standing, and, no appropriation.

As we have seen, the size of the system can impact how
and how much a programmer can appropriate from it. Also,
it is essential to highlight that we believe that their skills
can vary according to the program they are building. Factors
such as knowledge about a programming language, business
rules, or even the time available to build the program can be
important factors in order to change their understanding and
appropriation levels.

Taking into consideration the studies we carried out, we
observe through S1 and S2 that the reuse of an example can
affect the understanding programmers have about their own
source code, being able to observe cases in which they were
not able to explain how the source code written by themselves
works. Nonetheless, these same studies showed other cases
in which the programmers were able to appropriate from the
reused source code, incorporating it to his own code and
understanding the relations between it and his own goals. We
consider the appropriation as the final goal we aim to achieve
in a scenario where programmers are aware about how their
source code work, even if they were written using the "words"
other programmers.

Regarding S3, from this one emerges a scenario in which



TABLE V
APPROPRIATION CLASSIFICATION ACCORDING TO UNDERSTANDING LEVELS

Understanding Algorithmic Abstract Abstract summarization and Appropriation
level summarization summarization referring programmers’ intentions level

Without domain With domain Without users’ With users’
references references intentions intentions

Low X No appropriation
Intermediate I X

Intermediate II X Lower

Advanced I X HigherAdvanced II X

novice programmers need source code examples to teach them
how to use an API. However, due to the black box nature
of APIs, which usually do not present their source code, we
cannot determinate if participants appropriated or not from the
source code’s message, once they did not have access to this
message.

Nevertheless, S3 presented to us an interesting information,
corroborating with works from other [32] [27], that, one of
the main alternatives used by a programmer to learn how
to interact with an API is through its documentation. The
documentation of an API is an abstract summarization which is
written with the goal to support users understanding its general
aspects, such as, required inputs, and expected operations and
outputs. In Table V, we presented that, while reusing source
code by cloning. If the programmer can perform an abstract
summarization of the source code he created, he is in an
Intermediate I or Intermediate II level of understanding.

During our studies, we observe that some of these pro-
grammers were aware that in some situations the user of
their source code could be another programmer, who will
use it as an example, and who will start a new cycle of
interpretation of this source code (Figure 5). By providing
an abstract summarization (in the form of documentation) of
a source code, the programmer helps other programmers to
understand better the code they will reuse and improve the
capability of appropriation this programmer will have.

The studies showed that novice programmers often reuse
source code in several ways and for several reasons. Regarding
the ways, the reuse of source code occurs as design scaveng-
ing, when a large block of source code is used as a framework
to a new source code and occurs as code scavenging when
the programmer opts by copying small blocks of source code.
An interesting fact we observed was that these programmers
prefer to perform a copy line-by-line, using the source code
as a reference, avoiding this way the insertion of unnecessary
lines. Regarding the reasons, novice programmers seek for
examples that can support them in understanding the problem
or can help them to optimize their source code.

The time may have come to stop framing programming as
no more than problem-solving. Our studies have shown that
it is a technologically mediated social communication process
going on in programming activities, as well, and that computer
code carries the imprint of human intentions and meanings.

Fig. 5. Examples reuse cycle

This view also accommodates with some advantages the easily
observable fact that not only professionals are programming
software these days. End users are also programmers and
software developers. Viewing end user programming as a case
of self-expression (in addition to problem-solving, or not) may
be advantageous in teaching computational thinking for school
children, for example, [34].

VI. CONCLUSIONS

Programmers use programming not only to solve problems
but also to express something to consumers. This communica-
tive process is a continuous cycle since the programmer is
always changing roles between producer and consumer. Hence,
we must carefully address questions about appropriation in this
specific context since technology has become increasingly part
of people’s life and, consequently, there is a need for qualified
professionals as well as appropriate software.

This research presented the results of studies that are
part of ongoing research regarding how programmers reuse
source code from other programmers, using them to build
their own programs. Also, we present aspects regarding how
programmers learn to interact with a source code when it is
delivered through an API. It is necessary to comprehend how
programmers understand and how they appropriate from these
codes, and the impacts their ways to reuse code have over the
quality of programs they are creating. In order to conduct this
investigation, we appropriated from the Semiotic Engineering



theory and its contributions to the HCC area [29]. In this
way, we observed source code as an interface, which allows a
conversation between the programmer who wrote the source
code being reused and the programmer who is reusing it.
Based on this perspective, we understand that this source code
carries an implicit speech that incorporates the programmer’s
intentions regarding how, whom, and where this source code
can be used.

Additionally, we presented conditions related to the im-
pacts reuse of code has. In all the cases we analyzed, the
software delivered by the participants who performed reuse
were functional and, it was achieving its goals (even if some
few mistakes). However, not all participants were aware of the
message their software was communicating. To support inves-
tigations regarding source code reuse and its consequences,
we presented a set of elements that can help us identify a pro-
grammer’s syntax, semantics, and intentional understandings
about a produced code and, with this, classify his appropriation
about the program he built by code reuse. The classification
might be useful not only for helping researches but also for
teachers, companies R&D and programmers themselves to
help them to understand and to evaluate the code’s reuse made
by programmers. However, this requires further investigation.
Furthermore, it shows how the metacommunication message
concept from a semiotic theory proposed to HCI can be used
in a different context, bringing out human aspects of those
who are responsible for building computational artifacts we
daily use.

We believe that our work can call programming teachers’
attention to the fact that we must take into consideration the
time the students need to reflect on what they are doing. The
process of reflection about these materials (source code) is
a necessary step to solve a problem. Schön’s [35] perspective
about design is that there must be a reflection on action. When
a designer starts his work, he must identify and interpret all
elements involved in his development situation and know all
the possibilities and limitations of the technology he needs
to use. The designer’s ideas must be represented in some
way, allowing him to talk with this material by reflecting and
expressing his new ideas by questioning "and if I define in
this way?", or "it does not look good for me". The source
code being reused is one of these elements, and as mentioned
before, programmers must know and understand its limitations
and appropriate from the code in order to make possible to
reflect on its role in their solutions.

Nonetheless, we would like to mention the work from
Hoadley et al. [9], which observes that when performing as
abstract summarization, the probability of reuse increases.
Moreover, they observed that sometimes programmers con-
sider that an understanding in the algorithmic level is enough.
However, as we mentioned previously, this understanding can
be resumed as the capacity to translate source code lines,
which were written in a programming language, to the natural
language. We want to highlight that programmers may not be
able to perform this kind of summarization due to the fact
they do not know how to do it. Therefore, to support these

students while reusing activity, we need to teach them how
to perform meaningful summarizations and provide tools and
methods that can support them during this activity.

As limitations of this research, we highlight its educational
perspective, once the studies were conducted with novice
programmers who were receiving a college education. There-
fore, our results may not reflect the perceptions of self-taught
programmers nor professional developers. Also, due to the fact
we had a small number of participants during the studies, it
not possible to perform a predictive interpretation based on
our results.

Finally, as next steps of this research, we aim to work on the
development of an epistemic artifact to support programmers,
especially the novice ones, during the source code reuse activ-
ity. Our proposal is based on the use of the metacommunica-
tion template offered by the Semiotic Engineering theory [11],
to support students to generate meaning to source code they
want to reuse.

With this, we hope to contribute to the HCC area by warning
these programmers while building their computational thinking
about the importance of comprehending the meanings of what
they are developing. We warn that this comprehension must
be not related only to cognitive aspects, and it needs to be
extended to source code metacommunicative aspects. We also
hope to contribute to the development of the process of teach-
ing and learning programming, presenting to programmers and
teachers a perspective on which programming can be treated
as more than a way to solve problems, but also a tool through
which programmers can communicate with each other and
express themselves.

ACKNOWLEDGMENT

We would like to thank all the participants for the time
provided for this research. Clarisse S. de Souza thanks CNPq,
the Brazilian National Council for Scientific and Technological
Development, for partially supporting this research (Grant
304224/2017-0). This study was financed in part by the Co-
ordenação de Aperfeiçoamento de Pessoal de Nível Superior
- Brasil (CAPES) - Finance Code 001.

REFERENCES

[1] J. M. Wing, “Computational thinking,” Commun. ACM,
vol. 49, no. 3, pp. 33–35, Mar. 2006. [Online]. Available:
http://doi.acm.org/10.1145/1118178.1118215

[2] C. Kelleher and R. Pausch, “Lowering the barriers to programming:
A taxonomy of programming environments and languages for novice
programmers,” ACM Comput. Surv., vol. 37, no. 2, pp. 83–137, Jun.
2005. [Online]. Available: http://doi.acm.org/10.1145/1089733.1089734

[3] L. R. Neal, “A system for example-based programming,” SIGCHI
Bull., vol. 20, no. SI, pp. 63–68, Mar. 1989. [Online]. Available:
http://doi.acm.org/10.1145/67450.67464

[4] K. Malan and K. Halland, “Examples that can do harm
in learning programming,” in Companion to the 19th Annual
ACM SIGPLAN Conference on Object-oriented Programming
Systems, Languages, and Applications, ser. OOPSLA ’04. New
York, NY, USA: ACM, 2004, pp. 83–87. [Online]. Available:
http://doi.acm.org/10.1145/1028664.1028702

[5] A. Gaspar and S. Langevin, “Restoring "coding with intention" in
introductory programming courses,” in Proceedings of the 8th ACM
SIGITE Conference on Information Technology Education, ser. SIGITE
’07. New York, NY, USA: ACM, 2007, pp. 91–98. [Online]. Available:
http://doi.acm.org/10.1145/1324302.1324323



[6] E. Avidan and D. G. Feitelson, “Effects of variable names on compre-
hension: An empirical study,” in 2017 IEEE/ACM 25th International
Conference on Program Comprehension (ICPC), May 2017, pp. 55–65.

[7] W. Maalej, R. Tiarks, T. Roehm, and R. Koschke, “On the
comprehension of program comprehension,” ACM Trans. Softw. Eng.
Methodol., vol. 23, no. 4, pp. 31:1–31:37, Sep. 2014. [Online].
Available: http://doi.acm.org/10.1145/2622669

[8] C. W. Krueger, “Software reuse,” ACM Comput. Surv.,
vol. 24, no. 2, pp. 131–183, Jun. 1992. [Online]. Available:
http://doi.acm.org/10.1145/130844.130856

[9] C. M. Hoadley, M. C. Linn, L. M. Mann, and M. J. Clancy, When and
why do novice programmers reuse code? Ablex Publishing Company,
1996, pp. 109–130.

[10] M. Sojer, Reusing Open Source Code: Value Creation and Value
Appropriation Perspectives on Knowledge Reuse, ser. Innovation
und Entrepreneurship. Gabler Verlag, 2010. [Online]. Available:
https://books.google.com.br/books?id=-z60hspDTlAC

[11] C. S. de Souza, The Semiotic Engineering of Human-Computer Inter-
action (Acting with Technology). The MIT Press, 2005.

[12] A. Georgakopoulou, Pragmatics in Practice. John Benjamins Publish-
ing, 2011, p. 326.

[13] J. Kammersgaard, “Four different perspectives on human-computer
interaction,” Int. J. Man-Mach. Stud., vol. 28, no. 4, pp. 343–
362, Apr. 1988. [Online]. Available: http://dx.doi.org/10.1016/S0020-
7373(88)80017-8

[14] B. A. Myers, A. J. Ko, T. D. LaToza, and Y. Yoon, “Programmers are
users too: Human-centered methods for improving programming tools,”
Computer, vol. 49, no. 7, pp. 44–52, July 2016.

[15] L. Müller, M. S. Silveira, and C. S. de Souza, “Do i know what my
code is "saying"?: A study on novice programmers’ perceptions of what
reused source code may mean,” in Proceedings of the 17th Brazilian
Symposium on Human Factors in Computing Systems, ser. IHC 2018.
New York, NY, USA: ACM, 2018, pp. 17:1–17:10. [Online]. Available:
http://doi.acm.org/10.1145/3274192.3274209

[16] C. S. Peirce, C. Hartshorne, and P. Weiss, Collected Papers of Charles
Sanders Peirce, ser. Collected Papers of Charles Sanders Peirce.
Belknap Press of Harvard University Press, 1932. [Online]. Available:
https://books.google.com.br/books?id=u9fWAAAAMAAJ

[17] U. Eco, A Theory of Semiotics, ser. Advances in
semiotics. Indiana University Press, 1976. [Online]. Available:
https://books.google.com.br/books?id=BoXO4ItsuaMC

[18] L. Bannon, “Reimagining hci: Toward a more human-centered
perspective,” interactions, vol. 18, no. 4, pp. 50–57, Jul. 2011. [Online].
Available: http://doi.acm.org/10.1145/1978822.1978833

[19] S. Choi, “Understanding people with human activities and social
interactions for human-centered computing,” Human-centric Computing
and Information Sciences, vol. 6, no. 1, p. 9, Jul 2016. [Online].
Available: https://doi.org/10.1186/s13673-016-0066-1

[20] A. Jaimes, D. Gatica-Perez, T. S. Huang, and N. Sebe, “Guest
editors’ introduction: Human-centered computing–toward a human
revolution,” Computer, vol. 40, pp. 30–34, 05 2007. [Online].
Available: doi.ieeecomputersociety.org/10.1109/MC.2007.169

[21] J. V. Wertsch, Mind as Action. Oxford University Press, 1998. [Online].
Available: https://books.google.com.br/books?id=73Vv7Y3vf14C

[22] J. Carrol, S. Howard, J. Peck, and J. Murphy, “A field study of
perceptions and use of mobile telephones by 16 to 22 years old,” Journal

of Information Technology Theory and Application, vol. 4, no. 2, pp. 49–
61, 2002.

[23] G. Stevens, V. Pipek, and V. Wulf, Appropriation Infrastructure: Sup-
porting the Design of Usages. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2009, pp. 50–69.

[24] P. Dourish, “The appropriation of interactive technologies: Some
lessons from placeless documents,” Computer Supported Cooperative
Work (CSCW), vol. 12, no. 4, pp. 465–490, Dec 2003. [Online].
Available: https://doi.org/10.1023/A:1026149119426

[25] M. B. Rosson, J. Ballin, and H. Nash, “Everyday programming: Chal-
lenges and opportunities for informal web development,” in 2004 IEEE
Symposium on Visual Languages - Human Centric Computing, Sept
2004, pp. 123–130.

[26] M. Ichinco and C. Kelleher, “Exploring novice programmer example
use,” in 2015 IEEE Symposium on Visual Languages and Human-Centric
Computing (VL/HCC), Oct 2015, pp. 63–71.

[27] M. P. Robillard, “What makes apis hard to learn? answers from
developers,” IEEE Softw., vol. 26, no. 6, pp. 27–34, Nov. 2009.
[Online]. Available: https://doi.org/10.1109/MS.2009.193

[28] L. M. Afonso, “Communicative dimensions of application programming
interfaces (apis),” Ph.D. dissertation, Pontifícia Universidade Católica do
Rio de Janeiro, 2015.

[29] C. S. de Souza, R. F. d. G. Cerqueira, L. M. Afonso, R. R. d. M. Brandão,
and J. S. J. Ferreira, Software Developers As Users: Semiotic Investi-
gations in Human-Centered Software Development, 1st ed. Springer
Publishing Company, Incorporated, 2016.

[30] L. Müller, M. S. Silveira, and C. S. de Souza, “Mine, yours,
ours: Examples reuse and the self-expression of programming
students,” in Proceedings of the 14th Brazilian Symposium on
Human Factors in Computing Systems, ser. IHC ’15. New
York, NY, USA: ACM, 2015, pp. 30:1–30:10. [Online]. Available:
http://doi.acm.org/10.1145/3148456.3148486

[31] L. Müller, “Uma abordagem semiótica para apoiar programadores ini-
ciantes durante o processo de reúso e de apropriação de códigos-fonte,”
Ph.D. dissertation, Pontifícia Universidade Católica do Rio Grande do
Sul, 2017.

[32] J. Brandt, P. J. Guo, J. Lewenstein, M. Dontcheva, and S. R. Klemmer,
“Two studies of opportunistic programming: Interleaving web foraging,
learning, and writing code,” in Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems, ser. CHI ’09. New
York, NY, USA: ACM, 2009, pp. 1589–1598. [Online]. Available:
http://doi.acm.org/10.1145/1518701.1518944

[33] T. Roehm, R. Tiarks, R. Koschke, and W. Maalej, “How do
professional developers comprehend software?” in Proceedings of the
34th International Conference on Software Engineering, ser. ICSE
’12. Piscataway, NJ, USA: IEEE Press, 2012, pp. 255–265. [Online].
Available: http://dl.acm.org/citation.cfm?id=2337223.2337254

[34] I. T. Monteiro, L. C. de Castro Salgado, M. P. Mota, A. L. Sampaio,
and C. S. de Souza, “Signifying software engineering to computational
thinking learners with agentsheets and polifacets,” Journal of Visual
Languages & Computing, vol. 40, pp. 91 – 112, 2017, semiotics, Human-
Computer Interaction and End-User Development. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1045926X16300234

[35] D. A. Schön, The Reflective Practitioner: How Professionals
Think in Action. Taylor & Francis, 2017. [Online]. Available:
https://books.google.com.br/books?id=OT9BDgAAQBAJ


