
Pulsar: Constraining QDI Circuits Cycle Time
Using Traditional EDA Tools

Marcos L. L. Sartori, Rodrigo N. Wuerdig, Matheus T. Moreira, Ney L. V. Calazans

PUCRS - School of Technology - Ipiranga Av., 6681 - Porto Alegre - Brazil, 90619-900

{marcos.sartori,rodrigo.wuerdig,matheus.moreira}@acad.pucrs.br, ney.calazans@pucrs.br

Abstract— Asynchronous quasi-delay-insensitive (QDI) circuits
are known for their potentially enhanced robustness to PVT
variations when compared to synchronous circuits or to bundled-
data asynchronous design. They are also a good choice for high-
performance circuits used to solve several real-world problems.
However, it is often difficult to constrain the minimum perform-
ance for QDI circuits. Thus, enhancing the synthesis quality for
QDI design is a justifiable effort, especially in rising application
fields, such as the Internet of Things and Artificial Intelligence.
This work proposes Pulsar, a method based on the extension of
SDDS-NCL, a previously proposed asynchronous QDI template
and design flow. Pulsar brings four original contributions: (i)
two new models for components used to as sequential barriers;
(ii) a new model for half buffer pipelines, half-buffer channel
network (HBCN); (iii) a linear programming formulation to
define a circuit cycle time constraint; (iv) a design flow that
enables automating the process to design sequential SDDS-NCL
circuits. Experiments comparing synthesis results with Pulsar of
a 6-stage, multiply-accumulate (MAC) show that it can guarantee
a maximum cycle time of 3.2 ns, while the original Uncle-
synthesised circuit without logic optimisation leads to timing
violations at a 6 ns constraint.

I. INTRODUCTION

One of the challenges to design asynchronous circuits is

guaranteeing some minimal throughput operating point. This

throughput is dependent on the maximum cycle time of

the circuit. However, on complex concurrent asynchronous

systems the cycle time is not trivial to capture. Synchronous

circuits typically rely on register transfer level (RTL) models,

where the maximum throughput is limited by a clock period.

This not only makes design capture simpler, but also eases

the task of optimising a netlist, as every timing path has a

same, fixed maximum delay constraint, the clock period. In

fact, synchronous RTL models drove decades of development

on commercial EDA tools, which provide strong means for

designers to explore power, performance and area optimisation

in modern technologies. These means are nonetheless very

specific, and efforts to abandon the synchronous paradigm in

exchange for more powerful design techniques can easily make

commercial tools not applicable. Accordingly, the support for

asynchronous design lacks behind and, as technologies get

less predictable and wire dominated, there is a particular need

for new solutions that allow asynchronous circuit optimisation

after technology mapping and during physical design.

This article proposes Pulsar, a method to enable constraining

the cycle time of an asynchronous QDI circuit. Pulsar takes full

advantage of commercial, timing-driven EDA synthesis and

optimisation tools. The Pulsar flow uses commercial tools to

optimise an NCL circuit to NCL/NCL+ gates under synthesis

constraints, producing sequential QDI circuits with a bounded

worst-case delay. It integrates the Thonnart et al. pseudo-

synchronous design technique [1] with the SDDS-NCL design

flow [2]–[4], extending both into the Pulsar method, which

brings four main original contributions: (i) suggest two new

sequential barrier component models; (ii) model half-buffer

pipelines with an adaptation of Beerel et al.’s full-buffer chan-

nel networks (FBCNs) [5]; (iii) propose a linear programming

formulation to define a target pseudo-clock period, based on

a target circuit cycle time; and (iv) generalising the previous

SDDS-NCL flow [4] to deal with sequential design.

II. THE SDDS-NCL ASYNCHRONOUS DESIGN TEMPLATE

In a 4-phase dual-rail delay-insensitive (DI) channel D, a

single bit datum is represented using two signals, D.1 and

D.0 that carry the datum value, and one signal ack to control

data flow. For the data portion of a channel, as Figure 1(a)

depicts, a spacer is classically encoded as a codeword with

all signals at 0. Valid data are encoded using exactly one

signal at 1, D.1=1 for a logic 1 and D.0=1 for a logic 0.

In this case, both signals at 1 is a codeword that does not

correspond to any valid datum and is not used. Figure 1(b)

shows an example of data transmission using this convention

to demonstrate the control flow allowed by the ack signal

combined to codewords represented in signals D.1 and D.0. In

this example a sender provides dual-rail data in D.1 and D.0
to a receiver that acknowledges received data through ack.

Communication starts with a spacer, all signals at 0. Note

that the ack signal also starts at 0, meaning the receiver side

is ready to acquire new data. Next, the sender puts a valid

0 bit in the channel, raising the logic value of D.0, which is

acknowledged by the receiver raising the ack signal, in what

is called the evaluation phase. After the sender receives ack,

it produces a spacer to end communication, bringing all data

signals in the channel back to 0, beginning the reset phase.

The receiver then lowers its ack signal, after which another

communication can take place. Due to its nature (requiring all

signals to go to 0 before each data transmission), this 4-phase

protocol is also known as return-to-zero (RTZ).

Another 4-phase protocol for dual-rail QDI design is the

return-to-one (RTO) protocol [6]. RTO employs the same

amount of valid codewords as RTZ, but its data values are

inverted compared to the latter. As Figure 2(a) shows, a spacer
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Code D.0 D.1

Spacer 0 0

Value 0 1 0

Value 1 0 1

(a) data encoding

(b) example of data transmis-
sion waveform

Fig. 1: RTZ dual-rail channel operation. Adapted from [4].

here is the codeword with all signals at 1 and valid data

is represented by one signal at 0, D.1=0 for a logic 1 and

D.0=0 for a logic 0. Figure 2(b) depicts an example RTO

data transmission, which starts with all signals at 1 in the

data channel (the RTO spacer). As soon as the sender puts

valid data in the channel, the receiver may acknowledge it

by lowering ack. Next, all data signals must return to 1 to

denote a spacer, ending transmission. When the spacer is

detected by the receiver, it raises the ack signal and new

data can follow. The idea behind the RTO protocol is simple

but powerful and allows a better design space exploration

for QDI circuits, enabling optimizations in power [7] and

robustness [8]. Furthermore, as demonstrated in [9], RTZ and

RTO can be mixed in a same QDI design and the conversion

of values between them requires only an inverter per wire.

According to Martin and Nyström, in [10], such conversion

is DI and does not compromise the robust functionality of a

QDI circuit. This work refers to signals operating under the

RTZ (RTO) protocol as RTZ (RTO) signals.

Code D.0 D.1

Spacer 1 1

Value 0 0 1

Value 1 1 0

(a) data encoding

(b) example of data transmis-
sion waveform

Fig. 2: RTO dual-rail channel operation. Adapted from [4].

As Fant and Brandt discuss in [11], while a QDI logic block

is transitioning between a spacer and valid data, output values

of the block should be either a spacer or valid data. Therefore,

NCL gates must also account for situations where an input

combination is neither in the ON-set nor in the OFF-set1.

While in these states no gate output should transition. This

leads to the definition of the correct behaviour for NCL gates.

1ON-set and OFF-set are classical definitions from the logic synthesis
domain. The ON-set of a function is the subset of points of the function
domain for which the function output evaluates to 0. The OFF-set is the subset
of points for which the function output evaluates to 1. For example, a 2-input
AND function has ON-set={11} and OFF-set={00, 01, 10}. Incompletely
specified functions can be described using three, instead of two domain
subsets: ON-, OFF-, and the DC-set, the latter describing the points of the
domain for which the output is not specified (don’t-cares). Three sets can
also describe C-elements and/or NCL/NCL+ functions: ON-, OFF-, and the
HOLD-set, the latter being the subset of domain points for which the function
output keeps its previous value. The reader can verify that the OFF-sets of
NCL and INCL+ functions always have cardinality 1, the same being true for
the ON-set of NCL+ and INCL functions.

Definition 1. An n-input NCL gate is a logic gate with a
threshold value T ∈ N∗, a weight wi ∈ N∗ assigned to each
variable xi (i = 1, . . . , n), and a hysteresis mechanism such
that the gate output Q at each instant of time t is given by:

Qt =

{
1,

n∑
i=1

wixi ≥ T

0,
n∑

i=1

xi = 0

Qt−1, 0 <
n∑

i=1

wixi < T

(1)

Figure 3(a) shows a generic NCL gate symbol, where n is

the number of inputs of the gate and T is the threshold of the

threshold logic function (TLF) it implements, for which each

input has a weight wi. If a weight wi is omitted, wi = 1 is

assumed. Weights come after the W specifier. As an example,

Figure 3(b) shows the symbol of a 3-input NCL gate with

threshold 3 and weights 2, 1 and 1 (in the order from the

topmost input down). Figure 3(c) shows the truth table for this

latter example, computed from Equation (1). Accordingly, the

output of the gate only switches to 0 when all inputs are at 0.

Also, because x1 has weight 2, x2 and x3 have weight 1 and

the threshold is 3, the gate only switches to 1 when x1 is at 1

and at least one of the other inputs is at 1. In all other cases

the output remains unchanged.

TWw0..wn-1

x0

xn-1

... Q

(a) NCL gate, generic.

3W211

x0

Qx1

x2

(b) Specific NCL gate.

X0 X1 X2 Qt

0 0 0 0

0 0 1 Qt−1

0 1 0 Qt−1

0 1 1 Qt−1

1 0 0 Qt−1

1 0 1 1

1 1 0 1

1 1 1 1

(c) 3W211 gate truth table.

Fig. 3: Characteristics of NCL gates.

NCL supports the design of QDI circuits that follow the

RTZ protocol and, to meet the requirements of associated

templates, NCL gates are typically restricted to implement

only positive unate functions. This limits the potential for

logic optimisation and complicates achieving compatibility

with conventional EDA tools. NCL+ gates are similar to NCL

gates, but, because they target the RTO protocol [6] and

related logic templates [12], they need to be able to detect

spacers encoded by all wires at 1 and compute valid data

signalled by logic 0s. The definition of an NCL+ gate is then

straightforward.

Definition 2. An n-input NCL+ gate is a logic gate with a
threshold value T ∈ N∗, specific weights wi ∈ N∗ assigned
to each variable xi (i = 0, . . . , n − 1), and a hysteresis
mechanism such that the gate output Q at each instant of time
t is given by:
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Qt =

{ 1,
n−1∑
i=0

xi = 0

0,
n−1∑
i=0

wixi ≥ T

Qt−1, 0 <
n−1∑
i=0

wixi < T

(2)

The symbol of an NCL+ gate is similar to that of an NCL

gate, but with a + sign on its top right corner, see Figure 4(a).

Figure 4(b) shows an example of a 3-input, threshold 3 NCL+

gate, with respective weights (from top to bottom) 2, 1 and

1. The truth table of this gate appears in Figure 4(c). This

gate output only switches to 1 when all inputs are 1. Also, its

output only switches to 0 when x0, which has a weight of 2,

and at least one of the other inputs, both with weight 1, are

0. For all other combinations of inputs, the output keeps its

value.

TWw0..wn-1

x0

xn-1

... Q

(a) NCL+ gate, generic.

3W211

x0

Qx1

x2

(b) Specific NCL+ gate.

X0 X1 X2 Qt

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 Qt−1

1 0 0 Qt−1

1 0 1 Qt−1

1 1 0 Qt−1

1 1 1 1

(c) 3W211 gate truth table.

Fig. 4: Characteristics of NCL+ gates.

NCL+ gates allow building QDI circuits using DI codes.

Figure 5 shows the NCL+ version of a generate path for a 1-bit

Kogge-Stone adder. The circuit topology is exactly the same

as would be for an NCL version of the circuit. In fact, NCL

and NCL+ gates are similar, the only difference being their

underlying assumptions on data and spacers representation.

Clearly, in the NCL+ circuit all internal nodes and primary

inputs and outputs follow the RTO protocol.

The advent of NCL+ enables mixing NCL and NCL+ gates

in a single circuit, because RTO signals can be translated to

RTZ signals and vice-versa just using inverters [9]. As [2]

discusses, mixing NCL and NCL+ also allows mixing positive

and negative unate functions, improving optimisation oppor-

tunities and expanding the QDI circuit design space. For each

positive unate NCL (NCL+) gate, a negative unate gate can

be defined, where the latter has as OFF-set the ON-set of

the former. To differentiate negative unate gates from positive

unate ones, these are named Inverted NCL and NCL+ gates

(or INCL and INCL+, respectively) and defined accordingly.

Definition 3. An n-input INCL gate is a logic gate with a
threshold value T ∈ N∗, specific weights wi ∈ N∗ (i =
0, . . . , n − 1), assigned to each variable xi and a hysteresis
mechanism such that the gate output Q at each instant of time

Gi.0

Gi.1

Pi.0

Pi.1

Gp.0

Gp.1

2W11

3W2211

3W2211

2W11

Go.1

Go.0n0

n1

G0

G3

G2

G1

Fig. 5: Example of an NCL+ circuit: the generate path of part

of a Kogge-Stone adder. Adapted from [2].

t is given by:

Qt =

{ 1,
n−1∑
i=0

xi = 0

0,
n−1∑
i=0

wixi ≥ T

Qt−1, 0 <
n−1∑
i=0

wixi < T

(3)

An INCL+ gate is similarly defined mutatis mutandis [4].

From a functional point of view, the only difference between

an NCL (NCL+) and an INCL (INCL+) gate is that their ON-

and OFF-sets are swapped. However, both still eventually rely

on a hysteresis behaviour to ensure the respect of QDI prop-

erties. INCL/INCL+ gate symbols differ from the respective

non-inverted gate symbol by a circle added to its output. Using

inverted gates it is possible to convert signals from RTZ to

RTO, and vice versa. Because each time an inverted gate is

used the protocol changes (including the codeword to represent

spacers), circuits using (I)NCL and (I)NCL+ gates are called

spatially distributed dual spacer NCL (or SDDS-NCL) [2].

Figure 6 shows an example SDDS-NCL circuit, equivalent

to that in Figure 5. When this circuit inputs have spacers, it

issues a spacer in its output. Here, all INCL gates have 1 in

their outputs, which means that the INCL+ gates have 1 in all

their inputs and a 0 in their outputs. In other words, all first

level wires (in blue) will be at 0 and all second level wires

(in red) will be at 1. From this state, whenever the inputs

become valid dual-rail data, exactly two of the INCL gates

fire, setting their outputs to 0, which causes exactly one of the

INCL+ gates to fire, setting its output to 1.

The two inverters G4 and G5 (1W1 gates) are required

to ensure that all the inputs of gates G2 and G3 are in the

same domain (RTO). Also, because there are only two levels

of logic and all gates are negative unate, the external inputs

and outputs are RTZ. If the output was expected to be RTO,

inverters should be added after gates G2 and G3, or, of course,

these gates could be mapped to NCL+ ones. In fact, different

combinations of NCL, INCL, NCL+ and INCL+ gates can be

explored, depending on the requirements of the circuit’s input

and output channels.

A final important concept relevant to the SDDS-NCL flow

is that of virtual functions (VFs). A VF captures the behaviour

of the gate at the evaluation phase only. The concept applies
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Gi.0

Gi.1

Pi.0

Pi.1

Gp.0

Gp.1

2W11

3W2211

3W2211
Go.1

Go.0

1W1

2W11

1W1

n0

n1

G0

G3

G2

G1

n3

n2

G5

G4

Fig. 6: Example of an SDDS-NCL circuit: generate path for

a Kogge-Stone adder. Adapted from [2].

at the logic optimisation and technology mapping phases of

the SDDS-NCL synthesis flow to select gates [4].

Definition 4. A virtual function (VF) is an n-input Boolean
function associated with an n-input NCL, NCL+, INCL or
INCL+ gate, called its support gate. The truth table of a virtual
function f is defined as follows:

1) if the support gate of f is an NCL gate θ, the ON-set
of f is the same as the ON-set of θ. The OFF-set of f
comprises all other n-input patterns;

2) if the support gate of f is an NCL+ gate φ, the OFF-set
of f is the same as the OFF-set of φ. The ON-set of f
comprises all other n-input patterns;

3) if the support gate of f is an INCL gate ψ, the OFF-set
of f is the same as the OFF-set of ψ. The ON-set of f
comprises all other n-input patterns;

4) if the support gate of f is an INCL+ gate υ, the ON-set
of f is the same as the ON-set of υ. The OFF-set of f
comprises all other n-input patterns.

If the support gate of f is of types NCL or NCL+, f is a
positive VF. Otherwise, f is a negative VF.

First, from the definition it is easy to conclude that VFs

are completely specified functions, comprising only an ON-

set and an OFF-set. Also each VF always has exactly one

NCL and one NCL+ support gates or one INCL and one

INCL+ support gates. Reference [2] provides the detailed

description of a method to compute the support gates for

VFs. As another consequence of Definition 4, all positive

VFs are positive unate functions, but not all positive unate

functions are positive VFs. Furthermore, all negative VFs are

negative unate functions, but not all negative unate functions

are negative VFs. Hence, all VFs are unate functions, but not

all unate functions are VFs. As an example, consider the 3-

input NCL gate 3W211 depicted in Figure 3. The reader can

verify that a virtual function f1 for this gate can be expressed

by f1 = x0.(x1 + x2). Another example is the 3-input NCL+

gate 3W211 depicted in Figure 4 has a virtual function f2
expressible by f2 = x0 + x1.x2. As expected and can be

verified, these two VFs are positive unate.

III. A PSEUDO-SYNCHRONOUS MODEL FOR SDDS-NCL

As Moreira et al. explore in [2], [4], SDDS-NCL is a useful

asynchronous design template to build QDI combinational

logic. It allows the designer to leverage industry standard tools

and flows with unprecedented compatibility with logic minim-

isation algorithms. In fact, the template focus on the modelling

of NCL and NCL+ gates to allow logic optimisation while

preserving DI encoding. However, it assumes that all logic

paths start at primary inputs and end at primary outputs, which

enables specifying maximum delay constraints from inputs to

outputs, but cannot deal with sequential logic descriptions.

Sequential design with SDDS-NCL so far requires manual

design.

Thonnart et al. [1] propose the pseudo-synchronous flow,

which relies on a clever modelling of asynchronous compon-

ents and on standard static timing analysis (STA) tools to

optimise sequential logic in a specific QDI design template,

WCHB. These authors relate the timing arcs of a resetable

C-element, a basic building block of WCHB pipelines, to

those of edge-triggered flip-flops, a basic building block of

synchronous pipelines. From this analysis arises the proposal

of a flop-like model to represent sequential barriers in the

WCHB template (realised with resetable C-elements). The new

model allows the authors to propose a pseudo-synchronous
synthesis flow for WCHB, supported by conventional STA

tools. The implementation of the flop-like model for resetable

C-elements consists in new Open Liberty files (.lib) containing

timing tables that substitute the original resetable C-element

characterisation files. The reasoning is that conventional tools

can analyse acyclic timing paths bounded by well defined start

points and end points. A start point for an acyclic timing path

is either a primary input or the clock pin of a flip-flop; and

an end point is either a primary output or the data input pin

of a flip-flop. The clock signal provides a stable reference

for timing analysis, the propagation of signals in an acyclic

path must terminate before the arrival of a clock event in the

end point flip-flop. This model allows the analysis of paths

that start and/or end in pseudo-flops without adding significant

error to the actual delay of these C-elements. The work details

the specification of a pseudo-clock that guides the synthesis

decision making process and constrains each logic stage during

synthesis. The work also include a methodology to characterise

the pseudo-flops.

Figure 7 details four models covered in the present work.

Figure 7(a) schematically depicts the conventional model of

the 2-input resetable C-element. Its characterisation is given

in a .lib file as power and delay figures as a function of

input ramps (the slew) and output load capacitances for each

individual transition of any of the inputs (A, B, Reset) causing

a change in output Z. Figure 7(b) depicts the pseudo-flop

model proposed by Thonnart et al. for the same component.

The right side of Figure 7 depicts the new models proposed

in this work, explained in more detail later in this Section.

In the Thonnart et al. model, the arcs in the .lib file are

modified to mimic those of a flip-flop (Figure 7(b)) [1]. Here,
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A

B

Reset

Z

G

A

B

Reset

Z

G

A

B

Reset

Z

A

B

Reset

Z

(b). (c).

(d).(a).

Fig. 7: Different characterisation models for a resetable C-

element: (a) the original C-element arcs; (b) Thonnart et al. [1]

model; (c) the flop-based model used here for synthesis; (d)

the latch-based model used here for sign-off simulation.

the C-element Reset becomes a pseudo-clock pin and original

propagation arc is split in two: (i) a clock propagation delay

(in green), from Reset to Z (a function of the slew in Reset and

of the capacitance in Z); and (ii) setup constraints (in blue),

from A to Reset (a function of the slew in A and of the slew

in Reset) and from B to Reset (a function of the slew in B and

of the slew in Reset). Since the sequential nature of Reset is

only a mechanism to create the pseudo-clock, its slew can be

ignored. The generated delay tables are thus a single row (or

column) that depends only on the slew of A or B and on the

capacitance driven by Z. The reasoning is that the original arcs

can be built from the sum of a clock propagation delay and a

setup constraint on the new model. For example, the original

A to Z arc is represented by the propagation delay from Reset

to Z added to the setup constraint from A to Reset. Every time

the STA tool encounters a pseudo-synchronous flop model of

a C-element, it identifies a new start point for paths starting at

output Z and a new end point for paths ending at inputs A or

B. This is crucial to enable STA in WCHB pipelines, as every

pipeline stage is marked by a group of C-elements (e.g. 2 for a

1-of-2, 4-phase encoding, 1-bit data channel). The logic paths

between these C-elements are optimised to meet the defined

period (λ) of the pseudo-clock connected to the Reset pin.

Figure 8 shows how these paths are analysed in a WCHB

pipeline. Here, a single C-element forms the memory of each

pipeline stage and two types of logic paths: (i) the forward

logic (usually where useful computation happens); and (ii) the

backward logic (usually used for flow control). Between every

pair of C-elements in a cycle there are forward and backward

logic paths constrained by a single pseudo-clock, with period

λ, entering at the Reset pin. There are also paths between the

input channel and the first C-element and the last C-element

and the output channel.

Forward 
Logic

Backward 
Logic

Backward 
Logic

Forward 
Logic

C

Backward 
Logic

Forward 
Logic

C C

Logic Logic

Fig. 8: Simplified view of a 1-bit data channel WCHB pipeline,

showing the inner cycles controlled by the pseudo-clock.

A major drawback of the Thonnart et al. method is that

it causes an error in the computation of delays for the C-

elements, as a result of the regeneration of the original arc

from the sum of the two new arcs. This takes place because

the new arcs do not describe the delay of the cell as an explicit

function of the slew in its inputs and the capacitance in its

output. It rather relies on two independent delay values, which

are then added, one as a function of the capacitance driven by

Z and another as a function of the slew in A or B.

Another drawback is that the reset network is tied to

a pseudo-clock network, and optimising these signals inde-

pendently becomes challenging, since balancing reset signals

conflicts with the tool trying to synthesise a clock tree for

the pseudo-clock. Also, the annotation of delays for post-

implementation simulations in this model is tricky. The created

arcs are in accordance to the pseudo-synchronous model, not

fitting the original C-element arcs, and will not reflect the real

delay of the circuit. Thonnart et al. suggest that the original

models be provided to the tool for delay annotation. However,

this causes the automatic insertion of loop breakers, which

complicates analysis.

To deal with these issues, this work suggests creating a

fictitious clock pin (G) and proposes two new models to char-

acterise C-elements and other sequential barrier components:

(i) a D-type flop model (Figure 7(c)), used during synthesis;

(ii) a latch model (Figure 7(d)) that preserves all original

propagation arcs, only used to extract delay annotations for

post-synthesis simulation. The fictitious pin G only exists in

the .lib file representing the cell timing arcs, it is absent in both

the cell layout and abstract views. The use of pin G allows

preserving the original Reset pin timing arcs. This enables

using STA to design a reset network meeting the constraints

extracted from the cell characterisation process.

The pseudo-latch model relies on the fundamental behaviour

of latches. A latch is a sequential element that has two

distinctive operation modes, transparent and opaque. During

the transparent mode operation, a latch has a direct arc from

its data input to its data output and during the opaque mode it

holds data. Transitions between these modes are governed by

a clock signal, which imposes sequential arcs on the latch.

Therefore, a latch timing model typically includes a setup

constraint and a clock to output delay (as in flip-flops), and a

combinational arc from its input to its output (to serve in those

cases when the latch is transparent). This model respectively

creates valid start and end points for STA at the outputs and

inputs of latches. During the pseudo-latch characterisation,

this feature is leveraged to preserve the original arcs of the
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C-element, while avoiding the insertion of loop breakers. In

simulation, it is enough that the behavioural model consider

the cell as always in the transparent mode to reflect these

delays, ignoring any sequential arc.

Although this paper only explores the use of C-elements

with reset, the use of a fictitious pin for the pseudo-clock

allows any NCL(NCL+) gates to be characterised both using

pseudo-flop or pseudo-latch models, if they are to be used

as sequential barrier components. Gates characterised using

this technique can be modelled as sequential combo cells,

composed of a combinational gate with the VF of the original

gate followed by the sequential element. This enables EDA

tools to differentiate pseudo-flop functions during synthesis.

IV. SDDS-NCL CYCLE TIME OPTIMISATION

Sections II and III explored SDDS-NCL components and

models that render commercial tools compatible with the

design of combinational and sequential QDI circuits. It is

possible to leverage state-of-the-art logical and physical EDA

tools to synthesise and analyse QDI circuits more effectively.

However, the performance optimisation of these cannot be

achieved by merely setting a (pseudo-)clock period as a target

maximum delay between start and end points, as in traditional

synchronous design. Rather, QDI performance is dictated by

the complex process to determine the circuit cycle time.

Beerel, Najibi et al. [13], [14] proposed the use of timed

marked graphs and linear programming to analyse the max-

imum cycle time of a circuit and improve its performance

by inserting slack matching buffers. For cycle time analysis,

the circuit is modelled as a timed marked graph with delays

on places. The graph largest cycle time is computed using

a variation of Magott’s algorithm [15]. In this algorithm,

an arrival time inequation aj ≥ ai + d(p) − m0(p)τ is

defined for each place p, where aj is the arrival time at the

transition succeeding (triggered by) p, ai is the arrival time

at the transition preceding (feeding) place p, d(p) is the delay

associated with the place, τ is the maximum cycle time of the

graph, and m0(p) is the number of tokens the place holds at

the initial time. The inequation states that transition aj should

occur at least d(p) time units after ai has occurred. Also,

−m0(p)τ means that if there is a token in p the transition

ai has occurred at least τ time units before. To find out the

maximal cycle time, we need to find the minimal value of
τ that satisfies the system of inequations. This can be easily

computed by a linear programming (LP) solver.

The method is extensible to a synthetic approach to design

a circuit that meets a certain maximum cycle time. Instead

of defining the maximum cycle time τ of a given circuit,

these models and inequations can determine a maximum delay

constraint λ for places, which is required to meet a desired,

given maximum cycle time (φ).

To compute the maximum delay constraint λ, circuits are

modelled as a Half Buffer Channel Network (HBCN), a

modification of the FBCN concept proposed by Beerel et

al. in [5]. This is a second original contribution of this

work. Figure 9 shows two example HBCNs. HBCNs are

marked graphs, a type of Petri net with no choice, meaning

that a single transition follows each place. In HBCNs, each

sequential barrier is modelled as a pair of transitions, each

transition indicating the arrival of a type of token: (i) data,

in blue; and (ii) spacer (null), in red. The environment is

also modelled as transitions, allowing to capture input and

output delays. Each logic propagation path is modelled as a

pair of places: (i) one indicating the propagation of a data

token; and (ii) another indicating the propagation of spacers.

Square and round places respectively represent backward and

forward propagation paths. Figure 9(a) illustrates this. Note

that the handshake protocol is evident by analysing the cross-

connecting null backward propagation place of a stage to

the data transition of the previous stage and the data back-

propagation place to the previous stage null transition.

r1 

r1'

r0 

r0'

in 

in'

out 

out'

(a) A 2-stage linear buffer.

r0 

r0'

r2'

r1 r2 

r1'

(b) A 3-stage circular buffer.

Fig. 9: Example HBCNs modelling 4-phase, half-buffer QDI

circuits. Blue lines are valid data transitions; red lines are

spacer transitions; squares are backward propagation places;

circles are forward propagation places.

In this model, the delay of a place (d(p)) is equivalent to the

delay of a propagation path. Because it is possible to constrain

these propagation paths using SDDS-NCL and the pseudo-

synchronous flow, it is fair to assume that all these paths will

have a same maximum delay. Therefore, a single delay λ is

assigned to each of them, which is the desired maximum delay,

used as a pseudo-clock period. Consequently, the arrival time

inequation is slightly modified to aj ≥ ai + λ − m0(p)φ.

A system of arrival time inequations is extracted from the

HBCN model, the maximum cycle time value φ is set to the

desired value and the value of λ is maximised using a linear

programming solver. This is the third original contribution of

this article. The computed maximum value of λ is used to

constrain the timing arcs of the original circuit, see Figure 8.

The intuition behind the method is to discover “how slow”

each stage can be without violating the φ constraint. Logic

stages “slower” than λ may impact the maximum cycle time,

violating φ.

To demonstrate the method, the LP formulation in Table I is

used to compute the maximum delay constraint for the 3-stage

circular buffer shown in Figure 9(b) to the maximum cycle

time of 5ns. It states that the value of λ should be maximised,

subject to φ = 5 and the system of arrival inequations. Each
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line corresponds to a place in the HBCN and states that the

transition on the postset of that place should occur at least λ
time units after the transition on the preset, except on places

with tokens where the transition can occur φ time units ahead.

Running this model on Gurobi LP solver results in λ = 833ps.

Maximise: λ
Subject To: φ = 5
ar0 ≥ ar1 + λ− φ ar1 ≥ ar2 + λ
ar2 ≥ ar0 + λ ar0′ ≥ ar1′ + λ
ar1′ ≥ ar2′ + λ ar2′ ≥ ar0′ + λ− φ
ar2′ ≥ ar1 + λ− φ ar1 ≥ ar0′ + λ
ar0′ ≥ ar2 + λ ar2 ≥ ar1′ + λ
ar1′ ≥ ar0 + λ ar0 ≥ ar2′ + λ

TABLE I: LP formulation to compute the maximum delay λ
to constrain the HBCN from Figure 9(b) to a maximum cycle

time of 5ns.

V. THE PULSAR OPTIMISATION FLOW

Figure 10 depicts the Pulsar optimisation flow, the fourth

original contribution of this article. Pulsar is a set of TCL

scripts driving the Cadence™ framework. Logic synthesis and

optimisation employ Genus™ 18.1. Placement and routing are

achieved with Innovus™ 18.1.

Original NCL circuit

Logical Optimisation

Mapped X-Netlist

Fix X-Netlist

NCL Pseudo
Synchronous
Virtual Library

NCLP
Pseudo

Synchronous
Virtual Library

Mapped Netlist

Pseudo
Synchronous 
Constraints 

Incremental 
NCLP Optimisation

Logical Optimisation Flow

Incremental NCL
Optimisation

Optimisation
changed logic

domains?

Yes

No

Netlist for physical
synthesis

Export for Physical 

Fig. 10: The Pulsar optimisation flow.

The flow takes a pre-synthesised NCL netlist as input. This

netlist contains both combinational and sequential elements.

Pseudo-flops are explicitly instantiated as sequential elements

in pipeline stages. NCL gates implement combinational logic

for both forward and backward propagation between sequential

elements. Alternatively, Boolean expressions can be used to

describe the behaviour of combinational logic as VFs.

The pipeline structure is that in Figure 8. Forward-

propagation logic is always positive unate, meaning it pre-

serves the logic protocol of the inputs. Conversely, backward-

propagation (completion detection) logic is negative unate,

meaning that it inverts the protocol of its inputs. Hence,

sequential elements have their inputs at opposite domains.

SDDS-NCL requires that the logic be strictly unate, mean-

ing that all inputs of a gate must reside on the same domain.

Since SDDS-NCL is only used for combinational logic, there

is no problem in having sequential gates with their inputs at

different domains. To solve this, a “size only” constraint is set

on all sequential elements to preserve their logic function.

Genus synthesises and optimises the combinational logic

in both backward and forward propagation paths. Synthesis

and optimisation must meet some requirements to generate

a fixable X-Netlist: (i) they must not generate intermediate

circuits with binate functions, as gates in these circuits have

inputs at different domains (RTZ and RTO), which would

break the circuit behaviour; (ii) they must not produce circuits

with gate inputs tied to a constant, as a constant at gate inputs

may inhibit the set or reset behaviour of NCL(NCL+) gates.

Since in our design flow the input always implements unate

functions, all internal nodes should be unate in the paths

start points, i.e. primary inputs and sequential barrier outputs.

However, according to Das et al. [16] it is possible that

the synthesis tool to perform a binate realisation of a unate

input function. To overcome this issue Moreira [17] proposes

using design for testability (DFT) techniques, guaranteeing

that requirement (i) above is always meet. Requirement (ii) is

fulfilled setting “iopt force constant removal=true” on Genus.

Assuming the initial circuit description is NCL (i.e. RTZ),

the output of sequential gates are guaranteed to be RTZ,

since they were preserved during the initial synthesis and

optimisation steps. It is also safe to assume from this condition

that all primary inputs are also RTZ.

To produce a circuit with the correct behaviour, gates which

are in the RTO domain must be NCL+ and gates in the

RTZ domain must be NCL. The combinational logic in both

forward and backward propagation paths are processed using

a variation of the Fix X-Netlist algorithm proposed by Moreira

et al. in [4]. In the Fix X-Netlist algorithm, a gate is considered

in RTZ if its non-inverting fan-ins are RTZ and its inverting

fan-ins are RTO. Conversely, a gate is considered in RTO if

its non-inverting fan-ins are RTO and its inverting fan-ins are

RTZ. This is shown in Figure 11.

If a combinational gate is classified as both RTO and RTZ,

the X-Netlist is deemed unsuitable for correction and the

synthesis is invalid. The only gates allowed to be in both RTO

and RTZ domains are the sequential barriers, but these do not

need to be processed by the Fix X-Netlist algorithm.

The initial netlist correction may result in a circuit that no

longer meets the design constraints. Thus, further optimisation

steps are performed to meet these. These steps are run on

each set of gates independently, to avoid undoing the initial
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Fig. 11: Gates classification into RTO and RTZ

netlist correction. After optimising a set of gates, the X-Netlist

correction algorithm is re-run to correct any domain changes

introduced by the optimisation. These steps are iteratively run

until no gate is replaced by the correction algorithm.

After logic synthesis, optimisation and correction steps, the

final netlist can be placed and routed by a physical synthesis

tool. However, meeting timing constraints during physical

synthesis may require some additional optimisation steps. If

the logic is changed during these steps, logical correctness of

the circuit may be compromised.

Prior to place and route, all NCL+ gates are marked

with “dont touch” and “dont use”, all NCL gates are marked

“size only” and buffers and inverters are left free for the

physical synthesis tool to use. This guarantees the logic will

not suffer any changes during physical synthesis and gives the

physical synthesis tool enough freedom to place buffers and

resize gates to meet timing.

VI. EXPERIMENTAL RESULTS

A 32-bit integer multiply-and-accumulate (MAC) design

serves here as a case study to validate the Pulsar method.

The target technology is the 65nm bulk CMOS from STMi-

croelectronics, for which we have implemented the ASCEnD-

ST65-NCL library [18], containing more than 600 NCL cells.

This library is compatible with the foundry core library of the

selected technology. Uncle [19] produces the input NCL netlist

for Pulsar. It was chosen to design the example MAC circuit

due to its design capture flexibility, making it easy to develop

complex circuits while maintaining a degree of control over the

pipeline architecture. Uncle performs dual-rail expansion and

generates the completion detection circuit for each pipeline

stage automatically. It also does latch balancing (retiming),

which improves circuit performance. Besides taking advantage

of the design capture, dual-rail expansion and retiming, Uncle

is also a basis for comparison.

Figure 12 shows the MAC architecture HBCN model. This

model is simplified by merging parallel paths, i.e. the two

multiplier inputs are acknowledged by a same completion

detector. Therefore, these are represented as a single input.

The same is true for any of the registers and the output.

The MAC comprises a 2-stage linear pipeline and a 4-

stage loop. A multiplier is at the linear pipeline input and
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r5
'
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r3
'
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'
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r2
'
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Fig. 12: HBCN of the MAC circuit used in the experiments.

an adder is at the point where the linear pipeline encounters

the loop. Logic spreads in these stages using Uncle’s latch-

balancing optimisation. A 4-stage loop design was chosen to

allow the simultaneous propagation of bubbles and tokens. The

2-stage linear pipeline provides room for the latch-balancing

optimisation to spread the multiplier logic.

The MAC HBCN model allows calculating the pseudo-

clock period that constrains it to a given maximum cycle time.

Using the LP method proposed in Section IV, it was found that

the pseudo-clock period constraint must be set to one fourth

of the desired maximum cycle time constraint.

An RTL-like Verilog description composed of latches, re-

gisters and arithmetic operators derives from this HBCN. This

description is the source to synthesise a synchronous netlist

of Uncle’s ANDOR2 gates using Genus. The synchronous

synthesis step uses a 0 “max delay” constraint on all paths

to produce the shortest path arithmetic circuit.

Uncle expands each gate of the synchronous netlist to a

dual-rail netlist of its internal library of NCL gates and im-

plements the completion detection circuitry. It also optimises

the NCL netlist by moving registers to balance the pipeline,

and merges NCL gates according to pre-established patterns.

The netlist of Uncle NCL gates is mapped to equivalent

gates of the ASCEnD-ST65-NCL with arbitrary drive strength.

This netlist is used in two synthesis flows: one that preserves

gate functions using a “size only” constraint, hence called the
Uncle flow; and the Pulsar flow where logic optimisation is

allowed. In both flows a pseudo-clock was used to constrain

the maximum cycle time and guide the synthesis effort.

Note that despite being called Uncle flow, the synthesis flow

which preserves the gate functions includes optimisations not

present in the flow proposed by Reese et al. [19]. Genus is

used to resize gates and insert buffers in the design prior to

physical synthesis. This is required to allow a fair comparison

and to adjust the netlist to use the appropriate drive strengths

available on the ASCEnD-ST65-NCL library.

ASCEnD-ST65-NCL has three PVT corners available: the

Best Corner, characterised with fast transistors at −40 ◦C and

1.1V; the Nominal Corner, characterised with typical tran-

sistors at 25 ◦C and 1V; the Worst Corner, characterised with

slow transistors at 125 ◦C and 0.9V. Both Uncle and Pulsar

flows were used to perform a pseudo-clock period sweep
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to evaluate how each flow is affected by timing constraints.

All synthesis were performed using the Worst Corner for

timing analysis, and the Best Corner for power analysis using

Genus multi-mode, multi-corner (MMMC) synthesis. Timing

annotation was based on SDF files extracted from each layout

at the three different PVT corners. An MMMC corner is used

to switch the library to a version containing the pseudo-latch

gates for these annotations.

The final layout netlists were simulated using delays extrac-

ted from the layout for a period of 10 μs using Questa 10.6e.

The simulation environment is ideal, it reacts immediately to

handshakes on the circuit inputs and outputs, acting as the

ideal sink and source model to the HBCN. This approach

keeps the pipeline always full and ensures that the worst case

cycle times are internal to the circuit.

The environment collects three performance metrics: (i)

the cycle time at the input, which is the time between two

subsequent data token insertions; (ii) the cycle time at the

output, i.e. the time between expelling two subsequent data

token from the circuit; and (iii) the effective latency, i.e. the

time required for a token at the input to produce a new token

at the output. Cycle time measurements translate to the time

between firings of the data token transition in the HBCN.

Figure 13 shows the distribution density of these per-

formance metrics for the Worst Corner simulation of the

circuit synthesised using the Pulsar flow with a pseudo-clock

constraint of 0.8 ns, corresponding to a cycle time of 3.2 ns.

Fig. 13: Distribution density of the performance metrics for

the Worst Corner simulation of a MAC synthesised using the

Pulsar flow, with a pseudo-clock period constraint of 0.8 ns,
corresponding to a cycle time constraint of 3.2 ns.

Cycle time measurements taken at the input and output

are affected by the circuit internal cycle times. They evaluate

the throughput of the circuit at its input and output under

ideal conditions, serving as a measure of the overall circuit

performance. The input and output cycle time measurements

combined are called the effective cycle time.

Figure 14 shows a compilation of the performance meas-

urements extracted from post-layout simulations of the MAC

for different target pseudo-clock constraints. It shows how the

pseudo-clock affects the synthesised circuit cycle time and

latency under the Uncle and Pulsar flows. Measurements at

each PVT corner appear as a range of values around the mean

effective cycle time. Black dashed lines indicate the maximum

cycle time constraint calculated for the circuit, depending on

the pseudo-clock constraint.

(a) Pulsar flow. (b) Uncle flow.

Fig. 14: Effective cycle time and latency of the 32-bit MAC

synthesised under pseudo-clock constraints. Extracted from

post-layout, delay annotated simulation, under different PVT

conditions. The dashed black line is the cycle time constraint.

The time slack (Figure 15(a)) is the difference between the

worst path delay and the pseudo-clock period constraint, and is

reported by the STA tool. A negative slack value indicates that

the circuit is not guaranteed to meet the cycle time constraint.

Energy results in Figure 15(b) come from static power

analysis using switching activity annotations (in SAIF) from

delay simulation at the Best Corner. The estimated power (in

mW) is multiplied by the mean cycle time (in ns) to produce

the average energy consumption per operation values (in pJ).

Area results in Figure 15(c) are evaluated through silicon

efficiency. This is calculated by dividing the worst throughput

by the area consumption. The worst throughput is calculated

from the maximum cycle time of the worst case simulation

and the area is extracted from the physical synthesis reports.

VII. CONCLUSIONS AND ONGOING WORK

Pulsar enables the sign off of target cycle times for QDI

circuits using commercial EDA tools. This is a major break-

through for QDI designers, as they can now safely bound

worst case performance metrics for their target applications.

Moreover the flow enables designers to naturally trade per-

formance for power or area optimisations, whenever there is

slack in timing budgets. Figure 14(a) shows that Pulsar enables

the implementation of circuits with tighter constraints than

those achievable with traditional approaches. Tools such as

Uncle limit post-technology mapping optimisation to only re-

sizing and re-buffering, as Figure 14(b) makes clear. This is
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(a) Post-layout time slack from pseudo-clock constraint.

(b) Energy per operation. (c) Silicon Efficiency.

Fig. 15: Results highlighting the Pulsar optimisation potential.

further evidenced by the pseudo-clock time slack graph in

Figure 15(a), where Pulsar shows a positive slack at smaller

pseudo-clock period constraints. Even when violating timing,

Pulsar shows a small negative slack between 0.6 ns and 0.8 ns
that can either be corrected using Engineering Changing

Orders (ECO) in Innovus for sign-off, or is tolerable in some

applications, without a significant reduction in cycle time. To

produce circuits that meet more restrictive timing constraints,

Pulsar introduces some power overhead, as Figure 15(b)

demonstrates. When timing is met by both flows, these obtain

similar power consumption. Pulsar shows better overall silicon

efficiency, as Figure 15(c) depicts. This advantage is more

prominent on the regions where Uncle is no longer able to

meet the timing constraint but Pulsar is.

A circuit with negative slack may still meet the cycle time

constraint because the approach presented in Section IV is

conservative. That is, every stage is constrained equally to

meet the requirements of the maximum cycle time, with no

regard for available slack. This can be seen on the model in

Figure 9(b): to achieve a 5 ns cycle time the only places that

need to be constrained to 833 ps are the 6 places participating

in the maximum cycle, i.e. the orange dashed line. All other

places have free slack and could be as slow as 1.66ns without

affecting the maximum cycle time. This can be optimised by

introducing additional pipeline stages to balance the free slack.

For example, the MAC shown in Figure 12 has a 4-stage

loop that breaks the 6-place worst cycle of the 3-stage loop in

two 4-place cycles, each with its own token. The introduction

of pipeline stages could be automated using the technique

proposed by Beerel [13]. Alternatively, this free slack can be

exploited to allow more relaxed timing constraints on certain

arcs. Exploring these optimisations is ongoing work.
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