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Abstract— Asynchronous quasi-delay-insensitive circuits are
known for their robustness against variations, but their wide-
spread use has been prey to the absence of adequate design
methods and lack of design and verification tools. The recently
proposed Pulsar flow enables the design and optimisation of
quasi-delay-insensitive circuits using conventional EDA tools,
enhanced by adequate libraries, methods and models. Pulsar
enables designers to naturally trade performance for power or
area, whenever there is slack in timing budgets. However, Pulsar
lacked an automated dual-rail expansion method to support its
operation, requiring that designers manually develop a timing
model as input to the computation of asynchronous cycle time
constraints. This paper proposes and describes the features of
a frontend for Pulsar. Pulsar-F, the new flow version can be
used as a push-button design tool for asynchronous QDI circuits.
Pulsar-F adds the following features to Pulsar: (i) an RTL-based
design capture method; (ii) a heuristic, timing-driven single-
rail pre-synthesis process using commercial EDA tools; (iii) a
dual-rail expansion technique with fine-grain acknowledgement
network generation; (iv) a tool that automates the computation
of the Hal-Buffer Channel Network (HBCN) graph-based timing
model for pre-synthesised circuits and derives a set of timing
constraints for it. Experiments show that Pulsar-F improves
Pulsar to further aid asynchronous designers to trade off power,
area and performance.

I. INTRODUCTION AND RELATED WORK

The evolution of integrated circuit technologies brings un-
certainties concerning the results of the fabrication process, as
well as the susceptibility of chips to supply voltage effects such
as IR drop and to environmental effects such as temperature
variations. These effects can be particularly relevant during
the design and deployment of systems for eagerly expected
newer technologies such as the Internet of Things (IoT).
Dealing with process, supply voltage and temperature (PVT)
variations, harsh environmental conditions such as radiation
or strict limits on power and heat dissipation requires circuits
that are robust in several aspects. In this scenario, quasi-delay-
insensitive (QDI) circuits can provide an elegant solution.

QDI circuits are naturally robust against delay variations
and can handle PVT effects arguably better than synchronous
design or even better than other asynchronous circuit tem-
plates, such as bundled-data. Unfortunately, designing QDI
circuits is often a laborious manual work that requires detailed
knowledge on convoluted asynchronous techniques. Also, QDI
designs are frequently handcrafted cell by cell, impairing its
adoption in a larger scale. Synchronous design has coped with
technology scaling to the tens of manometers and the last
decades saw little interest from traditional electronic design
automation (EDA) vendors in supporting QDI circuits. As a
consequence, asynchronous design automation is still in its

infancy, especially when compared to what is available to
synchronous designers.

Despite not being in widespread use, QDI design found
niches like security [1] and high speed circuits [2]. Often,
given a promising application, a new QDI design (style) is
devised and a specific set of tools built to support it [3].
Research groups proposed tools and flows like Balsa [4],
Teak [5], Uncle [6] and Proteus [7]. What most of these
QDI design tools share was the fact that they could not rely
on traditional EDA for synthesis and optimisation, usually
requiring specific languages and models for design capture.

An analysis of the state of the art reveals that Proteus, Uncle
and Pulsar [8] are works that got the closest to leveraging
traditional EDA, design capture models and methods for
QDI design. Uncle provides a way to use traditional EDA
for design capture and limited logical optimisation, relying
on custom software for technology mapping and specialised
optimisations, e.g. relaxation, retiming, cell merging and net
buffering. However, Uncle cannot take full advantage of
seasoned synthesis and logic optimisation algorithms, mostly
because the cells it instantiates are not modelled according
to the specifications of traditional tools. Proteus counts with
a sophisticated frontend flow, where asynchronous channels
are modelled using SystemVerilog and design capture is done
through a communicating sequential processes (CSP) model.
It targets however, an even more specific set of cells that are
implemented as dynamic domino logic gates, limiting its use
to a larger set of QDI templates.

Pulsar, on the other hand, has its roots in an asynchronous
template called SDDS-NCL, which was proposed to support
the use of traditional commercial EDA frameworks, being
mostly compatible with traditional commercial tools. Fur-
thermore, Pulsar allows using standard static analysis (STA)
tools for optimising the asynchronous cycle time of its target
circuits. Unfortunately, in its first version Pulsar required a
manually designed Verilog input file describing the behaviour
of the circuit, logic gate by logic gate. This paper describes the
latest innovations added to this flow: a frontend environment
that enables an RTL description to be fully mapped to the
SDDS-NCL QDI template, generating a Verilog compatible
with its synthesis flow and an HBCN model for cycle time
constraining. The new flow is accordingly called Pulsar-F,
where F stands for full, in the sense that Pulsar has become a
complete flow for QDI design.

The rest of this document is organised as follows. Section II
gives an overview of how to use the Pulsar-F flow. Next,
Section III explores some basic concepts that enable capturing
QDI circuit structures from conventional RTL descriptions.
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Section IV explores the need for specific libraries to support
the Pulsar-F flow and their structure. Section V approaches the
construction of timing models and their processing, which pro-
duces a set of constraints to drive the Pulsar flow application.
Experiments and their results are the subject of Section VI,
while Section VII addresses conclusions and ongoing work.

II. PULSAR-F SYNTHESIS FLOW OVERVIEW

Pulsar-F is the main contribution of this paper. It comple-
ments the Pulsar flow described in [8], constituting a push-
button tool for synthesising asynchronous QDI circuits from
an RTL description. The resulting circuit follows the SDDS-
NCL template. Pulsar applies a pseudo-synchronous design
approach and capitalises in the existence of a previously
computed HBCN timing model, leveraging the use of com-
mercial EDA tools to perform design and optimisation of
asynchronous QDI circuits. Figure 1 depicts the main features
of the Pulsar-F flow, discussed in the remaining of this Section.
To enable future enhancements, Pulsar-F comprises two parts,
a design template-independent one and a template-dependent
one. Currently, only a single asynchronous logic template is
supported (SDDS-NCL), but the scripts include provisions
to adopt other templates. Reference [8] details the physical
synthesis support by Pulsar. This is accordingly ignored herein.

As in conventional approaches, a design starts with the user
generating an RTL Verilog or VHDL synchronous description,
which can be validated by simulation and/or semi-formal or
formal verification. Once the user obtains a functionally valid
RTL description, he or she runs syn rtl a bash shell script
that calls the Cadence Genus tool to execute the Tcl script
syn rtl.tcl1. The latter contains conventional synthesis
commands, interspersed with the firing of specific actions to:
(1) read in a special component library to make the single-
rail output amenable for the ensuing dual-rail expansion; (2)
generate a circuit graph of the synthesised circuit (aided by
one specific Tcl script, analysis.tcl), which will later
be used to construct the HBCN circuit timing model. The
last action in syn rtl.tcl is calling a Haskell program
(expander.hs) to perform the dual-rail expansion of the
single-rail netlist into a virtual gate netlist [8], one of the
entries to the Pulsar flow. The input netlist is then pro-
cessed and transformed into a Virtual Netlist with virtual
gates and pseudo-flops [8], completing the Pulsar-F template-
independent part.

After the end of the Pulsar-F template-dependent part fol-
lows the execution of the bash shell script syn sdds. This
script calls the Cadence Genus synthesis tool to execute the Tcl
script syn sdds.tcl. The latter comprises all commands of
the Pulsar flow execution, but this is now preceded by calling
the Haskell program (constrainer.hs), to perform two
tasks: (1) generate a marked graph from the structural circuit
graph produced in the Pulsar-F template-independent part; (2)
Employ the marked graph for computing the timing constraints
to apply during execution of the Pulsar flow.

The single-rail RTL netlist uses the Components Library
from Figure 1. This is a Liberty format library containing a

1Frameworks like Synopsys can also be used, by editing a few Tcl scripts.

simple set of combinational and sequential components, used
by the synthesis tool to produce the netlist.

Each component has an associated SystemVerilog module,
which defines its dual-rail expansion. The dual-rail expansion
takes advantage of the SystemVerilog language interface fea-
ture to represent dual-rail, four-phase, RTZ channels. These
channels interconnect modules that implement the dual-rail
expansion of wires. SystemVerilog interfaces are also used for
constructing channel acknowledgement networks. The Dual-
Rail Expander replaces every wire in the single rail netlist
with a channel to create the Virtual Netlist.

III. DUAL-RAIL CHANNELS

Handshake channels allow the communication of tokens
between entities in an asynchronous circuit. Each channel is an
interconnection between components. They are analogous to
wires in a synchronous circuit. However, in contrast to a wire,
a channel provides synchronisation between elements. The
Pulsar-F dual-rail expansion exploits this analogy by replacing
all wires from the single-rail netlist with channels. However,
a channel requires multiple wires and some logic. To this end,
this work takes advantage of SystemVerilog interfaces. An
interface is a SystemVerilog construct that allows abstracting
interconnections on a system-level description. They are in-
stantiated and bound to module instances in place of wires.
However, each interface bundles multiple wires that are part
of the same interconnect, e.g. data, address and control lines
of a processor bus. Besides wires, interfaces include modports
that allow defining how modules relate to the interface, e.g.
as a master or as a slave. Modports define the direction that
each wire takes when the interface is bound to a module.
SystemVerilog interface and modport constructs are supported
by current commercial synthesis tools. Since an interface binds
to module instances like a wire, it is straightforward to replace
a wire with an interface instance. It only requires modifying
the Verilog file of the single-rail netlist, replacing every wire
declaration with an instance of the desired interface.

To exploit the concept, a drwire interface (see Listing 1),
is defined. This interface bundles three wires that implement
a dual-rail four-phase RTZ channel: wires t and f encode the
forward-propagating token and the ack wire carries the back-
propagating acknowledgement. This interface also features
two modports. These are used by SystemVerilog modules to
implement the dual-rail expansion of components: (i) modport
in is a replacement for input ports, binding to the channel as a
consumer; (ii) modport out is a replacement for output ports,
binding to the channel as a producer.

Listing 1: The drwire interface.

i n t e r f a c e d r w i r e ( ) ;
wire t , f ;
wand ack ;

modport i n ( input t , input f , output ack ) ;
modport o u t ( input ack , output t , output f ) ;

e n d i n t e r f a c e / / d r w i r e

Since channels are replacements for wires, they must
support multiple consumers. At any given time instant the
producer may send tokens, starting a handshake on the
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Fig. 1: The Pulsar-F synthesis flow. Blue items are user input; yellow items are either third party (commercial) tools or

conventional output by these tools; green items are this work contributions; grey items are covered in [8].

channel. The token reception must be acknowledged by all
consumers listening to the channel before the producer can
send more tokens. This means that the producer must receive
the acknowledgement only after all consumers have acknow-
ledged reception. The situation where a channel feeds two
or more consumers characterises a fork. This is implemented
by merging the concurrent acknowledgements coming from
different consumers with n-input C-elements, i.e. the channel
acknowledgement only raises (lowers) when every consumer
has raised (lowered) its acknowledgement. A multiple n-input
C-element (n > 2) is commonly implemented using a tree
of simple C-elements. This tree of C-elements is also known
as the acknowledgement network, because it propagates the
acknowledgement from consumers to producers in the channel.

To implement forks transparently in channels, this work uses
the Verilog wired-and type (wand) to create the acknowledge-
ment network. A wire declared as wand is a wire that and-
reduces multiple assignments. Synthesis tools implement wand
wires as n-input AND gates, where every assignment creates a
new input. Reading from a wand wire yields the output of the
associated n-input AND gate. During synthesis, this n-input
AND gate corresponds to an and-reduction virtual function
(v-function)2. V-functions are used to select NCL or NCLP
gates during synthesis, according to the required protocol.
By design, all channels in the Virtual Netlist implement
the RTZ protocol. Therefore, the v-functions associated with
the channel are interpreted as v-functions of NCL gates. C-
elements are valid NCL gates and they can be selected by
their v-function during synthesis. The v-function of an NCL
gate is its activation function. The activation function of an
n-input C-element is the and-reduction of its inputs, i.e. its
output changes to one when all inputs are one. Therefore,
the and-reduction v-function is realised by an n-input C-
element on RTZ. This allows creating the acknowledgement
network for the channel, by setting the ack wire type to
wand in the drwire interface definition. The use of drwire
allows the construction of fine-grain channel networks, where
each channel represents a single dual-rail “bit”. Combinational

2A virtual function is the ON-set or activation function of an NCL gate or
the OFF-set or activation function of an NCLP gate, as detailed in [8].

components bind to channels passively, manipulate tokens and
propagate acknowledgements between inbound and outbound
channels. Conversely, sequential components bind to channels
as active producers and consumers. They consume tokens from
their inbound channels and commence handshaking on their
outbound channels. The construction of this fine-grain channel
network allows handshakes to be performed only where data
dependency exists. Parallel independent channels in a bus can
handshake concurrently. This allows e.g. that individual bits in
an adder complete handshaking as soon as their computation
is ready, regardless of other bits computations.

IV. THE LIBRARY OF COMPONENTS

A single-rail netlist instantiates sequential and combina-
tional components from the Components Library, which have
no associated physical layout. Instead, each component is
expanded by a SystemVerilog module that binds to channels
implemented by the drwire interface.

Combinational components bind passively to their input and
output channels, meaning that they do not complete hand-
shakes, and act as passive consumers and producers. Combin-
ational components combine tokens from their input channels
on the output channel. They propagate the acknowledgement
between their output and input channels. Conversely, sequen-
tial components are active handshaking elements that control
the propagation of tokens in the pipeline. They complete
handshakes between input and output channels.

The mentioned SystemVerilog modules are instantiated in
the Virtual Netlist. The contents of these modules are used
during the synthesis process to implement a circuit following
the SDDS-NCL template. Combinational components are ex-
panded using virtual functions and sequential components are
expanded to pseudo-synchronous WCHB registers. The next
Sections covers each component type expansion process.

A. Combinational Components
A combinational component binds to drwire channels.

Since the drwire interface implements dual-rail RTZ en-
coded channels, a component expansion needs to implement
adequate DI logic to manipulate dual-rail RTZ codewords. To
this end, each component implements the Delay Insensitive

5

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on November 30,2021 at 11:08:59 UTC from IEEE Xplore.  Restrictions apply. 



Minterm Synthesis (DIMS) [9], [10] expansion of its equival-
ent gate as a SystemVerilog module. The module expresses
the activation function of each rail as a sum-of-products with
all valid minterm combinations.

In DIMS the activation function is realised by directly
mapping conjunctions (AND) to C-Elements and disjunctions
(OR) to OR gates. Similarly, when employing the RTZ pro-
tocol an NCLnOFn gate (a C-Element) is represented by the
conjunction v-function and an NCL1OFn (an OR gate) is
represented by the disjunction v-function. This implies that
the DIMS activation function is equivalent to a v-function
on the RTZ protocol, which enables the use of the SDDS-
NCL flow to realise the combinational component dual-rail
expansions. However, the traditional DIMS mapping is only
one of the possible realisations for this v-function. The SDDS-
NCL flow enables commercial EDA tools to optimise and
map v-functions resulting from the combination of elements
to gates of an existing library.

To map v-functions during synthesis, each of these expres-
sions are assigned to an output rail in the expansion module.
This module, an example of which appears in Listing 2,
is implemented in SystemVerilog. Ports of the module are
channels created with drwire interfaces. Input ports use
the drwire.in modport and outputs use the drwire.out
modport. The output channel acknowledgement directly con-
nects to the input channels acknowledgement. The module is
instantiated by the Virtual Netlist during the SDDS-NCL flow
execution.

Listing 2: The nand2 expanded module.

module nand2
( d r w i r e . i n a ,

d r w i r e . i n b ,
d r w i r e . o u t y ) ;
a s s i g n y . t = a . f & b . f |

a . f & b . t |
a . t & b . f ;

a s s i g n y . f = a . t & b . t ;

a s s i g n a . ack = y . ack ;
a s s i g n b . ack = y . ack ;

endmodule / / nand2

To construct the Virtual Netlist, it is first necessary to syn-
thesise a single-rail netlist. This instantiates standard cells by
name. The Virtual Netlist is a simple textual transformation of
the single-rail netlist that preserves the name of the instantiated
cells. Therefore, for the Virtual Netlist to instantiate compon-
ents, a cell with the same name must be selected during the
single-rail synthesis. For this reason, components are modelled
as cells in the Components Library. Table I presents the list
of available combinational components in this library. nand2
and nor2 are the most fundamental components. Paired to
inv these can generate any combinational logic. xor2 is
provided to allow efficient implementations of arithmetic logic
and buff is provided to allow forking a channel.

The synthesis tool is driven by timing, it attempts to
synthesise the circuit with the smallest area that meets the
timing constraint. This work takes advantage of this fact to
guide the single-rail synthesis to produce a virtual netlist
that is simpler to synthesise. For that, virtual delay and
area values are assigned to combinational elements of the

Components Library according to the complexity of their v-
function expansions. This heuristics attempts to produce a
dual-rail netlist with simpler v-functions for each rail.

Table I also presents the virtual delay of combinational
components in the library. The virtual delay corresponding
to the true rail v-function is expressed in the rise transition.
Conversely, the virtual delay corresponding to the false rail is
expressed in the fall transition. Timing estimations are based
on the minimal number of 2-input gates required to activate
the virtual function in a disjunctive normal form, for each
OR gate a 5 ps delay is attributed, and for each AND gate
a 10 ps delay is attributed. For instance, consider the nand2
gate. Activating its true rail v-function requires activating one
AND gate and two OR gates, totalling 20 ps. In contrast, the
inv component, when using dual rail code, is basically two
crossed wires, it does not introduce any additional logic to
channels, therefore it has a 0 ps delay.

B. Sequential Components

Another class of components used during the dual-rail ex-
pansion are sequential components. These implement registers
in asynchronous pipelines. They are modelled as flip-flops on
the single-rail synthesis, allowing standard synthesis tools to
instantiate them from canonical RTL constructions. The se-
quential components expand to dual-rail pseudo-synchronous
WCHB registers, providing endpoints to be used during
the SDDS-NCL flow. Sequential elements bind to drwire
channels actively, performing handshake on their input and
output channels. There are three sequential components in the
Library: (i) the dff half-buffer dual-rail RTZ register; (ii)
the dffr resetable full-buffer component; and (iii) the dffs
settable full-buffer component. These are detailed next.

Figure 2a depicts the implementation of a half-buffer dual-
rail RTZ register. The half-buffer register is the simplest se-
quential component and is the base for constructing pipelines.
It connects to an input channel d and to an output channel
q. The half-buffer consists of: two resetable C-Elements,
here named using the NCL-style threshold gate denomination
RNCL2OF2; one OR gate (NCL1OF2); and an inverter. When
the output channel acknowledges the reception of a null (valid)
token, the resetable C-Elements can latch an incoming valid
(null) token. This register operates on RTZ channels, valid
token codewords are one-hot and null token codewords are
presented by all bits in 0. Therefore, an OR gate acknowledges
when either a valid or null token has been latched in the input
channel. A null token is acknowledged by lowering the ack
wire of the input channel and a valid token is acknowledged
by rising the same signal. The inverter on the output ack wire
enables the alternation between reset and evaluation phases.

During initialisation it is important to place the circuit in a
known state. This is due the fact that all components in the
circuit consist of gates with hysteresis, which start at unknown
initial states. A QDI circuit with an unknown state may operate
improperly, as it may start at an invalid state. Both RTZ and
RTO protocols require that combinational components outputs
are null prior to entering the evaluation phase. Thus, it is
important to initialise all combinational components in the
circuit by propagating the null codeword.
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TABLE I: Combinational gates in the Components Library.

Component Rail Virtual Function Transition Virtual Delay

nand2
True y.t = (a.f ∧ b.f) ∨ (a.f ∧ b.t) ∨ (a.t ∧ b.f) Rise 20 ps
False y.f = a.t ∧ b.t Fall 10 ps

nor2
True y.t = a.f ∧ b.f Rise 10 ps
False y.f = (a.t ∧ b.t) ∨ (a.t ∧ b.f) ∨ (a.f ∧ b.t) Fall 20 ps

xor2
True y.t = (a.t ∧ b.f) ∨ (a.f ∧ b.t) Rise 15 ps
False y.f = (a.t ∧ b.t) ∨ (a.f ∧ b.f) Fall 15 ps

inv or buff
True y.t = a.f or a.t Rise 0 ps
False y.f = a.t or a.f Fall 0 ps

For the reason stated above, half-buffer registers employ re-
setable C-Elements that initialise their output channels to null
codewords. Null codewords propagate through combinational
components in cascade, placing the forward propagation logic
in a well-known state. Similarly, the backward propagation
logic on the input channel must also be initialised. When the
register initiates the output rails low, the OR gate sets the
acknowledgement signal of the input channel low. This signals
that the channel is ready to receive new data, an information
which cascades in the backward propagation of the inbound
channel, initialising it. This is evident when the HBCN model
depicted in Figure 2b is analysed. Here, the inbound channel
is represented by four places preceding the register and the
outbound by four places succeeding the register. The initial
marking represents the initial state of the channel, it marks
that both channels are ready to accept new data tokens.
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Fig. 2: The dff half-buffer dual-rail register.

Sometimes it is necessary to initialise a circuit with data.
For example, a counter must initialise to a known data value.
This implies initialising some channels with valid tokens. This
can be achieved using the full-buffer components depicted
in Figure 3. The resetable full-buffer component, depicted
in Figure 3a, places a valid false data token in the circuit.
Similarly, the settable full-buffer component places a valid
true data token in the circuit. A full-buffer component can
simultaneously hold a data and a null token. This separates its
interfacing channels by a full handshake cycle.

The full-buffer component comprises three half-buffer re-
gisters in sequence. These are required to place a data token
in the pipeline while correctly initialising the inbound and
outbound channels. Propagating data tokens in a circuit at
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Fig. 3: A full-buffer component.

an unknown state would yield invalid results. Therefore, the
first and the last are regular half-buffer registers that reset to
null. These two registers are responsible for initialising the
inbound and outbound channels. Due to the provided isolation,
the middle register can safely reset to a data token without
compromising circuit initialisation. This is implemented by
instantiating a settable C-Element (SNCL2OF2) for either the
true or the false rail, depending on the required behaviour.

The behaviour of full-buffer components is further evid-
enced by an analysis of its HBCN model, depicted in Fig-
ure 3b. Here, the inbound and outbound channels are initialised
to a state where both are ready to accept new tokens, similar
to the initial state of the half-buffer register. However, two
channels internal to the component are initialised respectively
to a data and a null token. These internal channels contain no
logic, thus they do not need to be initiated by a null token.

The settable and resettable C-elements employed in full-
buffer components are pseudo-flop instances. A pseudo-flop
allows breaking the cycles of WCHB pipelines and using
STA to analyse the forward and backward propagation paths.
This is important during the sequential synthesis part of the
SDDS-NCL flow. However, a commercial EDA tool does not
safely infer these gates from implicit register construction.
Therefore, pseudo-flops are instantiated in the SystemVerilog
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module implementing the sequential component expansion.
The implementation of sequential component expansions is
in fact a technology-dependent step.

Just as in the case of combinational components, sequen-
tial ones are also instantiated by name during the single-
rail synthesis. They are modelled as D-type flip-flops in the
component library Liberty file. The settable and resettable full-
buffer components are modelled as flops with preset and reset,
respectively. The half-buffer register is modelled as a D-type
flip-flop with neither reset nor preset control signals. This
approach contrasts with Uncle [6], where half-buffer registers
are modelled as latches. Note that according to the authors
experience, standard EDA tools do not support retiming latch
circuits. Therefore, modelling sequential components as flops
additionally enables performing retiming during single-rail
synthesis. This balances the amount of components employed
in each pipeline stage and opens new opportunities for optim-
isation in early synthesis steps.

V. HBCN BUILDING AND CYCLE TIME CONSTRAINING

Pulsar-F computes the pseudo-synchronous Design Con-
straints used during the Sequential SDDS-NCL Synthesis Flow
(see Figure 1). The flow computes the HBCN model that
serves to automatically produce constraints it requires.

The HBCN model is calculated from a structural graph
extracted from the single-rail netlist. This is a directed graph
that describes the single-rail netlist timing paths. In it each ver-
tex represents sequential components or ports, and each edge
represents a channel connecting two registers. Since combina-
tional components are transparent to the handshaking process,
they are abstracted. Each vertex has a name, identifying the
component it represents. There are three types of vertices:
(i) Port identifies input and output ports; (ii) NullReg
signals half-buffer components; and (iii) DataReg identifies
full-buffer components. The structural graph adjacency list is
exported to a file during the single-rail synthesis. Each file
line represents a vertex, containing its type, name and a list
of successor vertices names.

Since the expansion process is well-defined, it is possible
to use the structural graph to construct the HBCN. To this
end, it suffices to traverse the structural graph, building the
HBCN based on the expansion of components represented by
vertices. For each Port vertex, a single transition pair is cre-
ated, which models the (ideal) environment3. Each NullReg
vertex represents a half-buffer register, which is modelled by
a transition pair. Each DataReg vertex represents a full-
buffer component. These comprise three registers in sequence,
modelled by a sequence of three transition pairs connected
by two channels, one channel initialising with a null token,
the others initialising with a data token. For each edge in the
structural graph, a channel is created from the last transition
pair corresponding to the source vertex to the first transition
pair corresponding to the target vertex.

After constructing HBCN, it is possible to apply the linear
programming (LP) technique presented in [8] to compute

3An ideal environment provides a input token immediately upon request
by any circuit input, and immediately consumes every token produced at any
circuit output.

the pseudo-clock and timing exceptions. The pseudo-clock is
used to constrain the delays of combinational components in
the circuit. However, the full-buffer component contains two
internal channels comprising no logic. These internal channels
can be individually constrained to a minimal delay value. This
minimal delay is parameterisable and depends on the target
technology, but it must be enough to cover the delay of a C-
element and a NOR gate. The constraining of these paths to a
minimal delay affects the computation of the pseudo-clock. If
these take part in a critical cycle, they can allow the pseudo-
clock constraint to assume a more relaxed value.

The process of computing the timing constraints is handled
by the HBCNConstrainer program. This program com-
putes HBCN from the structural graph. It uses the HBCN
model to define the system of arrival equations constrain-
ing the cycle time to a specified target cycle time con-
straint. The program invokes the GLPK LP solver (ht-
tps://www.gnu.org/software/glpk/glpk.html) to solve the sys-
tem of arrival equations. From the solution provided by GLPK,
it produces a Synopsys design constraints (SDC) file. This
SDC file contains the pseudo-clock constraint used during
the Virtual Netlist synthesis. HBCNConstrainer can optionally
generate timing exceptions for paths with free slack, allowing
more relaxed timing constraints on non-critical paths.

VI. EXPERIMENTAL RESULTS

The frontend for the Pulsar-F flow was initially validated by
synthesising and simulating a set of multiply and accumulate
(MAC) units under a range of timing constraints. MACs were
chosen as example circuits due to their logic complexity and
non-linear pipeline structure. Non-linear pipelines are good
case studies for evaluating the HBCN timing constraining
capabilities, because they present non-trivial maximum cycle
times. The accumulator of a MAC comprises a circular buffer.
This buffer can be implemented with different numbers of
pipeline stages. Four different MAC architectures were thus
designed comprising 3 to 6 circular buffer stages. These
MACs present the same external interface and behaviour, they
multiply two 16-bit numbers from the input and add the 32-bit
result in an accumulation loop. The new accumulator value is
presented to the output after every computation cycle. This
allows using the same testbench for simulating each MAC
architecture.

The MACs were synthesised using the Pulsar-F flow from
synchronous RTL descriptions. Single-rail synthesis was con-
ducted by the Cadence Genus 18.1 tool with retiming enabled.
The optimisation effort was set to extreme and the circuit
was synthesised with a nought clock period constraint. Genus
was also configured to optimise the total negative slack.
These settings were used to minimise the logical depth of
each pipeline stage. The single-rail synthesis of the RTL
descriptions resulted in virtual netlists with the characteristics
summarised in Table II. Here, the worst virtual delays indicate
the complexity of the v-function composition for the longest
path in the circuit.

The final SDDS-NCL netlists were implemented with NCL
and NCLP gates from the ASCEnD-ST65 [11] library for
the STMicroelectronics 65nm technology node. This library is
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TABLE II: Characteristics of the virtual netlists for each MAC.

Component Count

Circuit Worst vDelay Comb Seq Total

3-stage MAC 335 ps 2094 206 2300

4-stage MAC 205 ps 2088 267 2355

5-stage MAC 150 ps 2121 344 2465

6-stage MAC 130 ps 2086 442 2508

characterised at three PVT corners: (i) the worst corner with
slow transistors operating at 0.9V and 125 ◦C; (ii) the nominal
corner with typical transistors operating at 1.0V and 25 ◦C;
(iii) the best corner with fast transistors operating at 1.1V and
−40 ◦C. Dual-rail synthesis was performed using the worst
corner. This synthesis employs a library that models settable
and resettable C-Elements as pseudo-flops. The pseudo-flop
model introduces a small error on the delay model. A clock
uncertainty of 5 ps was used to compensate for this error.
Each circuit was synthesised under a range of target cycle
time constraints, from 2 ns to 6 ns in steps of 250 ps. The
minimal delay was set to 200 ps during cycle time constraint
computation. Synthesis was performed using Genus with the
effort set to high. Physical-aware optimisation was performed
with the effort set to extreme. After running the Fix X-netlist
algorithm (the algorithm that corrects errors possibly intro-
duced in the SDDS-NCL QDI netlist during synchronous logic
synthesis [8].), physical-aware optimisation was performed on
each set of gates iteratively, until the timing was met or a
maximum number of 10 iterations was reached.

For comparison purposes, the same set of circuits were
synthesised using the methodology employed in [8]. Here, the
single-rail synthesis and dual-rail expansion were performed
using Uncle [6] with retiming optimisation enabled. Here,
the circuit HBCN models were manually computed and their
pseudo-clock constraints calculated. The gates from the Uncle
netlists were replaced by their equivalent v-functions and
pseudo-flop gates. Uncle netlists were synthesised using the
same process as the Virtual Netlist generated by Pulsar-F. This
yields a set of SDDS-NCL netlists that serve as a baseline for
comparison. The two netlist sets were produced from the same
RTL description and processed by the same backend flow, the
only difference between the two being the frontend.

The SDDS-NCL netlists of both sets of experiments were
delay-annotated using the three corners from the sign-off
library. This library models the settable and resettable C-
elements as pseudo-latches. Thus, annotated delays are not
affected by the error introduced in the pseudo-flop model.
Each delay-annotated netlist was simulated with a testbench
emulating an ideal environment, isolating external influences.

From this it is possible to extract data and draw a compar-
ison. For instance, the gate area utilisation depicted in Figure 4
shows that Pulsar-F is able to better take advantage of the
timing budget to optimise area. This is especially evidenced in
the 3-stage MAC, where the Baseline implementation presents
mostly constant area values across the various constraints,
while Pulsar-F is able to trade area usage against performance.
For the 4-stage MAC, the Baseline shows better area results on

(a) Pulsar-F. (b) Baseline.

Fig. 4: Gate Area comparison.

(a) Pulsar-F. (b) Baseline.

Fig. 5: Worst timing slack as reported by Genus.

tighter clock constraints, but this is misleading, as the synthesis
presented timing violations whereas Pulsar-F could met the
timing constraint with some additional area cost (see Figure 5).

The better use of the timing budget by the new frontend is
also corroborated by the timing slacks depicted in Figure 5.
Here, Baseline rapidly consumes the timing budget provided
by the pseudo-clock, achieving a negative timing slack rather
quickly. For the same cycle time constraint, the Pulsar-F flow
was able to benefit better from the timing budget, achieving
a negative slack much later. This behaviour might be due
to the virtual delays enabling better logical optimisation and
re-timing on the pre-synthesis. It also might be due to the
comprehensive design constraints derived from the automatic
computation of the circuit HBCN by the Pulsar-F flow.

However, the negative slack in Baseline implementation
does not necessarily reflects in cycle time violations. The mean
cycle time extracted from the delay-annotated simulation,
depicted in Figure 6, shows that both circuits present cycle
time violations at similar constraints for each MAC version.
This further corroborates the advantages of computing com-
prehensive cycle time exceptions. The baseline flow relies only
on the pseudo-clock for cycle time constraining, which leads to
situations where empty buffer pipeline stages receive the same
timing budget as pipeline stages that perform computations.
The automatic computation of HBCN emits timing exceptions
for these special stages, thus allowing a more relaxed pseudo-
clock constraint for the same cycle time constraint.

Over-constraining a circuit impacts its energy consumption.
Power estimations capitalized on the Synopsys PrimePower
tool with the sign-off library and switching activity extracted
from delay annotation at the best corner. These results, nor-
malised as energy per operation, appear in Figure 7, showing
that Pulsar-F can achieve an overall higher power efficiency
compared to the Baseline. This is a step towards the applica-
tion of QDI in low-power, high-performance applications.
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(a) Pulsar-F. (b) Baseline.

Fig. 6: Mean cycle time from worst-case delay-annotated

simulation. Dots mark datapoints, red dots indicate a cycle

time violation. Missing datapoints presented malfunction.

(a) Pulsar-F. (b) Baseline.

Fig. 7: Energy consumption per operation, estimated by

PrimePower with activity annotation from the best corner

delay-annotated simulation.

VII. CONCLUSIONS AND ONGOING WORK

The experiments show that Pulsar-F improves Pulsar to fur-
ther aid designers to trade power, area and performance goals.
This is enabled by the extensive use of mature EDA tools
that take advantage of the available timing budget. The tools
that automate the computation of the HBCN model provide
additional timing budgets for EDA tools to explore. However,
experiments have also shown that using the GLPK solver to
compute the constraints is non-scaleable. Preliminary exper-
iments point that adopting more efficient tools like Gurobi
as the LP solver can improve computation time. Nonetheless,
changing solver alone does not address the current intrinsic
complexity of the problem formulation. An ongoing work to
address the issue comprises pre-processing the structural graph
to collapse parallel registers, reducing the problem complexity
and improve scaleability.

Currently, the Pulsar synthesis flow only targets the SDDS-
NCL template, but the synthesis flow frontend is designed
to be extendable. Ongoing work aims to develop backend
flows to support different QDI templates, e.g. SDDS-Velo [12],
LCL [13] and others. Another limitation of Pulsar is its lack of
formal verification, relying mostly in post-synthesis simulation
for validation. A designer has to validate the synthesis result
for possible orphan-paths hazards. An automated verification
tool that aids the designer to identify possible hazards is highly
desirable and is a planned future work.

At the moment, Pulsar supports only deterministic pipelines,
i.e. pipelines with no choice. Ongoing work attempts to
solve this issue by modelling a limited form of choice using
RTL-constructions and additional components. However this

approach has presented mixed results so far, with the synthesis
tool occasionally selecting these components in undesirable
ways. An alternative approach would be to manually instanti-
ate these choice components. However, this could obscure the
original RTL description. Also, writing valid RTL targeting
asynchronous circuits is not trivial. Not all valid RTL translates
to functional QDI circuits, since the clock assumption creates
design patterns common to RTL designers that may not
map adequately to asynchronous structures. Moreover, RTL
synthesisable to a functional QDI using Pulsar-F may in some
cases not be suitable to traditional HDL simulation. Proteus [7]
presents an interesting solution, by introducing a description
language suited for communicating systems and a compiler
that produces valid RTL. Search for alternative approaches to
provide Pulsar-F with a suitable high level entry format is
ongoing.
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