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Abstract— This paper explores asynchronous FIFOs design
choices, more specifically FIFOs from the quasi-delay insensitive
(QDI) template family. It proposes eight different asynchronous
FIFO structures on a CMOS 45nm technology, using a QDI
standard cell library. Structures are exercised through analog-
mixed-signal simulation, ranging from nominal to subthreshold
supply voltages. Follows a comparison of area, throughput and
power efficiency. The experimental results allow inferring a
technique for designers to select the most adequate QDI FIFO
flavor for specific circuits. Insight on the experiments assesses the
beneficial and/or limiting effects of using the specific cell library.

I. INTRODUCTION

Order is one of the most basic concepts in computing.
For some applications, treating inputs in the inverse order
of their arrival may be mandatory [1]. Specific applications
can even require a random or seemingly random treatment
of input data [2]. But the overwhelming majority of compu-
tations demand a first-come, first-served strategy for dealing
with inputs. First-in-first-out (FIFO) circuits provide structure,
behavior and storage to enable in-order data treatment.

A FIFO contains a data storage block, added with input and
output ports. The input port controls the writing of new data
to the storage block and the output port controls the reading of
new data from this block. Reading from and writing to a FIFO
are independent operations which may occur concurrently, as
long as access is not to a same storage position, which is
often enforced by the FIFO structure. Also, reading from an
empty FIFO and storing new data to a full FIFO are invalid
operations, and the FIFO structure enforces the avoidance of
these as well.

Ports and storage can share a single clock, which char-
acterizes a synchronous FIFO. If a FIFO implementation is
clock-based, but the input and output clocks are allowed to
be distinct (in frequency and/or in phase and/or duty cycle
etc.), the resulting circuit is called a bi-synchronous FIFO or
asynchronous FIFO. The last denomination is inadequate and
will not be used herein. Note that a bi-synchronous FIFO is
in fact a globally asynchronous, locally synchronous (GALS)
circuit. Bi-synchronous FIFOs are important and much used
to match systems with widely different speed characteristics
and/or that employ distinct clock domains. If a FIFO does
not use clock(s) to synchronize its operations it is a truly
asynchronous FIFO (AFIFO). AFIFOs operate with local
handshake protocols, both at its ports and internally. As any

asynchronous circuit [3], AFIFOs can be further classified ac-
cording to the handshake protocol they use, their data encoding
scheme etc., into one of two encompassing design template
families, bundled-data (BD) and quasi-delay insensitive (QDI).

Besides the previous synchronization criterion-based FIFO
taxonomy, there is another taxonomy orthogonal to the first,
based on the criterion on where in the internal storage lies
the FIFO input and output. If the hardware structure uses
fixed storage positions for both input and output ports, the
FIFO is called flow-through [4], meaning that data entering
the FIFO must evolve along all or some storage positions until
it reaches the output [4]. Another organization, pointer-based
FIFOs, manipulate internal storage addresses in a circular way,
with internal fixed-module counters. This dynamically defines
the FIFO input and output positions on the storage. Clearly,
there is a design trade-off implied when choosing one of these
organizations [5]: flow-through FIFOs typically have high
throughput and poor latency, while pointer-based FIFOs have
larger control complexity. Often, synchronous FIFOs and bi-
synchronous FIFOs are built with pointer-based organizations
while AFIFOs usually rely on flow-through organizations.

This work explores the characteristics and trade-offs of
the little-known class of QDI AFIFOs. Before addressing the
details of QDI AFIFOs it is beneficial to provide a set of
motivations to better dominate such hardware structures, their
use and design process. There is an increasing demand for
QDI design in general, and for QDI AFIFOs in particular,
arising from several developments on current semiconductor
technology. First, the wire form factor in advanced techno-
logies creates increasing problems for routing parallel wires
of buses inside an integrated circuit (IC). Thus, designers
tend to employ serialized communication more often, and
QDI links are an attractive option due to their performance
and robustness to variations, as detailed e.g. by Tse et al.
in [6]. More QDI links imply more (QDI) FIFOs to adapt
serial/parallel IC parts. Second, since the start of the 21st
century, complex IC design growingly substitute bus-based for
network-on-chip(NoC)-based intra-chip communication. NoC
routers are hardware parts formed basically by multiple FIFOs,
which dominate the router design, and a few control circuits.
Synchronous NoCs do not scale well, and many researchers
and industries today rely on GALS (which can be inefficient
as well) or asynchronous QDI NoCs as largely justified e.g.
by Beigné et al. [7]. Third, 3D IC integration is a path to
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dominate system complexity and efficiently integrate hetero-
geneous ICs. Communication between chiplets in 3D IC stacks
is better achieved using asynchronous communication, and
QDI design is used here, as described e.g. by Vivet et al. [8].
Complex ICs are often a collection of synchronous intellec-
tual property modules (IPs), either acquired or developed in-
house, involving multiple teams and different design cultures.
Integrating a large number of independently developed IPs
can be quite challenging, and QDI communication can reduce
this complexity. In fact, companies specialized in providing
intra-chip QDI communication to third-party GALS designs
are today a reality [9].

II. BASICS AND THE PROPOSED APPROACH

Synchronous circuits rely on a global clock signal to provide
a discrete common time reference. Typically, the clock is
a wave with a period greater than the worst combinational
logic delay in any path in the circuit between two consecutive
registers. All synchronous circuit registers simultaneously cap-
ture data (within a certain time window, computed considering
clock propagation time, skew and jitter) as determined by
clock transitions at registers. These characteristics guaran-
tee registers capture data only after all combinational logic
has finished computing. Asynchronous circuits have no such
single common time reference. To ensure correct operation,
asynchronous logic blocks communicate with each other us-
ing essentially local handshake channels [10]. This approach
eliminates the need for distributing a global clock. It also
produces circuits that operate based on the average delay of
combinational blocks, not on the worst-case circuit path.

Handshake protocols comprise two distinct steps: (i) re-
quest, when an entity announces (or requires) data availability;
(ii) data acknowledgment, when another entity acknowledges
(or grants) data, enabling subsequent transmissions. The im-
plementation of these steps are protocol-dependent, and such
protocols can be categorized in two classes: (i) 2-phase (2ph)
protocols; and (ii) 4-phase (4ph) protocols. A 2ph protocol
implements the handshake steps with a single transition in each
control signal, allowing transmission of new data immediately
after acknowledgment. A 4ph protocol in turn requires that
request and acknowledgment signals return to a neutral state
prior to the transmission of new data.

The use of dedicated request/acknowledge signals separated
from data lines characterizes what is known as the bundled
data (BD) design style. BD allows simpler, close to syn-
chronous, data path implementations, at the expense of more
complex timing assumptions. Since combinational logic data
transformation must be transparent to the local handshake
protocol [10], requests must arrive at the consumer only after
all computations on channel data are concluded and results
are ready at the consumer inputs, otherwise the latter can
capture incorrect data. This poses a design challenge, and
the control signals often require delay lines to match its
propagation delay to that of the data path. As an alternative,
the request information is embedded within the data itself,
by using delay-insensitive (DI) codes. Circuits using DI codes

follow either Delay Insensitive (DI) or Quasi Delay Insensitive
(QDI) design templates. The DI template class is ideal for
maximum robustness, but it was demonstrated to be of little
practical use [11]. Besides using DI codes, QDI templates
also assume that selected wire forks within the design are
isochronic (i.e. the delays from the wire “input” to both ends
of the fork are identical, or differ by a negligible amount). The
QDI assumption is considered the least compromise between
robustness and practicality. A QDI circuit design requires less
restrictive timing assumptions than BD circuits. This makes
QDI circuits less sensitive to process, voltage and temperature
(PVT) variations and aging. QDI circuits rely on DI codes and
on completion detection circuits to recognize data availability.

Figure 1 depicts the QDI handshake push protocols used in
this work. Here push protocols stand as those where requests
follow the same sense as data, by opposition to pull protocols,
where requests follow the opposite sense of data. In pull
protocols the control wire is accordingly renamed req. Both
examples employ the dual-rail DI code, other DI codes are
possible, e.g. any m-of-n code. The return to zero (RTZ)
protocol depicted in Figure 1(a) is a 4-phase, level-sensitive
protocol. It requires the transmission of a spacer code (null)
between two consecutive data transmissions. The no return
(NR) protocol depicted in Figure 1(b) is a 2-phase, transition-
signaling protocol. It can transmit twice the amount of data
as RTZ with the same switching activity. However, handling
this NR or other 2-phase protocols normally requires more
complex circuitry than this RTZ or other 4-phase protocols.

ack

d_f

d_t

null false null true null

(a) 4-phase return-to-zero (RTZ) QDI handshake, level-encoded.

ack

d_f

d_t

false true true false

(b) 2-phase no-return (NR) QDI handshake, transition-encoded.

Fig. 1: Two QDI handshake communication protocols.

QDI circuit design often relies on the availability of a set
of specific logic gates, distinct from ordinary ANDs, ORs
and inverters. It benefits from gates with hysteretic functions
such as C-Elements. Hysteretic gates in CMOS are network
of transistors with feedback. Although their behavior can
be built with ordinary gates, this is sub-optimal in area
and performance. Also, feedback lines usually comprise the
isochronic forks, and are thus better left inside a cell and
not generated by routing tools unaware of fork constraints.
This work employs the open-source ASCEnD-FreePDK45
library [12], which targets the FreePDK 45 nm predictive bulk
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CMOS technology.

III. INVESTIGATED QDI AFIFOS ARCHITECTURE

Eight 8-stage, 32-bit QDI AFIFOs were described in Verilog
at the netlist level, instantiating ASCEnD-FreePDK45 cells.
Each AFIFO is a combination of choosing one of two DI
codes, one of two handshake protocols and one of two
ack generation strategies. The DI code choices are dual-rail
(DR) and 1-of-4 (1of4), by far the two most common in
QDI asynchronous designs. Communication protocols are also
chosen among the two most used ones, 4ph RTZ and 2ph
transition-signaling push protocols, described in Section II.
The acknowledgment generation strategy can be either one
where a single ack wire passes between each two consecutive
AFIFO stages (here called busack) or a unitack strategy, where
each DI code unit in a stage generates an ack for the previous
stage. For the DI codes used here, this implies 32 ack wires
for DR codes and 16 ack wires for 1of4 codes. Remember that
32-bit values are encoded in 64 wires for both DR and 1of4 DI
codes (a DR code unit is two wires for each bit and the 1of4
code unit is 4 wires, corresponding to 2 bits). Externally, each
AFIFO has input and output ports with a single wire ack as
output and input, respectively. This implies that every AFIFO
first stage includes an ack generation tree. All implemented
QDI AFIFOs are obviously register-only pipelines.

Figure 2 depicts the single-bit DR register structure em-
ployed here. The 4ph DR register in Figure 2(a) is a weak-
conditioned half buffer (WCHB) register [10], similar to those
employed in null-convention logic templates (NCL) [13]. The
2ph DR register of Figure 2(b)1 is based on the LETS-style
Mousetrap pipeline described in [14]. This register employs
XOR gates and C-elements to control the propagation of
alternating even and odd phase data through the pipeline. The
1of4 registers are respective extensions of the former two.

C

C
in_ack

out_f

out_t

in_f

in_t

out_ack

(a) 4ph DR.

out_ack

in_ack

+

C
-

+

C
-

out_f

out_tin_t

in_f

(b) 2ph DR.

Fig. 2: Single-bit QDI DR registers used in QDI AFIFOs.

All QDI AFIFOs have consistently similar interfaces, chan-
ging only how to represent data, depending on the selected DI
code. The write-side interface has a 32-bit input port to receive
user data and a 1-wire output port to signal ack when the data
has been properly received by the QDI AFIFO. Similarly, the
read-side interface has a 32-bit output port to deliver data and

1Note the asymmetric inputs, marked with ‘+’ or ‘-’, which only contribute
resp. to set or to reset the output [3].

a 1-wire output port to allow the user to signal ack when
the data has been received. The number of wires and their
arrangement used to encode these 32 bits vary according the
DI encoding scheme. For instance, DR uses 32 pairs of wires
to represent 32-bit data, whereas 1of4 encodes the same 32-bit
data using 16 4-wire bundles. Both 1of4 and DR codes require
the same amount of wires, other DI codes may differ.

IV. EXPERIMENTAL SETUP AND RESULTS

Analog mixed signal (AMS) simulations allow to precisely
evaluate the impact of protocol, DI encoding and acknowledg-
ment bundling on QDI AFIFOs. Their netlist-level descriptions
were placed and routed using Cadence Genus and Innovus to
produce physical layouts. After logic and physical synthesis,
parasitic analog (PEX) netlists extracted from layouts using
Mentor Calibre were simulated using Cadence Xcelium 19,
with digital testbenches.

Originally, six digital testbenches were developed to cover
the combinations of protocols and DI codes. The 4ph AFI-
FOs require testbenches that use the RTZ protocol. The
2ph AFIFOs require the use of a protocol that alternates
between odd and even phases, by changing a single wire
per code transmission. Both level-encoded transition signaling
(LETS) [14] and pure transition-signaling (NR) [15] are suit-
able choices. However, experiments revealed identical results
for all metrics for LETS and NR. Therefore, all 2ph results
apply to both, but there is only reference to the NR protocol,
for simplicity. As a consequence, only four out of the original
six testbenches were required: (i) DR RTZ; (ii) DR NR;
(iii) 1of4 RTZ; (iv) 1of4 NR. These testbenches cover all
eight circuits, since the acknowledgment bundling scheme
choice does not change the circuit interface or the expected
external behavior. The testbenches simulate ideal, zero-delay
environments. They provide new random data as soon as their
respective circuits are ready. They also consume data coming
from the circuit immediately after these become available. This
arrangement sustains each AFIFO operating at its maximum
throughput capacity. All analog simulations employ transistor
models at the typical corner. Furthermore, the digital testbench
automatically verifies the AFIFO output correctness. This last
feature is useful to determine the point where supply voltage
is no longer feasible to produce correct operation in voltage
scaling scenarios.

For each simulation, the test environment measures the
average power and the average cycle time, a computation con-
ducted over all measured times between every two consecutive
outputs. The overall results appear in Figure 3: (a) depicts
the gate area of each circuit extracted from synthesis, more
realistic figures considering wire congestion are floorplan-
dependent, and thus are ignored here; (b) depicts the maximum
throughput, computed as the number of bits transported in
a cycle divided by the average cycle time; (c) depicts the
energy required to transmit one 32-bit word in each AFIFO,
computed as the post-layout average power multiplied by the
average cycle time. From these, it is possible to reason about
the relative merits of each QDI AFIFO organization.
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Fig. 3: Results from synthesis and simulation for all eight QDI AFIFOs at nominal supply (1V). Best results on top.

Under all metrics, the unitack bundling scheme performed
better than their busack bundling counterparts. This is mainly
attributed to the lack of C-Element trees merging the ac-
knowledge signals from multiple codes at each pipeline stage.
However, the area depicted in Figure 3(a) only accounts
for gate area. If the AFIFO is spread over a sufficiently
long distance, wire congestion may become an issue. In this
situation it might be advisable the use a busack scheme instead.

The adoption of 2ph protocols or 1of4 codes are both tech-
niques that reduce switching activity by half when compared
to 4ph DR schemes. A 2ph protocol reduces switching by
eliminating the spacer, i.e. every data line toggle carries mean-
ingful information. A 1of4 code reduces switching activity by
packing two bits per unit code, sending the double amount of
data per transition. Therefore, using 1of4 codes in conjunction
with a 2ph protocol should yield the highest power efficiency.
However, results in Figure 3(c) show the 4ph 1of4 AFIFO
has the highest power efficiency. This is due to the higher
complexity of 2ph registers and their reliance on XOR gates.
Still, 2ph protocols are considerably faster than 4ph protocols.
The lack of spacers yields a more efficient use of the channel
time-wise, at additional costs in area and power.

Power efficiency improves when supply voltage re-
duces [16]. QDI circuits are highly tolerant to supply down-
scaling, as recently demonstrated [17]. Figure 4 shows the
voltage scaling impact, with results of multiple simulations
run over a range of supplies, from 0.3V to 1.0V, in 100mV
steps. Several observations can be then inferred. E.g. the dotted
horizontal lines in Figure 4 show that reducing the supply
voltage by 40% to 0.6V, the unitack 2ph 1of4 AFIFO presents
the same maximum throughput as the unitack 4ph 1of4 AFIFO
at nominal voltage (> 30Gbps), but spends just around one
third of the energy per operation (2mJ versus 5.9mJ).

V. CONCLUSIONS AND FUTURE WORK

QDI AFIFOs are a quite efficient way to integrate complex
IPs in both, intra-chip and extra-chip environments [8]. This
work provides insights on how a set of the most used design
choices of codes, protocols and ack generation can influence
the performance of such AFIFOs.

Experiments relied on the support of ASCEnD-FreePDK45,
a cell library supporting asynchronous QDI design. Not all

Fig. 4: The voltage scaling impact on QDI AFIFOs. Dashed
lines are throughput and solid lines are energy efficiency
figures.

library capabilities were used. For example, the library sup-
ports the return-to-one (RTO) protocol [18], and a comparison
between the use of RTZ and RTO is an interesting work to
conduct, since they use distinct cells of the library and imply
distinct trade-offs. Also, some of the ASCEnD-FreePDK45
features somehow limited experiments. For example, there is
only one XOR gate in this library, a 2-input minimum drive
cell. This limitation is seen as leading to some of the non-
intuitive results mentioned in Section IV. Adding more driving
capabilities and 3-input XOR gates could change several of the
obtained numerical results, maybe significantly.

ASCEnD-FreePDK45 employs a predictive design kit and
the device models in this PDK are not as accurate as those in
commercial technologies. For example, the experiments could
not reach or go beyond the minimum energy point (MEP) in
the voltage scaling experiments. An ongoing work is to use an
industrial design kit to reproduce the experiments and explore
deep-subthreshold effects in QDI AFIFOs.

Other comparisons may as well be interesting, such as
investigating the effect of using pointer-based FIFO organiz-
ations against flow-through QDI AFIFOs proposed herein, or
extending the analysis to consider variations on the data width
and compute its impact on the ack generation scheme choice.
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