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Abstract—Current technologies behind the design of semi-
conductor integrated circuits allow embedding components in the
order of billions in a singe die. This enables the construction of
very complex circuits in a tiny space, dissipating little energy and
producing huge amounts of useful computational work. However,
the present levels of integration for electronic components in
silicon and similar materials are not easily managed as parameter
variations grow steadily, making the design tasks increasingly
challenging. Synchronous techniques have dominated the digital
system design landscape for many decades, but their costs are
hard to cope with. Asynchronous design and particularly quasi-
delay insensitive design promises to deal with the same chal-
lenges more gracefully in current advanced nodes, and possibly
irrevocably in future technology nodes. This article proposes a
review of the state of the art in using asynchronous circuit design
techniques to achieve energy-efficient and robust digital circuit
and system design. In particular, the definition of a robust digital
circuit comprises addressing several aspects to which a digital
system design is expected to be robust to, including: (1) voltage
variations; (2) process variations; (3) temperature variations; (4)
circuit aging. Besides addressing energy-efficiency and all the
mentioned robustness aspects, this work also approaches some
of the state-of-the-art tools available to deal with asynchronous
design, and points to desirable research development to be
conducted in these subjects in the future.

I. INTRODUCTION: ROBUST AND ENERGY-EFFICIENT
HARDWARE

A relentless evolution characterizes semiconductor tech-
nologies in the last several decades. From a 10µm feature
size in the beginning of the 1970’s, down to sub-micron
transistors in the middle 1980’s, followed the deep sub-
micron era in the early years of the 21st century. Feature
sizes of less than 100nm could then be fabricated. The
last 20 years have seen the rise of 10nm, 7nm and 5nm
manufacturable technologies, and a few industries are already
working toward 3nm and 2nm nodes. Some basic research
breakthroughs already indicate 1nm nodes are possible [1].
While the technology developments based in the latest nodes
are astonishing, the problems to employ these are definitely
challenging at many levels. Designing latest node chips is very
hard and very costly; electronic design automation (EDA) lags
behind in multiple aspects, and manufacturing is limited to
one or to very few places on Earth. Also, in these advanced
nodes variability of designs, good dies yield, manufacturing
faults and the longevity of circuits are hard to control and
predict. Meanwhile, the range of commercial technologies
only widens, since multiple much older technology nodes still
occupy well defined market niches and are yet economically
successful. For example, it is not uncommon for commercial
integrated circuits (ICs) to be designed today using a 180nm
or even a 250nm technology, with feature sizes two orders of
magnitude or more larger than that in state-of-the-art nodes.
In-between there are evidently many technology choices.

Given the wide range of choices, the IC design problems
and features also vary widely in importance. For example,
the transition from 45nm and 32nm to smaller feature sizes
mandated a change in the way transistors are designed, forc-
ing the abandonment of CMOS bulk in favor of the more
advanced FDSOI and/or FinFET technologies. As another
example of design choice, there is the need or intent to use
transistors with multiple threshold voltages, to better control
device characteristics and trade speed and power. Although
this has been applied to some early technology nodes such as
500nm [2], multi-Vth transistors are only easily available in
commercial technologies with 120nm or 130nm feature sizes
or smaller [3].

Within the context of the technological scenario just dis-
cussed, the adoption of the synchronous digital circuit design
paradigm by IC designers is one of the reasons behind the
rapid development of the VLSI industry. This is mainly due
to the capability of this paradigm to reduce design complexity
by using a global control signal called clock, that dictates
all sequencing of events. A synchronous designer can ignore
wire and gate delays, as long as the logic path between each
pair of storage elements always takes less time than the clock
period. Unfortunately, with the exponential growth of integra-
tion capabilities, distributing a clock signal across a complex
IC is challenging. Albeit there are different techniques and
EDA support to automatically generate clock distributions, the
required circuitry may take something from 30% to 50% of
the total power in synchronous circuits [4]. This is further
complicated by the inevitable delay uncertainties caused by
data dependency and process, voltage and temperature (PVT)
variations. To cope with these, synchronous designs rely on the
addition of delay margins to the clock signal, which translates
to performance losses, and can require tuning the operating
voltage, further adding power and area overheads [5], [6].
Asynchronous design, on the other hand, does not rely on
global timing assumptions and treats time as a continuous
variable, such that synchronization and sequencing of events
take place locally, between communicating entities [7].

Some of the most relevant design issues faced in any
available technology node are design robustness and energy
efficiency. While energy efficiency is relatively easy to define
and quantify, design robustness requires more careful consid-
eration. First, a dictionary robustness definition states it as ”the
quality or condition of being strong and in good condition”
or ”the ability to withstand or overcome adverse conditions
or rigorous testing.” The second definition is more adequate
to the goal of this article, since a robust circuit is expected
to stand adverse conditions and yet operate according to its
original specification.

It is interesting to start by investigating formal notions of
robustness. Doyen et al. provide a precise definition for the ro-
bustness of sequential circuits concept in [8]. In their approach,
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sequential circuits are synonyms of Mealy machines, a formal
model with sufficient capacity to express any digital system.
The authors start by exploring the definition of robustness
of continuous (non-discrete) systems, denoted as a form of
uniform continuity: “A system is uniformly continuous if for
every positive real ε, there exists a positive real δ, such that any
change smaller than δ in the input results in a change smaller
than ε in the output.” [8]. Simply said, this definition implies
that a (continuous) system is robust if bounded variations at
the system inputs correspond to bounded output variations.
The authors also mention that in control theory the system
inputs are often divided into control and disturbance variables,
and robustness is studied considering only the latter. Based
on these initial affirmatives, the work develops a notion of
robustness for discrete systems in the form of finite state
transducers. Mealy machines are modeled as transducers that
take letters of an input symbol alphabet and generate letters of
an output symbol alphabet. The discrete robustness definition
relies on the formal definition of a metric, called common suffix
distance, identified as the last position in which two (possibly
infinite) sequences of letters from the output alphabet differ.
Authors then define the notion of finite disturbance horizon,
and provide a theorem that states that a sequential circuit is
robust under its disturbance alphabet if and only if it has a
finite disturbance horizon. In more informal terms this means
that a robust sequential system always forgets about its inputs
older than some bounded amount of previous steps.

While instrumental for several theoretical analyses, the
formal robustness definition for discrete systems is purely
behavioral, and can be hard to employ directly in digital
circuit design. In practice, robustness must be considered
towards adversity in one of more environmental or operational
conditions. It is thus useful to break the concept in terms
of robustness to measurable quantities, which amounts to
classify it into several categories. The proposal is to explore
robustness to: (1) voltage variations; (2) process variations;
(3) temperature variations; and (4) aging. For most of these
categories and across a wide range of target technologies
achieving robust designs for a digital system specification is
a demanding task. Conventional synchronous design can lead
to sub-optimal and less robust design under several adverse
situations.

This survey proposes a review of works that demonstrate
asynchronous circuit design techniques can provide a path to
obtain robust circuits easier to follow than through the use of
synchronous design techniques. It investigates the evolution
of methods and tools to deal with the construction of robust
and energy-efficient digital systems based on asynchronous
circuits. The main, although not sole emphasis, is placed
on the employment of quasi-delay insensitive (QDI) design
techniques, a concept presented and discussed in Section II.
This Section covers some basics on asynchronous design,
contrasting these with those of the conventional synchronous
circuit design paradigm. The next Sections review three classes
of approaches that suggest methods and tools to achieve robust
design of asynchronous digital circuits. Section III covers
robustness to voltage variations, followed by Section IV, which
briefly discusses techniques to achieve robustness to process
and temperature variations. Even if robustness to circuit aging
is often cited as a potential field where asynchronous design
can be successfully employed [9], [10], the authors could not
find any technique described in the current literature that takes
advantage of asynchronous circuits to explicitly combat aging.
Section V accordingly explores the potential of asynchronous

Fig. 1. Simplified linear pipeline circuit structure using (a) synchronous
and (b) asynchronous design. Blocks CLi represent combinational logic, R
represent registers, and CTRL indicates control logic. Adapted from [11].

design to deal with digital systems aging, together with a
discussion about the limitations of QDI design techniques in
guaranteeing delay insensitivity to circuits. Follows Section VI
that briefly presents Pulsar, an open-source asynchronous QDI
circuit design flow. This flow is an original proposition of
the authors’ research group. The same Section explores some
preliminary results on using Pulsar to design energy efficient
circuits. Finally, Section VII brings a set of conclusions.

II. A PRIMER ON ASYNCHRONOUS CIRCUITS

Most synchronous circuits rely on the assumption that the
value on the inputs of all its registers will only be sampled
at the rising (or/and falling) edge of the clock signal. Refer
to Figure 1(a) to notice that in a classic linear pipeline this
enables to define timing constraints for the maximum delay
in combinational logic paths, which must be typically smaller
than the clock period. Using synchronous design techniques
allows ignoring gate and wire delays, as long as clock timing
constraints are respected. In other words, combinational logic
is allowed to switch as it computes data during, say, the
interval between two consecutive rising clock edges, but the
logic outputs must be stable and correct at each such edge.
Having this simple model for circuit design is possible only
because the clock is a global and periodic signal, i.e. its
edges only occur at specific and known points in time, and
occur simultaneously at every point of the circuit where it
is required. Hence, in synchronous circuits, events only take
place at specific moments; time can thus be treated as a
discrete variable.

However, a look at Figure 1(b) shows that in asynchronous
circuits there is no such thing as a single clock to simultane-
ously signal data validity on the inputs of all registers. Here,
events can happen at any moment, and time must, quite often,
be regarded as a continuous variable. Asynchronous designers
rely on local handshake protocols for communication and
synchronization, and on different design templates to build
circuits, each with its own specific assumptions about gate
and wire delays [7].

Asynchronous design templates can be broadly classified in
two main families: bundled-data (BD) [12] and quasi-delay
insensitive (QDI) [13]. Refer to Figure 2 to note that the
design of a BD circuit is similar to a synchronous one; the
difference is that BD relies on carefully matching the delay of
data path combinational logic blocks and controlling registers
to the delays in the control block that locally generates a local
clock, rather than to employ a single, global clock signal.
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Fig. 2. Example of a typical BD asynchronous pipeline fragment, with
delay elements explicitly represented as D1 and D2 on request (Req) and
acknowledge (Ack) paths on the control part of the circuit; blocks Ctrli
represent the local stage controllers. Blocks Regi are data path registers and
the Logic cloud represents combinational data processing between pipeline
temporal barriers (the registers).

Communication and synchronization in BD circuits are
accomplished through some handshake scheme, the more com-
mon choices being 4-phase, return to zero (RTZ) protocols [7].
Data representation in BD circuits follows the same Boolean
encoding used in synchronous circuits1. Also, unlike what
happens in synchronous circuits, controllers are local and
usually comprise just a few logic gates. An illustrative extreme
example is the very efficient MOUSETRAP pipeline stage
controller, which includes only an XNOR logic gate and a
1-bit latch [14].

Clearly, a major hurdle in BD circuit design is how to
guarantee that the control and data paths are always precisely
delay-matched, since the data and control flows typically run
parallel to each other. This is the reason why in Figure 2
delay elements (DEs) are explicitly shown in the request and
acknowledge paths. Much research exists to further the design
of DEs to achieve working BD circuits. As an illustration
of such research efforts, Heck [15] developed a PhD Thesis
where the focus was obtaining a single programmable delay
element to support the design of asynchronous BD circuits
resilient to timing errors. This was in fact the culmination of
a joint research between a research group at the University of
Southern California in USA and the authors’ research group,
which had previously generated research results on several
aspects of DE design for BD circuits [16]–[19]. Specifically
addressed design aspects in the cited publications are analy-
sis and optimization of programmable DEs, studies on how
fine-grained and coarse-grained delay adjustments perform in
practice, and to control the effect of voltage variations over
the delay-matching characteristic of DEs.

The required delay-matching design effort is one of the
main issues to design robust circuits using the BD family of
templates. BD circuit implementations can be as small as an
equivalent synchronous implementation, or even smaller [20].
However, BD techniques share some of the disadvantages that
plague synchronous design techniques, including a potential
reduction in circuit robustness to variations, mostly due to the
decoupling of control and data parts of the circuit.

A. Quasi-Delay Insensitive Design
A fundamental difference between BD and QDI design is

that the latter relies on data encoding schemes that allow
data to carry their own validity information, which enables
receivers to compute the presence or absence of data at

1This is not the case for QDI circuits, as Section II-A details.
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Fig. 3. The basic state transition diagram for transmitting binary data in a
DI channel. Here, S stands for the spacer or bit separation symbol.

inputs/outputs, and renders possible the local exchange of in-
formation in a mostly delay insensitive way, matching control
and data information processing more easily. Because of this
characteristic, QDI circuits can adapt more gracefully to wire
and gate delay variations, and are thus one of the best choices
to achieve robust circuits. On the negative side, QDI furthers
robustness often at the expense of larger area and/or power
overheads.

QDI design relies on the use of the so-called delay-
insensitive (DI) codes [21]. DI codes use only part of the
Boolean encoding spectrum possible over n bits. An n-bit
code length allows representing 2n distinct codewords. A DI
code pledges the use of only a subset of these to achieve
delay insensitivity. Verhoeff [21] explores the basic details of
the theory behind DI codes. These include some codewords to
represent valid data, and at least one special (invalid) codeword
to represent the absence of data. This codeword is usually
called a spacer. Since valid codewords and spacer codeword(s)
do not comprise all 2n different codewords possible with n
bits, it is clear that some codewords are wasted as invalid
and the matter of code efficiency arises. This is treated in the
work of Verhoeff [21], which defines the rate R of a code.
Given a code with M valid codewords and a length of n bits
its rate is R = (log2M)/n. Of course, 0 ≤ R ≤ 1 always
holds, and Verhoeff proves that the Sperner codes, those where
every codeword has as structure (ndiv 2)-out-of-n, are DI
codes, and such codes provide the highest possible encoding
efficiency. For example, if the code length is n = 20 bits, all
codewords with 10 bits at 1 and 10 bits at 0 are valid Sperner
codewords, and there are a total of 184, 756 distinct codewords
in this code. Even though this is much less than the 1, 048, 576
codewords of a non-DI, 20-bit ordinary Boolean code, this
Sperner code is much more efficient than the commonly used
dual-rail DI code with length 20 bits that contains only 1, 024
valid codewords. As it can be verified, although as n → ∞
the rate of Sperner codes tends to 1, practical n-bit Sperner
codes (and all DI codes) have R << 1, while a non-DI code
such as the n-bit Boolean code has R = 1 for any n.

To understand how DI codes achieve delay independence,
Figure 3 shows a basic state transition diagram for transmitting
data on a 1-bit DI channel, establishing a protocol. Assume
transmission always starts with a spacer (S). A transition
from the spacer codeword to 1 (or to 0) characterizes the
transmission of a valid 1 (resp. 0) and a transition from 1
(resp. 0) to S characterizes the removal of data. In other words,
DI communication protocols assume there is a spacer between
any pair of consecutive data values.

This in fact depicts just a specific family of communication
protocols, often associated to DI codes, that can be called
return to spacer (RTS) protocols. Since the spacer is frequently
a code with all bits in 0, a more commonly used term is return
to zero (RTZ) protocols, although other spacer codewords are
sometimes used.

Referring back to Figure 1(b) and its relation to the pro-
tocol that Figure 3 depicts, QDI circuit pipelines can be
implemented using one of two approaches: (i) half-buffer,
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where data and spacers alternate occupying successive pipeline
stages; (ii) full-buffer, where all stages can contain data at
every moment. Although at first counter-intuitive, since half-
buffer schemes seem wasteful, these are more frequently used,
because they are faster and simpler to built. Also it is easier
to achieve robust circuits using half-buffer schemes.

In circuit design, often used examples of DI codes are the
k-of-n codes, where n is the number of wires used to represent
data (or its absence) and k is the number of wires that must
be at a given logic value for the codeword to represent valid
data. Albeit different codes are available in the contemporary
literature (see e.g. [21]), according to Martin and Nyström [13]
the most practical class of DI codes is the 1-of-n (or one-hot),
and more specifically the 1-of-2 code. The latter is the basis
to form codes to represent any n-bit information using two
wires to denote each of the n bits, producing the so-called
dual-rail code. Furthermore, Martin and Nyström argue that DI
codes can be coupled to either 2-phase or 4-phase handshake
protocols, but 2-phase protocols often lead to more complex
circuits. Thus, 4-phase is frequently chosen by QDI circuit
designers. In fact, the majority of QDI designs available in the
state-of-the-art, from networks-on-chip [22], [23], to general
purpose processors [24], and network switches [25], primarily
rely on 4-phase protocols and dual-rail or 1-of-4-based codes2.
The 1-of-4 code is equivalent to two 1-of-2 codes considered
together, but these codes are different. In fact, switching a
1-of-4 codeword (say 0100, corresponding to decimal 2) to
a 0000 spacer implies switching just 1 bit, while the same
value encoded in dual-rail, 1001 (equivalent to 10 in binary
or decimal 2), requires two bits to switch to reach the same
spacer. Thus, 1-of-4 codes present roughly a 50% switching
power advantage over dual-rail encoding.

Figure 4(a) depicts a 4-phase dual-rail DI channel D, where
a single bit datum is represented using two wires, D.0 and
D.1 that together carry the datum value, and one signal ack to
control data flow 3. A spacer is encoded here as a codeword
with all wires at 0. Valid data are encoded using exactly one
wire at 1, D.1=1 for a logic 1 and D.0=1 for a logic 0. In this
case, both wires at 1 is a codeword that does not correspond
to any valid datum and is not used. Figure 4(b) shows an
example of data transmission using this convention to demon-
strate the control flow allowed by the ack wire combined to
codewords represented in wires D.1 and D.0. In this example,
a sender provides dual-rail data in D.1 and D.0 to a receiver
that acknowledges received data through ack. Communication
starts with a spacer, all signals at 0. Note that the ack wire
also starts at 0, signaling the receiving side is ready to get
new data. Next, the sender puts a valid 0 bit in the channel,
by raising the logic value of D.0, which is acknowledged by
the receiver raising the ack wire. After the sender receives ack,
it produces a spacer to end communication, bringing all data
signals in the channel back to 0. The receiver then lowers
its ack signal, after which another communication can take
place. Due to its nature, which requires all signals to go to
0 before each new data transmission starts, this justifies the
return-to-zero (RTZ) denomination for this protocol.

Another protocol for dual-rail QDI design is the return-
to-one (RTO) protocol [26]. RTO is similar to RTZ, but its

2Note that 1-of-2 (resp. dual-rail) and 1-of-4 codes have the same rate,
R = 1/2 = 0.5, while a 1-of-8 code has a rate of just R = 3/8 = 0.375
and is accordingly never used.

3Some works prefer the use of true and false suffixes instead of 0 and 1 to
distinguish between the two wires of a 1-of-2 or dual-rail code, which would
lead e.g. to the terminology Df and Dt in place of D.0 and D.1, respectively.
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D.1 0 0 1
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Fig. 4. The RTZ, dual-rail channel operation: (a) data encoding; (b) example
of data transmission waveform.

Wire Spacer Value 0 Value 1
D.0 1 0 1
D.1 1 1 0

(a)

ack

d.0

d.1

null 0 null 1 null

(b)

Fig. 5. The RTO, dual-rail channel operation: (a) data encoding; (b) example
of data transmission waveform.

data values are inverted compared to the latter. As Figure 5(a)
shows, a spacer here is the codeword with all wires at 1 and
valid data is represented by one wire at 0, D.1=0 for a logic
1 and D.0=0 for a logic 0. Figure 5(b) depicts an example
RTO data transmission, which starts with all wires at 1 in the
data channel. As soon as the sender puts valid data in the
channel, the receiver may acknowledge it by lowering ack.
Next, all data wires must return to 1 to denote a spacer,
ending the transmission. When the spacer is detected by the
receiver, it raises the ack signal and new data can follow.
The idea behind the RTO protocol is simple but powerful and
allows a better design space exploration for QDI circuits. It
also permits optimizations in power [27] and robustness [28].
Furthermore, as demonstrated in [29], RTZ and RTO can be
mixed in a same QDI design and the conversion of values
between them requires only an inverter per wire. According
to Martin and Nyström, in [13], such conversion is DI and
does not compromise the robust functionality of a QDI circuit.
This article refers to signals operating under the RTZ (RTO)
protocol as RTZ (RTO) signals.

The reader may have noticed that the acronyms DI and QDI
are both used in this Section. There is then a question that
may arise on how these differ. In fact, every time a reference
above to the DI acronym appears, it refers to a type of code,
while QDI (from quasi-delay insensitive) always refers to a
class of circuit design techniques. There is indeed a class of
DI circuit design techniques. This stands for the most robust
of all ways to design circuits, where any delay of any wire
or any gate (or other logic components) is irrelevant to define
the overall circuit functionality, meaning the functionality of
the design is fully insensitive to delays in wires or gates.
Unfortunately, this ideal class of designs was proven to be
limited, too limited to be of practical use [30]. On the bright
side however, a small compromise can produce a set of
design techniques that are expressive enough to be used in
the construction of any digital circuit and be mostly delay-
insensitive. This compromise consists in constraining some
selected wire forks in a design to be isochronic. Assume a
wire fork has a source terminal and two sink terminals. Saying
this fork is isochronic basically means the propagation delays
from the source terminal to both sink terminals only differ by a
negligible amount. The combination of DI data codes and the
isochronic fork assumptions creates the QDI design paradigm.
An early theoretical result showed that QDI design is Turing-
complete, unlike the DI design paradigm [31], which opened
the door to use QDI as a serious class of design techniques.

Of course, the simply stated isochronic fork concept can
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be hard to control, specially in large circuits. Much research
has been dedicated in the last decades to define, refine and
employ QDI design to build circuits. A major problem with
such designs is the lack of EDA support for the elaboration and
verification of circuits. Section VI of this article briefly reviews
solutions proposed by the authors to solve this problem.

III. ROBUSTNESS TO VOLTAGE VARIATIONS

Currently, the nominal supply voltage for an IC core is
around 1.0V, and can even go to 0.65V or less in more recent
nodes [32]. Under certain circumstances, this supply can vary
due to noise at the output of the voltage regulator which can
cause overshoots or undershoots (around more or less 10%).
Another phenomenon leading to supply voltage variations is IR
drop, caused by the current flow over the parasitic resistance
of the power supply intra-chip grid.

Among the constraints imposed by contemporary designs,
power consumption has attracted growing attention. With the
increasing investment on portable devices and, more recently,
the deployment of the Internet of Things (IoT), together with
emerging applications such as distributed sensor networks
and wearable devices there is a perception that low energy
consumption is the key factor during circuit design [33]–[35].

In addition, with decreasing feature size, transistors have
become increasingly leaky, augmenting static power dissipa-
tion, and challenging designers to meet power constraints [36].
This has motivated the research for new design techniques to
minimize power as much as possible.

These efforts usually focus on high performance strong
inversion in the super-threshold region of operation of tran-
sistors, and are implemented at the architectural level, where
designers can reduce the computational workload or improve
the architecture to achieve better power optimizations [35].
At the circuit level, a compelling approach to lower power
consumption is reducing the voltage supply, called voltage
scaling (VS). As the supply voltage is quadratically related to
the dynamic power, VS is a very effective low power design
technique [37]. Taking this design option to the extreme,
some low power systems operate in the subthreshold region of
transistor operation [38]. This allows achieving drastic power
reductions, although with heavy performance penalties.

A. Subthreshold Regime Operation
The subthreshold effect is present in MOS transistors when

the gate to source VGS voltage is equal to or lower than
the threshold voltage Vth. When VGS ≤ Vth, ideally, the
transistor should be off and no current would flow through
the transistor drain. In practice, the transistor still leaks a
small current, usually denominated subthreshold current. In
most digital applications, the subthreshold current is caused
by parasitic leakage currents and is, accordingly, undesirable.
This is because leakage is a deviation from the ideal switch-
like behavior of the MOS transistor [39] [40]. If a circuit is
powered by a voltage source where Vdd ≤ Vth, then the circuit
is on subthreshold operation – also said it is operating in the
subthreshold region.

Subthreshold operation is a well known technique to reduce
both static and dynamic power consumption [33], [38], [39],
[41]. The downscaling of the supply voltage leads to quadratic
savings in dynamic power and linear savings in static power.
Due to these savings, subthreshold operation fits well in digital
applications that must rely on energy harvesting or on limited
power supplies such as small batteries. Nonetheless, this

Fig. 6. Active (Ion) and leakage (Ioff) current representation in a basic CMOS
inverter.

operation regime brings a significant performance degradation
and higher sensibility to process, voltage and temperature
(PVT) variations, which narrows the set of applications that
can benefit from it [39], [42].

In a CMOS standard cell, the output fall and rise transitions
rely on the Ion/Ioff ratio, where Ion is the active current
and Ioff is the leakage current [42]. Figure 6 illustrates these
currents for an inverter, depending on the output logic level.
When Z = 1, the pull-up network (PUN) is enabled and is
responsible to generate Ion, whereas the pull-down network
(PDN) is disabled but stills generates Ioff . When Z = 0,
the roles change: the PUN is disabled (Ioff) and the PDN
is enabled (Ion). If the relation Ion/Ioff is too small, the PDN
or PUN may not have enough strength to drive the logic level
of the output, making the circuit fail. Due to the use of re-
duced supply voltages and lower active currents, subthreshold
operation implies in smaller Ion/Ioff ratios. This interferes in
the performance of subthreshold circuits, increasing delays by
up to several orders of magnitude. Moreover, PVT variability,
transistor sizing and channel doping (among other effects)
are responsible for variations of the threshold voltage, which
directly affects transistor currents and the Ion/Ioff ratio [42].

Most QDI asynchronous circuits rely on the use of se-
quential logic gates. The simplest such gate is the 2-input C-
element that outputs 0 when both inputs are 0, outputs 1 when
both inputs are 1 and keeps the output unchanged for any other
input combinations. There are several ways to implement C-
elements and other sequential gates composing libraries for
QDI asynchronous design, for this see e.g. references [43]
and [44]. However, three basic transistor topologies stand
as the most accepted and employed in practical circuits:
Martin’s [45] Sutherland’s [46] and van Berkel’s [47] C-
elements. Moreira & Calazans [48] approach these three C-
element topologies to evaluate voltage scaling effects over
them. Figure 7 shows the associated symbol for a C-element
and the transistor level schematic for two of the three men-
tioned implementations: Martin´s and Sutherland´s4.

These two implementations are available with different
driving strengths (the capability of charging/discharging output
loads) in a standard-cell library called ASCEnD-ST65. This
library employs a commercial 65nm bulk CMOS technology,
and uses a specially developed cell library design flow [49],
[50]. The C-elements of the ASCEnD-ST65 library are all
designed to the layout level and count with timing, power and
functional models to support automated design and analysis of
asynchronous ICs. For instance, Figure 8 and Figure 9 show
the layout of a small drive (X2) version of the Martin and
Sutherland C-elements. Also, RC extracted views are available

4The van Berkel topology is less generic and is accordingly ignored here,
but data about such C-elements appear in [48].
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Fig. 7. Two alternative CMOS transistor topologies for a 2-input C-element:
(a) Martin´s and (b) Sutherland´s.

Fig. 8. Martin´s X2 C-element layout in the ASCEnD-ST65 library.

for different fabrication processes, based on layout parasitics.
All the experiments reported in [48] are based on RC extracted
views for a typical fabrication process.

B. Minimum Operating Voltage
One of the experiments that Moreira & Calazans [48] report

detects the minimum voltages that can be applied to each
C-element without interfering in its correct behavior. The
experiment investigates scenarios for varying temperatures and
a fixed fan-out of four (FO4) output load. Minimum voltages
were obtained by simulating all transition arcs of each C-
element for each temperature/voltage scenario. When at least
one arc does not generate the correct output or a static state
is not able to maintain correct functionality, the scenario is
defined as not functional. Also, generated signals must have
voltages in well defined regions, for logic 1 or for logic 0.
If a signal presents a voltage level in the undefined region,
the scenario is also defined as not functional. In summary, the
minimum operating voltage is defined as the lowest voltage

Fig. 9. Sutherland´s X2 C-element layout in the ASCEnD-ST65 library.

Fig. 10. Minimum voltage for maintaining correct functionality of the two
C-elements: (a) Martin’s and (b) Sutherland’s.

at which the C-element can function without jeopardizing its
correct logical/electrical behavior. Results are summarized in
Figure 10, where six distinct cell drives are analyzed.

It is easy to note here the influence of cell topology,
drive and temperature combinations on the robustness of the
library cells. As expected, Martin’s topology are less robust to
variations than Sutherland’s topology.

IV. ROBUSTNESS TO PROCESS AND TEMPERATURE
VARIATIONS

Current technology trends lead to an increasing impact of
manufacturing process variations on the performance of digital
circuits. Such variations are responsible for deviations in tran-
sistor attributes during its manufacture, such as impurity con-
centration, oxide thickness and diffusion depth. Non-uniform
conditions such as small variations in temperature, pressure,
dopant concentrations in the manufacturing process and the
inherent limitation of the photo-lithographic process (which
cause variations in the width W and length L), change the
electrical properties of transistors, introducing variations in the
threshold voltage from one transistor to another, for example.
This makes the propagation delay vary along different parts
of an IC.

As already proposed in the arena of synchronous design,
deterministic methods have made room to probabilistic tech-
niques to address process variations. In this sense, finite state
machine models for synchronous design change to probabilis-
tic models such as Markov chains. Also, static timing analysis
(STA) is often substituted by statistical static timing analysis
(SSTA) [51], [52]. In the asynchronous design domain the
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problems faced by the advent of process variations has to
be addressed differently, since the absence of well-defined
temporal barriers makes it harder to partition an asynchronous
design. However, adaptations of asynchronous timing models
already started to deal with process variations, as proposed
e.g. by Raji et al. [53]. The basic idea of the cited work
is to change the often used deterministic Timed Petri Nets
(TPN) model to describe asynchronous concurrent behavior
by probabilistic models such as the Variant-Timed Petri Net
(VPTN) model [53].

Temperature variation is also a factor that directly affects the
performance of a circuit and its occurrence is inevitable during
IC operation. The transistor junction temperature impacts the
transistor current flow. Switching a large number of transistors
at the same time within an IC creates a local temperature varia-
tion on the chip due to power dissipation. As the temperature
increases, the random movement of carriers in the channel
increases due to the collision effect, degrading the mobility
of these carriers. Therefore, the lower the temperature, the
more random movements decrease and, due to better mobility,
current increases and delay decreases.

Asynchronous QDI design is potentially beneficial to spa-
tially and temporally distribute heat inside an IC, given its
use of local handshakes. To illustrate how this can be useful,
refer to the work of Hollosi et al. [54]. This work compares
synchronous and QDI equivalent circuits regarding thermal
distribution in 3D ICs. Measurements show that the QDI
circuit exhibits smaller minimum, average and maximum
temperatures in all layers of a 3D circuit, when compared
to the synchronous version.

V. PERSPECTIVES ON AGING AND LIMITATIONS OF QDI
DESIGN

The aging process causes delays of a circuit to change in
a non-uniform manner along the circuit lifetime. Although
QDI circuits offer resilience against delay variations, uneven
delay variations may cause local violations of the isochronic
fork assumption [55]. This assumption states that all branches
in some sensitive wire5 forks must complete transitioning
at roughly the same time before a transition in any of
the branches is acknowledged in a handshake operation.
Isochronic forks are necessary whenever a transition on a wire
fork origin does not cause a transition on every gate output
connected to the fork destinations (the fork fan-out gates).

Figure 11 illustrates this problem on the DIMS expansion
of a 2-input NAND gate (i.e. a dual-rail NAND gate); here
the bold lines indicate the path that causes the output y.t to
activate when the inputs a.f and b.f are enabled. The dashed
lines represent the hidden paths, i.e. the branches of the fork
that are activated but do not cause a transition in the output
of gates with this input configuration. As already explained in
the discussion around Figure 3, this circuit alternates between
the propagation of valid data and spacers in a QDI circuit. If
the hidden paths are slow enough, they may linger high whilst
the bold activation path goes low to propagate the spacer. This
lingering value is not visible to the environment, as far as the
spacer on the input is acknowledged; hence, it can now insert
new valid data. If a.t and b.t are activated whilst the hidden
paths from a.f and b.f still lingers high, both outputs y.t and
y.f will be activated; this is an invalid codeword, constituting
an invalid state for the circuit.

5Wires here are entities with a single input and possibly multiple outputs;
this includes not only physical wires, but also delay elements, inverting and
non-inverting buffers and/or buffer networks.

y.f
a.t

b.t

C

C

C

y.t

C

a.f

b.f

Fig. 11. A 2-input DIMS NAND gate. Notice the branches of an isochronic
fork; the bold lines are the active acknowledged paths, the thin straight lines
are the inactive paths and the dashed lines are the active hidden paths.

The original isochronic fork assumption imposes a too strict
restriction; it assumes that some wire delays are negligible
compared to gate delays. However, on modern technologies
this does not hold true anymore; wire delays have often
become dominant. Thus, a more modern restriction is required
to cope with modern technology nodes. Under this light,
Martin et al. [56] revise the isochronic fork assumption to
lessen its requirements. These authors propose that the delay
of the slowest branch in a sensitive fork must be less than
the combined delay of the fastest adversary path, including
gate and wire delays. In Figure 11, an adversary path to the
highlighted hidden paths would be any path that causes a.t
or b.t to rise once y.t has fallen. The example circuit works
correctly if the hidden paths are faster than the adversary path,
i.e. if the hidden paths in a.f and b.f fall before a.t or b.t
rise at the respective gate inputs.

Keller et al. [57] later formalized and proved the adversary
paths timing assumption sufficient to guarantee the correct
operation of QDI circuits. Raji et al. [58] designed an analysis
framework to identify the critical sensitive forks that must obey
timing restrictions.

This timing assumption is the limiting factor to QDI circuit’s
tolerance to delay variation. If aging, process or any other
sources of delay variation are to change the relative delay
of paths beyond the tolerated boundaries, the affected circuit
can operate incorrectly. Dealing with isochronic forks is the
main challenge in building robust asynchronous QDI circuits.
Design methods and tools that can cope with the mentioned
variations for asynchronous QDI design to deal with the
problem just cited are still missing, and this is an open track
for innovative research work. The focal point of such a work
is to control the identification and treatment of the relevant
circuit isochronic forks in a systematic way. The next Section
approaches an ongoing work by the authors exploring the
mentioned research track.

VI. PULSAR - A METHOD TO DESIGN QDI CIRCUITS

Pulsar [59], [60] is an open-source [61] complete flow
for synthesizing a constrained QDI circuit from an RTL-
like input description. It employs commercial EDA tools
to synthesize and optimize QDI circuits under cycle time
constraints, and allows to trade-off performance and power
targets. This is achieved by encompassing three key de-



8 CALAZANS et al.: The Case for Asynchronous Design

RTL description

Components
Library

Single Rail
Synthesis

Single Rail Netlist Dual Rail
Expander

Virtual Netlist

Circuit Graph HBCN Expander Cycle Time
Constrainer

Design
Constraints

Sequential SDDS-
NCL Synthesys

Flow

Dual-Rail
Expansions of
components

Output for
Physical

Synthesis

Fig. 12. The Pulsar flow. In blue is the user input, in an RTL-like format, in (System)Verilog or VHDL; yellow items are either third party (commercial)
tools or conventional output by such tools; green items comprise the Pulsar frontend, covered in [59]; while grey items are initial Pulsar contributions, covered
in [60].

sign and modeling techniques: (i) a QDI asynchronous de-
sign template called Spatially Distributed Dual-Spacer Null
Convention Logic (SDDS-NCL) [62], [63]; (ii) the pseudo-
synchronous Weak-Conditioned Half-Buffer (WCHB) tempo-
ral barrier model [60], [64]; and (iii) the Half-Buffer Channel
Network (HBCN) timing model [60]. Technique (i) leverages
conventional EDA tools to synthesize QDI circuits from
Boolean virtual functions (V-functions); Model (ii) allows
using standard STA tools to analyze the propagation paths in
asynchronous pipelines (and additionally to accurately simu-
late synthesized circuits); The timing model (iii) enables the
performance analysis of complex non-linear QDI circuits.

The overall Pulsar Synthesis Flow is depicted in Figure 12.
Here, the flow begins with a single-rail synthesis, which
produces a single-rail netlist. This netlist is processed and
transformed into a virtual netlist comprising V-functions and
pseudo-flops. The virtual netlist is the input to the Pseudo-
Synchronous SDDS-NCL synthesis flow. The Pulsar flow also
constructs the HBCN and automatically creates cycle time
constraints for synthesis.

The design capture methodology shares similarities with
the Null Convention Logic (NCL) Uncle synthesis tool [65],
as it uses especially crafted RTL descriptions and traditional
EDA tools to synthesize a single-rail netlist. However, Uncle
relies on its own specialized tool for technology mapping
and optimization of the NCL netlist, whereas the Pulsar Flow
relies on SystemVerilog constructs and the in-house Sequential
SDDS-NCL Synthesis Flow. The RTL netlist is synthesized
using a traditional EDA tool (currently it supports the Cadence
genus tool) to produce a single-rail netlist of components.
These components are defined in the components library
using the Synopsys Liberty format. This library contains the
combinational and sequential components that can be used by
the commercial EDA tool during the synthesis of the single-
rail netlist. Each component has an equivalent SystemVerilog
module defining its dual-rail expansion.

The dual-rail expansion takes advantage of SystemVerilog
interfaces [66] to represent dual-rail four-phase RTZ channels.
These channels interconnect modules implementing the dual-
rail expansion of components. SystemVerilog interfaces are
also used for constructing the acknowledgment network for
channels. A simple tool replaces every wire in the single-rail
netlist with a channel to create the virtual netlist.

Concurrent to the creation of the virtual netlist, cycle time
constraints are computed. The scripts used for the single-rail

synthesis produce a structural graph describing the pipeline
topology. This circuit graph is used to model the HBCN of
the expanded circuit.

A. Some Results on Using Pulsar
The results in this Section were extracted from [67]. To

build asynchronous QDI circuits up to the layout level, Pulsar
relies on a series of standard cell libraries containing SDDS-
NCL cells, all developed by the authors’ research group
for several technology nodes. Results reported here refer to
the ASCEnD-TSMC180 library for a 180nm bulk CMOS
node. Also available as open-source there is the ASCEnD-
FreePDK45 library [68]. Experiments demonstrate the poten-
tial of Pulsar to design circuits for aggressive voltage scaling.
First, a 5-stage, 16-bit multiply-accumulate (MAC) unit was
synthesized using the worst corner of the selected technology
at 1.68V and 125 °C, with slow transistors.

This circuit was subject to aggressive voltage scaling in
analog simulation; it operates correctly under all tested supply
voltages without any modification, from the nominal 1.8V
supply down to 500mV. Figure 13 depicts the results of aver-
age throughput and power for each voltage level. These show
three-order magnitude reduction in power, whilst displaying
only a two-order magnitude reduction in performance. Clearly,
the design shows enhanced energy efficiency and robustness
to voltage variations.
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Fig. 13. MAC performance and power under voltage scaling.

Monte Carlo analog simulation was used to estimate the
effects of process variation. Figure 14 shows that process
variation causes greater timing variation under aggressive
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voltage scaling. Nonetheless, the QDI circuit can tolerate it
well, albeit being designed and synthesized to operate at
nominal conditions only.
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Fig. 14. MAC cycle times under process and supply variations.

An additional work on the use of Pulsar included the inves-
tigation of a spectrum of asynchronous first-in-first-out (FIFO)
structures [69]. The idea of this work is to use Pulsar to auto-
matically synthesize eight different classes of asynchronous
QDI FIFOs, and compare these to trade area, throughput
and power efficiency across combinations of data encoding,
communication protocol and handshake control style.

A more recent work comprised the design and implemen-
tation of a 32-bit RISC-V RV32i processor organization [70].
This complete QDI implementation was very challenging and
contributed to enhance the functionality of the tool to deal
with complex asynchronous design issues such as choices, the
use of mutual exclusion components, etc.

VII. CONCLUSIONS & FURTHER RESEARCH

This article covers part of the state of the art in the design
of robust and energy-efficient hardware with the help of
asynchronous design techniques.

The evolution of technologies to manufacture digital sys-
tems is still evolving at an impressive path. Nano-electronics
are a possible target of this evolution. In the words of
Martin and Prakash [71] however, at the nanoscale level the
technology “... does not allow to grow long wires reliably
and wire delay is quadratic in the length. Consequently, it
will be impossible to build a useful global clocking network
with those technologies.” What to expect then? Asynchronous
design may be the way to go.

Beyond the research this paper reviews, there is a large
body of work to undertake to support the smooth design of
asynchronous circuits and systems. For example, the absence
of investigations in the state of the art mentioning the use
of asynchronous for combating IC aging indicates a clear
research opportunity for those interested in asynchronous
design breakthroughs and analysis.

There is a very relevant aspect of robustness omitted in the
article for mere lack of space, which is the point of robustness
to faults and its relationship with asynchronous design. QDI
logic behavior under faults greatly diverges from synchronous
circuits. Under stuck-at (SA) faults QDI circuits almost always
deadlock; this outcome can be easily detected as the circuit
simply stops functioning. This is a preferred behavior to
produce erroneous values since it can be easily detected.

However, transient faults, e.g. single event errors (SEEs), can
lead to different predicaments. The wok of LaFrieda and
Manohar [72] is an example. It explores the effects of transient
faults in QDI circuits. These authors propose to model three
possible failure types: (i) deadlock; (ii) token removal; and
(iii) token insertion. Failures of type (i) are trivial and do
not need special handling. Type (ii) failures do not produce
a result and eventually can lead to circuit deadlock. Given
enough time, faults of type (iii) generate an invalid token6;
this invalid token may propagate causing havoc downstream.
However, it is possible to employ techniques to detect and
perhaps correct the propagation of invalid tokens. This is just
an example of work done and still to be done on the subject
of asynchronous design robustness to faults.

The class of quasi-delay-insensitive (QDI) asynchronous
circuit templates is often considered one of the most practical
approaches, because of its looser timing assumptions [13]. The
flexible timing of these templates allows circuits to gracefully
adapt to delay variations, making them attractive. Some QDI
templates employ the Null Convention Logic (NCL), first
proposed by Fant and Brandt in [73]. NCL is interesting due
to its semi-custom nature, its reported low power and high
robustness capabilities [74], and its validation in industrial
designs by Theseus Logic [75]. Different works in the state of
the art explore the usage of NCL circuits in applications such
as low power design [76], [77]. However, a common pitfall for
NCL designs is the reduced support by automated synthesis
tools, technology mapping and optimization. Consequently,
designs end up relying on conservative approaches. This
usually occurs through the use of template-based methods,
which restrict the employment of automated optimization and
result in sub-optimal circuits.

Previous research proposed automated flows to design and
optimize QDI circuits based on NCL, e.g. [65], [74], [75],
[78]–[80]. Most of these perform logic optimization before
technology mapping. However, the latter is precisely the first
step in the synthesis process that enables improvements with
realistic cost parameters from the target technology. Also, they
rely on template-based approaches for technology mapping,
i.e. synthesize the circuit as a single-rail version, and then
replace logic gates by corresponding NCL templates (combi-
nations of NCL gates). This often prevents exploring optimiza-
tions enabled by logic sharing and those specific to NCL. The
main reason why these flows rely on such an approach is the
limitation of the set of logic functions available in traditional
NCL libraries. Such libraries only allow the usage of positive
unate functions, reducing the gains achievable with EDA tools.

A few works propose optimizations either at the tech-
nology mapping level or at the logic synthesis level. Jeong
and Nowick [74] suggest a method to allow post-mapping
optimizations, which remaps predefined combinations of sets
of gates in the netlist in a less conservative manner than
previous works. The method first synthesizes a synchronous
description, generating a clocked Boolean encoded netlist. The
resulting netlist is then post-processed and has each of its gates
expanded and directly mapped into macros of a corresponding
dual-rail QDI cell library composed of NCL gates. Next, local
handshake logic and wiring replaces the clock distribution.
During the mapping of gates from the synchronous netlist
to the corresponding sets of NCL gates, the authors propose
the use of sophisticated algorithms that interpret the complete
netlist as an unmapped logic network itself. This enables logic

6An invalid token in a dual-rail RTZ encoding occurs when the D.0 and
D.1 wires in a channel are both high.
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optimizations such as substituting some NCL gates by simpler
Boolean gates. However, optimization is basic, again based
on predefined logic templates, which impairs it from fully
benefiting from consolidated logic mapping and optimizing
algorithms implemented by commercial EDA tools.

Another work by the same authors [78] describes an opti-
mization method for NCL circuits based on the relaxation of
input completeness constraints of gates. The method allows
substituting intermediate input complete gates by simpler gates
without compromising circuit robustness. Results demonstrate
gains in area and in delay. Later, local relaxation was also
used in the Uncle tool [65]. Besides the cited Pulsar and Uncle
tools, other design flows and systems are under proposition of
have been proposed and used in the past. Proteus [81] was
originally designed in the University of Southern California
by the research group led by Prof. Peter Beerel, and was later
licensed by Intel Inc., enhanced internally and used in the Intel
Network Equipment division to produce several asynchronous
IC designs based on the Pre-Charged Half-Buffer (PCHB) QDI
asynchronous template [25]. Another similar effort lies in the
Yale University, where a complete open-source EDA system
for the design of asynchronous circuits is under development
on the research group of Prof. Rajit Manohar [82]. This system
includes a vertical set of tools, which include from low-level
layout generation resources such as placers and routers, up
to design capture at a high level of abstraction, such as the
recently proposed Fluid tool, to be presented at this year’s
IEEE ASYNC Conference.
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