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Abstract
This article presents a novel framework for the output regulation of rational
nonlinear systems subject to input saturation, where the controller structure is
composed by an internal model generator in series with an output feedback sta-
bilizing stage. In order to address the effects of control saturation, we propose the
use of an anti-windup compensation loop into both internal model and stabiliz-
ing control stages. Given prior knowledge of the system zero-error steady-state
condition and a proper internal model, we cast the regulation error dynamics
in a differential-algebraic form, which leads to matrix inequalities conditions
that ensure closed-loop stability and exponential transient performance. Opti-
mization problems are then proposed to simultaneously compute the stabilizing
controller and the anti-windup gains such that a domain of attraction estimate
is maximized.
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1 INTRODUCTION

Output regulation is a widely studied control problem that deals with dynamical systems subject to nonvanishing distur-
bance and reference signals produced by an exogenous autonomous system.1 In the context of linear systems, the output
regulation problem was primarily solved by Francis and Wonham,2 who proposed the classical internal model princi-
ple. On the other hand, the theory on output regulation of nonlinear systems started to develop with References 3 and
4, where the zero-error steady-state conditions (so-called regulator equations) were introduced and guidelines were pro-
posed to tackle a nonlinear regulator design problem in order to achieve closed-loop stabilization. Later developments
have contributed with design methods for special classes of nonlinear regulation problems. For example, Reference 5 pro-
posed an adaptive error feedback scheme for a class of minimum phase uncertain nonlinear systems while Reference 6
proposed ways to design nonlinear internal models in order to address systems with nonpolynomial nonlinearities. More
recently, Reference 7 showed a method for output regulation with exponential convergence properties, while Reference 8
dealt with nonlinear cascaded systems with integral dynamic uncertainties. It should be pointed out that these methods
are generally restricted to input-affine nonlinear systems representable in a triangular form. Moreover, an open problem
is to systematically address a saturation nonlinearity involving the control input and also to explore anti-windup design
schemes in the nonlinear output regulation context.

[Correction added on 12 January 2021, after first online publication: in the article title, ‘code-sign’ was changed to ‘co-design’, and the ORCID link of
the author Salton was added in this version. Also, in the text, ‘codesign’ and ‘antiwindup’ were changed to ‘co-design’ and ‘anti-windup’, respectively.]
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With the development of interior point solvers, many analysis and design methods for linear systems started to appear
in the form of optimization problems subject to linear matrix inequalities (LMIs).9 There have been efforts in order to
extend these methodologies for classes of nonlinear systems, such as the differential-algebraic representation (DAR).10

The main purpose of this method is to deal with rational nonlinearities (products and quotients of polynomial func-
tions), which may be found in many real-world applications such as spacecraft control,11 unmanned aerial vehicles,12

robotic manipulators,13 and chaos-based cryptography.14 DAR-based methodologies have been extensively investigated
in many different scenarios with several improvements and extensions. Initially, a method for stabilization and domain
of attraction estimation was developed for rational nonlinear systems,15 and was subsequently adapted for systems sub-
ject to input saturation.16 Later on, a similar design approach was proposed for the input-to-state stabilization problem
in the presence of actuator saturation17 and methods were also devised for the static and dynamic anti-windup stabiliza-
tion problems.18,19 Moreover, Reference10 brought a complete overview of the differential-algebraic theory, focusing on
criteria for local, regional and global asymptotic stability of uncertain rational nonlinear systems. More recently, the DAR
method was proposed for the stability analysis of output regulation control loops subject to rational error dynamics.20 This
result was later generalized into a controller design framework for closed-loop stabilization of rational nonlinear output
regulation schemes with internal model stages.21 In order to extend the scope of the aforementioned study, it is possible
to address the control input saturation effect and to investigate the use anti-windup compensation, which are the subject
of the present work.

In this article, we present a novel framework for the output regulation of rational systems subject to control input
saturation. The control scheme proposed here unifies the classical internal model-based control for nonlinear systems22

and the anti-windup compensation discussed in References 18,23, both well-established approaches which have not been
explored together yet. The resulting control architecture is thus composed by a stabilizing dynamic output feedback con-
troller in series with an internal model structure, where anti-windup compensation is considered in both stages so as
to mitigate the undesired effects arising from input saturation. To tackle the problem of closed-loop stabilization sub-
ject to rational nonlinearities and input saturation, we propose a new modified sector condition combined with a DAR
approach. The co-design of the stabilizing controller parameters and the anti-windup gains are then expressed as opti-
mization problems aiming to maximize a domain of attraction estimate. A special design case is also shown to lead a
convex optimization problem based on LMI constraints. As a result, our framework is systematic and applicable to a large
class of output regulation problems, namely, cases whose regulation error dynamics may be described by rational non-
linear functions and where the control input is possibly subject to saturation, therefore including problems that are not
directly tractable by state-of-the-art nonlinear output regulation methods as previously discussed.

Notation: xi is the ith element of vector x. A[i] is the ith row of matrix A. A[i, j] denotes a term located at the ith row
and jth column of matrix A. The transpose of matrix A is represented by AT. A≻ 0 means that matrix A is positive-definite.
He{A} = A + AT. diag{A, B} denotes a diagonal matrix obtained by A and B. tr(A) is the trace of A. (⋆) represents
symmetric elements in a matrix, whereas (⋅) hides irrelevant terms. {} denotes the vertices of a polytope  .

2 PRELIMINARIES

Consider a nonlinear system represented by

⎧⎪⎨⎪⎩
ẋ = f (x,w,u)
y = g(x,w)
e = h(x,w)

, (1)

where x ∈ Rnx is the system state, y ∈ R
ny is the output measurement and e ∈ Rne is the output error. The system control

input u ∈  ⊆ Rnu is supposed to be constrained to the set

 = [−u1,u1] × [−u2,u2] × … × [−unu ,unu], (2)

where u1, … ,unu > 0. System (1) is also disturbed by an exogenous signal w ∈ Rnw generated by a nonlinear exosystem:

ẇ = s(w). (3)
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Functions f ∶ Rnx × Rnw × → Rnx , g ∶ Rnx × Rnw → R
ny , h ∶ Rnx × Rnw → Rne and s ∶ Rnw → Rnw are nonlinear and

satisfy f (0, 0, 0)= 0, g(0, 0)= 0, h(0, 0)= 0, and s(0)= 0. The control input is provided by a nonlinear output feedback
controller: {

�̇� = 𝜙(𝜉, y)
u = 𝜃(𝜉, y)

, (4)

where 𝜉 ∈ R
n𝜉 is the controller state vector and 𝜙 ∶ R

n𝜉 × R
ny → R

n𝜉 , 𝜃 ∶ R
n𝜉 × R

ny →  are nonlinear functions sat-
isfying 𝜙(0, 0) = 0 and 𝜃(0, 0) = 0. Given this preliminary setup, the following basic definitions and assumptions are
considered.

Definition 1. The trajectories of the closed-loop system described by (1), (3), (4) are said to be bounded if ∃𝜖1, 𝜖2,

𝜖3 > 0 ∶ ||x(t)|| ≤ 𝜖1, ||𝜉(t)|| ≤ 𝜖2, ||w(t)|| ≤ 𝜖3∀t ≥ 0, ∀(x(0), 𝜉(0), w(0)) ∈ , for some region  ⊆ Rnx × R
n𝜉 × Rnw .

Definition 2. The trajectories of the closed-loop system described by (1), (3), (4) are said to achieve output regulation in
some region  ⊆ Rnx × R

n𝜉 × Rnw if they are bounded and, moreover, limt→∞||e(t)|| = 0 ∀(x(0), 𝜉(0),w(0)) ∈ .

Assumption 1. There exist a known compact set  ⊂ Rnw such that w(t) ∈  ∀ t > 0 if w(0) ∈  .

The main control design problem to be dealt in this article can be described as follows.

Problem 1. Design controller functions 𝜙(𝜉, y) and 𝜃(𝜉, y) such that the trajectories of the closed-loop system (1), (3), (4)
achieve output regulation in some region  ⊆ Rnx × R

n𝜉 × with the control input signal restricted to the set (2).

In order to provide a solution for Problem 1, one must consider the following fundamental lemma which states
sufficient conditions for the output regulation.3

Lemma 1. 3 The trajectories of the closed-loop system (1), (3), (4) achieves output regulation in  ⊆ Rnx × R
n𝜉 × if there

exist smooth mappings 𝜋 ∶  → Rnx , 𝜎 ∶  → R
n𝜉 , c ∶  →  and d ∶  → R

ny such that 𝜋(0) = 0, 𝜎m(0) = 0, c(0)= 0,
d(0)= 0,

⎧⎪⎨⎪⎩
𝜕𝜋(w)
𝜕w

s(w) = f (𝜋(w),w, c(w))
d(w) = g(𝜋(w),w)
0 = h(𝜋(w),w)

∀ w ∈  , (5)

{
𝜕𝜎(w)
𝜕w

s(w) = 𝜙(𝜎(w), d(w))
c(w) = 𝜃(𝜎(w), d(w))

∀ w ∈  , (6)

and also

⎧⎪⎨⎪⎩
lim
t→∞

||x(t) − 𝜋(w(t))|| = 0

lim
t→∞

||𝜉(t) − 𝜎(w(t))|| = 0
∀ (x(0), 𝜉(0),w(0)) ∈ . (7)

In order to Problem 1 be solvable based on Lemma 1, we assume there exist known solutions 𝜋(w), d(w), and
c(w) with respect to condition (5). Moreover, the control input limits u1, … ,unu are considered to be satisfied by
c ∶  →  , that is, the available control amplitude is sufficient to generate the signal c(w) required to achieve output
regulation in steady-state, as formalized in Assumption 2. To additionally ensure the stabilization problem tractabil-
ity with the DAR approach,20 we initially consider that all system functions are regionally regular rational1, as in
Assumption 3.

Assumption 2. There exist known mapping functions 𝜋(w), d(w), and c(w) satisfying (5) and

sup
w∈

|cj(w)| < uj ∀ j ∈ {1, 2, … ,nu}. (8)

1Regular rational functions are those that can be expressed as fraction of polynomial functions and that has no singularities in their domain.
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F I G U R E 1 Anti-windup output regulator
scheme

Assumption 3. Functions f (x, w, u), g(x, w), h(x, w), s(w), 𝜙(𝜉, y), 𝜃(𝜉, y), 𝜋(w), 𝜎(w), c(w), and d(w) are regular rational
with respect to some region  ⊆ Rnx × R

n𝜉 × .

3 OUTPUT REGULATION FRAMEWORK

This section presents the proposed output regulation framework in order to systematically address the Problem 1 stated
above. We initially detail the structure of the proposed output regulator, which is composed by an internal model stage,
a dynamic stabilizing controller and two anti-windup loops. The main results are presented later, where stability and
performance conditions, in the form of matrix inequalities, are formulated for the simultaneous design of the controller
and anti-windup parameters. This section also contains an illustrative numerical example to illustrate each development
step-by-step.

3.1 Output regulator and steady-state conditions

Our control framework is as depicted by the block diagram of Figure 1. This structure is inspired by two classical control
approaches: the internal model-based control22 and the anti-windup stabilization strategy.18,23 As seen in Figure 1, the
control input u ∈  is primarily generated by a saturation function of an unconstrained control signal 𝜇 ∈ Rnu , such as

u = sat(𝜇), (9)

which is defined according to

uj = sat(𝜇j) ≜ min{max{𝜇j, −uj}, uj} ∀ j ∈ {1, 2, … ,nu}. (10)

This unconstrained control signal 𝜇 is in turn produced by an internal model stage, which is responsible for generating
the target zero-error steady-state related to conditions (5) and (6). This last block receives a signal v ∈ Rnv from a dynamic
stabilizing stage, responsible for ensuring the convergence of plant and controller states to the steady-state manifold
by mappings 𝜋(w) and 𝜎(w) in Lemma 1. Two anti-windup loops that consists in feeding both the internal model and
stabilizing controller with the control input deadzone signal, defined as

𝜓(𝜇) ≜ 𝜇 − u = 𝜇 − sat(𝜇), (11)

are considered to mitigate the saturation effects in the output regulation scheme. Note that 𝜓(𝜇j) = 0 whenever |𝜇j| ≤ uj,
whereas 𝜓(𝜇j) ≠ 0 in cases that |𝜇j| > uj.

The equations for the internal model stage shown in the block diagram of Figure 1 are given by{
�̇�m = 𝜙m(𝜉m, y) + vm + E(y) 𝜓(𝜇)
𝜇 = 𝜃m(𝜉m, y) + vu

,

[
vu

vm

]
≜ v, (12)

where 𝜉m ∈ Rnm is the internal model state vector, vm ∈ Rnm is the internal model stabilizing input and vu ∈ Rnu is the
plant stabilizing input. Nonlinear functions 𝜙m ∶ Rnm × R

ny → Rnm and 𝜃m ∶ Rnm × R
ny → Rnu here define the internal
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model dynamics, whereas E ∶ R
ny → Rnm×nu is the internal model anti-windup gain matrix. Similarly, the stabilizing stage

dynamics is defined by

{
�̇�s = 𝜙s(𝜉s, y) + W(y) 𝜓(𝜇)
v = 𝜃s(𝜉s, y)

, (13)

where 𝜉s ∈ Rns is the stabilizing controller state vector, 𝜙s ∶ Rns × R
ny → Rns and 𝜃s ∶ Rns × R

ny → Rnu are the stabilizing
controller functions and W ∶ R

ny → Rns×nu is the stabilizing controller anti-windup gain matrix.
Based on Lemma 1, the following lemma provides sufficient output regulation conditions under the use of the

anti-windup compensated control stages (12) and (13).

Lemma 2. The trajectories of the closed-loop system composed by (1), (3) and controller (9), (12), (13) achieves output
regulation in  ⊆ Rnx × Rnm × Rns × if there exist smooth mappings 𝜋 ∶  → Rnx , 𝜎m ∶  → Rnm , c ∶  →  and
d ∶  → R

ny satisfying 𝜋(0) = 0, 𝜎m(0) = 0, c(0)= 0, d(0)= 0, relations in (5), (8),

{
𝜕𝜎m(w)
𝜕w

s(w) = 𝜙m(𝜎m(w), d(w))
c(w) = 𝜃m(𝜎m(w), d(w))

∀ w ∈  , (14){
0 = 𝜙s(0, d(w))
0 = 𝜃s(0, d(w))

∀ w ∈  , (15)

and also

⎧⎪⎪⎨⎪⎪⎩
lim
t→∞

||x(t) − 𝜋(w(t))|| = 0

lim
t→∞

||𝜉m(t) − 𝜎m(w(t))|| = 0

lim
t→∞

||𝜉s(t)|| = 0

∀ (x(0), 𝜉m(0), 𝜉s(0),w(0)) ∈ . (16)

Proof. Define 𝜉 ≜ [𝜉T
m 𝜉

T
s ]T and consider the controller (9), (12), (13) which can be written in the compact form of (4)

with:

𝜙(𝜉, y) =

[
𝜙m(𝜉m, y) + Dm𝜃s(𝜉s, y) + E(y) �̃�(𝜉, y)

𝜙s(𝜉s, y) + W(y) �̃�(𝜉, y)

]
,

𝜃(𝜉, y) = 𝜃m(𝜉m, y) + D 𝜃s(𝜉s, y) − �̃�(𝜉, y),

(17)

where �̃�(𝜉, y) ≜ 𝜓(𝜃m(𝜉m, y) + D 𝜃s(𝜉s, y)) and matrices D ∈ Rnu×nv and Dm ∈ Rnm×nv denote

D ≜
[

I 0
]
, Dm ≜

[
0 I

]
. (18)

Let 𝜎(w) = [𝜎T
m(w) 𝜎T

s (w)]T be the controller zero-error steady-state mapping, where 𝜎m(w) is the nonvanishing term
related to the internal model states and 𝜎s(w) = 0 is the vanishing component related to the stabilizing controller states.
Using this mapping 𝜎(w), the original regulation condition (6) becomes

⎧⎪⎨⎪⎩
[
𝜕𝜎m(w)
𝜕w

s(w)
0

]
=

[
𝜙m(𝜎m(w), d(w)) + E(d(w)) �̃�(𝜎(w), d(w))

W(d(w)) �̃�(𝜎(w), d(w))

]
c(w) = 𝜃m(𝜎m(w), d(w)) − �̃�(𝜎(w), d(w))

∀ w ∈  . (19)

From Assumption 2, it follows that the plant control input u is not saturated in the zero-error steady-state condi-
tion u= c(w) ∀ w ∈  , which implies that �̃�(𝜎(w), d(w)) = 𝜓(c(w)) = 0 ∀ w ∈  . Thus, regulation condition (6) is
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simplified to (14) and (15), which are independent of the anti-windup parameters. Applying now the indicated mapping
𝜎(w) into attraction condition (7), one obtains (16). Consequently, the conditions from Lemma 2 ensure all the ones from
Lemma 1. ▪

From Lemma 2, one concludes that the stabilizing controller and anti-windup design parameters of (12) and (13) do
not influence the controller zero-error steady-state originally defined by (6). It follows that the controller steady-state is
influenced solely by the internal model functions, as indicated in (14). Based on this reasoning, any classical internal
model design approach may be employed here, as for instance, the ones discussed in Reference 22. Thus, given the prior
knowledge of proper functions 𝜙m(𝜉m, y) and 𝜃m(𝜉m, y) satisfying (14) for some 𝜎m(w), the sequel of the article is dedicated
to the systematic design of stabilizing functions 𝜙s(𝜉s, y) and 𝜃s(𝜉s, y) and anti-windup gains E(y) and W(y) to ensure the
manifold attraction conditions in (16).

A numeric nonlinear output regulation example is here presented to illustrate the proposed output regulation frame-
work. For now, the focus is just on the solution of the regulator equations and the internal model construction. The same
example case will be addressed henceforth in the article in order to demonstrate our main results related to the co-design
of stabilizing and anti-windup components.

Example 1. Consider the following rational nonlinear plant and exosystem:

{
ẋ1 = a1 x2

1 (1 + x2
1)

−1 + a2 w2 + x2

ẋ2 = a1 x1 (1 + x2
1)

−1 + a2 w1(1 + w3) + a3 u
,

⎧⎪⎨⎪⎩
ẇ1 = b1 (w2 − w1)
ẇ2 = b2 w1 − w2 − b4 w1w3

ẇ3 = b4 w1w2 − b3 w3

, (20)

where y = [x1 w1]T are the available output measurements and the target output error is defined as e= x1. Terms
a1, a2, a3, b1, b2, b3, b4 ∈ R denote constant parameters and the control input u ∈  ⊂ R is bounded in a compact set
 = [−u,u], where the attributed numerical value for all the aforementioned parameters are organized in Table 1.

The exosystem presented in here is the so-called Lorenz attractor, which is known for exhibiting chaotic behavior
with the setup in Table 1. The Lorenz differential equations arise in a myriad of practical applications such as lasers,24

segmented disc dynamos,25 convection loop dynamics,26 brushless DC motors,27 and chemical reactions.28 According to
Li et al.,29 it has been proven that the trajectories w(t) of the Lorenz exosystem are contained in the spherical positively
invariant set

 = {w ∈ R
3 ∶ ||w − wc|| ≤ r} , wc ≜ [0 0 b−1

4 (b1 + b2)]T , r ≜ b3 (b1 + b2)
(

2b4
√

b3 − 1
)−1

. (21)

The zero-error steady-state solution of the plant can be obtained by analytically solving the mappings 𝜋(w) ∶ R3 → R2,
c(w) ∶ R3 → R and d(w) ∶ R3 → R2 with respect to the regulator Equation (5) from Lemma 1, leading to

𝜋(w) =

[
0

−a2 w2

]
, c(w) = a2a3

−1(w2 − b̃2 w1 + b̃4 w1w3), d(w) =

[
0

w1

]
, (22)

where b̃2 ≜ b2 + 1 and b̃4 ≜ b4 − 1. It is required next to construct proper functions𝜙m(𝜉m, y) and 𝜃m(𝜉m, y) for the internal
model stage (12) in order to satisfy the controller steady-state condition (14) in Lemma 2 for some mapping 𝜎m(w). By
considering traditional internal model design guidelines,22 one can find the following solution:

𝜙m(𝜉m, y) =
⎡⎢⎢⎢⎣

b1 (𝜉m2 − 𝜉m1)
b2 𝜉m1 − 𝜉m2 − b4 y2 𝜉m3

b4 y2 𝜉m2 − b3 𝜉m3

⎤⎥⎥⎥⎦ , 𝜃m(𝜉m, y) = 𝜉m2 − b̃2 𝜉m1 + b̃4 y2 𝜉m3, 𝜎m(w) = a2a−1
3 w, (23)

which is inherently robust with respect to the plant parameters a1, a2, a3, since they are not required to be known in order
to implement 𝜙m(𝜉m, y) and 𝜃m(𝜉m, y) (i.e., the parameters are contained in the steady-state mapping 𝜎m(w)).

To completely solve this output regulation, one must also design the stabilizing and anti-windup components𝜙s(𝜉s, y),
𝜃s(𝜉s, y), E(y), and W(y). This problem will be addressed in the sequence.
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T A B L E 1 Considered numerical values of
all system parameters Parameter a1 a2 a3 b1 b2 b3 b4 u

Value 1/2 1 103 10 28 8/3 1 4

Note: The exosystem setup is as in Reference 29.

3.2 Stabilization problem setup using the DAR

To systematically design a stabilizing controller in the form of (13), as considered in Reference 21, we first introduce an
auxiliary proxy error signal

𝜀 = 𝛿(y), (24)

which is defined by a steady-state vanishing function 𝛿 ∶ R
ny → Rn𝜀 of the available measurements y, that is

0 = 𝛿(d(w)) ∀ w ∈  . (25)

This proxy error 𝜀 represents a steady-state vanishing signal to be employed as a feedback component in the stabilizing
controller. Note that whenever the original output error e is implementable with the measurements, that is, ∃ h(y) :
h(g(x, w))= h(x, w), then 𝛿(y) = h(y) can be considered, in which case 𝜀 is equivalent to e. In the case from Example 1, for
instance, the proxy error can be chosen as 𝜀 = 𝛿(y) = y1. The methodology in this article, however, will be also capable of
dealing with cases where 𝜀 is different than e, provided that (25) holds for a given 𝛿(y). Based on this proxy error signal 𝜀,
the stabilizing controller (13) is particularly considered in the following form:{

�̇�s = F(y) 𝜉s + G(y) 𝜀 + W(y) 𝜓(𝜇)
v = H(y) 𝜉s + K(y) 𝜀

, (26)

where F ∶ R
ny → Rns×ns , G ∶ R

ny → Rns×n𝜀 , H ∶ R
ny → Rnv×ns and K ∶ R

ny → Rnv×n𝜀 are free-design stabilizing matrices
possibly dependent on the available measurements. From the vanishing condition (25), it is readily noticeable that this
controller structure satisfies the steady-state requirement (15).

Thus, considering a priori known internal model functions 𝜙m(𝜉m, y), and 𝜃m(𝜉m, y) satisfying (14) for some 𝜎m(w) and
a function 𝛿(y) satisfying (25), one should design F(y), G(y), H(y), K(y), E(y), and W(y) such that the attraction requirement
(16) is satisfied in some region  ⊆ Rnx × Rnm × Rns × . With this aim, let us introduce a regulation error state z ∈ Rnz

(nz =nx +nm) defined as follows:

z ≜

[
zx

zm

]
≜

[
x − 𝜋(w)
𝜉m − 𝜎m(w)

]
. (27)

The vector component zx ∈ Rnx here denotes the deviation between the system state x and the regulation reference 𝜋(w),
while zm ∈ Rnm denotes the deviation between the internal model state 𝜉m and its regulation reference 𝜎m(w). Noting
that z→ 0 implies that x → 𝜋(w) and 𝜉m → 𝜎m(w), the manifold stabilization problem related to condition (16) may be
regarded by the asymptotic stabilization of the trajectories z(t) with respect to the origin. Since it is also necessary to ensure
that 𝜉s → 0, that is, the asymptotic convergence of the stabilizing controller states, it is useful to define an augmented
regulation error state as

z ≜

[
z
𝜉s

]
. (28)

Now, the target attraction condition from (16) can be rewritten in the following compact way:

lim
t→∞

||z(t)|| = 0 ∀ (z(0),w(0)) ∈  ⊆ R
na × , (29)
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where  denotes region  remapped from the original (x, 𝜉m, 𝜉s,w) space to the regulation error (z, w) space. Thus, the
output regulation problem has been fully reframed as an origin asymptotic stabilization problem. In the sequence, we
focus on the dynamical description of the variables z and 𝜉s in order to completely setup this stabilization problem.

Let us now consider an effective stabilizing input signal ṽ ∈ Rnv given by:

ṽ ≜

[
ṽu

ṽm

]
≜

[
vu − 𝜓(𝜇)

vm + E(y) 𝜓(𝜇)

]
. (30)

By using the matrices defined in (18), one should note that (30) can be equivalently written as

ṽ = v + (DT
mE(y) − DT) 𝜓(𝜇). (31)

The dynamics of the state z and other important variables such as the unconstrained control signal 𝜇 and the
proxy error signal 𝜀 may then be expressed in the following manner, which will be referred as the regulation error
system:

⎧⎪⎨⎪⎩
ż = fz(z,w, ṽ)
𝜇 = 𝜃z(z,w) + c(w) + vu

𝜀 = 𝛿z(z,w)

, (32)

where these new system functions are obtained substituting x by zx + 𝜋(w) and 𝜉m by zm + 𝜎m(w) in the original system
Equations (1) and (12), which yields:

fz(z,w, ṽ) =

[
f (zx + 𝜋(w),w, 𝜃z(z,w) + c(w) + ṽu)
𝜙m(zm + 𝜎m(w), gz(z,w) + d(w)) + ṽm

]
−

[
f (𝜋(w),w, c(w))
𝜙m(𝜎m(w), d(w))

]
,

𝜃z(z,w) = 𝜃m(zm + 𝜎m(w), gz(z,w) + d(w)) − c(w),
𝛿z(z,w) = 𝛿(gz(z,w) + d(w)),

(33)

where gz(z,w) + d(w) ≜ g(zx + 𝜋(w),w) − d(w) is an auxiliary definition. From the previously established steady-state
conditions, an important characteristic of the representation in (32) is the fact that relations f z(0, w, 0)= 0, 𝜃z(0,w) = 0,
𝛿z(0,w) = 0, and gz(0, w)= 0 are verified ∀ w ∈  .

In order to deal with the nonlinear functions of the regulation error system (32), we consider a DAR. This proce-
dure is applicable whenever these functions are regionally regular rational30 with respect to variables (z, w) inside some
validity domain + ×+. One should note that set + must at least contain  , where the exosystem trajectories are
bounded from Assumption 1, whereas set + must at least contain the origin z= 0, which is the target equilibrium point.
To provide a numerically tractable method, we henceforth regard these sets + and + as a priori defined convex poly-
topes, which can be described by a convex hull of its vertices, with {+} and {+} denoting the set of vertices of
+ and +, respectively. Without any loss of generality, we also consider the set + expressed in the following alternative
form:

+ =
{

z ∈ R
nz ∶ |pT

kz| ≤ 1 , k = 1, 2, … ,nk
}
, (34)

with p1, p2, … , pnk ∈ Rnz .

Remark 1. In Assumption 3, we assumed that all steady-state mappings and system functions are regionally regular
rational in order to employ the DAR framework. Note that this assumption can be relaxed, since in fact only the resultant
composed functions fz(z,w, ṽ), 𝜃z(z,w), 𝛿z(z,w) and the mapping c(w), which appear in (32), are required to be regionally
regular rational inside + ×+.

According to Coutinho et al.,30 it follows from Assumption 3 that a proper well-posed DAR can always be chosen in
order to deal with the rational functions fz(z,w, ṽ), 𝜃z(z,w), and 𝛿z(z,w) in system (32). For instance, in this article we
consider:
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fz(z,w, ṽ) = A(z,w) z + Φ(z,w) 𝜑(z,w) + B ṽ
𝜃z(z,w) = Q(z,w) z + Υ(z,w) 𝜑(z,w)
𝛿z(z,w) = C z + Γ 𝜑(z,w)

(35)

with a rational nonlinear mapping 𝜑 ∶ + ×+ → R
n𝜑 satisfying

0 = Ψ(z,w) z + Ω(z,w) 𝜑(z,w). (36)

Matrices A ∶ + ×+ → Rnz×nz , Φ ∶ + ×+ → R
nz×n𝜑 , Q ∶ + ×+ → Rnu×nz , Υ ∶ + ×+ → R

nu×n𝜑 , Ψ ∶ + ×
+ → R

n𝜑×nz , and Ω ∶ + ×+ → R
n𝜑×n𝜑 are affine with respect to (z, w) and matrices B ∈ Rnz×nv , C ∈ Rn𝜀×nz and

Γ ∈ R
n𝜀×n𝜑 are constant2. It is considered that matrix Ω(z,w) is nonsingular ∀ (z,w) ∈ + ×+, which ensures the

well-posedness of the DAR.
Since the system matrix A(z, w) was considered affine in (z, w), one can always express it in the form of

A(z,w) = A0 +
n∑

i=1
Ai 𝜆i(z,w), (37)

where A0, … ,An ∈ Rnz×nz are constant matrices and 𝜆 ∶ Rnz × Rnw → Rn is a linear mapping. The role of the latter is
to serve as a gain-scheduling vector function, with the purpose of providing additional degree of freedom to the stabi-
lization problem. The restriction on the choice of 𝜆(z,w), besides the linearity, is its implementability with the available
measurement y, that is

∃ λ(y) ∶ λ(gz(z,w) + d(w)) = 𝜆(z,w). (38)

Given these considerations, we define the stabilizing controller gains F(y), G(y), H(y), K(y) and the anti-windup gains
E(y), W(y) such as the following affine parametrization:

[
F(y) G(y)
H(y) K(y)

]
≜

[
F0 G0

H0 K0

]
+

n∑
i=1

[
Fi Gi

Hi Ki

]
λi(y) ,

[
E(y)
W(y)

]
≜

[
E0

W0

]
+

n∑
i=1

[
Ei

Wi

]
λi(y), (39)

where Fi, Gi, Hi, Ki, Ei, Wi ∀i∈ {0, … , n} are free constant matrices to be designed. From relation (38), it follows that
(39) can be equivalently expressed in terms of (z, w) according to

[
F(z,w) G(z,w)
H(z,w) K(z,w)

]
≜

[
F0 G0

H0 K0

]
+

n∑
i=1

[
Fi Gi

Hi Ki

]
𝜆i(z,w) ,

[
E(z,w)
W(z,w)

]
≜

[
E0

W0

]
+

n∑
i=1

[
Ei

Wi

]
𝜆i(z,w). (40)

Whereas Equation (39) reflects the actual implementation of the controller and anti-windup gains, the
alternative notation from (40) will be useful to derive our proposed stabilization framework in the
sequence.

Considering that fz(z,w, ṽ), 𝜃z(z,w), and 𝛿z(z,w) are equivalent to (35) and (36) and applying the deadzone effect from
(30), we can now write the regulation error system (32) as follows:

⎧⎪⎪⎨⎪⎪⎩

ż = A(z,w) z + Φ(z,w) 𝜑(z,w) + B (DT
mE(z,w) − DT) 𝜓(𝜇) + B v

𝜇 = Q(z,w) z + Υ(z,w) 𝜑(z,w) + c(w) + D v
𝜀 = C z + Γ 𝜑(z,w)
0 = Ψ(z,w) z + Ω(z,w) 𝜑(z,w)

. (41)

2There is no loss of generality in considering these matrices as constant, since the nonlinearities can be lumped into 𝜑(z, w). Moreover, this
consideration will ensure that all closed-loop system matrices will remain affine in (z, w), a desirable property for simplifying the control synthesis.
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Then, using the augmented state vector z defined in (28), we can express the complete closed-loop dynamics, which
combines the regulation error system (41) with the proposed stabilizing stage (26):

⎧⎪⎨⎪⎩
ż = A(z,w) z +𝚽(z,w) 𝜑(z,w) + J(z,w) 𝜓(𝜇)
𝜇 = Q(z,w) z + 𝚼(z,w) 𝜑(z,w) + c(w)
0 = 𝚿(z,w) z +𝛀(z,w) 𝜑(z,w)

, (42)

where matrices A ∶ + ×+ → Rna×na , 𝚽 ∶ + ×+ → R
na×n𝜑 , … , 𝛀 ∶ + ×+ → R

n𝜑×n𝜑 are given as
follows:

A(z,w) =

[
A(z,w) + BK(z,w)C BH(z,w)
G(z,w)C F(z,w)

]
,

𝚽(z,w) =

[
Φ(z,w) + BK(z,w)Γ

G(z,w)Γ

]
,

J(z,w) =

[
BDT

mE(z,w) − BDT

W(z,w)

]
,

Q(z,w) =
[

Q(z,w) + DK(z,w)C DH(z,w)
]
,

𝚼(z,w) = Υ(z,w) + DK(z,w)Γ ,
𝚿(z,w) =

[
Ψ(z,w) 0

]
,

𝛀(z,w) = Ω(z,w) .

(43)

The solution of Problem 1 can therefore be achieved by the determination of matrices Fi, Gi, Hi, Ki, Ei, Wi
∀i∈ {0, … , n} such that the trajectories of system (42) converge to the origin as in (29) for some region of initial conditions
 ⊆ Rna × . A systematic procedure to that will be detailed in Section 3.4.

In order to illustrate the setup described previously, in the next example we show how to construct the regulation
error dynamics and its DAR for the same system considered in Example 1.

Example 2. Consider the system and exosystem from (20) with steady-state mappings and internal model
functions designed as in Example 1. We first choose 𝜀 = 𝛿(y) = y1, noting that (25) is satisfied since d1(w)= 0.
Second, we express the system using the regulation error coordinate change introduced by (27), which
gives

z1 ≜ x1, z2 ≜ x2 + a2 w2, z3 ≜ 𝜉m1 − a2a−1
3 w1, z4 ≜ 𝜉m2 − a2a−1

3 w2, z5 ≜ 𝜉m3 − a2a−1
3 ,w3. (44)

Thus, functions ż = fz(z,w, ṽ), 𝜇 = 𝜃(z,w), and 𝜀 = 𝛿z(z,w), from the regulation error system, are
given by:

fz(z,w, ṽ) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

a1 z2
1 (1 + z2

1)
−1 + z2

a1 z1 (1 + z2
1)

−1 + a3 (z4 − b̃2 z3 + b̃4 w1z5 + ṽ1)
b1 (z4 − z3) + ṽ2

b2 z3 − z4 − b4 w1z5 + ṽ3

b4 w1z4 − b3 z5 + ṽ4

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,

𝜃z(z,w) = z4 − b̃2 z3 + b̃4 w1z5,

𝛿z(z) = z1.
(45)

Given this representation, the next step is to decompose fz(z,w, ṽ), 𝜃z(z,w), 𝛿z(z) into an appropriate DAR as stated by
Equations (35) and (36). For such procedure, one can choose the following vector of rational nonlinearities:

𝜑(z) =

[
z2

1 (1 + z2
1)

−1

z1 (1 + z2
1)

−1

]
. (46)
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Matrices in (35) and (36) are then specified as follows:

A(w) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0
0 0 −a3b̃2 a3 a3b̃4w1

0 0 −b1 b1 0
0 0 b2 −1 −b4w1

0 0 0 b4w1 −b3

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, Φ =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

a1 0
0 a1

0 0
0 0
0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, B =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0
a3 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,

Q(w) =
[
0 0 −b̃2 1 b̃4 w1

]
, Υ =

[
0 0

]
,

C =
[
1 0 0 0 0

]
, Γ =

[
0 0

]
,

Ψ =

[
0 0 0 0 0
−1 0 0 0 0

]
, Ω(z) =

[
1 −z1

z1 1

]
,

(47)

where Ω(z) is nonsingular ∀ z ∈ R5 because det{Ω(z)} = 1 + z2
1 ≥ 1. Note that the system matrix A(w) is in this case an

affine function of 𝜆(w) = w1, that is, A(w)=A0 +A1w1, with:

A0 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0
0 0 −a3b̃2 a3 0
0 0 −b1 b1 0
0 0 b2 −1 0
0 0 0 0 −b3

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, A1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0
0 0 0 0 a3b̃4

0 0 0 0 0
0 0 0 0 −b4

0 0 0 b4 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (48)

According to the proposed setup procedure, the signal 𝜆(w) = w1, which is equivalent to λ(y)= y2, will also be utilized as
a gain-scheduling variable for the stabilizing controller and anti-windup gains.

3.3 Proposed sector condition

The purpose of this subsection is to present a new modified sector condition associated with the deadzone function 𝜓(𝜇)
which appears in (42) as a consequence of the possible control signal saturation. This result will be essential to derive
conditions in the form of matrix inequalities to solve the stabilization problem.

Differently from the modified sector condition proposed in Reference 23, which was developed for a standard stabi-
lization problem, our new condition is able to account for the nonvanishing characteristic of 𝜇 toward the steady-state
equilibrium point z= 0, which is a particular characteristic of the output regulation problem. For instance, our new con-
dition allows one to address the presence of 𝜓(𝜇) into system by just considering the vanishing component 𝜽(z,w) ≜
Q(z,w) z + 𝚼(z,w) 𝜑(z,w) of the signal 𝜇 and the magnitude upper-bounds of its nonvanishing component c(w). This
result is stated as follows.

Lemma 3. Consider functions 𝜽,𝝑 ∶ Rna × Rnw → Rnu and positive scalars c1, … , cnu ∈ R such that

sup
w∈

|cj(w)| ≤ cj < uj ∀ j ∈ {1, 2, … ,nu}. (49)

If (z,w) ∈  , where  is the set

 = {(z,w) ∈ R
na × ∶ |𝜽j(z,w) − 𝝑j(z,w) | ≤ (uj − cj), j = 1, 2, … ,nu}, (50)

then it follows that

𝜓T(𝜇) T (𝜓(𝜇) − 𝝑(z,w)) ≤ 0 (51)

is verified for 𝜇 = 𝜽(z,w) + c(w) and any diagonal matrix T ∈ Rnu×nu , T ≻ 0.
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Proof. Observe all the possible cases that follow ∀ j= 1, 2, … , nu when 𝜓(𝜇j) ≠ 0:

(a) 𝜓(𝜇j) > 0. In this case it follows that𝜓(𝜇j) = 𝜽j(z,w) + cj(w) − uj ≤ 𝜽j(z,w) + cj − uj, where cj is as in (49). Moreover,
it is also verified that 𝜓(𝜇j) − 𝝑j(z,w) ≤ 𝜽j(z,w) − 𝝑j(z,w) + cj − uj. Furthermore, if (z,w) ∈  , as defined by (50), it
follows that 𝜽j(z,w) − 𝝑j(z,w) ≤ uj − cj which implies that 𝜓(𝜇j) − 𝝑j(z,w) ≤ 𝜽j(z,w) + cj − uj − 𝝑j(z,w) ≤ 0. Thus,
as 𝜓(𝜇j) > 0, we conclude that:

𝜓T(𝜇j) T[j,j] (𝜓(𝜇j) − 𝝑j(z,w)) ≤ 0. (52)

(b) 𝜓(𝜇j) < 0. In this case it follows that 𝜓(𝜇j) = 𝜽j(z,w) + cj(w) + uj ≥ 𝜽j(z,w) − cj + uj and also 𝜓(𝜇j) − 𝝑j(z,w) ≥
𝜽j(z,w) − 𝝑j(z,w) − cj + uj. Furthermore, if (z,w) ∈  , it follows that 𝜽j(z,w) − 𝝑j(z,w) ≥ −(uj − cj) which implies
that 𝜓(𝜇j) − 𝝑j(z,w) ≥ 𝜽j(z,w) − 𝝑j(z,w) − cj + uj ≥ 0. Thus, as 𝜓(𝜇j) < 0, we conclude that (52) is again verified.

From all these possible cases, as𝜓(𝜇) is a decentralized nonlinearity, it follows that provided (49) holds and (z,w) ∈  ,
relation (51) is verified for any diagonal matrix T ≻ 0. ▪

To complement the result provided by Lemma 3, we have also devised a method to solve the problem of finding
upper-bound parameters c1, … , cnu in (49) by semidefinite programming. This approach is applicable whenever c(w) is
a regular rational mapping with respect to + ⊇ . With this assumption, one can always express the function c(w) in
a proper well-posed algebraic representation, such as

c(w) = Q̃(w) w + Υ̃(w) 𝜂(w) (53)

with a rational nonlinear mapping 𝜂 ∶ + → R
n𝜂 satisfying

0 = Ψ̃(w) w + Ω̃(w) 𝜂(w). (54)

Matrices Q̃ ∶ + → Rnu×nw , Υ̃ ∶ + → R
nu×n𝜂 , Ψ̃ ∶ + → R

n𝜂×nw and Ω̃ ∶ + → R
n𝜂×n𝜂 are affine with respect to w and

Ω̃(w) is nonsingular ∀ w ∈ +. Also without loss of generality, we introduce an auxiliary ellipsoidal bound in the form of

̃ =
{

w ∈ R
nw ∶ (w − wc)TP̃ (w − wc) ≤ 1

}
, (55)

for a symmetric and positive definite matrix P̃ ∈ Rnw×nw and a center point wc ∈ Rnw such that  ⊆ ̃ ⊆+. Given these
considerations, we obtained the following result.

Lemma 4. If there exist matrices L̃j ∈ R
n𝜂×n𝜂 and scalars 𝛾j ∈ R ∀ j∈ {1, 2, … , nu} such that:

𝛾j > 0,

⎡⎢⎢⎢⎢⎢⎣

𝛾j Q̃[j](w) Υ̃[j](w) 0
⋆ P̃ Ψ̃T(w)L̃T

j P̃wc

⋆ ⋆ He{L̃jΩ̃(w)} 0
⋆ ⋆ ⋆ wT

c P̃wc

⎤⎥⎥⎥⎥⎥⎦
≽ 0 ∀ w ∈ {+}, (56)

then (49) is satisfied with cj =
√
𝛾j.

Proof. Suppose that (56) is verified. From Schür’s complement and from the fact that the left-hand side of (56) is affine
in w, it follows that

[
wT 𝜂T(w) −1

] ⎛⎜⎜⎜⎝
⎡⎢⎢⎢⎣

P̃ Ψ̃T(w)L̃T
j P̃wc

⋆ He{L̃jΩ̃(w)} 0
⋆ ⋆ wT

c P̃wc

⎤⎥⎥⎥⎦ −
⎡⎢⎢⎢⎣

Q̃T
[j](w)

Υ̃T
[j](w)
0

⎤⎥⎥⎥⎦
1
𝛾j

[
Q̃[j](w) Υ̃[j](w) 0

]⎞⎟⎟⎟⎠
⎡⎢⎢⎢⎣

w
𝜂(w)
−1

⎤⎥⎥⎥⎦ ≥ 0 ∀ w ∈ + . (57)
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From (53) and (54), we then have that Ψ̃(w) w + Ω̃(w) 𝜂(w) = 0 and Q̃[j](w) w + Υ̃[j](w) 𝜂(w) = cj(w), so (57) reduces
to:

(w − wc)TP̃ (w − wc) − cT
j (w) 𝛾−1

j cj(w) ≥ 0 ∀ w ∈ + ⇔ 𝛾−1
j |cj(w)|2 ≤ (w − wc)TP̃ (w − wc) ∀ w ∈ +. (58)

Consider now the set ̃ ⊆+ as defined in (55). Hence, from (58), we conclude that

|cj(w)|2 ≤ 𝛾j ∀ w ∈ ̃ . (59)

Moreover, since ̃ is defined such that  ⊆ ̃ , relation (60) also implies that

|cj(w)|2 ≤ 𝛾j ∀ w ∈  , (60)

which finally leads to:

sup
w∈

|cj(w)| ≤√
𝛾j. (61)

Thus, (49) holds with cj =
√
𝛾j if conditions in (56) are verified. ▪

Based on Lemma 4, each steady-state control bound cj can be determined by the following semidefinite optimization:

min
L̃j, 𝛾j

𝛾j s.t. (56). (62)

The subsequent example illustrates the employment of this method in a numerical case study.

Example 3. Consider the system and exosystem from Example 1, where the zero-error steady-state control mapping was
verified to be c(w) = a2a3

−1(w2 − b̃2 w1 + b̃4 w1w3) with b̃2 ≜ b2 + 1 and b̃4 ≜ b4 − 1. As also mentioned in Example 1, the
exosystem trajectories w(t) are contained inside a spherical positively invariant set with radius r and center wc, as defined
in (21).

We apply now Lemma 4 to find a lowest upper-bound c for c(w) ∀ w ∈  . For this, it is first necessary to express c(w)
as defined in (53) and (54). A possible representation in this case is obtained with

Q̃(w) = a2a3
−1
[
−b̃2 1 0

]
, Υ̃ = b̃4 , Ψ̃(w) =

[
0 0 −w1

]
, Ω̃ = 1, (63)

where 𝜂(w) = w1w3. The ellipsoidal set ̃ can be defined with P̃ = Ir−2 and with the same previously mentioned center
point wc, noting that = ̃ in this case. Moreover, since the system matrices only depend on w1, set+ does not need to
be bounded in the directions associated to w2 and w3. For instance, one may consider + = [−r, r] × R2, which implies
that  = ̃ ⊂+.

Considering the numerical parameters from Table 1, we determined that c = 1.1388 by solving the semidefinite pro-
gramming (62). The knowledge of this upper-bound particularly allows the employment of the sector condition from
Lemma 3 for control design purposes, as it will be seen in Section 3.4.

3.4 Main results: Stability and performance conditions

This section presents our main results regarding the development of the closed-loop stability conditions in the form of
matrix inequalities. These conditions are subsequently used to cast the co-design of stabilizing controller and anti-windup
parameters by numerical optimization methods.

Beyond dealing with the original asymptotic output regulation requirement of the closed-loop system, which was
emphasized by the requirement (29), we will also consider an exponential convergence criterion. With this aim, consider
the following definition.
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Definition 3. 𝛼-Exponential Convergence: The augmented regulation error state trajectories z(t) are said to converge
exponentially to zero in  if there exist scalars 𝛽 > 0 and 𝛼 > 0 such that

||z(t)|| ≤ 𝛽 ||z(0)|| e−𝛼t ∀ t ≥ 0, ∀ (z(0),w(0)) ∈  ⊆ R
na × . (64)

In this case, the trajectories z(t) approach the origin with an exponential decay rate greater then 𝛼.

Based on the previous definitions and the proposed sector condition from Lemma 3, we can now formulate conditions
to guarantee the 𝛼-exponential convergence of the regulation error system trajectories to the origin, provided that the
initial conditions (z(0), w(0)) belong to a certain region  .

Theorem 1. Assume ns =nz. Suppose that there exist symmetric matrices X ,Y ∈ Rnz×nz , a diagonal matrix T̂ ∈ Rnu×nu and
matrices L ∈ R

n𝜑×n𝜑 , R̂0, … , R̂m ∈ Rnu×nz , Ξ̂0, … , Ξ̂m ∈ Rnu×ns , Π̂0, … , Π̂m ∈ R
nu×n𝜑 , F̂0, … , F̂n ∈ Rnz×nz , Ĝ0, … , Ĝn ∈

Rnz×n𝜀 , Ĥ0, … , Ĥn ∈ Rnv×nz , K̂0, … , K̂n ∈ Rnv×n𝜀 , Ê0, … , Ên ∈ Rnm×nu , and Ŵ0, … , Ŵn ∈ Rnz×nu such that the matrix
inequalities:

T̂ ≻ 0,

[
X I
⋆ Y

]
≻ 0,

⎡⎢⎢⎢⎣
1 pT

kX pT
k

⋆ X I
⋆ ⋆ Y

⎤⎥⎥⎥⎦ ≻ 0 ∀ k ∈ {1, … ,nk}, (65)

⎡⎢⎢⎢⎢⎢⎣

(uj − cj)2 M1[j](z,w) M2[j](z,w) M3[j](z,w)
⋆ X I −XΨT(z,w)LT

⋆ ⋆ Y −ΨT(z,w)LT

⋆ ⋆ ⋆ −He{LΩ(z,w)}

⎤⎥⎥⎥⎥⎥⎦
≻ 0 ∀ j ∈ {1, … ,nu}, (66)

He

⎧⎪⎪⎨⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎣

Â(z,w)X + BĤ(z,w) Â(z,w) + BK̂(z,w)C Φ(z,w) + BK̂(z,w)Γ BDT
mÊ(z,w) − BDTT̂

F̂(z,w) + 𝛼I YÂ(z,w) + Ĝ(z,w)C YΦ(z,w) + Ĝ(z,w)Γ Ŵ(z,w)
LΨ(z,w)X LΨ(z,w) LΩ(z,w) 0

R̂(z,w) Ξ̂(z,w) Π̂(z,w) −T̂

⎤⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎬⎪⎪⎭
≺ 0, (67)

are verified ∀ (z,w) ∈ {+} × {+}, where Â(z,w) = A(z,w) + 𝛼I, matrices M1(z, w), M2(z, w), and M3(z, w)
are

⎧⎪⎨⎪⎩
M1(z,w) ≜ Q(z,w)X + DĤ(z,w) − R̂(z,w)
M2(z,w) ≜ Q(z,w) + DK̂(z,w)C − Ξ̂(z,w)
M3(z,w) ≜ Υ(z,w) + DK̂(z,w)Γ − Π̂(z,w)

, (68)

matrices F̂(z,w), Ĝ(z,w), Ĥ(z,w), K̂(z,w), Ê(z,w), and Ŵ(z,w) are constructed in the form of[
F̂(z,w) Ĝ(z,w)
Ĥ(z,w) K̂(z,w)

]
≜

[
F̂0 Ĝ0

Ĥ0 K̂0

]
+

n∑
i=1

[
F̂i Ĝi

Ĥi K̂i

]
𝜆i(z,w) ,

[
Ê(z,w)
Ŵ(z,w)

]
≜

[
Ê0

Ŵ0

]
+

n∑
i=1

[
Êi

Ŵi

]
𝜆i(z,w), (69)

and matrices R̂(z,w), Ξ̂(z,w), and Π̂(z,w) are defined such as

[
R̂(z,w) Ξ̂(z,w) Π̂(z,w)

]
≜
[
R̂0 Ξ̂0 Π̂0

]
+

m∑
i=1

[
R̂i Ξ̂i Π̂i

]
𝜈i(z,w), (70)

for any linear function 𝜈 ∶ + ×+ → Rm, m ∈ N. Suppose also that the matrices N1,N2 ∈ Rnz×nz are any nonsingular solu-
tions to N2NT

1 = I − XY. Then, the trajectories of the closed-loop system (1), (3) with controller (10), (12), (26) parameterized
as in (39) with
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⎧⎪⎪⎨⎪⎪⎩

Fi = N−1
1 (F̂i + YBK̂iCX − ĜiCX − YBĤi − YAiX)N−T

2

Gi = N−1
1 (Ĝi − YBK̂i)

Hi = (Ĥi − K̂iCX) N−T
2

Ki = K̂i

∀ i ∈ {0, … ,n}, (71)

⎧⎪⎨⎪⎩
W0 = N−1

1 (Ŵ0 − YBDT
mÊ0)T̂

−1 + N−1
1 YBDT

Wi = N−1
1 (Ŵi − YBDT

mÊi)T̂
−1 ∀ i ∈ {1, … ,n}

Ei = Êi T̂−1 ∀ i ∈ {0, … ,n}

, (72)

achieve output regulation with 𝛼-exponential convergence for any initial condition in

 = {(z,w) ∈ R
na × ∶ zTP z ≤ 1}, P ≜

[
I Y
0 NT

1

][
X I

NT
2 0

]−1

. (73)

Proof. Consider the candidate Lyapunov function

V(z) = zTP z . (74)

If matrix P is symmetric and positive-definite, then V(z)> 0 ∀ z ∈ Rna , z≠ 0. The derivative of V(z) along the trajectories
of (42) is given by

V̇(z,w) = He{zT Δ1(z,w) 𝜁(z,w)}, Δ1(z,w) ≜ [PA(z,w) P𝚽(z,w) PJ(z,w)], 𝜁(z,w) ≜
⎡⎢⎢⎢⎣

z
𝜑(z,w)
𝜓(𝜇)

⎤⎥⎥⎥⎦ . (75)

Note that, for any matrix L ∈ R
n𝜑×n𝜑 , the algebraic equality constraint from (42) can be reexpressed as

0 = Δ2(z,w) 𝜁(z,w), Δ2(z,w) ≜ L
[
𝚿(z,w) 𝛀(z,w) 0

]
. (76)

Recalling that
𝜇 = 𝜽(z,w) + c(w) = Q(z,w) z + 𝚼(z,w) 𝜑(z,w) + c(w). (77)

and considering 𝝑 ∶ 
+ ×+ → Rnu defined as

𝝑(z,w) = R(z,w) z + Π(z,w) 𝜑(z,w), R(z,w) ≜ [R(z,w) Ξ(z,w)], (78)

where R(z, w), Ξ(z,w), and Π(z,w) are affine matrix functions in (z, w) constructed such as

[
R(z,w) Ξ(z,w) Π(z,w)

]
≜
[
R0 Ξ0 Π0

]
+

m∑
i=1

[
Ri Ξi Πi

]
𝜈i(z,w), (79)

for any linear function 𝜈 ∶ + ×+ → Rm, m ∈ N. According to Lemma 3, if (z,w) ∈  with 𝜗(z, w) defined as in (78),
it follows that (51) holds, that is

𝜓T(𝜇) Δ3(z,w) 𝜁(z,w) ≥ 0, Δ3(z,w) ≜ T
[

R(z,w) Π(z,w) −I
]
, (80)

with T ∈ Rnu×nu being any diagonal and positive-definite matrix.
Now suppose that the following expression is true for some 𝛼 > 0, where 

+ ≜ + × Rns :

V̇(z,w) + 2𝛼V(z) + He{𝜑T(z,w) Δ2(z,w) 𝜁(z,w) + 𝜓T(𝜇) Δ3(z,w) 𝜁(z,w)} < 0 ∀ (z,w) ∈ 
+ ×+, z ≠ 0, (81)
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which is equivalent to

He
⎧⎪⎨⎪⎩
⎡⎢⎢⎢⎣
PA(z,w) + 𝛼P P𝚽(z,w) PJ(z,w)

L𝚿(z,w) L𝛀(z,w) 0
TR(z,w) TΠ(z,w) −T

⎤⎥⎥⎥⎦
⎫⎪⎬⎪⎭ ≺ 0 ∀ (z,w) ∈ + ×+. (82)

From this relation and taking into account (76) and (80), it follows that

V̇(z,w) < −2𝛼V(z) < 0 ∀ (z,w) ∈ (+ ×+) ∩  , z ≠ 0. (83)

Our idea is therefore to determine a positively invariant region  such that for ∀ (z(0),w(0)) ∈  , the trajectories
(z(t), w(t)) never leave the sets (+ ×+) and  . With this aim, consider  =  × with  ≜ {z ∈ Rna ∶ zTP z ≤ 1}
representing a level set of V(z). Moreover, recall that, from Assumption 1, if w(0) ∈  then w(t) ∈  ⊆+. Hence, two
inclusion conditions need to be satisfied: (a)  ⊂ 

+ = + × Rns and (b)  ⊂  .
Recalling that + can be written in the form given in (34), the inclusion condition (a) is satisfied if and only if:9[

1 qT
k

⋆ P

]
≻ 0 ∀ k ∈ {1, 2, … ,nk}, qk ≜

[
pk

0

]
. (84)

Now we derive a condition to ensure the inclusion (b). For this, suppose that the following relation is satisfied:

(uj − cj)−2(𝜽j(z,w) − 𝝑j(z,w))T(𝜽j(z,w) − 𝝑j(z,w)) < zTP z ∀ (z,w) ∈ 
+ ×+, ∀ j ∈ {1, 2, … ,nu}. (85)

Thus, ∀ (z,w) ∈  × , it is ensured from (50) that (z,w) ∈  , hence  =  × ⊂  . Taking into account the alge-
braic equality constraint in (76) and that 𝜽(z,w) and 𝝑(z,w) are as in (77) and (78), it follows that (85) is equivalent
to

zTP z − He{𝜑T(z,w) Δ2(z,w) 𝜁(z,w)} − (uj − cj)−2 𝜁T(z,w) Δ4
T
[j](z,w) Δ4[j](z,w) 𝜁(z,w) > 0, (86)

∀ (z,w) ∈ 
+ ×+, ∀ j ∈ {1, 2, … ,nu}, with

Δ4(z,w) ≜
[

Q(z,w) − R(z,w) 𝚼(z,w) − Π(z,w) 0
]
. (87)

From Schür’s complement, condition (85) is equivalent to

⎡⎢⎢⎢⎣
(uj − cj)2 Q[j](z,w) − R[j](z,w) 𝚼[j](z,w) − Π[j](z,w)

⋆ P −𝚿T(z,w)LT

⋆ ⋆ −{L𝛀(z,w)}

⎤⎥⎥⎥⎦ ≻ 0 ∀ (z,w) ∈ + ×+, (88)

that is, (88) ensures that  ⊂  .
Consequently, provided that P≻ 0, T ≻ 0 and that the conditions (82), (84), and (88) hold, we can conclude that  is a

positively invariant region. Moreover, it follows from (83) that:

V(z(t)) ≤ V(z(0)) e−2𝛼t ∀ t ≥ 0, ∀ (z(0),w(0)) ∈  . (89)

Furthermore, since𝜆min(P) ||z||2 ≤ V(z) ≤ 𝜆max(P)|z||2, where𝜆min(P) and𝜆max(P) are the smallest and largest eigenvalues
of P, we can also verify that relation (64) holds with

𝛽 =

√
𝜆max(P)
𝜆min(P)

> 0. (90)
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Thus, the derived matrix inequality conditions P≻ 0, T ≻ 0, (82), (84), and (88) imply that the trajectories z(t) of the
system (42) exponentially converge to the origin with decay rate greater then 𝛼 for every initial condition (z(0),w(0)) ∈
 =  × . From Lemma 2, it follows that the trajectories of the closed-loop system (1), (3) with controller (10), (12),
(26) achieves output regulation in the region

 =

⎧⎪⎪⎨⎪⎪⎩
(x, 𝜉m, 𝜉s,w) ∈ R

nx × R
nm × R

ns × ∶
⎡⎢⎢⎢⎣

x − 𝜋(w)
𝜉m − 𝜎m(w)

𝜉s

⎤⎥⎥⎥⎦
T

P
⎡⎢⎢⎢⎣

x − 𝜋(w)
𝜉m − 𝜎m(w)

𝜉s

⎤⎥⎥⎥⎦ ≤ 1

⎫⎪⎪⎬⎪⎪⎭
. (91)

Next, following the parametrizations proposed in Reference 31, we show that considering a full order stabilizing con-
troller (i.e., ns =nz), conditions P≻ 0, T ≻ 0, (82), (84), and (88) are equivalent to the ones in (65), (66), and (67). For this,
consider the following definitions:[

Y N1

NT
1 ⋅

]
≜ P,

[
X N2

NT
2 ⋅

]
≜ P−1, Z1 ≜

[
I Y
0 NT

1

]
, Z2 ≜

[
X I

NT
2 0

]
, (92)

noting that Z1 =PZ2, P = Z1Z−1
2 and that the matrix pair N1, N2 is any solution to N2NT

1 = I − XY , so as to satisfy the
identity PP−1 = I. By post- and pre-multiplying the matrix inequalities P≻ 0, T ≻ 0, (82), (84), and (88), respectively, by Z2,
T−1, diag{Z2, I, T−1}, diag{1, Z2}, diag{1, Z2, I}, and their transposes, one obtains therefore the conditions in (65), (66), and
(67) considering the following change of variables:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

F̂(z,w) ≜ YA(z,w)X + YBK(z,w)CX + N1G(z,w)CX + YBH(z,w)NT
2 + N1F(z,w)NT

2

Ĝ(z,w) ≜ YBK(z,w) + N1G(z,w)
Ĥ(z,w) ≜ K(z,w)CX + H(z,w)NT

2

K̂(z,w) ≜ K(z,w)
Ê(z,w) ≜ E(z,w)T−1

Ŵ(z,w) ≜ YBDT
mE(z,w)T−1 − YBDTT−1 + N1W(z,w)T−1

R̂(z,w) ≜ R(z,w)X + Ξ(z,w)NT
2

Ξ̂(z,w) ≜ R(z,w)
Π̂(z,w) ≜ Π(z,w)
T̂ ≜ T−1

. (93)

From the second condition in (65), it follows that X and Y are nonsingular matrices. Then, it is always possible to find
nonsingular matrices N1 and N2 verifying N2NT

1 = I − XY . Hence, in this case, the original controller matrices can always
be recovered as in (71) and (72). Moreover, as X , Y , N1, and N2 are nonsingular, matrix P of the Lyapunov function can
always be recovered as in (73), which is consequently ensured to be nonsingular and positive-definite.

Recalling that all system matrices A(z, w), Φ(z,w), … , Ω(z,w) are affine functions in (z, w), in order to ensure that
conditions (66) and (67) hold ∀ (z,w) ∈ + ×+, it is necessary and sufficient to verify these inequalities just on the
vertices of regions + and +, that is, ∀ (z,w) ∈ {+} × {+}, which concludes the proof. ▪

Based on Theorem 1, a problem of interest regards the synthesis of the stabilizing controller and anti-windup gains
leading to a maximized domain of attraction estimate  in the direction of the plant and internal model regulation error
states z, considering that the initial condition of the stabilizing controller states is set as zero, that is, 𝜉s(0) = 0. In this
case, it follows from (92) that zT(0)P z(0) = zT(0)Yz(0) and, consequently, the target domain of attraction estimate to be
maximized is simplified from (73) to:

z = {(z,w) ∈ R
nz × ∶ zTYz ≤ 1}. (94)

This task can be accomplished, for instance, by minimizing the trace of matrix Y leading to the following optimization
problem:
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min
X ,Y ,L,T̂,R̂0,… ,Π̂m,F̂0,… ,Ŵn

tr(Y ) s.t. {(65), (66), (67)} ∀ (z,w) ∈ {+} × {+}. (95)

Note that (95) is not convex due to the bilinearities involving the pair of decision variables L and X in (66) and (67). How-
ever, if either of these matrices is a priori fixed, then (95) becomes a standard semidefinite optimization problem, that is, a
linear criterion subject to LMI constraints. This idea can be employed in order to iteratively find a locally optimal solution,
similar to the so-called D-K iteration method.32 On the other hand, considering a particular case, it is possible to refor-
mulate the provided stability conditions stated in Theorem 1 in order to readily obtain a convex numerical optimization
with LMI constraints.

Assumption 4. Suppose the following additional conditions hold with respect to the DAR introduced in (35)
and (36):

• There exists a function φ(y), φ ∶ R
ny → R

n𝜑 , such that

φ(gz(z,w) + d(w)) = 𝜑(z,w). (96)

• Matrix Φ(z,w) can be expressed as

Φ(z,w) = Φ0 +
n∑

i=1
Φi 𝜆i(z,w). (97)

with constant matrices Φ0, … ,Φn ∈ R
nz×n𝜑 .

Assumption 4 means that all rational nonlinearities contained in functions f z(z, w, v), 𝜃z(z,w, v), and 𝛿z(z,w) can be
constructed by a proper mapping of the measurement vector y. A similar assumption has been considered in Reference
33 to cast the output feedback stabilization as a convex optimization problem.

Provided that Assumption 4 is true, the original stabilizing stage (26) can be modified to include the nonlinear function
φ(y) according to the following structure:{

�̇�s = F(y) 𝜉s + G(y) 𝜀 + Λ(y) φ(y) + W(y) 𝜓(𝜇)
v = H(y) 𝜉s + K(y) 𝜀 + Θ(y) φ(y)

, (98)

where terms Λ ∶ R
ny → R

ns×n𝜑 and Θ ∶ R
ny → R

nv×n𝜑 are additional free design matrix functions in the following affine
form: [

Λ(y)
Θ(y)

]
≜

[
Λ0

Θ0

]
+

n∑
i=1

[
Λi

Θi

]
λi(y) . (99)

Now considering (98), the augmented system matrices 𝚽(z,w) and 𝚼(z,w)—previously defined as in (43)—are modified
as

𝚽(z,w) =

[
Φ(z,w) + BK(z,w)Γ + BΘ(z,w)

G(z,w)Γ + Λ(z,w)

]
, 𝚼(z,w) = Υ(z,w) + DK(z,w)Γ + DΘ(z,w), (100)

where Λ(z,w) and Θ(z,w) denote the controller matrices in (99) expressed in terms of (z, w), similarly to (40).
By using the newer definitions in (100), the following corollary can be derived, which is an adaptation of Theorem 1

with the additional feedback parameters involving the function φ(y).

Corollary 1. Consider that Assumption 4 is verified and assume ns =nz. Suppose that there exist symmetric matri-
ces X ,Y ∈ Rnz×nz , a diagonal matrix T̂ ∈ Rnu×nu and matrices L̂ ∈ R

n𝜑×n𝜑 , R̂0, … , R̂m ∈ Rnu×nz , Ξ̂0, … , Ξ̂m ∈
Rnu×ns , Π̂0, … , Π̂m ∈ R

nu×n𝜑 , F̂0, … , F̂n ∈ Rnz×nz , Ĝ0, … , Ĝn ∈ Rnz×n𝜀 , Ĥ0, … , Ĥn ∈ Rnv×nz , K̂0, … , K̂n ∈ Rnv×n𝜀 ,
Ê0, … , Ên ∈ Rnm×nu and Ŵ0, … , Ŵn ∈ Rnz×nu , Λ̂0, … , Λ̂n ∈ R

nz×n𝜑 and Θ̂0, … , Θ̂n ∈ R
nv×n𝜑 such that the matrix

inequalities: (65),
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⎡⎢⎢⎢⎢⎢⎣

(uj − cj)2 M4[j](z,w) M5[j](z,w) M6[j](z,w)
⋆ X I −XΨT(z,w)
⋆ ⋆ Y −ΨT(z,w)
⋆ ⋆ ⋆ −He{Ω(z,w)L̂}

⎤⎥⎥⎥⎥⎥⎦
≻ 0, (101)

He

⎧⎪⎪⎨⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎣

Â(z,w)X + BĤ(z,w) Â(z,w) + BK̂(z,w)C Φ(z,w)L̂ + BΘ̂(z,w) BDT
mÊ(z,w) − BDTT̂

F̂(z,w) + 𝛼I YÂ(z,w) + Ĝ(z,w)C Λ̂(z,w) Ŵ(z,w)
Ψ(z,w)X Ψ(z,w) Ω(z,w)L̂ 0
R̂(z,w) Ξ̂(z,w) Π̂(z,w) −T̂

⎤⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎬⎪⎪⎭
≺ 0, (102)

are verified ∀ (z,w) ∈ {+} × {+}, where Â(z,w) = A(z,w) + 𝛼I, matrices M4(z, w), M5(z, w), and M6(z, w) are

⎧⎪⎨⎪⎩
M4(z,w) ≜ Q(z,w)X + DĤ(z,w) − R̂(z,w)
M5(z,w) ≜ Q(z,w) + DK̂(z,w)C − Ξ̂(z,w)
M6(z,w) ≜ Υ(z,w)L̂ + DΘ̂(z,w) − Π̂(z,w)

, (103)

matrices F̂(z,w), Ĝ(z,w), Ĥ(z,w), K̂(z,w), Ê(z,w), Ŵ(z,w), Λ̂(z,w), and Θ̂(z,w) are constructed in the form of (69) and
matrix functions R̂(z,w), Ξ̂(z,w), and Π̂(z,w) are defined such as in (70) for any linear function 𝜈 ∶ + ×+ → Rm, m ∈ N.
Suppose also that matrices N1,N2 ∈ Rnz×nz are any nonsingular solutions to N2NT

1 = I − XY. Then, the trajectories of the
closed-loop system (1), (3) with controller (10), (12), (98) parameterized as in (39) and (99) with matrices given in (71), (72)
and {

Λi = N−1
1 (Λ̂i − YBΘ̂i)L̂

−1 + N−1
1 (YBK̂i − Ĝi)Γ − N−1

1 YΦi

Θi = Θ̂iL̂
−1 − K̂iΓ

∀ i ∈ {0, … ,n} , (104)

achieve output regulation with 𝛼-exponential convergence for any initial condition in (73).

Proof. Follow the same steps presented in the proof of Theorem 1, however, post- and pre-multiply (82) and (88), respec-
tively, by diag{Z2,L−T,T−1}, diag{1,Z2,L−T} and their transposes, noting that 𝚽(z,w) and 𝚼(z,w) are now given as in
(100). Moreover, consider the additional change of variables

⎧⎪⎪⎨⎪⎪⎩

Λ̂(z,w) ≜ (YΦ(z,w) + YBΘ(z,w) + YBK(z,w)Γ + N1Λ(z,w) + N1G(z,w)Γ)L−T

Θ̂(z,w) ≜ (Θ(z,w) + K(z,w)Γ)L−T

Π̂(z,w) ≜ Π(z,w)L−T

L̂ ≜ L−T

. (105)

This alternative procedure yields the relations (101) and (102) instead of (66) and (67). It also follows that the additional
stabilizing controller parameters can always be recovered as in (104), which concludes the proof. ▪

In order to maximize the domain of attraction estimate (94), based on Corollary 1, one can synthesize the stabilizing
and anti-windup controller parameters from the following convex optimization problem:

min
X ,Y ,L̂,T̂,R̂0,… ,Π̂m,F̂0,… ,Θ̂n

tr(Y ) s.t. {(65), (101), (102)} ∀ (z,w) ∈ {+} × {+}. (106)

To illustrate our main results, in the sequence we consider the numerical case study previously dealt in Examples 1, 2
and 3. In here, the solution of the output regulation problem will finally be completed with the co-design of the stabilizing
controller and anti-windup parameters from the proposed optimization problems.

Remark 2. By increasing the exponential decay rate 𝛼, one should expect to synthesize a more aggressive controller with
larger feedback gains, making the saturation effect more pronounced. One should also expect to obtain a smaller domain
of attraction estimate, which will inevitably restrict the range of admissible initial conditions.34
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Example 4. Consider the rational nonlinear plant and the exosystem presented in (20) with numerical parameters
as in Table 1, with zero-error steady-state mappings as shown in (22) and with an internal model stage controller as
defined in (23). Suppose also that the stabilization problem is arranged as explained in Example 2, where the regulation
error system was described using the rational nonlinear function 𝜑(z) from (46) and using the DAR matrices presented
in (47) and (48). Consider also the preliminary remarks mentioned in Example 3, where the upper-bound c = 1.1388
was determined considering the system parameters from Table 1. Note that parameter u = 4 from Table 1 is the one
directly related to the control saturation effect, since it denotes the maximum magnitude value of the control input
signal u(t).

Recall that the trajectories w(t) of the Lorenz exosystem are contained in a spherical positively invariant set with radius
r and center point wc as declared in (21). Since the DAR matrices depend only on w1, recall also that the set + does
not need to restrict the w2 and w3 dimensions. For instance, one may consider + = [−r, r] × R2 ⊃ . Likewise, since
the z-dependence of Ω(z) is just involving z1, the set + only need to restrict the first dimension of the z-state-space. In
this case, one can define + = [−z1, z1] × R4, for some constant z1 > 0 which denotes the maximum admissible value of
|z1(t) |= |e(t)| ∀ t ≥ 0. At last, the equivalent form of+ as (34) is obtained with nk = 1 and p1 = [z−1

1 0 0 0 0]T. According
to Theorem 1, there is an additional free design choice with respect to function 𝜈(z,w). Because the considered sets +

and + impose restrictions on the dimensions z1 and w1 solely, the function 𝜈(z,w) may naturally be defined as 𝜈(z,w) =
[z1 w1]T.

The design specification for the maximum admissible output error amplitude was arbitrarily set as z1 = 104, whereas
the minimum exponential decay rate was declared as 𝛼 = 5 ⋅ 10−2. Considering the setup above, optimization (95) was
evaluated in order to synthesize the stabilizing and anti-windup gains, considering the general stabilizing stage (13). So
as to deal with the BMI constraint in (95), matrices L and X were iteratively alternated between a priori fixed and decision
variables. By initializing L=−10−4I, it took 10 iterations in order to achieve a proximate locally optimal solution with the
objective value tr(Y )= 1.0435.

A noticeable property of this numerical example is that the rational function 𝜑(z), as shown in (46), may be remapped
with respect to the output measurement y, that is,

𝜑(z) =

[
z2

1 (1 + z2
1)

−1

z1 (1 + z2
1)

−1

]
, y1 = z1 ⇒ φ(y) =

[
y2

1 (1 + y2
1)

−1

y1 (1 + y2
1)

−1

]
. (107)

Assumption 4 is therefore verified and it is possible to implement the stabilizing stage as stated in (98) in order to possibly
achieve a larger domain of attraction estimate. Beyond this advantage, the controller synthesis can be addressed directly
by a convex optimization with LMI constraints, as indicated by (106). The optimal controller design in this case was
obtained with the objective value tr(Y )= 0.0161, substantially smaller when compared with the one obtained considering
the solution of (95).

Figures 2 and 3 present numerical simulations of the closed-loop system (20) considering the internal model controller
(23) and the stabilizing stage (98) with parameters designed according to the proposed methodology. For these numeri-
cal analyses, the exosystem initial state was considered as the randomly picked point w(0) = [3.5910 6.7150 9.4426]T
inside the invariant sphere  , while the controller initial states were set as 𝜉m(0) = 0 and 𝜉s(0) = 0, conditions which
will be henceforth referred as default. In order to visualize the effect due to control input saturation, two different plant
initial states x(0) = [5 2.79 ⋅ 103]T and x(0) = [−5 −2.79 ⋅ 103]T were evaluated, which leads (z(0), w(0)) marginally
close to the border of the estimated domain of attraction  and respectively, correspond to the black and gray tra-
jectories in Figures 2 and 3. This attained domain of attraction estimate is subsequently depicted (with respect to
the x-state-space) by the black contour in Figure 4, where the simulated initial states are represented by the bold
dots.

Figure 2 shows on top the system output error signals e(t), where asymptotic convergence to the origin is verified as
expected. The bottom plots of the same figure also detail the control input signals u(t) produced by the designed controller,
where one can clearly observe the saturation effect during the transient phase. After the initial saturated period, the
input signals smoothly converges to the nonvanishing excitation c(w(t)) required to achieve output regulation. The phase
portraits in Figure 3 illustrate the internal model trajectories 𝜉m(t) achieved during the simulations. Since the internal
model zero-error steady-state is described by 𝜎m(w(t)) = a2a−1

3 w(t), the trajectories 𝜉m(t) are expected to asymptotically
approach the peculiar chaotic attractor of the Lorenz exosystem scaled by the factor a2a−1

3 , what is being illustrated in the
right plot of Figure 3.
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F I G U R E 2 Top plots show the output regulation error signals e(t), while bottom plots depict the control input signals u(t) compared with
the zero-error steady-state waveform c(w(t)) (dashed line). Left and right plots depict the transient and the steady state responses, respectively

F I G U R E 3 Left plot presents the internal model states trajectories 𝜉m(t) during the transient phase, where thick segments denote the
initial control saturation period. Right plot in turn depicts the steady-state settling of the trajectories 𝜉m(t)

The set of plant initial states x(0) with guaranteed output regulation and exponential convergence is represented
by the black contour in Figure 4, which corresponds to the region (73), where the initial state for the exosystem and
the controller were considered fixed at the default conditions previously mentioned. For comparison purposes, the
cross and circle grid depicts the estimated domain of attraction in case the proposed anti-windup compensation is dis-
abled, which in this case was evaluated by numerical simulations. One may clearly observe the gray crossings inside
the black contour, cases where the anti-windup action was verified to be necessary in order to maintain the closed-loop
stability.
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F I G U R E 4 Black contour denotes the projection of the domain of
attraction estimate  into the x-state-space, where the designed controller
ensures output regulation and exponential performance. Bold dots denote
the initial conditions x(0) considered for the numerical simulations
presented by Figures 2 and 3. Crosses represent initial conditions for
which the closed-loop system became unstable if the anti-windup
compensation is deactivated. The small dot is an initial condition which
did not produce input saturation ∀ t ≥ 0, whereas circles denote cases
which produced input saturation and the closed-loop-system without
anti-windup action still achieved output regulation

4 CONCLUSION

This article dealt with the output regulation of rational nonlinear systems subject to control input saturation. The con-
trol architecture is composed by an internal model stage in series with an output feedback stabilizing controller, where
anti-windup compensation is considered for both of these stages. A set of matrix inequalities conditions were derived to
ensure the asymptotic output regulation and the exponential convergence of the closed-loop system trajectories. These
conditions in turn led to a systematic methodology for the simultaneous design of the stabilizing controller gains and the
parameters of anti-windup loops acting on the internal model and the stabilizing controller.

The nonlinear output regulation control design problem, in the presence of input saturation, has been still open
in the literature. The work presented in this article provided a significant advancement in this research topic, since
beyond addressing saturation and rational nonlinearities, we also derived a complete co-design framework with built-in
anti-windup compensation into all the controller states. Moreover, it is worth highlighting that our work does not require
a strict triangular form representation or any other structural restriction rather than the rationality of the regulation error
dynamics, since the proposed stabilization methodology is based on the solution of numerical optimization problems.
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