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A B S T R A C T   

In the context of microgrids, the distributed energy resources (DERs) are interfaced through an LCL output filter 
with the rest of the microgrid. The dynamic model of this filter and the lumped model of the microgrid constitute 
the set of differential equations employed to design the controller that allows the integration of DER units within 
the modern power systems. For those control strategies based on cascade structure; shunt capacitor voltage 
(inner) and droop (outer) controllers, it is important to specify under which conditions the model reduction is 
authorized. In this work, the singular perturbation method is used to derive the conditions that allow a model 
reduction of the output filter. In addition, two case studies are presented to illustrate the applicability and the 
possibility of model reduction.   

1. Introduction 

The dominant modes of conventional electrical power systems have 
historically been associated with the electromechanical responses of 
synchronous machines. These modes are significantly slower than those 
associated with electromagnetic responses of networks and trans-
formers. Therefore, these faster modes could be neglected in a general 
analysis. This approximation is well known and constitutes a model 
reduction that has successfully been applied in practice [1,2]. With the 
modernization of the electrical power system (microgrid deployment), a 
considerable amount of power will be supplied by inverter-based 
Distributed Energy Resources (DERs), such as solar panels, wind tur-
bines, and energy storage. One of the main characteristics of these DER 
units is that, in general, they are connected to a medium- or low-voltage 
distribution network. As DER units and distribution networks exhibit 
modes of similar time-scale, the use of an approach based on a model 
reduction to characterize the dominant dynamics needs to be reex-
amined [3]. 

The operation of electrical power systems, including the microgrids, 
is mainly structured in two control levels: (i) decentralized and (ii) 
centralized controllers. The decentralized controller (or primary) deals 

with the stability and resilience of the network, and the centralized 
controller (or secondary and tertiary) is responsible for the efficiency 
and reliability of the power system. In order to interface the DER units 
within a microgrid, decentralized controllers require to be designed. 
Such design is based on a dynamic model, that describes the interaction 
between the DER unit and the whole microgrid seen at the Point of 
Connection (PoC) of the DER unit, from now on called a DER-microgrid 
model. Such a model is intrinsically difficult to obtain, mainly because of 
the proximity in the time-scale of the involved variables. A frequent 
approach in the control of DER units is to inherit, from the conventional 
power systems, its control structure and design; in particular, cascade 
control structures and closed-loop design based on droop gains [4,5]. As 
the dynamic responses of the DER units and the elements that constitute 
the electrical network may reside in a similar time-scale, the assump-
tions from the conventional power systems may not be longer valid. 
Therefore, the main aim of this study is to revisit the limitations that 
impose a DER-microgrid dynamic model that precedes the decentralized 
closed-loop structure and design decision. 

The most recent researches on integrating DER units into a microgrid 
were introduced in [6–9], where an effort was made to find a reduced 
model for the DER unit, for stability analysis of a microgrid. All these 
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studies concluded that the dynamics involved between the DER unit and 
the microgrid are on a similar time-scale. For a particular DER unit 
closed-loop design, they propose a model reduction that disregards the 
effect of the operating conditions and/or relationships between pa-
rameters, which may or may not allow the reduction of the model in an 
open or closed loop. It implies that the model reduction based on the 
previous proposals is sensitive to a particular set of parameters and 
closed loop design. Additionally, in regard to the controller synthesis, 
the aforementioned studies were based on the linearized DER-microgrid 
model. However, such linearization around the point of operation is only 
possible for a limited number of classes of models represented by dif-
ferential equations. Because of these two aspects, the nonlinearities and 
its model reduction have been frequently overlooked in the current 
literature, perhaps because of the complexity in dealing with the non-
linearities. Because of that, theoretical analysis methodologies can be 
used as an attempt to predict — regionally and globally — the approx-
imate behavior of a non-linear system. One of these methods is the 
singular perturbation method. 

The singular perturbation method, classified also as an asymptotic 
analysis method for differential equations, offers an approximate solu-
tion of the original nonlinear system. This method decomposes the 
original system into two or more smaller subsystems, which can be 
analyzed separately. The application of the singular perturbation 
method results in the identification of the underlying properties of the 
original nonlinear system representation, revealing, in many cases, 
structures with multiple time-scales, inherent to many practical prob-
lems [10]. The study of its intrinsic properties is not an easy task, in 
particular for complex physical systems, as the microgrids [11]. None-
theless, in the current work, some assumptions mentioned in the liter-
ature are relaxed, allowing for a more representative theoretical analysis 
of the time-scales involved in a DER-microgrid interaction model. 

The contribution of this paper is threefold: (i) to establish conditions 
for decoupling variables and reducing the order of the nonlinear DER- 
microgrid model based on the system physical compounds, (ii) to 
analytically design a decentralized control of the DER unit, considering 
the aspects identified in the time-scale analysis and (iii) to mathemati-
cally prove all the results by applying the singular perturbation method. 

In order to achieve these objectives, the current work exploits a 
representative DER-microgrid interaction model presented in Section 
2.1 and apply the method of singular perturbation, described in Section 
2.2. The mathematical proof of these results and the numerical simu-
lations are presented in Sections 3 and 4. Finally, the conclusions of the 
analysis are drawn in Section 5. 

Notation: C is the set of complex numbers, R is the set of real numbers 
and R+ is the set of real positive numbers. Rn denotes the n-dimensional 
Euclidean space and the operator ||.|| represents the Euclidean norm. 
One-dimensional variables and functions are represented in italic 
lowercase letters. Multidimensional variables and functions (eg. vectors, 
complex numbers and vector valued functions) are written in bold 
lowercase letters. A n-dimensional variable being an argument of a 
function means that each projection can be represented as an argument 
of the same function, i.e., f(t,v) := f(t,v1,…,vn),v ∈ Rn. 

2. Theoretical foundation 

This section discusses the main concepts for the development of this 
study. Initially, the DER-microgrid interaction model is presented, and 
then the singular perturbation method is revisited. 

2.1. DER-microgrid interaction model 

A breakthrough in research on microgrid was achieved by [3], by 
exposing the precariousness of decoupled control based on the droop 
method. This fact led researchers to propose new control strategies to 
deal with microgrids, such as adaptive tilt controllers [12,13], syn-
chronizers [4], virtual impedance [14] and others [15,16]. Much effort 

has been made in the study of new control strategies and synthesis; 
however, the central aspect of obtaining a successful controller is to find 
a suitable representative model. 

The stability of a microgrid system is mainly determined by its pri-
mary (or decentralized) control integrated with each DER unit. The 
design of this controller must be based on the dynamic model that 
adequately describes the interaction between the DER unit and a 
microgrid. As the microgrids are a complex dynamic system, the use of a 
detailed model for control design purposes may be impractical. Despite 
these difficulties, some engineering aspects of the microgrid dynamic is 
assumed. A circuital model that represents the interaction between a 
DER unit and a microgrid is illustrated in Fig. 1. In this work, we 
consider the following assumptions regarding the microgrid, variable 
definitions, and model parameters, respectively. 

Assumption 1. According to recent theoretical tendencies, a micro-
grid consists of a set of coupled oscillators [5,17,18], where the coupling 
is represented by transformers, filters, and distribution lines. In Fig. 1, 
the power converter represent an oscillator of adjustable voltage and 
frequency vtejωt t, while the grid is also represented as an oscillator but 
the voltage and frequency are considered as exogenous variables, vgejωg t. 

Assumption 2. The state-space of the DER-microgrid interaction 
model is defined by the state variables if , vs, io ∈ C and δ ∈ R, where the 
angle δ represents the impact of the frequency deviation among oscil-
lators. The input variables correspond to the voltage vt ∈ C and to the 
frequency ωt ∈ R, which are considered as control degrees of freedom to 
be modulated at the converter terminal. Additionally, the voltage vg ∈ C 

and frequency ωg ∈ R of the oscillator that represents the microgrid are 
considered as unmeasured disturbances, which are mostly determined 
by the dynamic response of the network, loads, and other DER units. It is 
worth noting that, due to the uncertainties of these disturbances, their 
dynamics are not modeled. Instead, it can be assumed that they are 
bounded and belong to an assigned polytope D. This assumption is 
supported by the fact that (i) the variation on the power demand of the 
loads is neglectable under slight changes to the voltage amplitude and 
frequency of the network, and (ii) the control objective of the DER units 
within a microgrid is to regulate the voltage amplitude and frequency 
inside a defined region. 

Assumption 3. It is assumed that the parameters of the filter that in-
terfaces the power converter to the microgrid, {Rf , Lf , Cf} ∈ R, are 
known with precision. On the other hand, the parameters that charac-
terize the interconnection with microgrid, {Rg,Lg} ∈ R, are subjected to 
uncertainties associated with the equivalent network impedance 
observed from the PoC of the DER unit. 

The aforementioned assumptions relax, in two main aspects, the 
assumptions that the current literature, in general, adopts. First, the 
voltage and frequency {vg,ωg} are typically considered fixed for control 
design purposes and disregards the effect of the angle δ that represents 
the oscillator behavior in the DER-microgrid interaction. However, the 
relevance of this variable on the dynamic model should not be dis-
regarded as was documented in [19]. In contrast, in this study, {vg,ωg}

are assumed to be variables, enriching the dynamic model as adopting 
the Assumption 2. Secondly, a cascade control structure is commonly 

Fig. 1. Conventional structure of a DER unit connected to a microgrid.  

B.S. Bizzo et al.                                                                                                                                                                                                                                 



International Journal of Electrical Power and Energy Systems 132 (2021) 107154

3

adopted in the literature, where the filter Lf Cf is considered by an in-
ternal feedback control [20,21] whereas the droop method deals with 
the outer control loop. In fact, it is a model reduction that has been 
criticized [6–9]. It is intended that the present work clarifies under 
which conditions the dynamic model of the output filter may or may not 
be reduced, in particular respect to the grid interaction (dominated by 
the angle δ). To this end, the open-loop response of the DER-microgrid 
interaction model is studied with the singular perturbation method. 

The considered dynamic model is based on [3], which was used in 
[19] for control design purposes. The model in [19] is extended in this 
work to consider the dynamic model of the output filter presented in 
[22]. Note that the model here presented incorporates the mode of 
operation (grid-connected and islanded) in the disturbances vg and ωg as 
is considered in the Assumption 2. The set of differential equations are 
obtained as follows. 

For an arbitrary rotary reference frame θt(t) with angular velocity 
ωt(t) = dθt(t)/dt, the equations that describe the electrical circuit model 
in Fig. 1 can be expressed in the reference plane (dq-frame), which in 
general is adopted to be aligned with quadrature component of the 
capacitor voltage, regulating vsq = 0 as 

dio

dt
= −

Rg

Lg
io − jωtio −

vg

Lg
ejδ +

vs

Lg
, (1)  

dδ
dt

= ωg − ωt, (2)  

dif

dt
= −

Rf

Lf
if − jωtif −

vs

Lf
+

vt

Lf
, (3)  

dvs

dt
= −

io

Cf
− jωtvs +

if

Cf
. (4) 

There are mainly two aspects that require to be highlighted in this 
representation. First, in (2), δ is the integration of the frequency devia-
tion between the exogenous disturbance ωg and the frequency of the 
modulated voltage at the power converter terminal ωt. Therefore, a 
small frequency deviation between oscillators the state δ tends to in-
finity and the full system is unstable in open-loop. Nonetheless, as will 
be seen, the singular perturbation method admits system models with 
this characteristic. Second, the parameters Rg and Lg condense the 
equivalent impedance of the network seen at the PoC of the DER unit. In 
this work, we consider that this equivalent impedance is dominated by 
the isolation transformer, which, for safety reason, is connected to 
interface the output filter to the microgrid. As a consequence, the 
equivalent network impedance is an additional source of uncertainty. 

As can be seen, the DER-microgrid interaction model (1) - (4) has a 
nonlinear characteristic with uncertain parameters and unmodeled dy-
namics. As these differential equations are used to design the primary 
control of the DER units, before determining the control strategy, it is 
necessary to clarify the limitations and properties of the system. To that 
end, the fundamentals of singular perturbation theory are presented as 
follows, then it will be used for the DER-microgrid model in the next 
sections. 

2.2. Singular Perturbation Method 

The singular perturbation method aims for a dynamic model repre-
sentation where the derivatives of some of the states are multiplied by a 
small parameter ∊ ∈ R+ as 

ẋ = f(t, x, z, ∊), x(t0) = x0, (5)  

∊ż = g(t, x, z, ∊), z(t0) = z0, (6)  

where functions f, g are Lipschitz and (t,x,z,∊) ∈ [0,∞)× D x × D z × [0,
∊s], with D x⊂Rn,D z⊂Rm and ∊s is the upper limit of the ∊ domain. 

Our interest is to investigate the time-scale behavior of the solutions 

of (5) and (6) as ∊→0. Particularly, we wish to know the conditions that 
allow to neglect the parameter ∊ in the system given by (5) and (6), i.e. 
such that its solution can be approximated by a simplified system. 

An order reduction in (5) and (6) is achieved when we set ∊ = 0 in (6) 
and the dimension of the state equation changes from n+m to n because 
(6) degenerates into the algebraic equations 

0 = g(t, x, z, 0), (7)  

which represents the so-called slow manifold. 
To support this model reduction, the Tikhonov’s Theorem should be 

stated. To that end, three assumptions must be made: 

Assumption 4. Eq. (7) has at least an isolated real root with respect to 
variable z, given by 

z = h(t, x). (8)  

Eq. (8) represents the quasi-steady state of z, ensuring that a well- 
defined n-dimensional reduced model will correspond to each root of 
(7). 

The reduced model is obtained by replacing (8) in (5), with ∊ = 0, as 

ẋ = f(t, x, h(t, x), 0), (9)  

and its solution is given by x. 
Since (9) is a n-th order reduced model, we can only specify n initial 

conditions. Naturally, we retain the initial state, x(t0) = x0 to obtain the 
reduced problem. On the other hand, the quasi-steady-state z is not free 
to start from the same initial point of z. Actually, there may be a large 
discrepancy between its initial value z(t0) = h(t0, x0) and the prescribed 
initial condition z(t0) = z0. Thus, z cannot be an uniform approximation 
of z. The best we can expect is that the approximation will hold on an 
interval excluding t0 that is, for t ∈ [t1,T] where t1 > t0. 

To analyze the behavior of z in the boundary layer, during the interval 
t ∈ [t0, t1], we perform a change in the time-scale, given by 

τ =
t − t0

∊
, (10)  

where τ tends to infinity even for a fixed t, which could be slightly larger 
then t0. Applying this new fast time-scale in (5) and (6), we obtain 

ẋ = ∊f(τ, x, z, ∊), (11)  

ż = g(τ, x, z, ∊). (12) 

In a successful singular perturbation representation, for small ∊, the 
right side of (11) also leads to small values. Thus, while z and τ almost 
instantaneously change, x remains very near its initial value x(t0). 

In order to describe the transient response of z around its steady 
state, we perform the change of variables y = z − h(t,x). In addition, to 
examine the response at the τ-time-scale, the change of variable 
t = t0 +∊τ is applied (5) and (6). Thus, the boundary-layer model is ob-
tained as 

dy
dτ = g(t0, x0, y+h(t0, x0), 0), (13)  

y(0) = z0 − h(t0, x0),

with t0 and x0 fixed parameters and equilibrium at origin y = 0. 
We need a stability property that guarantees that y(τ) will reach an 

neighborhood of the origin during the boundary-layer interval and, 
beyond this interval, will remain close to zero, while the slowly varying 
parameters (t, x) move away from their initial values (t0,x0). For this, the 
boundary-layer general model (14) is used 

dy
dτ = g(t, x, y+ h(t, x), 0). (14) 

The next two assumptions ensure a strong stability property of the 
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boundary layer model. 

Assumption 5. The equilibrium y(τ) = 0 of (13) is asymptotically 
stable uniformly in x0 and t0, and z0 − h(t0, x0) belongs to its domain of 
attraction. 

Assumption 6. The eigenvalues from the Jacobian Matrix [∂g/∂y], 
along x(t) and z(t), in (14), have a real part less than a negative fixed 
number, i.e. 

Re
[

λ
{

∂g
∂y

}]

⩽ − c < 0. (15)  

Tikhonov’s theorem establishes sufficient conditions that, after a 
certain time, the solutions of the perturbed model (5) and (6) have the 
same order of magnitude as those of the unperturbed model (8) and (9). 
Therefore, before to proceed with the Tikhonov’s theorem, the concept 
of order of magnitude requires to be defined. 

Definition 1. A vector function ν(t, ∊) ∈ Rn is said to have order of 
magnitude ∊ over an interval [t1,t2], and we write ν(t,∊) = O(∊), if there 
are positive values of k and ∊* such that 

‖ν(t, ∊)‖⩽k∊, ∀∊ ∈ [0, ∊*], ∀t ∈ [t1, t2]. (16)   

Theorem 1. ([23] Theorem 3.1) Suppose the Assumptions 4–6 are 
satisfied. Then, for all t ∈ [t0,T], 

x(t, ∊) − x(t) = O(∊), (17)  

z(t, ∊) − h(t, x(t)) − ŷ(t/∊) = O(∊) (18)  

and there is t1⩾t0 such that, for all t ∈ [t1,T], 

z(t, ∊) − h(t, x(t)) = O(∊), (19)  

where x is the reduced model solution (9) and ŷ is the solution of the 
boundary layer model (13). Tikhonov’s theorem ensures the conver-
gence of fast variables towards a slow surface for a limited period of 
time. It is important to highlight that this result also applies to an un-
stable open-loop model, as is the case of the DER-microgrid model 
presented in SubSection 2.1. The singular perturbation method is not 
compromised as we guarantee the stability of the slow manifold. 

3. Singular Perturbation Method applied to the DER-Microgrid 
Model 

In this section, the singular perturbation method presented in Sub-
Section 2.2 is applied to the DER-microgrid model presented in Sub-
Section 2.1. The main goal is to analyze the different time-scale of the 
variables involved in the interaction between a DER unit and a 
microgrid. 

3.1. Open-loop analysis 

The general form of singular perturbation in (5) and (6) is achieved 
by identifying a small constant ∊ that multiplies the time derivatives of 
some states. However, the parameter ∊ would be chosen as a ratio be-
tween physical parameters that reflects the smallness of ∊ in a relative 
sense. In addition, the variables and parameters of the differential 
equations should be formulated in terms of normalized variables, or 
dimensionless. Hence, the relative magnitude of each equation can be 
contrasted to its dimensionless coefficients, this procedure is known as 
scaling [24–27]. 

An essential task before using a perturbation scheme is to choose the 
state variables and time-scale that normalize the quantities. Hence, 
defining the voltage E and frequency ωe as normalizing parameters, the 

next change of variable is performed, x1 = ioRg/E, x2 = δ, z1 = if Rf/E,
z2 = vs/E,u1 = vt/E, u2 = ωt/ωe,w1 = vg/E and w2 = ωg/ωe. As a 
consequence, the system Eqs. (1) - (4) are expressed in the state space 
representation, with coefficients and state variables written as dimen-
sionless quantities with similar orders of magnitude, as recommended 
by [24]: 

Lg

Rg
ẋ1 = z2 − x1 − jωe

Lg

Rg
u2x1 − w1ejx2 , (20)  

1
ωe

ẋ2 = − u2 +w2, (21)  

Lf

Rf
ż1 = − z1 − jωe

Lf

Rf
u2z1 − z2 + u1, (22)  

Rf Cf ż2 = z1 − jωeRf Cf u2z2 −
Rf

Rg
x1. (23) 

The complex variables of the differential Eqs. (20)–(23) can be 
separated into their real and imaginary components in order to obtain 
the equivalent 7-dimensional system of differential equations with real 
variables [28–30], with time constants T0 = 1/ωe,T1 = Lg/Rg,T2 = Lf/

Rf and T3 = Rf Cf , and a dimensionless time variable tr = t/T1, as follows 
1: 

ẋ1d = z2d − x1d +
T1

T0
u2x1q − w1dcosx2 +w1qsinx2, (24)  

ẋ1q = z2q − x1q −
T1

T0
u2x1d − w1dsinx2 − w1qcosx2, (25)  

ẋ2 = −
T1

T0
u2 +

T1

T0
w2, (26)  

T2

T1
ż1d = − z1d +

T2

T0
u2z1q − z2d + u1d, (27)  

T2

T1
ż1q = − z1q −

T2

T0
u2z1d − z2q + u1q, (28)  

T3

T1
ż2d = z1d +

T3

T0
u2z2q −

Rf

Rg
x1d , (29)  

T3

T1
ż2q = z1q −

T3

T0
u2z2d −

Rf

Rg
x1q. (30) 

According to the singular perturbation formulation in (5) and (6), the 
equations on the right side of (24)–(30) are called f1d, f1q, f2, g1d, g1q, g2d 

and g2q, respectively. In order to (24)–(30) be in the general form of 
singular perturbations, where z is much faster than x,T2 and T3 must be 
much smaller than T0 and T1, i.e., 

ωe
Lf

Rf
≪1,

Lf Rg

LgRf
≪1, (31)  

ωeRf Cf ≪1,
RgRf Cf

Lg
≪1. (32)  

Assuming that the relationships in (31)–(32) are valid, the system (24)– 
(30) can be placed in the form of singular perturbations below, with 
multiple parameters of the same order [31]: 

ẋ1d = z2d − x1d + αu2x1q − w1dcosx2 +w1qsinx2, (33)  

ẋ1q = z2q − x1q − αu2x1d − w1dsinx2 − w1qcosx2, (34) 

1 From now on, the reference time-scale for this work is tr = t/T1. However, to 
simplify the notation, the subscript r will be omitted. 
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ẋ2 = − αu2 +αw2, (35)  

∊1 ż1d = − z1d +α∊1u2z1q − z2d + u1d, (36)  

∊1 ż1q = − z1q − α∊1u2z1d − z2q + u1q, (37)  

∊2 ż2d = z1d + α∊2u2z2q − Rx1d, (38)  

∊2 ż2q = z1q − α∊2u2z2d − Rx1q, (39)  

with ∊1 = T2/T1, ∊2 = T3/T1,α = T1/T0 and R = Rf/Rg. In order to 
normalize the expressions respect to a single parameter, ∊1 and ∊2 can be 
treated as proportional scalar, for example, ∊ = min{∊1, ∊2} and ∊i =

βi∊, for i = 1,2. 
Following a proper DER unit output-filter design [32,33], it can be 

assumed that T3⩽T2, then ∊2 < ∊1. Consequently, we can make ∊ = T3/

T1 and multiply both sides of (27) and (28) by β = T3/T2, to obtain the 
general form of singular perturbation for the open-loop DER-microgrid 
model: 

ẋ1d = z2d − x1d + αu2x1q − w1dcosx2 +w1qsinx2, (40)  

ẋ1q = z2q − x1q − αu2x1d − w1dsinx2 − w1qcosx2, (41)  

ẋ2 = − αu2 +αw2, (42)  

∊ż1d = − βz1d +α∊u2z1q − βz2d + βu1d , (43)  

∊ż1q = − βz1q − α∊u2z1d − βz2q + βu1q, (44)  

∊ż2d = z1d +α∊u2z2q − Rx1d , (45)  

∊ż2q = z1q − α∊u2z2d − Rx1q, (46)  

From this representation, the boundary-layer model dy/dτ =

g(t, x, y+h(t, x),0) for the system (40)–(46) is given by: 

ẏ1d = g1d(t, x, y+h(t, x), 0) = − βy1d − βy2d , (47)  

ẏ1q = g1q(t, x, y+ h(t, x), 0) = − βy1q − βy2q, (48)  

ẏ2d = g2d(t, x, y+h(t, x), 0) = y1d , (49)  

ẏ2q = g2q(t, x, y+ h(t, x), 0) = y1q, (50)  

and its Jacobian matrix [∂g/∂y] is given by: 

J =

[
∂g
∂y

]

=

⎡

⎢
⎢
⎣

− β 0 − β 0
0 − β 0 − β
1 0 0 0
0 1 0 0

⎤

⎥
⎥
⎦. (51)  

Hence, the eigenvalue condition (15), given by Re
[

λ
{

∂g
∂y

}]〈

0, is then 

met for every β > 0. 
Meeting the eigenvalue condition (51) means that the fast variables 

z1 and z2 of the system (40)–(46) converges exponentially to its quasi 
steady state h1(t, x) and h2(t, x). This quasi steady state is obtained for 
∊ = 0 in (43)–(46): 

0 = − h1d(t, x) − h2d(t, x)+ u1d(t, x,h(t, x), 0), (52)  

0 = − h1q(t, x) − h2q(t, x)+ u1q(t, x,h(t, x), 0), (53)  

0 = h1d(t, x) − Rx1d, (54)  

0 = h1q(t, x) − Rx1q. (55) 

The reduced model is determined by replacing h1 and h2 obtained by 
(52)–(55) in (40)–(42): 

ẋ1d = u1d − (1+R)x1d +αu2x1q − w1dcosx2 +w1qsinx2, (56)  

ẋ1q = u1q − (1+R)x1q − αu2x1d − w1qcosx2 − w1dsinx2, (57)  

ẋ2 = − αu2 + αw2. (58) 

The solutions for h1 and h2 in (52)–(55) correspond to the surfaces 
where the variables z1 and z2 converge on a larger time-scale. Hence, in 
general terms, the problem of the reducing the system (40)–(46) also 
relies (in addition to the physical parameters) on the feedback design 
function u1(t,x, z,∊), as is seen in (52)–(55). It means that the relations 
(31)–(32) can be modified by using the input u1 to achieve the model 
reduction. Even though the accomplishment of these requirements relies 
on the output filter design, it is possible to empirically conclude, based 
on the low value of resistive cables characteristic, that (32) is met. 
However, the condition (31) is not evident (see [32,33] for practical 
design of the output filter). 

In order to guarantee the separation of the time-scale between fast 
and slow variables, the next section presents the requirements for a 
feedback function u1(t, x, z, ∊) such that (31) and (32) is fully satisfied. 

3.2. Feedback control design requirements for model reduction 

To ensure the applicability of the singular perturbation method in 
cases where the relationship (31) is not achieved, the state feedback 
control function u1(t, x, z, ∊) in (43) and (44) must satisfy certain 
requirements. 

Essentially, the influence of u1(t, x, z, ∊) on the dynamic response of 
f(t, x, z, ∊) and g(t, x, z, ∊) in (24)–(30) – represented from now on by fu(t,
x, z, ∊) and gu(t, x, z, ∊) – must be characterized on the singular pertur-
bation formulation. Therefore, the first mandatory condition is to ensure 
the relative smallness of ∊fu(τ, x, z, ∊) in respect to gu(τ, x, z, ∊) in the fast 
time-scale, as in (11) and (12). 

In particular, the separation between g1u(τ, x, z,∊) and ∊f1u(τ, x, z,∊)
dynamics is achieved primarily from action on z2, which dominates both 
dynamics in the fast time-scale. In other words, we can get 

||g1u(τ, x, z, ∊)||⩾∊||f1u(τ, x, z, ∊)||, (59)  

by making the influence of z2 on z1 greater than on x1. It means that the 
feedback u1(t, x, z, ∊) must associate a gain k1 relatively to z2 in (27) and 
(28) such that 0 < T2/(k1T1) < 1, leading to 

k1 >
T2

T1
⇒k1 >

Lf Rg

Rf Lg
, (60)  

while reasonable gains associated with z1 and x1 can be used to others 
adjustments in the response. 

In addition, the influence of each element on its own dynamics must 
be checked. In systems whose relations (31) and (32) are not sufficiently 
small, the terms α∊u2z1 and α∊u2z2 assume values that cannot be 
neglected in the slow timescale dynamics of (43)–(46). Thus, the influ-
ence of these terms must be eliminated through feedback. 

An appropriate choice of u1(t, x, z, ∊) also must ensure that g1u = 0 
has unique solutions z1 = h1(t, x) and z2 = h2(t, x), meeting the 
Assumption 4, and the eigenvalue condition is satisfied for every z in the 
domain, i.e. 

Re
[

λ
{

∂gu

∂z

}]〈

0, ∀z ∈ Dz, (61)  

meeting the Assumptions 5 and 6. 
Finally, the DER-microgrid interaction model can be reduced to: 

ẋ1d = h2d(t, x) − x1d +αu2x1q − w1dcosx2 +w1qsinx2, (62)  

ẋ1q = h2q(t, x) − x1q − αu2x1d − w1qcosx2 − w1dsinx2, (63)  
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ẋ2 = − αu2 +αw2. (64) 

Now we present a proposal for the feedback control design. Let the 
control function u1(t, x, z, ∊) be designed based on the procedure 
described above, in order to ensure the time-scale separation between x 
and z dynamic. To that end, the singular perturbation theory is used to 
the DER-microgrid interaction system. The feedback control law is 
represented as follows: 

u1 = uF(t, x, z,∊), (65)  

where uF = (uFd, uFq) is determined to ensure that the dynamics of z1 and 
z2 are faster than x1 and x2. From (27) and (28), uF is chosen such that 
(59) and (60) are met: 

uFd = (1 − k2)z1d +(1 − k1)z2d + k1z0
2d −

α∊
β

u2z1q − k2α∊u2z2q + k2Rx1d ,

(66)  

uFq = (1 − k2)z1q +(1 − k1)z2q + k1z0
2q +

α∊
β

u2z1d + k2α∊u2z2d + k2Rx1q. (67)  

where z0
2 is the reference signal of z2. 

Then, evaluating (66) and (67) in the system model (33)–(39), the 
closed-loop system can be rewritten as: 

ẋ1d = z2d − x1d + αu2x1q − w1dcosx2 +w1qsinx2, (68)  

ẋ1q = z2q − x1q − αu2x1d − w1qcosx2 − w1dsinx2, (69)  

ẋ2 = − αu2 +αw2, (70)  

∊ż1d = − k2βz1d − k1βz2d + k1βz0
2d − k2βα∊u2z2q + k2βRx1d , (71)  

∊ż1q = − k2βz1q − k1βz2q + k1βz0
2q + k2βα∊u2z2d + k2βRx1q, (72)  

∊ż2d = z1d +α∊u2z2q − Rx1d , (73)  

∊ż2q = z1q − α∊u2z2d − Rx1q. (74) 

By setting ∊ = 0 in. (71)–(74), the quasi-stationary state of z, can be 
obtained (as aforementioned, the terms α∊u2z1 and α∊u2z2 cannot be 
neglected): 

h1d(t, x) = − α∊u2z0
2q +Rx1d, (75)  

h1q(t, x) = α∊u2z0
2d +Rx1q, (76)  

h2d(t, x) = z0
2d , (77)  

h2q(t, x) = z0
2q. (78) 

And the boundary-layer model for the system (68)–(74) is given by: 

ẏ1d = g1ud(t, x, y+ h(t, x), 0) = − k2βy1d − k1βy2d − k2βα∊u2y2q, (79)  

ẏ1q = g1uq(t, x, y+h(t, x), 0) = − k2βy1q − k1βy2q + k2βα∊u2y2d , (80)  

ẏ2d = g2d(t, x, y+h(t, x), 0) = y1d +α∊u2y2q, (81)  

ẏ2q = g2q(t, x, y+ h(t, x), 0) = y1q − α∊u2y2d , (82)  

and its Jacobian matrix [∂g/∂y] is given by: 

J =

[
∂g
∂y

]

=

⎡

⎢
⎢
⎣

− k2β 0 − k1β − k2βα∊u2
0 − k2β k2βα∊u2 − k1β
1 0 0 α∊u2
0 1 − α∊u2 0

⎤

⎥
⎥
⎦ (83)  

and then the eigenvalue condition (15) is met for every real positives k1,

k2, α, β, ∊ and u2. 

Finally, the reduced model is determined by replacing (75)–(78) in 
(68)–(70): 

ẋ1d = − x1d +αu2x1q + z0
2d − w1dcosx2 +w1qsinx2, (84)  

ẋ1q = − x1q − αu2x1d + z0
2q − w1qcosx2 − w1dsinx2, (85)  

ẋ2 = − αu2 + αw2. (86)  

The above result establishes that if the feedback law u1 is chosen as (66) 
and (67), the DER-microgrid dynamic model can be reduced to (84)– 
(86). The Assumptions 4–6 are accomplished and Theorem 1 confirms 
the model reduction. 

4. Numerical results 

This section presents two case studies that illustrate the practical use 
of the theoretical results obtained in this study. First, the parametric 
conditions (31) and (32) are certified in two sets of output filter pa-
rameters, showing that those conditions effectively determine if the 
output filter can be reduced in open-loop. The second case study shows 
the effectiveness of the feedback control law (66) and (67) to satisfy the 
reduction conditions. Both case studies are consistent with analytical 
results presented in this work and with the Theorem 1. To those ends, 
the dynamics of the current io of the reduced model is compared with the 
current io of the complete model. The test system is illustrated in Fig. 2, it 
is designed for a nominal power of 20kVA and it is simulated in the 
PSCAD/EMTDC software. The power converter corresponds to a three- 
level neutral point clamped (NPC) with a frequency modulation of 
20kHz and fundamental frequency ωc = 2π60. In Fig. 2, the DER unit is 
subject to the connection of a resonant load and to the connection of the 
main grid. The islanding transformer is characterized by the parameters 
Rg = 0.44Ω and Lg = 2mH and the main grid by the inductance Lm =

3mH and voltage vm = 0.38kV with frequency ωg = 2π60. 

4.1. Case Study 1. Open-loop model reduction 

Concerning the analytical conditions that authorize the open-loop 
model reduction (31) and (32), this case study considers two sets of 
parameters for the output filter (Rf Lf Cf ) which are presented in Table 1. 

The set of parameters for the Filter ‘1’ has been chosen to satisfy the 
conditions (31) and (32) by decreasing the inductance Lf of the filter. 
However, the reduction of Lf reduces the range of the filter attenuation 
to high-frequency components of the modulated converter voltage. For 
that reason, the inductance Lf is increased for the output Filter ‘2’ 
providing a filtering characteristic for the current if and voltage vs of the 
DER unit. Unfortunately, increasing Lf compromises the achievement of 

Fig. 2. Simulation test system under study.  

Table 1 
Output filter parameters.  

Filter Parameter 

1 Rf1 = 92.5mΩ,Lf1 = 77μH,Cf1 = 30μF  
2 Rf2 = 92.5mΩ,Lf2 = 770μH,Cf2 = 30μF   
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Fig. 3. Open loop dynamics for Filter ‘1’.  
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reduction conditions (31) and (32). 
In Fig. 3 and 4, the dynamic response of the current io for the com-

plete (black-color lines) and reduced model (red-color lines) are illus-
trated for Filter ‘1’ and Filter ‘2’, respectively. In both figures, the error 
between the complete and the reduced model response are also depic-

ted, eio =

⃒
⃒
⃒io(t)

⃒
⃒
⃒ −

⃒
⃒
⃒iredo (t)

⃒
⃒
⃒. At t = 0.1 s the resonant load is connected and 

at t = 0.4 s the main grid is connected, see Fig. 2. Fig. 3(a) presents the 
model reduction based on Filter ‘1’ that satisfies the reduction condi-
tions. In this figure, the reduced model exhibits good approximation 
respect to the complete dynamic model. For the case where the filter 
fails the reduction conditions, in Fig. 4(a), the transient and steady-state 
errors are evident. However, since the Filter ‘1’ parameters (which 
satisfy the reduction conditions) exhibit low attenuation of the high- 
frequency components, the effect of the voltage modulation is 
perceived in the current if and voltage vs as illustrated in Fig. 3(b). 
Therefore, this filter design is not applicable in a real implementation. 
Nonetheless, for the Filter ‘2’ the attenuation of the high-frequency 
component is suitable as shown in Fig. 4(b), but it fails the reduction 
conditions. Hence, to successfully achieve a representative reduced 
model, a feedback law design is required, as is presented in the next case 
study. 

4.2. Case Study 2. Closed-loop model reductions 

This case study implements the feedback law proposed in (66) and 
(67) to accomplish the singular perturbation requirements (60) for the 
closed-loop system. Considering the output Filter ‘2’ parameters, the 
relationship T2/T1 = 2.4 in (60) and consequently k1 is chosen as k1 =

5. On the other hand, k2 is chosen to be k2 = 60. The same events in the 
previous case study are presented in this section. In Fig. 5(a) the 

response of the closed-loop system is depicted in black-color line and the 
response of the reduced model (84)–(86) in red-color line. As can be 
seen, the reduced model effectively follows the real dynamic of the 
system with a small error, around 3% of the maximum current. On the 
other hand, the filtering characteristic of the filter is suitable and ex-
hibits a fast dynamic response under the presented incidents, as is 
illustrated in Fig. 5(b). 

5. Conclusion 

The singular perturbations method was applied to the dynamic 
model that characterizes the interaction between a DER unit and a 
microgrid. This analysis shows that the timescale responses associated 
with the output filter and the rest of the microgrid are not sufficiently 
separated to allow a direct order reduction of the system. Nonetheless, it 
was also shown that if a feedback law satisfies a certain parametric 
condition, the order reduction of the dynamic model is authorized. As a 
consequence, the dynamic model that describes the interaction between 
a DER unit and the microgrid can be reduced for control design 
purposes. 
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