
Received: 12 August 2020 - Revised: 30 November 2020 - Accepted: 9 December 2020 - IET Computers & Digital Techniques
DOI: 10.1049/cdt2.12017

OR I G INAL RE SEARCH PA PER

Evaluation of the soft error assessment consistency of a
JIT‐based virtual platform simulator

Geancarlo Abich1 | Rafael Garibotti2 | Vitor Bandeira1 | Felipe da Rosa1 |
Jonas Gava1 | Felipe Bortolon1 | Guilherme Medeiros1 |
Fernando G. Moraes2 | Ricardo Reis1 | Luciano Ost3

1School of Technology, Pontifical Catholic University
of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil

2PGMicro/PPGC, Instituto de Informática,
Universidade Federal do Rio Grande do Sul
(UFRGS), Porto Alegre, Brazil

3Wolfson School, Loughborough University,
Loughborough, UK

Correspondence

Luciano Ost, Loughborough University, Epinal Way
Loughborough Leicestershire LE11 3TU, UK.
Email: l.ost@lboro.ac.uk

Abstract
Soft error resilience has become an essential design metric in electronic computing
systems as advanced technology nodes have become less robust to high‐charged particle
effects. Designers, therefore, should be able to assess this metric considering several
software stack components running on top of commercial processors, early in the design
phase. With this in mind, researchers are using virtual platform (VP) frameworks to assess
this metric due to their flexibility and high simulation performance. In this regard, herein,
this goal is achieved by analysing the soft error consistency of a just‐in‐time fault injection
simulator (OVPsim‐FIM) against fault injection campaigns conducted with event‐driven
simulators (i.e. more realistic and accurate platforms) considering single and multicore
processor architectures. Reference single‐core fault injection campaigns are performed on
RTL descriptions of Arm Cortex‐M0 and M3 processors, while gem5 simulator is used to
multicore Arm Cortex‐A9 scenarios. Campaigns consider different open‐source and
commercial compilers as well as real software stacks including FreeRTOS/Linux kernels
and 52 applications. Results show that OVPsim‐FIM is more than 1000� faster than
cycle‐accurate simulators and up to 312� faster than event‐driven simulators, while
preserving the soft error analysis accuracy (i.e. mismatch below to 10%) for single and
multicore processors.

1 | INTRODUCTION

Industrial market leaders in automotive, medical, consumer
electronics, and high‐performance computing (HPC) sectors
employ state‐of‐the‐art processors and graphics processing
units (GPUs) to fulfil the high computational demand of ap-
plications. Applications running on such electronic computer
systems differ not only in performance but also in terms of
security, reliability and power requirements. In the reliability
aspect, the soft error resilience is emerging as a key design
metric due to the increasing susceptibility of electronic com-
puter systems to the occurrence of soft errors caused by ra-
diation effects [1]. According to Baumann et al. [1], the
collision of a sub‐atomic particles (e.g. alpha particles and high‐
energy particles) induces a single event transient (SET) by
generating secondary particles capable of ionizing the n‐p

junctions of sensitive transistors causing a voltage charge or
discharge in the stroke node. Therefore, high‐energy neutrons
are becoming the primary source of soft error at ground‐level
surpassing the alpha particles [1, 2]. The occurrence of soft
errors or Single Event Effects (SEEs) may cause critical fail-
ures on system behaviour, which may lead to financial or hu-
man life losses as already reported in [3].

The software and hardware complexity of such systems
impose exploration challenges, including (i) conduct a large
number of fault injection (FI) campaigns within a reasonable
time, (ii) provide engineers with detailed observation of a
system's behaviour in the presence of faults, and (iii)
identify relationships or associations between application
characteristics and specific platform parameters in large data
sets resulting from the fault campaigns. Fault injection
techniques are widely used to assess soft errors of

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is
properly cited.

© 2021 The Authors. IET Computers & Digital Techniques published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology.

IET Comput. Digit. Tech. 2021;15:125–142. wileyonlinelibrary.com/journal/cdt2 - 125

https://doi.org/10.1049/cdt2.12017
https://orcid.org/0000-0001-9387-1523
https://orcid.org/0000-0002-7307-0128
https://orcid.org/0000-0001-7459-0072
https://orcid.org/0000-0003-4964-5136
https://orcid.org/0000-0001-7113-6448
https://orcid.org/0000-0001-6288-978X
https://orcid.org/0000-0001-9842-1644
https://orcid.org/0000-0001-6126-6847
https://orcid.org/0000-0001-5781-5858
https://orcid.org/0000-0002-5160-5232
mailto:l.ost@lboro.ac.uk
https://orcid.org/0000-0001-9387-1523
https://orcid.org/0000-0002-7307-0128
https://orcid.org/0000-0001-7459-0072
https://orcid.org/0000-0003-4964-5136
https://orcid.org/0000-0001-7113-6448
https://orcid.org/0000-0001-6288-978X
https://orcid.org/0000-0001-9842-1644
https://orcid.org/0000-0001-6126-6847
https://orcid.org/0000-0001-5781-5858
https://orcid.org/0000-0002-5160-5232
http://wileyonlinelibrary.com/journal/cdt2

embedded and high‐performance computing (HPC) systems
under fault campaigns at the design time [4]. Simulation
tools normally inject faults using a processor design model.
Some simulators are based on high level behavioural models
and some based on hardware description language level
(HDL) or gate level models. Although, HDL level and gate
level models are more accurate than high behavioural
models, there are two main problems when using HDL or
gate level descriptions: commercial processors are rarely
available to users and the necessary time to simulate detailed
commercial multicore processors is extremely high, making
the soft error analysis of emerging multicore processors
impractical [5].

The resulting scenario calls for faster and more efficient
means to assess the soft error resilience of complex systems
with the minimal overhead in time‐to‐market. Virtual Platform
(VP) frameworks have gained popularity over the years not
only in academia but also in many industrial sectors, due to
their design flexibility, debugging and simulation performance
capacities. In this sense, works incorporated fault injection
capability into VP frameworks [6,7], enabling the analysis of
complex software stacks and processor architectures at early
design phases. While the gain in simulation speed is trivially
observed in VP simulators based on just‐in‐time (JIT) dynamic
binary translation, the soft error assessment consistency of
underlying fault injection frameworks remains unclear. An
initial effort to investigate the soft error consistency of VP
simulators has been conducted in [5,8,9]. Common findings of
these works is that higher level FI approaches provide more
flexibility and simulation performance at the cost of accuracy,
mostly resulting from the lack of microarchitecture and timing
modelling aspects.

In this direction, the main contribution of this paper is an
in‐depth and statistical significance soft error consistency
evaluation of a JIT‐based fault injection framework (OVPsim‐
FIM [7]). This work aims to further contribute to the use of
such frameworks in the early design phase of safety‐critical
applications by demonstrating that software engineers can rely
on soft error results produced from JIT‐based frameworks
throughout a comprehensive and thorough study with more
than 12 million fault injections. In this sense, the other con-
tributions of this article are related to assessing the impact of
(i) standard open‐source (Clang and GCC) and commercial
compilers (Arm) on the soft error reliability; and (ii) virtual
platform parameters that directly impact on soft error assess-
ment. This assessment considers two reference models: real
single‐core commercial processors at the register‐transfer level
(RTL), and a multicore processor model available on the cycle‐
accurate gem5 simulator.

The sequence of this article is organised as follows. Sec-
tion 2 discusses related works on fault injection approaches.
Section 3 introduces the fault injection engine, presents the
adopted fault classification and details the applied statistical
model. Next, Section 4 explores the single‐core soft error
consistency, while Section 5 evaluates the multicore soft error
consistency of OVPsim‐FIM. Finally, Section 6 points out the
conclusions.

2 | RELATED WORKS

Fault injection simulation frameworks are gaining utmost
importance due to their efficiency to obtain prominent results
on the soft error resilience of different systems, early in the
design phase. These FI frameworks can be divided into two
classes: (i) those focussed on the accuracy of the results and (ii)
those that deal with highly complex systems or have little time
to explore the project reliability. Simulation‐based soft error
analysis at RTL or gate levels are examples of the first class.
Within this category, Mansour and Velazco [10] presented a
method called Direct Fault Injection (DFI) to emulate the
consequences of a single event upset (SEU) occurring in the
processor's memory cells. However, this approach requires
modification of the circuit architecture, which is not easily
applied anywhere. Abbasitabar et al. [11] also investigated the
susceptibility of the LEON3 processor in RTL, but their
approach relies on the Modelsim simulator to inject faults
without explicitly changing the reference design. Although
both approaches produce accurate results, they are restricted to
relatively small systems and experimental fault campaigns due
to their low simulation performance.

Researchers started investigating other approaches, such as
the use of virtual platforms, aiming to boost the soft error
analysis of complex systems comprising not only real software
stacks but also instruction set architectures (ISAs) and state‐of‐
the‐art processors [6–8]. While Parasyris et al. [6] introduced
GemFI, a fault injection tool based on the cycle‐accurate full‐
system model of the gem5 simulator [12]. Rosa et al. [7] pre-
sented a fault injection framework based on another virtual
platform, the OVPSim [13], which has the advantage of sup-
porting parallel simulation to boost up the fault injection
process. Such VP‐based FI frameworks are used to investigate
different software stacks configurations, such as standard
parallelisation libraries [14] and compiler optimization flags
[15–17], and their impact on soft error reliability. For instance,
authors in [15–17] investigate the impact of GCC compilation
flags (e.g. O0, O3, etc.) on the application behaviour under
fault influence. These works consider either simple (i.e. in‐
house and bare‐metal applications) or small scenarios, where
only a single processor is considered. Modern compilers have
specific characteristics, which directly impact on applications
performance, power‐efficiency and reliability [18]. Taking a
step forward in compiler assessment, Serrano‐Cases et al. [19]
proposed a method to find out the best combination of
compiler optimizations and parameters to improve the fault
tolerance of applications. In this regard, our work is comple-
mentary to [19] that evaluated x86 processors, as it aims to find
out which is the best compiler combined with an optimization
flag for Arm processors.

Aiming to demonstrate the discrepancies between fault
injections conducted at different levels, researchers have con-
ducted different assessments. For instance in [20], the authors
compare soft error results of an intermediate code‐level fault
injection IR‐level tool (LLFI [21]) and an assembly‐level fault
injector, considering a X86 processor. Results show similar
silent data corruption (SDC) values, but the mismatches for

126 - ABICH ET AL.

crash results reach almost up to 40% in some cases. The main
reason for this behaviour is that the instructions in LLVM IR
can be translated into more than one assembly instruction and
vice‐versa. Also, some instructions are handled differently in
the two code levels (e.g. instructions involving pointers). Cho
et al. [4] evaluate the accuracy trade‐offs associated with a
variety of high‐level fault injection techniques (i.e. RTL)
comparing to a flip‐flop‐level baseline. Similarly, Schirmeier
et al. [22] apply gate‐, flip‐flop‐ and ISA‐level (i.e. register file)
FI techniques to evaluate error‐rate discrepancies considering
the gate‐level FI as reference. Authors in [4] use geometric
means to show the mismatch between the FI levels. Although
useful, the authors mention that the adopted metric may not
capture how mismatch levels vary across various applications.
To improve the soft error assessment accuracy analysis, authors
in [22] use a ranked correlation to evaluate the mismatch be-
tween the FI approaches considering the extrapolated absolute
failure count (EAFC) [23] normalized according to the gate‐
level FI. Such an approach ranks the results from FI techniques
of each application considering the rank shuffling to evaluate
the mismatch between the FI approaches. Authors demon-
strate that even with discrepancies in such an approach, ISA‐
level FI approaches are sufficient to evaluate the soft error
reliability of low‐resource constraint processors (e.g. Cortex‐
M0). However, the EAFC metric only considers the occur-
rence of SDCs, which might lead to an inadequate mismatch
assessment between different level of FIs since not all fault
classifications are taken into account.

Kaliorakis et al. [8] were the first ones to be concerned
with the accuracy of such FI frameworks based on virtual
platforms, comparing FI implementations for gem5 [12] and
MARSS [24]. In the same sense, Chatzidimitriou et al. [9]
proposed to analyse the soft error rate accuracy of a gem5‐
based FI framework against results obtained from a neutron
beam experiment, considering an Arm Cortex‐A9 processor
and 13 benchmarks. The proposed work is complementary to
[9] because it considers other parameters (e.g. cross‐compilers)
and the soft error consistency analysis focus on a JIT‐based
virtual platform. An initial effort to evaluate the soft error
assessment consistency of a JIT‐based FI framework is
described in [5]. In this work, a Fault Injection Module (FIM)
was integrated into gem5 and OVPsim. Results considering
several fault injection campaigns were compared, and a
mismatch of up to 20% is reported. In further experiments, the
Authors achieved a lower worst‐case mismatch of 12% by
reducing the simulation granularity of OVPsim, that is the
number of instructions executed per simulation cycle. Similar
to Kaliorakis et al. [8], conducted experiments aim to evaluate
and provide insights on how to improve the accuracy of FI
frameworks based on virtual platforms. Our work differs from
[5], concerning the investigation of multicore systems, is that
we introduce the discussion on the different cross‐compilers
and parallel programing models (i.e. Serial, MPI, and
OpenMP), considering four cores and the NAS Parallel
Benchmarks (NPB) [25].

This work is distinguished from those found in the litera-
ture by making an extensive and statistical significance soft

error consistency assessment of a JIT‐based fault injection
framework. To the best of our knowledge, this work is the first
to cover so many aspects together, such as single and multicore
processors (i.e. Arm Cortex‐M0, Cortex‐M3, and Cortex‐A9);
three parallel programing models (i.e. Serial, MPI, and
OpenMP); operating system (i.e. FreeRTOS, Linux kernel); five
sets of compilers and versions (i.e. GCC 4.9, GCC 7.2, Clang 6,
Arm 6.10 and Arm 5.06); optimization flags (i.e. O0, O1, O2,
O3, Os and Ofast); and more than 50 applications taken from
the NPB [25], Rodinia [26], and the Mälardalen WCET
benchmark [27]. This range of parameters led to more than
12.7 million fault injections, bringing an excellent confidence
level to the results.

3 | FAULT INJECTION
METHODOLOGY

This section details the adopted fault injection approaches and
their different level of accuracy (Section 3.1). Integrated FIMs
(Fault Injection Modules) combine fault injection techniques,
which may be used to evaluate the soft error resilience of single
or multicore systems. In this sense, each fault injection module
is detailed to show its usefulness, that is, RTL (Section 3.1.1),
gem5 (Section 3.1.2), and OVP (Section 3.1.3). Next, Sec-
tion 3.2 details the adopted fault classification, which is
implemented in the three FIMs so that the results are auto-
matically classified. Finally, Section 3.3 presents the assessment
metrics used in this work, which guarantees the statistical
significance of the results and subsequent conclusions of the
research.

3.1 | Fault injection frameworks

This section first describes two event‐driven fault injection
frameworks based on RTL (Section 3.1.1) and gem5 (Sec-
tion 3.1.2), which are used in the present work as references for
the assessment of single and multicore systems, respectively.
Then, the main functionalities of OVPsim‐FIM are presented
in (Section 3.1.3).

3.1.1 | RTL —Fault injection module

This section depicts the developed fault injection module for
RTL descriptions, similar to that presented in [11,28]. The
main distinction between FIMs is the moment in which the
fault is injected. RTL‐FIM executes under a discrete event
model of computation (e.g. Questa Advanced Simulator),
enabling the injection of faults at any or even within half a
clock cycle. Therefore, inserted faults may affect the behaviour
of both the current and the next instructions. Developed RTL
fault injection module explores built‐in simulator commands
and its observability capability to control and monitor the in-
ternal signal of a given processor without requiring any
changes in its description.

ABICH ET AL. - 127

This approach assumes that the fault injection campaigns
comprise the four phases illustrated in Figure 1: (1) Golden
Reference Model; (2) Fault Injection Setup; (3) Fault Injection
Simulation; (4) Fault Injection Analysis. In the first phase, the
FIM executes the target system to extract its behaviour under
ideal circumstances (i.e. no presence of faults). To improve the
performance of the RTL fault injection campaign, this step
generates checkpoints from simulation time slices. Then, in the
Fault Injection Setup phase, the engine defines the fault
configuration, which consists iof its location (e.g. register,
memory address), position (e.g. register bit) and its insertion
time. The fault injection configuration (e.g. bit location, in-
jection time) relies on a random uniform function, which is a
well‐accepted fault injection technique since it covers the
majority of possible faults on a system at a low computation
cost [29]. In the Fault Injection Simulation phase, the FIM
loads the checkpoint, executes the target system architecture in
the presence of the configured faults (i.e. flipped bits), and
extracts its behaviour. Throughout the Fault Injection Simu-
lation, the developed engine uses available interrupt signals to
detect any unexpected activity. Finally, in the last phase, the
FIM compares the results against its golden reference data to
automatically classify the occurred faults.

3.1.2 | gem5—Fault injection module

gem5 [12] was selected among the available cycle‐accurate
virtual platform simulators due to its open and free availability
as well as its support for the Arm processor architectures with
four CPU models, which differ in speed/accuracy trade‐offs.
This work employs the Out‐Of‐Order (O3) model, which is
the most detailed one, as reference for our experiments. Gem5
also supports a rich set of component models, including pro-
cessor cores, memories, caches, and interconnections. It targets
microarchitecture explorations, which incurs in substantial
simulation overheads due to the number of modelled aspects.
Typically, it reports best‐case simulation performances of up to
two to three million of instructions per second (MIPS).

Additionally, gem5 is a well‐known simulator used in many
research projects underlying the soft error assessment systems
[6,8,9,14]. Our gem5‐based FIM follows the four‐phase fault
injection flow illustrated in Figure 1. Although the phase split is
the same for the three FIMs, each has its own implementation.
The first difference with RTL is in the virtual platform setup (VP
Setup). Here, the application, the kernel, and the configuration
of the target architecture are compiled to simulate together in
the first phase of the flow. Another difference is how to inject a

fault. While RTL relies on proprietary Questa Advanced
Simulator commands such as force -deposit, gem5‐FIM employs
Python scripts to control the simulation flow and use C/C++
modules to model the microarchitectural components. This
deployed fault injection approach minimises intrusion into the
simulator's engines, allowing any researcher in possession of the
original simulator to use, modify, or extend its functionality.

3.1.3 | OVPsim—Fault injection module

Due to the high simulation speed (typically at hundreds of
MIPS), virtual platform simulators, based on just in time (JIT)
dynamic binary translation, appear to have an advantage over
event‐driven simulators. Among available JIT‐based virtual
platforms, OVPsim [13] distinguished by its rich number of
component models, which includes 170 processor variants,
memories, UARTs, among other components. The support of
this rich set of features combined with its simulation perfor-
mance justifies the adoption of OVPsim in this work.

Regarding the soft error assessment, the developed FI
module emulates the occurrence of SEU by injecting one
flipped bit in a single register or memory address during the
execution of a given software stack. In this work, SEU target
only storage elements due to its higher susceptibility to radia-
tion events when compared to logic elements [30]. Further-
more, OVPsim‐FIM is an instruction‐accurate simulation
engine, and thus faults can only occur between instructions.
Consequently, injected faults can only influence the behaviour
of the next instructions. This lack of accuracy will be decisive
for the mismatches in relation to the references FI approaches
presented in Sections 3.1.1 and 3.1.2.

The proposed FIM also relies on the four‐phase fault in-
jection flow shown in Figure 1. However, OVPsim‐FIM has an
improved fault injection infrastructure, which includes two
simulation techniques to boost up the fault injection assess-
ment: checkpoint and an independent parallel simulation en-
gine. The checkpoint technique consists of collecting platform
components context during the Golden Reference Model
(phase 1) to restore the appropriate context later during the FI
campaign, reducing the amount of re‐executed code and,
consequently, accelerating the simulation time. This technique
is built using OVPSim's save and restore functions, which allow
restoring the processor and memory context. The system
context is periodically saved during a faultless execution and
later restoring the appropriate context for each fault injection.
During faultless execution, the developed FIM stores (i.e. ac-
cording to a predefined instruction interval) the application

F I GURE 1 Fault injection campaign flow applicable to the three fault injection approaches, that is RTL, gem5 and OVPsim

128 - ABICH ET AL.

context covering processor and memory models. At the fault
campaign, each fault injection module identifies the closest
checkpoint before the fault injection time to be restored.
Additionally, the fault injection event trigger adjusts the in-
jection time considering the fast for the number of forwarded
instructions. The user can specify this interval or assign some
checkpoints, and thus, the simulation infrastructure automati-
cally estimates the interval between checkpoints.

In addition, the independent parallel simulation technique
benefits from the host's processing capacity. The proposed
simulation infrastructure comprises a set of C‐based functions
(e.g. management) and bash scripts developed according to the
OVPSim guidelines. The goal is to allocate one platform model
per available host‐core, enabling the execution of multiple fault
injection campaigns in parallel. For example, considering a
quad‐core processor machine, it is possible to run four plat-
form models injecting 1000 faults each, reaching 4000 fault
injections in parallel. This being one of the techniques used to
be able to assess a huge number of FI scenarios in this work.

The fault injection process does not change the target
application source, instead, the fault injector interrupts the
simulator a single time to change a single bit in the application
execution. The underlying interruption occurs a single time
during a simulation, having an unnoticeable impact on the
overall simulation time whenever compared to unmodified
application execution.

3.2 | Fault classification

To characterise the target architecture behaviour in the pres-
ence of faults, the three fault injection modules execute the FI
campaigns according to a statistical analysis (Section 3.3),
aiming to achieve a reasonable confidence level so that addi-
tional campaigns do not disturb the result. The gathered results
are classified according to Cho et al. [4], which defines five
possible behaviours for a system in the presence of single‐
event upsets:

‐ Vanish: no fault traces are left in both memory and archi-
tectural state;

‐ Output not Affected (ONA): the resulting memory is not
modified, however, one or more remaining bits of the
architectural state is incorrect;

‐ Output Memory Mismatch (OMM): the application termi-
nates without any error indication, and the resulting memory
is affected;

‐ Unexpected Termination (UT): the application terminates
abnormally with an error indication;

‐ Hang: the application does not finish requiring a pre‐emp-
tive removal.

3.3 | Assessment metrics

One of the main concerns when assessing the reliability of a
system is to develop a precise, well‐covered and realistic

approach. In this sense, this work sought to ensure that the
number of fault injections has a statistical significance by
applying the equations developed by Leveugle et al. [31].
Equation (1) shows the minimum number of campaigns
needed to cover a certain confidence level with their respective
margin of error. While the confidence level assures that if we
repeat the experiments, the same results are obtained. Also, the
margin of error indicates the percentage difference between
the obtained results and the real value of the population.

n ¼
N

1þ e2ñ N−1
t2ñpñð1−pÞ

ð1Þ

where: N is the initial population, p is the estimated probability
of a failure (defined as 50%), e is the considered margin of
error, and t is the minimum required confidence level.

Our initial population is the product of possible spatial
and temporal fault injections, that is the location (e.g. reg-
ister, memory address) and the position (e.g. register bit) at
which the bit‐flip will be applied to and its insertion time (e.
g. a random clock cycle), respectively. An important char-
acteristic of the Equation (1) is that when the initial popu-
lation (N) is large, and its increase has little influence on the
FI campaign size for a given margin of error and confidence
level. For example, for a population greater than one million
(N), if the chosen confidence level is 99% (in which the
calculated t corresponding to 2.575,829,303,549), with a
margin of error of 5% (e = 0.05), we must perform at least
664 fault injections to provide the necessary confidence in
our results.

4 | SOFT ERROR CONSISTENCY
ASSESSMENT FOR SINGLE‐CORE
PROCESSORS

This section aims to thoroughly assess the OVPsim‐FIM soft
error consistency when targeting single‐core processors. So,
this work considers two real commercial RTL processor de-
scriptions from the Arm Cortex‐M family: Cortex‐M0 and
Cortex‐M3; both available under the Arm University Pro-
gramme [32]. OVPsim‐FIM natively supports both processor
models, and the synthesis‐ready netlist descriptions of the
underlying processors were used to conduct the fault injection
campaigns at the RTL level.

4.1 | Experimental setup

To provide trustworthy results, experiments consider more
than 8.5 million fault injections using 26 applications and
varying parameters such as target processor, software stack,
and cross compiler with its optimization flags. Table 1 presents
the proposed experimental setup used to measure the soft
error assessment consistency of OVPsim‐FIM with respect to
the RTL approach.

ABICH ET AL. - 129

Selected applications from the Mälardalen WCET bench-
mark suit [27] include: Adpcm, Binary Search, Bit Manipula-
tion, Blowfish, Bubble Sort, Counts, CRC, Data Compression,
Dhrystone, Edn, Exponential Integral, Factorial, Fdct, Fibo-
nacci, Hanoi Tower, HArmonic Calculations, Insert Sort,
Jfdctint, Matrix Multiplication, MDC, PeakSpeed, Petri Net,
Prime Numbers, Switch Cases, Ud, and Usqrt.

Results were performed on a Linux machine with a Quad‐
core Intel® CoreTMi7‐7700K CPU and 32 GB DDR3 RAM
memory. Fault analyses are obtained by injecting faults (i.e. bit‐
flips) into the processor's registers (i.e. R0‐R15) in a random
and uniformly distributed manner, which is widely accepted
that circuits are affected [29]. The purpose is to analyse the
parameters and Arm processors according to the architectural
vulnerability factor (AVF) [29], that is a percentage estimate of
errors that are not masked, considering the different
applications.

4.2 | FI simulation performance of OVPsim‐
FIM w.r.t. RTL

Although electronic hardware engineers usually describe their
circuit designs using hardware description languages (HDLs)
and fault injection at that level seems to be more straightfor-
ward due to the accuracy of the results, there are two main
reasons for not using HDL models. First, commercial pro-
cessors are rarely available to users in HDL descriptions.
Second, the simulation time at this level is exceptionally high.
This made the simulation speedup of fault injection campaigns
one of the leading motivations found in the literature to use
virtual platforms [5,8]. In this sense, our first experiment is to
quantify the simulation speed for each of the adopted appli-
cations, as shown in Figure 2.

Figure 2 depicts a comparison between the simulation time
required to execute a complete fault injection campaign in the
RTL and OVPsim‐FIM approaches. To make comparisons
simpler and trustworthy, simulation time was extracted consid-
ering the Arm Cortex‐M0 and bare‐metal applications. Results
show that OVPsim‐FIM achieves a remarkable simulation per-
formance, reaching a speedup greater than 1000� compared to

the detailed fault injection approach conducted at RTL. Thus, if
RTL is considered, thousands of simulations may take several
months, which is not suitable to assess the soft error resilience of
electronic computing systems. In this context, the utilization of a
fault injection JIT‐based virtual platform is promising since it
can also be used for comparison among different processor
models, ISAs and benchmarks considering complex OSs and
large scenarios, as shown in Section 4.3.

4.3 | Soft error mismatch assessment

This section presents the results on the accuracy of the soft
error resilience assessment in single‐core processors,
comparing OVPsim‐FIM and RTL‐FIM. Following sub-
sections details each proposed experiments to provide a
complete consistency analysis.

4.3.1 | Mismatch analysis considering processor
architectures

Our first discussion is related to the Arm processor architec-
tures, considering the ISA and the adopted software stacks.

TABLE 1 RTL versus OVPsim
Experimental Setup. The * means a sub‐flag
used in conjunction with other standard flags
(e.g. O0, O1, O2, O3)

Processors Arm Cortex‐M0 and Cortex‐M3

Software Stack Bare‐metal and FreeRTOS

Benchmark Suite Mälardalen WCET [27]

Compilers GCC 4.9, GCC 7.2, Clang 6, Arm 6.10 and Arm 5.06

Optimization Flags O0, O1, O2, O3, Os, Ofast, Ospace* and Otime*

Number of Compiler Sets 32

(with optimization flag)

Number of Applications 26

Injections per Scenario 1000 (Section 4.3.1) and 10,000 (Section 4.3.2)

Total Fault Injections 208,000 (Section 4.3.1) and 8,320,000 (Section 4.3.2)

F I GURE 2 Speedup of OVPsim‐FIM over the RTL‐FIM, considering
the Cortex‐M0 executing 26 benchmarks in bare‐metal

130 - ABICH ET AL.

This will provide us insights into which processor is more
reliable and why. In this regard, Equation (2) is used to provide
the mismatch between our accurate reference (i.e. RTL) and
the OVPsim‐FIM. The mismatch here is defined as the dif-
ference between results obtained for each application and the
same fault class divided by the number of injected faults.

Mismatch ¼
ðRTL½ app; class �−OVPsim½ app; class �Þ

Number of Injected Faults
ð2Þ

The first results highlight the effects of the Arm Cortex‐
M0 and Cortex‐M3 architectures and their respective ISAs on
soft error resilience. Although both processors are from the
Cortex‐M Family, they differ in terms of computer architec-
tures (i.e. Von Neumann and Harvard respectively). Cortex‐M3
has a larger ISA (i.e. entire thumb and thumb‐2, 32‐bit and 64‐
bit result multiplication, and 32‐bit quotient division), while
Cortex‐M0 has a reduced ISA (i.e. most thumb, some thumb‐2,
and 32‐bit result multiplication).

Different from Refs. [4,22], our evaluation considers an
empirical data distribution that shows the minimum,
maximum, and mean mismatch values with the interquartile
ranges. Such data distribution enable us to show a detailed
inter‐benchmark mismatch variation considering all fault clas-
sifications and not only the EAFC [22] nor only the overall
accuracy [4]. Figure 3 shows the mismatch distribution for each
fault class, considering the impact of using different processors
and software stacks. This means that each bar in Figure 3
represents 26,000 fault injections, with a confidence level of
99.8% and an error margin of 1%, according to the Equa-
tion (1). In addition, the experiments used the GCC 4.9.3
compiler with O0 optimization flag, which facilitates the
reproducibility of the experiments by other researchers.

First, we see that the architectural difference between the
two processors affects the system's reliability, producing
different fault class behaviours, as shown in Figure 3. A major
architectural difference is that the Arm Cortex‐M0 has a
reduced instruction set, which makes it to execute a larger set
of instructions and to complete more complex operations than
the Cortex‐M3. For instance, while a 32‐bit multiplication
operation may vary from 1 up to 32 cycles in the Cortex‐M0,

the Cortex‐M3 multiplier instruction needs a single cycle to
complete the same operation.

Looking at Figure 3 globally, the OVPsim‐FIM results
differ more prominently, from the reference, in the occurrence
of ONA and UT faults, whereas the mean is out of ±5% (i.e. a
low mismatch reference). In this regard, the RTL approach is
more likely to mask an injected fault targeting a general‐pur-
pose register (i.e. Vanished) or to propagate it to other registers
(e.g. ONA and UT). In addition, the results also differ due to
the simulation nature of each fault injection approach. In
OVPsim‐FIM, faults are injected between instructions, which
can restrict their propagation and, consequently, reduce the
cumulative effects of soft errors. But, the nature of discrete
event simulators allows the injection into any clock cycle,
which can affect the execution of multi‐cycle instructions (e.g.
a division execution can take 2 to 12 cycles on the Cortex‐M3).
In this case, the value of a register can change mid instruction,
which may lead to either a masked fault, or an undefined
processor state, or even a wrong application execution.

On the other hand, looking at specific points, we can see
that the mismatch distribution between bare‐metal scenarios
revealed a higher occurrence of ONA (i.e. mean value indi-
cated by (1) in Figure 3) for the Cortex‐M0 on RTL approach,
and a lower mismatch with Cortex‐M3 (i.e. mean value high-
lighted by (2) in Figure 3). Also, results show that OVPsim‐
FIM presents lower mismatches of Hang, OMM, and Vanish
faults for both processors, that is most mean values are in the
±5% range.

Regarding the operating system, when it is present, more
functions (e.g. memory allocation, context switching) are
available, increasing the software stack complexity. Results in
Figure 3 (highlighted by (3) and (4)) show that the mismatch
distribution from ONA faults is more disperse when using
OVPsim‐FIM, which affects the other fault types propor-
tionally, that is the sum of the variations in the average
mismatch between bare‐metal and FreeRTOS is equal to zero.
The collected results show that the mean values remain
between00B1Æ4%, confirming that the inclusion of FreeRTOS
did not affect the OVPsim‐FIM soft error assessment accuracy.

FreeRTOS is a minimalist OS, that is a tiny footprint kernel
with a lower overhead w.r.t. the application execution time.
Thus, the probability of a fault striking the RTOS kernel

F I GURE 3 Boxplot of fault mismatch between OVPsim‐FIM and RTL‐FIM considering different architectures and software stacks. Outlier cases
(represented by circles) are at least two standard deviations from the mean

ABICH ET AL. - 131

functions is infinitesimal, mainly due to the low vulnerability
window of the kernel w.r.t. to the execution overhead of
complex applications. A similar behaviour is also found in
more complex scenarios [14], including more robust kernels,
such as a Linux, executing multithread applications. One of the
effects, of running the FreeRTOS or any OS is the occasional
context switch, which overwrites the registers potentially
masking dormant faults in the registers. The application length
impact on reliability depends on its behaviour. For example,
some algorithms accumulate errors (e.g. matrix multiplication)
while others fetch new data for each iteration (e.g. Video
decoder).

4.3.2 | Mismatch analysis considering cross‐
compilers

Compilers play an important role due to their direct impact
on applications performance, power‐efficiency, and reliability
[18], as they provide software engineers with a wide variety
of optimization settings (i.e. flags), which can be used to
either configure debugging and warning messages, or to
achieve code optimization. In addition, industrial leaders
employ different compilers in their projects. So, assessing
the impact of these compilers on soft error reliability is vital
to guarantee the success of their products. If, on the one
hand, most of the work on compilation flags in the litera-
ture focuses on performance optimization [33], and into
reducing memory usage and code size [34]. Few are those
that assess the soft error reliability provided by compilers
[15,17,19]. In this scenario, this section investigates the
impact of widely adopted compilers and their optimization
flags on the soft error reliability to find the most reliable set
for Arm processors.

The long simulation time of the RTL approach restricts its
use for the soft error assessment of multiple scenarios. For that
reason, the evaluation considers only the Arm Cortex‐M3 to
investigate whether the nature of cross‐compilers and opti-
mization flags affect the accuracy of soft error results obtained
with OVPsim‐FIM. To handle this, five cross‐compilers are
considered:

‐ GCC 4.9.3: free‐software, still widely used by legacy systems
and applications;

‐ GCC 7.2.1: free‐software, currently shipped with popular
Linux distributions;

‐ Clang 6.0.1: free‐software, which is an LLVM‐based
compiler;

‐ Arm 5.06: proprietary‐compiler that is compatibility GCC;
‐ Arm 6.10: proprietary‐compiler developed based on the
LLVM compiler.

These compilers consider six optimization flags (i.e. O0,
O1, O2, O3, Os, and Ofast), with the exception of the Arm
5.06 compiler, which has a different approach for Os and
Ofast. In this case, the traditional flags O0, O1, O2, and O3

are combined with other flags (i.e. Ospace and Otime), which
are equivalent to either Os and Ofast, resulting in eight flag
combinations.

Table 2 presents a mismatch percentage summary of the
compiler sets (i.e., compiler with optimization flag) between
the RTL and OVPsim FI modules. Considering only bare‐
metal applications, each compiler set comprises 26,000 fault
injection campaigns, which means that our results have a
confidence level of 99.8% and a margin of error of 1%, ac-
cording to Equation (1). The results show that compilers have
an impact on soft error resilience. However, the mismatch
between the two approaches is very low, with means close to 2
for all compiler sets.

Regarding the mismatch distribution, worst‐case sce-
narios maintain the absolute mismatch below 8%. Consid-
ering that the calculated margin of error is at 1%, and even
the outlier values are very close between the two FI ap-
proaches, which means that OVPsim‐FIM provides good
reliability results being more than 1000� faster than RTL.
But, comparing the compilers, the results of the 2 GCCs
show that they have the highest number of outliers in
worst‐cases (see red values in Table 2). These outlier values
may not yield an apparent correlation, but they present a
difference in terms of executed instructions. For example,
the GCC versions of the Dhrystone application execute
1.7� more instructions than the version generated by the
Arm 5.06 compiler, which affects the application vulnera-
bility window.

After presenting an overview of the compilers and opti-
mization flags showing the accuracy of the results in relation to
RTL, we increased fault injection campaigns to 10k for each
compiler set and compared them using OVPsim‐FIM. The
goal is to find the most reliable compiler set, so the FI cam-
paigns were increased to produce a more significant result in
terms of confidence level and lower the margin of error. Thus,
for each compiler set 260k FI campaigns are conducted,
leading to a confidence level of 98%, and margin of error to
0.2%.

Figure 4 shows the soft errors related to the FI campaigns
for the five considered compilers and their optimization flags
using OVPsim‐FIM. We consider AVF to be the percentage of
the sum of all faults that could be analysed (i.e., ONA, OMM,
UT and Hang). Thus, reliability is related to the percentage of
Vanishes found. Among the evaluated compilers, the com-
mercial Arm 6.10 presents more occurrences of Vanish,
indicating that it has a greater soft error resilience. From the
open‐source alternatives, Clang appears to be the best option
due to two main reasons: (i) a higher number of vanishes was
identified, and (ii) its adoption leads to a lower occurrence of
Hangs. On the other hand, the GCC compilers followed the
trend shown in Table 2 and continued to present the worst
results in terms of soft error resilience, where no optimization
flag passed the dashed red line shown in Figure 4a. To facili-
tate this view, Figure 4b is a zoom‐in considering only
Vanish. Although the newer GCC version uses more specific
instructions of Arm Cortex‐M3 ISA, the resulting

132 - ABICH ET AL.

improvement is negligible compared to the previous version.
In short, compilers with better results regarding Vanish are
LLVM‐based ones. Although restricted to only two ISAs, these
findings suggest a pattern for the adoption of LLVM‐based
compilers but additional experiments considering other ISAs
would be necessary to explore further the reliability benefits of
this compiler.

Lastly, we believe that the industry will not adopt a
compiler set just because it is more reliable, except for a niche
such as critical‐safety applications (e.g. autonomous vehicle and
medical applications). In this sense, we propose to evaluate
which compiler set is more reliable and that also offers the best
performance. Figure 5 shows a trade‐off between performance
(i.e. execution time from RTL and executed instructions from
OVPsim) and reliability (i.e. the occurrence of Vanishes),
considering the aforementioned cross‐compilers. The upper‐
left corner presents the best of both performance and reli-
ability; conversely, the lower‐right corner has the worst per-
formance and reliability. In turn, the lower‐left corner
assemblies are the configurations that show reasonable per-
formance, but low soft error reliability.

Results show that the applications compiled with the O0
flag presented a higher susceptibility to soft errors and a low
performance, except for the codes generated with the Arm
5.06 compiler, which showed a reliability improvement, but
still, below to other sets of compilers. Although the Arm
5.06 compiler provides GCC compatibility to aid develop-
ment with source bases that were originally configured to be
built with the GNU toolchains [35], the Arm 5.06 performs
a series of optimizations (e.g. reduction of memory access—
mem2reg) even at the O0 level. In some cases, such opti-
mizations can reduce the number of static instructions to less
than half w.r.t. to other compilers [36]. At the other end, are
the Arm 6.10 and Clang 6.0.1 compilers (i.e. both LLVM‐
based). The two have the best set of performance and reli-
ability. Among them, the O2 optimization flag stands out,
presenting superior results for the two compilers. However,
due to the significance of our results (high confidence level
and low margin of error), Clang has a certain advantage, and
it would be our compiler suggestion. Finally, the remaining
compiler sets maintain similar results to the mean of this
trade‐off.

4.4 | Closing Remarks

In this section, we demonstrated that the use of virtual plat-
forms brings speedups greater than 1000 times for FI cam-
paigns. Then, we saw that the architectural difference between
the two Arm processors affects the system's reliability, pro-
ducing different fault class behaviours. However, the inclusion
of an operating system did not affect the soft error assessment
accuracy. Next, we assessed the reliability of a variety of off‐
the‐shelf compilers. We concluded that the best compilers are
LLVM‐based and that the best set in terms of performance
and reliability would be the Clang 6.0.1 compiler using the 02
optimization flag.T

A
B
L
E

2
M
ea
n
an
d
w
or
st

‐c
as
e
ab
so
lu
te
m
ism

at
ch

pe
rc
en
ta
ge
s
be
tw

ee
n
th
e
R
TL

an
d
O
V
Ps
im

fa
ul
ti
nj
ec
tio

n
m
od

ul
es

co
ns
id
er
in
g
di
ff
er
en
tc
ro
ss

‐c
om

pi
le
rs
an
d
th
ei
ro

pt
im

iz
at
io
n
fla
gs

in
A
rm

C
or
te
x‐
M
3.
T
he

*
m
ea
ns

a
co
m
bi
ne
d
fla
g
eq
ui
va
le
nt

to
O
fa
st

A
rm

5.
06

A
rm

6.
10

C
la
ng

6.
0.
1

G
C
C

4.
9.
3

G
C
C

7.
2.
1

O
0

O
0*

O
1

O
1*

O
2

O
2*

O
3

O
3*

O
0

O
1

O
2

O
3

O
s

O
fa
st

O
0

O
1

O
2

O
3

O
s

O
fa
st

O
0

O
1

O
2

O
3

O
s

O
fa
st

O
0

O
1

O
2

O
3

O
s

O
fa
st

V
an
ish

ed
M
ea
n

1.
5

1.
6

1.
5

1.
6

1.
6

1.
8

1.
6

1.
8

1.
4

1.
7

2.
0

1.
9

1.
8

2.
1

0.
9

1.
7

1.
5

1.
5

1.
9

1.
6

1.
8

2.
3

2.
0

2.
1

1.
7

1.
9

1.
4

1.
4

1.
3

1.
8

1.
8

1.
5

W
or
st

4.
2

6.
1

4.
7

4.
2

5.
6

5.
1

4.
9

5.
9

7.
5

4.
9

5.
4

5.
9

5.
2

5.
1

2.
6

4.
6

4.
1

3.
9

5.
5

3.
8

4.
3

6.
7

7.
5

6.
8

5.
6

3.
9

3.
2

4.
4

8.
0

6.
5

6.
8

5.
3

O
N
A

M
ea
n

1.
1

1.
1

1.
1

1.
4

1.
5

1.
6

1.
3

1.
6

1.
8

2.
9

1.
6

1.
2

1.
7

1.
3

1.
8

2.
0

1.
5

1.
5

1.
7

1.
7

1.
4

2.
4

1.
8

1.
7

1.
9

2.
2

1.
4

1.
6

1.
1

1.
7

1.
7

1.
8

W
or
st

3.
6

5.
3

4.
6

4.
1

4.
9

4.
9

5.
0

6.
0

6.
8

7.
1

5.
6

6.
2

6.
0

5.
4

6.
2

5.
2

6.
3

4.
4

3.
8

5.
9

3.
6

6.
3

5.
9

5.
8

5.
8

6.
9

4.
5

4.
0

6.
8

6.
2

4.
9

5.
3

O
M
M

M
ea
n

1.
2

1.
5

1.
1

1.
8

1.
3

2.
0

1.
2

1.
6

1.
2

1.
9

1.
4

1.
3

1.
4

1.
3

1.
2

2.
0

2.
2

2.
0

1.
8

2.
4

2.
4

2.
2

1.
7

1.
8

1.
9

1.
7

2.
2

2.
0

1.
2

1.
6

1.
9

1.
8

W
or
st

4.
0

4.
5

3.
8

5.
5

3.
1

5.
2

3.
2

5.
4

4.
8

5.
5

6.
4

3.
5

3.
3

5.
1

7.
3

6.
9

5.
1

4.
9

4.
7

5.
0

7.
2

6.
8

6.
5

6.
3

5.
0

4.
0

5.
6

6.
1

4.
5

6.
1

6.
2

6.
0

U
T

M
ea
n

1.
6

2.
6

1.
2

2.
4

1.
2

2.
0

1.
4

1.
4

1.
3

1.
7

1.
5

1.
7

1.
7

1.
9

1.
9

1.
4

2.
0

1.
6

1.
6

1.
7

3.
1

1.
7

2.
4

2.
2

2.
6

1.
7

2.
6

2.
3

1.
6

1.
8

2.
1

1.
9

W
or
st

6.
1

5.
9

5.
2

6.
6

5.
7

5.
6

5.
2

3.
1

3.
4

4.
3

4.
2

3.
9

4.
5

4.
5

4.
5

5.
3

5.
5

5.
5

6.
5

5.
4

7.
1

6.
0

6.
3

4.
5

7.
4

6.
3

5.
6

5.
0

6.
0

3.
9

4.
9

3.
9

H
an
g

M
ea
n

1.
3

1.
6

1.
4

1.
6

1.
4

2.
2

1.
7

1.
9

2.
0

1.
5

1.
7

1.
5

1.
7

1.
6

1.
9

1.
0

0.
8

0.
8

1.
6

0.
7

1.
5

1.
8

1.
6

1.
6

1.
8

2.
2

1.
6

1.
8

1.
5

1.
6

1.
4

1.
4

W
or
st

4.
1

3.
8

4.
4

4.
4

4.
6

4.
4

5.
8

4.
7

6.
0

3.
6

4.
4

3.
4

4.
3

3.
5

5.
4

2.
8

2.
5

2.
4

5.
4

2.
3

3.
2

4.
8

4.
5

4.
1

6.
9

4.
5

5.
0

4.
7

4.
9

4.
3

4.
8

4.
1

ABICH ET AL. - 133

5 | SOFT ERROR CONSISTENCY
ASSESSMENT FOR MULTICORE
PROCESSORS

Given the growing complexity of both application and soft-
ware stacks, most computing systems consider multicore
processors. Differently from single‐core, in multicore proces-
sor architectures, the number of cores and the parallel pro-
graming model have a direct impact in terms of performance,
power efficiency, and reliability. According to the previous
Section, the software stack complexity, as well as the instruc-
tion set, slightly affects the accuracy of the soft error evaluation
of OVPsim‐FIM w.r.t. a RTL approach. Unfortunately, RTL

descriptions of multicore processors are not freely available,
and for that reason, this section considers the gem5 simulator
[12] as the reference model.

In this scenario, this section evaluates the soft error con-
sistency assessment of OVPsim‐FIM using gem5‐FIM as the
reference model. Section 5.1 details the adopted experimental
setup. Next, Section 5.2 presents the simulation speedup
improvement achieved by OVPsim‐FIM, detailing some virtual
platform parameters. Then, Section 5.3 presents the assess-
ment of soft error consistency considering three main aspects:
number of cores (Section 5.3.1), different parallel programing
models (Section 5.3.2), and different VP parameters that
directly impacts on the soft error resilience (Section 5.3.3).

F I GURE 4 Average faults for compilers and their optimization flags. The * means a combined flag equivalent to Ofast

F I GURE 5 Average execution time and executed instructions versus number of Vanishes considering different compiler sets

134 - ABICH ET AL.

5.1 | Experimental setup

Table 3 presents the proposed experimental setup used to
measure the soft error analysis consistency between the two
VPs. The target processor is an Arm Cortex‐A9 processor
(Armv7 Architecture) because it can be configured to use one,
two or four cores.

The proposed experimental setup adopts two distinct
workloads: the Rodinia benchmark suite [26] and the NAS
Parallel Benchmarks (NPB) [25]. The two benchmarks provide
a set of applications that use different parallel programing
models (i.e. OpenMP, MPI, CUDA, and OpenCL) designed to
assess the performance of parallel supercomputers. This
experimental setup considers 16 OpenMP Rondinia applica-
tions: (a) backprop, (b) BFS (Breadth‐First Search), (c) heart-
wall, (d) hotspot, (e) hotspot3d, (f) kmeans, (g) lavaMD, (h) lud,
(i) myocyte, (j) nn (k‐Nearest Neighbours), (k) nw (Needle-
man‐Wunsch), (L) particlefilter, (M) pathfinder, (N) sradv1,
(O) sradv2, and (P) streamcluster. In addition, we also selected
11 NPB applications (from Serial, MPI, and OpenMP pro-
graming models): (BT) Block Tri‐diagonal solver, (CG)
Conjugate Gradient, (DC) Data Cube, (DT) Data Trafic,
(EP) Embarrassingly Parallel, (FT) Discrete 3D fast Fourier
Transform, (IS) Integer Sort, (LU) Lower‐Upper Gauss‐
Seidel solver, (MG) Multi‐Grid on a sequence of meshes,
(SP) Scalar Penta‐diagonal solver, and (UA) Unstructured
Adaptive mesh.

To avoid external influences and ensure the most solid
comparison between virtual platforms, the software stack of
both Benchmarks uses the same compilation environment
regarding compiler (GCC 6.2.0), optimization flag (-O3), li-
braries, and target an identical Linux kernel (version 3.13.0-
rc2). Operating system reliability is not the main focus of this
section and, therefore, fault injections only occur during the
application lifespan (i.e. the OS startup is not subject to faults).
Nevertheless, the operating system calls that arise during this
period (i.e. application execution time) are susceptible to fault
injections as part of the application's behaviour.

5.2 | FI simulation performance of OVPsim‐
FIM w.r.t. gem5‐FIM

Simulation speedup is one of the main reasons for adopting
VPs, however, their engines make them different from each
other, providing more or less accuracy according to their
performance. For example, gem5 is an event‐based cycle‐ac-
curate simulator, that is it describes the target micro-
architecture as components (register‐file, pipeline, cache, etc.)
interconnected by a series of events. A scheduler in the gem5
engine executes these events at each simulation tick, updating
the whole system state. One tick corresponds to 1 picosecond;
therefore, for a 2 GHz CPU clock, events are executed at a rate
of 500 ticks per CPU cycle in the simulated system and,
consequently, a complete instruction requires a few thousand
ticks. The resulting clock cycle accuracy is obtained at the
expense of a higher computation and memory cost.

Due to the high simulation speed (typically at hundreds of
MIPS), virtual platform simulators based on just in time (JIT)
dynamic binary translation, such as OVPsim, appear to have an
advantage over event‐driven simulators since it translates the
target ISA (e.g. Armv7) to host x86‐64 instructions. Further, a
complete instruction is the OVPsim minimal simulation
granularity; in other words, the simulation always advances one
instruction, which provides a higher simulation speed than
gem5. Similar to an OS scheduler in which several processes
share the same CPU time, the OVPsim engine simulates each
model instance (i.e. processor, core, peripheral) for a fixed‐
length instruction block called Quantum.

The quantum size is a measure of relative time for a give
processing unit (e.g. core, CPU) given in the number of
executed mnemonic instructions (e.g. add, load, store).
Consequently, one quantum of 100 requires the execution of
one hundred instruction fetches from the memory (i.e.
compiled object code).The compiled object code consists of
assembly‐level mnemonic execution, thus, both represent the
same magnitude. The engine always completes the entire in-
struction per iteration, so if one complex assembly‐level
mnemonic is decomposed into multiple instructions during the
decoding phase (internally to the core state machine), for
accountability purposes, the instructions counts as one. The
quantum size is configurable using a variable, time-slice, rep-
resenting a time in seconds that refers to an internal configu-
ration parameter and not to the simulation, host, or real‐time.
The quantum size is given by Equation (3), where, by default,
the time‐slice is 0.001 s (1 ms) and the target processor's
nominal MIPS rate (proc. MIPS) is 448 MIPS, resulting in a
quantum size of 448,000 instructions, being our reference size
in Table 3.

QuantumSize ¼ ðproc: MIPSÞ �1e6 �ðtime slice durationÞ

ð3Þ

The OVPsim also deploys a scheduling policy to manage
the simulation of processors and other components. For
example, the simulator selects the first processor, after it has
been simulated for 448,000 instructions, it is suspended, and
the next processor assumes. In the case of multicore

TABLE 3 gem5 versus OVPsim Experimental Setup

Processors Arm Cortex‐A9 with 1, 2, and 4 Cores

Benchmarks Rodinia [26] and NPB [25]

Programing Models Serial, MPI, and OpenMP

Number of Applications 27

Injections per Scenario 8000

OVP Quantum Sizes 448,000, 4,480, 448, and 44

Total Fault Injections 1,248,000 (Section 5.3.1) and

1,072,000 (Section 5.3.2) and

1,888,000 (Section 5.3.3)

ABICH ET AL. - 135

processors, such as Arm Cortex‐A9x2, each processor core
receives a separate quantum and the simulation is scheduled
accordingly. Figure 6 shows two simulation scenarios for a
dual‐core processor, one with the default quantum, and the
other using half of its size (i.e. 224,000 instructions). By
reducing the quantum size, the number of model switches for
an identical workload increases. This configuration choice de-
lays inter‐core communication (or synchronization events) and
consequently reduces their simulation speedup.

To quantify the simulation speedup difference between
gem5‐FIM and OVPsim‐FIM, we analysed multiple configu-
rations and workloads on a Quad‐core Intel Core I7‐7700K
4.2 GHz with 16 GB DDR4 2400 MHz. Figure 7 presents the
results from one to four cores, showing the scalability and
speedup of supported parallel simulations by the two VPs.

Figure 7 a displays the first set of simulations considering
the Rodinia applications. In this experiment, using four cores,
the gem5‐FIM atomic simulation speedup ranges from 4.2 to
11 MIPS (Figure 7a), while the detailed model reaches from
0.89 to 1.65 MIPS. In turn, the OVPsim‐FIM ranges from 345
to 2921 MIPS depending on the quantum size and application.
Note that the reduction in quantum size decreases the number
of instructions executed per block, directly affecting the
simulator performance due to the increasing switching be-
tween the models (i.e. cores).

In addition, Figure 7 b presents NPB applications, which
are larger than Rodinia's, reaching up to 87 billion instructions.
Figure 7 b shows a better performance of OVPsim‐FIM in all
configurations while the gem5‐FIM atomic remains stable.
Looking at the scenario with four cores, the longest workload
reaches 12.5 MIPS using atomic gem5. On the other hand,
OVPsim‐FIM reaches 3910 MIPS, approximately 312 times
faster. The OVPsim‐FIM simulation speedup increases as the
application grows due to the just‐in‐time engine algorithm,
thus benefiting from larger applications. For example,
comparing the larger and smaller applications, the simulation
speedup ranges from 1190 to 3910 MIPS (i.e. an increase of
3.28 times) where the gem5 atomic difference is less than 20%,
ranging from 10 to 12 MIPS.

5.3 | Soft error mismatch analysis

This section presents the assessment of soft error resilience in
multicore processors, comparing OVPsim‐FIM and gem5‐
FIM. First, we assess the impact due to the number of cores
(Section 5.3.1). Then, we investigate which programing model
would be the most reliable (Section 5.3.2). Finally, in Sec-
tion 5.3.3, we discuss how OVPsim‐FIM configuration (i.e.
quantum size) affects the soft error resilience.

5.3.1 | Mismatch analysis considering the number
of cores

In the last decade, multicore architectures have been gaining
prominence in several semiconductor sectors, being found
today in automobile, medical and consumer electronic de-
vices. Due to its importance, engineers must understand how
architectural choice affects the system's reliability. With this
intention, we analysed the Arm Cortex‐A9 for the Rodinia
and NPB benchmark suites. For simplicity, this analysis
considers only OpenMP‐based applications; the difference
between the programing models is analysed in Section 5.3.2.
Figure 8 presents a detailed multicore mismatch between the
OVPsim‐FIM (OVP) and the gem5‐FIM atomic (GA),
considering Rodinia (Figure 8a–c) and NPB applications
(Figure 8d–f). Concerning the two benchmarks, Rodinia ap-
plications execute on average 80 million instructions, while
NPB applications execute on average 17 billion instructions
(i.e. 212x larger). The longer NPB execution reduces the
probability of ONA due to a higher likelihood of a bit
masking when compared to Rodinia applications. This
behaviour is seen in Rodinia applications that reach more
than 5% of ONA mismatch (F, I, L, and P). Furthermore,
Rodinia applications have a higher number of Hangs than
NPB applications, increasing notably with the number of
cores. The two possible causes are (i) the fault affected a
loop statement (e.g. while, for): where a longer execution
translates to more significant recovery time; and (ii) kernel
malfunctions: the fault injection leads to unrecoverable kernel
perturbations (e.g. a thread scheduler error). A longer
execution time reduces the Linux kernel exposure time (i.e.
the probability of kernel function be stroke by a fault). In
other words, the longer the applications, proportionally, the
fewer kernel functions are executed. In short, longer work-
loads reduce overall mismatch. NPB applications' average
mismatch varies from 1.32% to 1.68%, in contrast to Rodi-
nia, which ranges from 1.39% and 2.63%. Furthermore, the
worst‐case mismatch between the gem5‐FIM and OVPsim‐
FIM is reduced to up to 55% for NPB applications.

Analysing the presence of multicore architectures, appli-
cations show a worsening mismatch while increasing the
number of cores, most notably in the Rodinia applications B,
D, and K (Figure 8) and in the NPB applications MG and CG
(Figure 8). In the worst‐case, Rodinia's mismatch increases to
17.71% using quad‐core compared to 6.06% using single‐core
processors. In addition, the average error grows from 1.39% to

F I GURE 6 OVPsim scheduling policy varying the quantum size for a
dual‐core processor executing the same workload

136 - ABICH ET AL.

2.51% considering one and two cores and remains stable for
four cores with a mismatch of 2.63%. Increasing the core
count results in more thread context switching. For Rodinia
applications, this behaviour combined with sub‐linear scal-
ability (i.e. underutilised cores) leads to further errors in the
kernel. This happens because, during CPU downtime, the OS
executes the scheduler algorithm by running one application at
a time (i.e. no other threads are running), and then moves to a
sleep mode (i.e. waiting for the interruption). Furthermore,
the number of Vanish increases in multicore architectures (2
and four cores). This difference can be attributed to the inter‐
core communications. Due to its instruction‐accurate engine,
the OVPsim‐FIM simulation time (i.e. the number of in-
structions executed) is affected by the running application
characteristics (Section 5.3.3 details this behaviour by modi-
fying parameters of the OVPsim‐FIM simulator).

5.3.2 | Mismatch analysis considering parallel
programing Models

The emerging use of multicore processors requires specialised
libraries that include additional complexity in the soft error
assessment. Regarding this distinction, this section considers
NPB applications to assess the mismatch between our reference
Serial programing model on a single‐core processor with the
OpenMP and MPI programing models based on multicore ar-
chitectures. The OpenMP library uses a series of fork and join
approaches to parallel loop statements, in which the API auto-
matically creates children threads, being suitable for shared
memory. On the other hand, the MPI standard is adequate for
distributing systems due to the use of a message‐oriented par-
allelisation technique, which requires direct parallelisation of the
user in relation to the creation and communication of threads.

(a) (b)

F I GURE 7 Simulation speedup and scalability of the two virtual platforms, showing the performance gain achieved by using the OVPsim

F I GURE 8 Mismatch between gem5‐FIM and OVPsim‐FIM varying the number of cores in Arm Cortex‐A9

ABICH ET AL. - 137

The introduction of parallel programing models increases
the software stack, which makes some components more
critical to the correct behaviour of the system. For example,
injecting faults into a thread scheduling function has a
potentially more hazardous effect on system reliability than a
purely arithmetic code portion. By comparing the active pe-
riods of these critical functions with the application's execution
time, it is possible to define a time interval called the vulner-
ability window, which varies with the number of calls and
executions of the function. In this sense, the use of the NBP
benchmark suite provides a real high‐performance workload,
allowing a more accurate assessment of the impact of the
OpenMP and MPI libraries on the system's reliability. Due to
its reduced vulnerability window, the parallelisation mechanism
has a limited effect on the final reliability assessment, less than
23% in the worst‐case. To assess this reliability, Figure 9 shows
FI campaigns and mismatches comparing MPI and OpenMP
applications.

First, we compare the Serial implementation with the two
parallelisation libraries, considering a single‐core processor.
The purpose is to assess how each software stack affects the
susceptibility to soft errors. For each application, we assess
8000 FI campaigns, which means that our results have a
confidence level of 95% and a margin of error of 1.1%.
Comparing with both parallel programing models, no signifi-
cant variation was found for single‐core execution, that is the
fault distribution is within the margin of error in most appli-
cations. However, some applications follow the same pattern,
while BT, CG, and IS have fewer soft errors in the Serial
implementation; EP, FT, and SP have fewer soft errors when
increasing the software stack using either of the two parallel
programing models.

On the other hand, when we compare the two parallel
programing models in a multicore system, we see that out of 27
possible scenarios between the MPI (Figure 9b) and OpenMP
(Figure 9c), in 22 the MPI has a higher masking rate (i.e. ex-
ecutions without any errors). This is due to two main reasons:
First, MPI applications have a better workload balance among
the used cores, that is, the number of executed instructions per
core is very similar. For instance, the average difference con-
cerning executed instructions per core is around 4% consid-
ering MPI applications, while the OpenMP variation reaches
up 16%. As the OpenMP does not fully utilise the available

cores due to the fork/join parallelisation approach where a
loop statement executes in parallel and other code portions
hastily, corroborating the results presented in [14]. By contrast,
the MPI has individual and independent working threads for
each running core providing a better workload balance during
its execution. Whenever a core is sub‐utilised, it executes a
thread scheduling policy, and when no thread is suitable, the
core waits in a sleep mode. By consequence, the kernel relative
exposure time and its probability to suffer a transient fault
increases, as the scheduling is more often executed. Second,
OpenMP benchmarks have a shorter execution time, 16% on
average, compared against the MPI applications. By conse-
quence, diminishing the vulnerability window of the MPI in-
ner‐functions when comparing against the OpenMP. Further,
the longer execution increases the chance of the injected fault
being erased due to the software and microarchitectural
masking mechanisms. These results show that MPI should be
prioritised over OpenMP to improve the reliability of multicore
systems.

5.3.3 | Mismatch analysis considering the
OVPsim‐FIM quantum parameter

This section explores the impact of using distinct quantum‐
sized configurations (i.e. 448,000, 4,480, 448, and 44 in-
structions per block) in the OVPsim‐FIM to assess the soft
errors’ reliability of singe and multicore processors. This
analysis provides the trade‐off between the performance
discussed in Section 5.2 with the reliability accuracy brought
by each configuration, making it easier for engineers to un-
derstand and choose the best configuration for their
purposes.

Figure 10 shows the reference FI framework, the gem5‐
FIM atomic (ψ), compared to OVPsim‐FIM using four
quantum sizes 448,000 (λ), 4480 (γ), 448 (β), and 44 (δ) in-
structions per block for single‐, dual‐, and quad‐cores in an
Arm Cortex‐A9, respectively. Figure 10 shows that the varia-
tion in quantum size affects the accuracy of the soft error
resilience results of OVPsim‐FIM. As expected, the best per-
forming configuration (i.e. λ—first column of each application
shown in Figure 10) is the one with the greatest mismatch with
the results provided by the reference (i.e. ψ—last column of

F I GURE 9 Mismatch between gem5‐FIM and OVPsim‐FIM considering different programing models

138 - ABICH ET AL.

each application shown in Figure 10). On the other hand, the
one with the lowest performance of OVPsim (i.e. δ), which is
at least 31� faster than the reference in quad‐core simulations
according to Section 5.2, presents the closest values. For
example, the quad‐core processor model (Figure 10c) has an
average improvement of 40% in resilience accuracy when using
the smallest block (δ) instead of the largest block (λ). This is
due to some applications that have a large mismatch with the
reference results (e.g. B and K). Note that the reduction of the
quantum size decreases the communication cycles between
cores, approaching the OVPsim‐FIM and gem5‐FIM behav-
iours. Another behaviour is the migration from ONA to OMM
by decreasing the quantum size, in other words, the incorrect
content previously restricted to the register file migrates to the
end of the memory.

The resulting mismatch shown in Figure 10 can be traced
back to its block‐based simulation engine, as discussed in
Section 5.2, where each core executes a fixed amount of in-
structions before moving to the next one. Note that inter‐core
communications are completed during the core switch, leading
to temporally unsynchronised cores. Inter‐core communication
is necessary to synchronize events across multiple cores, for
instance, in a parallelisation library. Rodinia OpenMP‐based
applications use a fork‐join parallelisation paradigm, where
synchronization barriers coordinate multiple children threads
execution. One synchronization event that requires all cores to
reach the same statement (i.e. a barrier) requires multiple
quantum executions to complete. Delaying these communica-
tion events lead to some extra instructions executed by
OVPsim‐FIM due to other cores waiting. So, we investigate
how programing models behave with quantum size changes, as
shown in Table 4.

Table 4 shows the mismatch between gem5‐FIM and
OVPsim‐FIM using the default quantum size (DF) of 448,000
instructions and a smaller quantum size (Q) of 44 instructions,
considering four distinct workloads: NPB Serial, NPB MPI,
and NPB OpenMP, along with Rodinia OpenMP applications.
The comparison of the two quantum sizes (i.e. DF vs. Q) is
highlighted, where green means that the mismatch reduces
with the decrease of the quantum size; black when both are
equivalent, and red when the mismatch increases with the
decrease of the quantum size.

The results in Table 4 show that in the vast majority of
cases, the reduction in the quantum size decreases the
mismatch between gem5‐FIM and OVPsim‐FIM. For the
Rodinia suite, this behaviour is kept, and it is further accen-
tuated in the quad‐core system due to the instruction count
reduction, as previously mentioned. For example, the average
mismatch reduced from 2.63% to 1.08%, as shown in the last
row of Table 4. In the same scenario, the worst‐case mismatch
result decreased from 17.71% to only 3.64%. Interestingly, we
have one case where the reduction of the quantum size causes
a worsening in the accuracy of the soft error resilience, which is
for NPB MPI in a quad‐core system. In this scenario, the re-
sults derived from Table 4 show an average difference of
0.17% (i.e. 0.80–0.69%) and a worst‐case of 0.9% (i.e. 5.59–
4.69%).

In order to understand where the mismatches shown in
Table 4 come from, Figure 11 shows the accuracy difference
presented by Rodinia (Figure 11a) and NPB applications
(Figure 11b) when OVPsim‐FIM is configured with the
smallest quantum size (i.e. a 44‐instruction block). Regarding
the migration from ONA to OMM, this trend is very clear
when looking at Rodinia's applications A, F, I, L, and P,
compared to Figure 8 that is configured with the default
quantum size. In addition, the FI campaigns simulated with the
OVPsim‐FIM(Q) presents a mismatch reduction in 24 out of
26 scenarios (except Rodinia's applications C and O) with a
significant (5�) improvement in the worst‐case of OpenMP‐
based benchmarks, which is justified by the impact of syn-
chronization barriers between children threads. The most sig-
nificant reductions are for Rodinia's application K, using a
quad‐core system, reducing from 20% to 4%; and MG appli-
cation of the NPB benchmark also in a quad‐core system,
reducing from 12% to less than 2.5%.

Regarding the benchmarks' difference, Rodinia includes
applications with up to 220 million, while NPB applications
vary from 16 to 87 billion instructions. By consequence, NPB
benchmarks have more extended computations between syn-
chronization points than the Rodinia, which impacts on the
soft error assessment accuracy. NPB benchmark also has a
better workload distribution and scalability, which means in
conjunction with the more prolonged execution that children
threads have enough instructions to complete one or more

F I GURE 1 0 Mismatch between the gem5‐FIM (ψ) and OVPsim‐FIM quantum sizes: 448,000 (λ); 4480 (γ); 448 (β); and 44 (δ)

ABICH ET AL. - 139

quantum blocks between OpenMP barriers. On the other
hand, Rodinia applications have less computation between
synchronization points, sometimes shorten then one quantum
execution, leading OpenMP barriers to executing extra in-
structions while waiting for other threads. The Rodinia
behaviour magnifies the mismatch originated due to the
OVPsim‐FIM simulation policy using fixed‐length instructions
blocks and, as a consequence, these applications benefit more
by reducing the quantum size, achieving an accuracy gain up to
5�, as seen in Figure 11.

5.4 | Closing Remarks

This section presents a complete multicore soft error resil-
ience assessment. Simulation performance is fundamental for

early design space explorations, for this purpose, this section
started by showing that the peak OVPsim‐FIM simulation
speed is around 4000 MIPS, considering a quad‐core system.
This proves that JIT‐based FI frameworks are efficient means
to assess the soft error resilience early in the design phase.
Next, results demonstrate that applications showed a wors-
ened mismatch while increasing the number of cores. How-
ever, this mismatch can be mitigated by using MPI, which has
been shown to bring the best results in terms of reliability
accuracy. Finally, we show that OVPsim‐FIM Quantum
parameter affect the soft errors reliability assessment and that
a good trade‐off between simulation performance and reli-
ability accuracy would be using a small quantum size, such as
a 44‐instruction block.

6 | CONCLUSIONS

This work has investigated the soft error assessment consis-
tency of a JIT virtual platform simulator (OVPsim‐FIM) with
more than 12 million fault injections considering single and
multicore Arm processor architectures. The fault injection
campaigns considered different cross‐compilers, software
stacks, programing models, and 52 applications. Results
demonstrated that the architectural difference, such as the ISA,
between the two Arm processors, affects the reliability of
single‐core systems. However, the addition of tiny operating
systems (e.g. FreeRTOS) in software stack did not affect
resilience accuracy. Regarding cross‐compilers, those based on
LLVM appeared to be more reliable ones, with the best
compiler set being the Clang 6.0.1 using the 02 optimization
flag.

Furthermore, we showed a worsened mismatch while
increasing the number of cores, that can be mitigated a little by
using the MPI programing model. Finally, we demonstrated
that by tuning the OVPsim‐FIM for a more detailed simulation
by the quantum size parameter (i.e. 44‐instruction block), we
obtained the best cost‐benefit in terms of soft error assessment
accuracy, with a worst‐case mismatch of 8.76% and high
simulation performance, reaching up to 345 MIPS. Authors

TABLE 4 Mismatch comparison of programing models of OVPsim‐
FIM with default (DF) and small quantum size (Q) in relation to gem5‐FIM

Workload and

Single‐
core (%)

Dual‐
core (%)

Quad‐
core (%)

Programing Models DF Q DF Q DF Q

Worst case NPB Serial 5.24 3.51 ∗ ∗ ∗ ∗

NPB MPI 5.17 1.19 4.08 1.64 4.69 5.59

NPB OpenMP 5.39 2.06 5.27 1.67 9.61 2.25

Rodinia OpenMP 6.06 4.16 13.35 8.76 17.71 3.64

Best case NPB Serial 0.01 0.01 ∗ ∗ ∗ ∗

NPB MPI 0.01 0.00 0.01 0.00 0.01 0.01

NPB OpenMP 0.01 0.01 0.01 0.00 0.01 0.01

Rodinia OpenMP 0.03 0.00 0.04 0.01 0.01 0.01

Average NPB Serial 1.15 0.55 ∗ ∗ ∗ ∗

NPB MPI 1.06 0.26 0.83 0.35 0.63 0.80

NPB OpenMP 1.32 0.52 1.42 0.41 1.68 0.42

Rodinia OpenMP 1.39 0.82 2.51 1.53 2.63 1.08

F I GURE 1 1 Multicore mismatch between gem5‐FIM and OVPsim‐FIM with smallest quantum size (a 44‐instruction block)

140 - ABICH ET AL.

conclude that achieved mismatch are acceptable and are not a
hindrance to evaluate soft errors at early design phases.
Furthermore, given the remarkably achieved speedup, the uti-
lization of JIT‐based FIM appears promising since it can also
be used for comparison among different processor models,
ISAs, kernel and complex benchmarks with billion in-
structions. Finally, authors also believe that the high statistical
significance presented gives to this work the potential to be a
reference for other studies with concerns about soft error
resilience of Arm processors.

Future works include further investigations of the soft
error consistency of JIT‐based FI frameworks considering
more realistic scenarios such as FPGA‐based fault injection
approaches, which emulates the occurrence of faults by
modifying the bitstream configuration. Authors also intend to
compare some of the failure‐related data sets reported in this
article with results obtained from neutron radiation tests.

ORCID
Geancarlo Abich https://orcid.org/0000-0001-9387-1523
Rafael Garibotti https://orcid.org/0000-0002-7307-0128
Vitor Bandeira https://orcid.org/0000-0001-7459-0072
Felipe da Rosa https://orcid.org/0000-0003-4964-5136
Jonas Gava https://orcid.org/0000-0001-7113-6448
Felipe Bortolon https://orcid.org/0000-0001-6288-978X
Guilherme Medeiros https://orcid.org/0000-0001-9842-
1644
Fernando G. Moraes https://orcid.org/0000-0001-6126-
6847
Ricardo Reis https://orcid.org/0000-0001-5781-5858
Luciano Ost https://orcid.org/0000-0002-5160-5232

REFERENCES
1. Baumann, R.: Soft errors in advanced computer systems. IEEE Des. Test

Comput. 22(3), 258–266 (2005)
2. Li, T. et al.: Processor design for soft errors: challenges and state of the

art. ACM Comput. Surv. 49(3) (2016)
3. Times, E.: Toyota case: single bit flip that killeds. http://www.eetimes.

com/document.asp?doc_id=1319903 (2015). Accessed November 2020
4. Cho, H. et al.: Quantitative evaluation of soft error injection techniques

for robust system design. In: Design Automation Conference (DAC).
Austin, TX, USA, June, pp. 1–10 (2013)

5. Rosa, F. et al.: Evaluation of multicore systems soft error reliability using
virtual platforms. In: International New Circuits and Systems Conference
(NEWCAS). Strasbourg, France, June, pp. 85–88 (2017)

6. Parasyris, K. et al.: A fault injection tool for studying the behavior of
applications on unreliable substrates. In: International Conference on
Dependable Systems and Networks (DSN). Atlanta, GA, USA, June, pp.
622–629 (2014)

7. Rosa, F. et al.: A fast and scalable fault injection framework to
evaluate multi/many‐core soft error reliability. In: International
Symposium on Defect and Fault Tolerance in VLSI and Nanotech-
nology Systems (DFTS). Amherst, MA, USA, October, pp. 211–214
(2015)

8. Kaliorakis, M. et al.: Differential fault injection on microarchitectural
simulators. In: International Symposium on Workload Characterisation
(IISWC). Atlanta, GA, USA, October, pp. 172–182 (2015)

9. Chatzidimitriou, A. et al.: Demystifying soft error assessment strategies
on ARM CPUs: microarchitectural fault injection vs. neutron beam ex-
periments. In: International Conference on Dependable Systems and
Networks (DSN). Portland, OR, USA, June, pp. 26–38 (2019)

10. Mansour, W., Velazco, R.: SEU fault‐injection in VHDL‐based pro-
cessors: a case study. J. Electron. Test. 29(1), 87–94 (2013)

11. Abbasitabar, H., Zarandi, H.R., Salamat, R.: Susceptibility analysis
of LEON3 embedded processor against multiple event transients
and upsets. In: International Conference on Computational Science
and Engineering (CSE), Paphos, Cyprus, December, pp. 548–553
(2012)

12. Binkert, N., et al.: The gem5 simulator. SIGARCH Comput. Archit.
News. 39(2), 1–7 (2011)

13. Imperas: Open virtual platforms (OVP). http://www.ovpworld.org/
(2020). Accessed October 2020

14. da Rosa, F. et al.: Extensive evaluation of programming models and ISAs
impact on multicore soft error reliability. In: Design Automation Con-
ference (DAC). San Francisco, CA, USA, June, pp. 1–6 (2018)

15. Lins, F.M. et al.: Register file criticality and compiler optimization effects
on embedded microprocessor reliability. IEEE Trans. Nucl. Sci. 64(8),
2179–2187 (2017)

16. Sangchoolie, B. et al.: A study of the impact of bit‐flip errors on pro-
grams compiled with different optimization levels. In: European
Dependable Computing Conference (EDCC). Newcastle upon Tyne,
UK, May, pp. 146–157 (2014)

17. Medeiros, G. et al.: Evaluation of compiler optimization flags effects
on soft error resiliency. In: Symposium on Integrated Circuits and
Systems Design (SBCCI). Bento Gonçalves, RS, Brazil, August, pp. 1–
6 (2018)

18. Hoste, K., Eeckhout, L: COLE: compiler optimization level exploration.
In: International Symposium on Code Generation and Optimization
(CGO). Boston, MA, USA, April, pp. 165–174 (2008)

19. Serrano Cases., A et al.: Nonintrusive automatic compiler‐guided reli-
ability improvement of embedded applications under proton irradiation.
IEEE Trans. Nucl. Sci. 66(7), 1500–1509 (2019)

20. Wei, J. et al.: Quantifying the accuracy of high‐level fault injection
techniques for hardware faults. In: 2014 44th Annual IEEE/IFIP In-
ternational Conference on Dependable Systems and Networks, IEEE,
Atlanta, GA, USA pp. 375–382 (2014)

21. Lu, Q. et al.: Llfi: an intermediate code‐level fault injection tool for
hardware faults. In: 2015 IEEE International Conference on Software
Quality, Reliability and Security, IEEE, Vancouver, BC, Canada pp. 11–16
(2015)

22. Schirmeier, H., Breddemann, M.: Quantitative cross‐layer evaluation of
transient‐fault injection techniques for algorithm comparison. In: Euro-
pean Dependable Computing Conference (EDCC), Naples, Italy,
September, pp. 15–22 (2019)

23. Schirmeier, H., Borchert, C., Spinczyk, O.: Avoiding pitfalls in fault‐in-
jection based comparison of program susceptibility to soft errors. In:
2015 45th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks, Rio de Janeiro, RJ, Brazil, September, pp. 319–
330 (2015)

24. Patel, A. et al.: ‘MARSS: a full system simulator for multicore x86 CPUs’.
In: Design Automation Conference (DAC), San Diego, CA, USA, June,
pp. 1050–1055 (2011)

25. Bailey, D.H., et al.: The NAS parallel benchmarks summary and pre-
liminary results. In: ACM/IEEE Conference on Supercomputing,
Albuquerque, NM, USA, November, pp. 158–165 (1991)

26. Che, S., et al.: Rodinia: a benchmark suite for heterogeneous computing.
In: International Symposium on Workload Characterization (IISWC).
Austin, TX, USA, October. pp. 44–54 (2009)

27. Gustafsson, J. et al.: The mälardalen WCET benchmarks: past, pre-
sent and future. In: International Workshop on Worst‐Case
Execution Time Analysis (WCET). Brussels, Belgium, July, pp. 136–
146 (2010)

28. Bortolon, F.T. et al.: Exploring the impact of soft errors on noc‐based
multiprocessor systems. In: International Symposium on Circuits and
Systems (ISCAS), Florence, Italy, May, pp. 1–5 (2018)

29. Mukherjee, S.S. et al.: A systematic methodology to compute the archi-
tectural vulnerability factors for a high‐performance microprocessor. In:
International Symposium on Microarchitecture (MICRO), San Diego,
CA, USA, December, pp. 29–40 (2003)

ABICH ET AL. - 141

https://orcid.org/0000-0001-9387-1523
https://orcid.org/0000-0001-9387-1523
https://orcid.org/0000-0002-7307-0128
https://orcid.org/0000-0002-7307-0128
https://orcid.org/0000-0001-7459-0072
https://orcid.org/0000-0001-7459-0072
https://orcid.org/0000-0003-4964-5136
https://orcid.org/0000-0003-4964-5136
https://orcid.org/0000-0001-7113-6448
https://orcid.org/0000-0001-7113-6448
https://orcid.org/0000-0001-6288-978X
https://orcid.org/0000-0001-6288-978X
https://orcid.org/0000-0001-9842-1644
https://orcid.org/0000-0001-9842-1644
https://orcid.org/0000-0001-9842-1644
https://orcid.org/0000-0001-6126-6847
https://orcid.org/0000-0001-6126-6847
https://orcid.org/0000-0001-6126-6847
https://orcid.org/0000-0001-5781-5858
https://orcid.org/0000-0001-5781-5858
https://orcid.org/0000-0002-5160-5232
https://orcid.org/0000-0002-5160-5232
http://www.eetimes.com/document.asp?doc_id=1319903
http://www.eetimes.com/document.asp?doc_id=1319903
http://www.ovpworld.org/
https://orcid.org/0000-0001-9387-1523
https://orcid.org/0000-0002-7307-0128
https://orcid.org/0000-0001-7459-0072
https://orcid.org/0000-0003-4964-5136
https://orcid.org/0000-0001-7113-6448
https://orcid.org/0000-0001-6288-978X
https://orcid.org/0000-0001-9842-1644
https://orcid.org/0000-0001-6126-6847
https://orcid.org/0000-0001-5781-5858
https://orcid.org/0000-0002-5160-5232

30. Seifert, N., et al.: Soft error susceptibilities of 22 nm tri‐gate devices.
IEEE Trans. Nucl. Sci.. 59(6), 2666–2673 (2012)

31. Leveugle, R. et al.: Statistical fault injection: quantified error and confi-
dence. In: Design, Automation and Test in Europe Conference (DATE),
Nice, France, April, pp. 502–506 (2009)

32. ARM: Arm University Programme (2020). http://www.arm.com/
support/university. Accessed July 2020

33. Machado, R.S. et al.: Comparing performance of C compilers
optimizations on different multicore architectures. In: International
Symposium on Computer Architecture and High Performance
Computing Workshops (SBAC‐PADW), Campinas, SP, Brazil, October,
pp. 25–30 (2017)

34. Song, L. et al.: COMP: compiler optimizations for manycore processors.
In: International Symposium on Microarchitecture, Cambridge, UK,
December, pp. 659–671 (2014)

35. Limited A. ARM Compiler gnu_version Flag. https://developer.arm.
com/documentation/dui0472/m/compiler‐command‐line‐options/‐‐
gnu‐version‐version?lang=en (2016). Accessed July 2020

36. Limited AArm compiler getting started guide. https://developer.arm.
com/documentation/dui0529/latest/ (2016). Accessed July 2020

How to cite this article: Abich G, Garibotti R,
Bandeira V, et al. Evaluation of the soft error
assessment consistency of a JIT‐based virtual platform
simulator. IET Comput. Digit. Tech. 2021;15:125–142.
https://doi.org/10.1049/cdt2.12017

142 - ABICH ET AL.

http://www.arm.com/support/university
http://www.arm.com/support/university
https://developer.arm.com/documentation/dui0472/m/compiler-command-line-options/--gnu-version-version?lang=en
https://developer.arm.com/documentation/dui0472/m/compiler-command-line-options/--gnu-version-version?lang=en
https://developer.arm.com/documentation/dui0472/m/compiler-command-line-options/--gnu-version-version?lang=en
https://developer.arm.com/documentation/dui0529/latest/
https://developer.arm.com/documentation/dui0529/latest/
https://doi.org/10.1049/cdt2.12017

	Evaluation of the soft error assessment consistency of a JIT‐based virtual platform simulator
	1 | INTRODUCTION
	2 | RELATED WORKS
	3 | FAULT INJECTION METHODOLOGY
	3.1 | Fault injection frameworks
	3.1.1 | RTL —Fault injection module
	3.1.2 | gem5—Fault injection module
	3.1.3 | OVPsim—Fault injection module

	3.2 | Fault classification
	3.3 | Assessment metrics

	4 | SOFT ERROR CONSISTENCY ASSESSMENT FOR SINGLE‐CORE PROCESSORS
	4.1 | Experimental setup
	4.2 | FI simulation performance of OVPsim‐FIM w.r.t. RTL
	4.3 | Soft error mismatch assessment
	4.3.1 | Mismatch analysis considering processor architectures
	4.3.2 | Mismatch analysis considering cross‐compilers

	4.4 | Closing Remarks

	5 | SOFT ERROR CONSISTENCY ASSESSMENT FOR MULTICORE PROCESSORS
	5.1 | Experimental setup
	5.2 | FI simulation performance of OVPsim‐FIM w.r.t. gem5‐FIM
	5.3 | Soft error mismatch analysis
	5.3.1 | Mismatch analysis considering the number of cores
	5.3.2 | Mismatch analysis considering parallel programing Models
	5.3.3 | Mismatch analysis considering the OVPsim‐FIM quantum parameter

	5.4 | Closing Remarks

	6 | CONCLUSIONS

