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Abstract
This paper proposes a formulation of quaternion-based Extended Kalman Filter pose estimation for six degrees of freedom
systems embedded in an FPGA with commercial processors. Our approach uses the fusion of a camera and an inertial
measurement unit to estimate simultaneously the position and the orientation of the system of interest. In addition, a Stewart
platform is used to validate and evaluate the estimated pose. Although this work considers the use of common low-cost
sensors and the use of markers with simple geometry, the results show excellent performance of the developed filter, being
able to estimate the pose and orientation with an error below 8.14 mm and 0.63o

¯ , respectively. Furthermore, the effectiveness
of the approach has also been evaluated, showing that the filter is able to converge quickly when the markers are retrieved
after a loss of camera data for a short period of time.

Keywords Extended Kalman filter · Stewart platform · Quaternion · Pose estimation · Embedded systems · FPGA

1 Introduction

In the last decades, we have seen the great development and
adoption of automation by the industry. Today, systems with
six degrees of freedom (6–DOF) have been widely used in
several fields of industry, such as automotive [1–3], enter-
tainment [4, 5] and military [6], due to the complexity of
the tasks they can perform [7–9]. Because of its relevance,
6–DOF systems received special attention from academy
researchers, mainly on the estimation of the system position
and orientation, also known as pose estimation.

To estimate the pose of a 6–DOF system, a set of
sensors capable of measuring the angular velocity and the
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acceleration of a rigid-body are commonly used, and in
some cases also the direction of the magnetic field. The
association of these sensors for system orientation purposes
into a single unit is called the Inertial Measurement Unit
(IMU). These devices are suitable to provide measurements
at a frequency of up to 1 kHz. However, this may cause
that these sensors could be corrupted by additive and offset
noise, also known as measurement bias [10]. Furthermore,
the signal usually suffer from a phenomenon known as
Drift, caused by the accumulation of errors introduced in the
measurements. To overcome this problem, other sensors are
normally used in conjunction with the IMU. This fusion of
sensors is intended to signal correction [11].

The most used methodology of estimation and fusion
of sensors is the Extended Kalman Filter (EKF), due to
its statistical properties, in addition to the versatility for
different dynamic models and sensor set [12, 13]. This
filter has two different steps, prediction and update. In the
prediction step, a linearized model of the system is used
to infer the desired output and, later, in the update step,
a correction is performed through the sensors. In addition,
most EKF works are based on Euler angles to represent the
orientation dynamics [14]. However, as it uses trigonometric
relations, its computational cost becomes quite high.

To improve the quality of the algorithm, we propose
an EKF algorithm based on quaternions to estimate the
pose of a 6–DOF system, considering the fusion of the
signal coming from an IMU and a camera (i.e., from visual
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marker data). Quaternions are present in different areas of
mathematics, and has particular use for three-dimensional
rotations, as they provide an alternative to traditional Euler
angles. Under this perspective, the quaternions’ advantage
in relation to Euler angles is by changing trigonometric
nonlinearities for polynomial nonlinearities, which reduces
the computational effort involved and also avoids the
Gimbal Lock problem [15, 16].

To demonstrate the applicability of our solution, we
implement the EKF algorithm on a Stewart platform,
which is the most known parallel mechanism used in
many robotic fields with 6–DOF [17]. The Stewart
platform consists of a fixed and a movable platform
connected by six linear actuators [18]. Figure 1 shows
some real-world applications where the Stewart platform
has been used, such as flight simulators [18]; precision
surgery [19]; interferometer [20]; offshore cargo transfer
mechanism [21]; and manufacturing [22]. This diverse and
growing environment in which 6–DOF systems are used
highlights the need for increasingly efficient systems.

Another advantage of our proposed solution is that it
has been embedded in an FPGA device with commercial
processors, which improves performance, reduces power
consumption and facilitates reuse in modern embedded
architectures [23]. Furthermore, our implementation also
stands out for improving the robustness and efficiency of
6–DOF systems, as our approach estimates simultaneously
all system states – position and orientation on each of the
three-dimensional axis.

The rest of this paper is organized as follows. Section 2
presents related works that propose algorithms to solve
the pose estimation problem of 6–DOF systems. Next,
Section 3 details the mathematical model used in this work.
Following, Section 4 explains our approach to estimating
the pose of the Stewart platform. Section 5 explores the
promoted hardware 6–DOF pose estimation using Extended
Kalman Filter. Finally, Section 6 points out the conclusions
and future work.

2 Literature Review

The pose estimation in parallel mechanisms can be obtained
by the difference between the position predicted by a
kinematic model and the position measured by sensors [24].
The most common approach is to convert the legs length
into the position and orientation of the end-effector,
called the forward kinematics approach [25]. However, the
main disadvantage when dealing with forward kinematics,
in parallel mechanisms, is the difficulty of obtaining
its analytical solution [26]. Some studies considering
the geometric aspect of a Stewart platform (i.e., a
6–DOF parallel mechanism) have obtained high-degree
polynomials with multiple solutions from one set of encoder
measurements. For example, Cardona [17] shows that
without considering any constraints, it is possible to find
4096 solutions for the same set of encoder measurements.
However, taking some considerations, one can find in the
literature techniques that obtain 43 [27] or even 40 possible
solutions [28]. This concern is because the Stewart platform
is an over-constrained system in which joint movements are
not independent of each other, thus requiring a coordinated
motion for all joints [29]. Thus, it is difficult to obtain
a single solution due to the complex manipulation of the
mathematical model equations [17].

To overcome this problem, some authors have presented
numerical techniques to solve, through optimization, the
forward kinematics to obtain the pose estimation of 6–DOF
platforms. Song and Kwon [30] presented a tetrahedron-
based formulation approach for real-time computation
of the forward kinematics. Another one of these pose
estimation numerical approaches is the super-twisting
observer algorithm proposed by Kumar et al. [31]. This
application uses the Lagrangian method to estimate a
6–DOF platform dynamics based on the measurements
of its leg lengths. Another proposal is presented by
Yang et al. [32], which proposed a Newton-Raphson-based

Fig. 1 Real-world Stewart platforms such as precision surgery (left), interferometer (center) and flight simulators (right)
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numerical method for real-time pose estimation, called
the Global Newton-Raphson with Monotonic Descent
algorithm (GNRMD). This algorithm uses an orientation
parameterization based on Euler angles with an analytical
approach based on the geometric configuration of a Stewart
platform to estimate the system pose. Nonetheless, this
approach requires an initial estimate value, which in some
cases ends in an infinite loop. Although the presented
numerical approaches contribute to estimate the pose of a 6–
DOF platform, the dependence on a single source of sensors
is a weakness of these algorithms, which can produce large
estimation errors.

In order to mitigate precision errors in solving the
forward kinematic problem, more information on the end-
effector pose is needed. On the one hand, a widely
used procedure is the vision-based method. Rendón-
Mancha et al. [33] and Coronado et al. [29] presented a
camera-space manipulation method, which relies on the
estimation of the relationship between the position of
the visual markers in the robot’s manipulator and their
corresponding position in the images taken by at least two
cameras and a linear model. In addition, Zuo et al. [34]
used the stereo vision approach to measure the pose of the
Stewart platform in real-time. Yoon et al. [35] proposed a
Kalman-Filter-based visual tracking algorithm that provides
3D pose estimates of a rigid object using a single camera.
The main inconvenience of these vision-based approaches
is the need for very specific cameras and high processing
power.

On the other hand, the vision-sensor based method is
gaining momentum to solve these difficulties. Our approach
follows this trend: we have an IMU with a gyroscope and
an accelerometer; and a single camera that uses markers
with different colors and simple geometry to minimize
computational cost. To the best of our knowledge, very
few works present similar sensing technology to obtain
the pose estimation of 6–DOF systems. For example,
Araguás et al. [36] present only the orientation estimation
using a camera and inertial sensors for a hovering UAV;
Erdem and Ercan [37] present topologies for the EKF
implementation; while Nützi et al. [38] use the vision-sensor
based method to estimate some variables instead of the pose
estimation.

With the focus on the pose estimation, Mirzaei and
Roumeliotis [39] presented an EKF-based algorithm to esti-
mate the pose of vision-aided inertial navigation systems,
using measurements from a single camera and an IMU.
Similarly, Du and Zhang [40] proposed a method that incor-
porates a Kalman filter and a particle filter to automatically
estimate the robot’s poses during manipulation. However,
both studies focus on camera calibration and neither is
implemented on the Stewart platform, showing no experi-
mental results to compare the ground truth with this work.

More recently, Miletović et al. [41] presented a method to
reconstruct the kinematic state of a Stewart platform based
on the Unscented Kalman Filter (UKF). This work stands
out in the literature, due to the formulation and validation
of the method using a real Stewart platform. However, like
other sensor-based works, reliance on a single data source
can lead to a slightly larger error or a weakness in estimating
the pose with data loss.

Unlike presented works, this paper proposes the formu-
lation of a quaternion-based Extended Kalman Filter pose
estimation with IMU and visual marker data for six degrees
of freedom systems, with the aim to (1) accurately estimate
the pose; (2) improve performance; (3) reduce the required
processing power; and (4) facilitate reuse in other real appli-
cations. This formulation not only avoids the Gimbal Lock,
but also allows a better performance in numerical imple-
mentation thanks to the linearity of quaternion algebra [42],
which facilitates its implementation and improves its accu-
racy. For example, while Miletović et al. [41] indicate a
high accuracy of the estimated states with an amplitude mis-
match in the range of several tenths of a millimeter, our
quaternion-based method has errors in the millimeter unit.

Regarding the processing power, some works have
optimized the Kalman filter by using FPGAs. Lee et al. [43]
were the first to propose a reconfigurable FPGA-based
Kalman filtering co-processor for multi-target tracking
radar systems. Replacing the traditional software with a
hardware-based algorithm, the performance improved by
two to three orders of magnitude, achieving a cycle time of
1.824 microseconds. Bonato et al. [44] and Guo et al. [45]
ran a C-based EKF algorithm on a Nios II processor
embedded in an FPGA device. Both approaches adopted
customized instructions and algorithm optimization to make
them more efficient. Our work uses the FPGA approach
to improve performance and accurately estimate the pose
in real-time (i.e., support online applications). Furthermore,
in addition to using a conventional webcam, our approach
is concerned with using a commercial processor easily
found in inexpensive embedded systems available on the
market (i.e., ARM Cortex-M3) [46, 47], facilitating its reuse
through design methodologies in other real systems [48].
All of these advantages are summarized in Table 1, which
clearly indicates the positioning of our work in relation to
the state-of-the-art.

3 Background

This section presents the main concepts and definitions
used throughout this work as a basis for proposing the
EKF algorithm to estimate the pose of 6–DOF systems.
First, essential mathematical properties associated with
quaternion parameterization are presented. Next, we define
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Table 1 State-of-the-Art summary, highlighting the advantages of the proposed work

Work Sensing Stewart Application KF-based FPGA-based

technology Platform processing approach approach

This work Vision-sensor based yes online yes yes

[36, 38–40] Vision-sensor based no online yes no

[37] Vision-sensor based no offline yes no

[34] Vision-based yes online no no

[29] Vision-based no online no no

[35] Vision-based no offline yes no

[33] Vision-based no offline no no

[41] Sensor-based yes online yes no

[25, 32] Sensor-based yes online no no

[30, 31] Sensor-based yes offline no no

[44, 45] – no online yes yes

[43] – no – yes yes

the mathematical representation of the sensors and describe
the Extended Kalman Filter. Finally, the geometry and
mathematical relations of the Stewart platform dynamics are
formulated.

3.1 Quaternions

Quaternions can be interpreted as a mathematical tool used
to model rotations in 3D space as an alternative to Euler’s
angles [15]. The great advantage is the ease of interpolation
between two quaternions, which is extremely useful for
detecting smooth camera movements. Its vector form q ∈
R

4 can be represented as:

q =

⎡
⎢⎢⎣

η

ε1

ε2

ε3

⎤
⎥⎥⎦ =

[
η

ε

]
=

[
cos( θ

2 )

rsin( θ
2 )

]
. (1)

Belonging to the hypercomplex number set, we have η ∈ R

as the real component of quaternions and ε ∈ R
3 as the

imaginary component [15]. Physically, Eq. 1 represents a
rotation θ in the r ∈ R

3 direction. Therefore, based on the
quaternions representation, the rotation matrix, i.e., R(q) ∈
R

3×3 can be write as:

R(q) = I3 + 2ηS(ε) + 2S2(ε), (2)

where I3 ∈ R
3 is an identity matrix and operator S(·) :

R
3 −→ R

3×3 is hereby expressed by:

S(ε) =
⎡
⎣

0 −ε3 ε2

ε3 0 −ε1

−ε2 ε1 0

⎤
⎦ , (3)

where εi is the i-th component of ε.

3.2 Inertial Measurement Sensor Models

The gyroscope and accelerometer are inertial measurement
sensors capable of determining the angular velocity and
acceleration of a rigid body relative to the sensor’s local
coordinate system. Since the local sensor coordinate is
normally different from the global coordinate, it is required
to have a model suitable of relating the angular velocity
(ωG), measured by the gyroscope sensor, to the angular
velocity (ω) of the center rigid body, which is based
on global coordinates. Considering this representation and
to obtain information about the system orientation, the
gyroscope model is represented as follows:

ωG = Rimuω + bG + δG, (4)

where Rimu is a rotation matrix which describes the IMU
orientation with respect to the rigid body orientation,
bG ∈ R

3 represents the sensor offset, and finally, δG is a
stochastic process representing the Gaussian white noise of
the sensor, with zero mean and QG covariance.

One way to obtain information about the translation behav-
ior of a system is to use measurements from an accelerom-
eter. Normally, the origin of the sensor is not located in the
system’s origin, thus centrifugal force and Coriolis force must
be considered [49]. Therefore, the mathematical represen-
tation of the local acceleration coordinate aA is given by:

aA = RimuR
T (q)((a+g)+H(ω, a)O imu)+bA +δA, (5)

where RimuR
T (q) is the rotation matrix responsible

for transforming the measurement orientation, a is the
acceleration in the center rigid body, and g is the gravity
vector. In addition, H(ω, α) function represents the effects
of inertial forces, given by:

H(ω, α) = S(ω)2 + S(α), (6)
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where O imu ∈ R
3 represents the sensor offset from the

origin. Lastly, bA ∈ R
3 represents the sensor offset and δA

is a stochastic process representing the Gaussian white noise
of the sensor, with zero mean and QA covariance.

3.3 CameraModel

The ideal perspective model of a pinhole camera describes
the relationship between a point ξ i ∈ R

3 referenced in
the global frame, and its projection in pixels in the image

plane mi = [
ximg,i yimg,i

]T
, where i is the marker number.

Therefore, to obtain a mathematical modeling of the camera,
its intrinsic and extrinsic parameters must be considered.
Vasquez et al. [50] showed that the camera’s model with
orientation q and position p ∈ R

3 can be represented as
follows:

0 = S(m̄i )KintRcamRT (q)(ξ i − p) + δcam, (7)

where m̄i = [
mi 1

]T
is the marker position in the image

frame of the point ξ i in pixels, Rcam is a rotation matrix
which describes the camera orientation with respect to the
rigid body orientation, δcam represents the Gaussian white
noise of the camera with zero mean and Qcam covariance
and Kint is the matrix with the intrinsic parameters, given
by:

Kint =
⎡
⎣

f sx f sθ ox

0 f sy oy

0 0 1

⎤
⎦ , (8)

where (ox, oy) are the coordinate from center position
in pixel of image plane, sx and sy represents the unit
measurements in pixels of horizontal and vertical direction,
f is the focal length and f sθ is the skew of the pixel.

3.4 Extended Kalman Filter

The Extended Kalman Filter is commonly used for sensor
fusion and state observation. The great advantage of the
EKF is that this approach can be applied to a broader class of
systems, as nonlinear systems, if compared to the classical
version of the filter. In this regard, we can describe the
state dynamics of a general discrete time-variant nonlinear
system as:

xk = f (uk, xk−1) + εk,

zk = h(xk) + δk, (9)

where f (·) defines the system dynamics, xk ∈ R
n defines

the system state vector, uk ∈ R
m is the control vector,

zk ∈ R
r is the observation vector, and εk, δk are zero-

mean Gaussian random vectors that model the uncertainty
introduced by the state transition equation and measurement
processes, respectively [51].

Table 2 EKF Algorithm: Prediction (lines 1 and 2) and Update (lines
3-5)

Prediction Update

1: x̄k = f (uk, xk−1) 3: Kk = P̄kH
T
k (HkP̄kH

T
k + Qz)

−1

2: P̄k = FkPk−1F
T
k + Qx 4: x̂k+1 = x̄k + Kk(zk − h(x̄k))

5: P̂k+1 = (I − KkHk)P̄k

The EKF has two distinct steps, as previously mentioned,
where the prediction step computes the system states x̄k

and covariance P̄k ∈ R
n×n based on the a priori system

states x̄k−1 and covariance P̄k−1, lines 1 and 2 from Table 2.
Afterward, the update step computes the Kk Kalman gain
and the a posteriori system state x̂k+1 and covariance P̂k+1

with Qx model covariance, Qz sensor covariance and Hk

Jacobian matrix, lines 3, 4 and 5 from Table 2.
Taking the above-mentioned models and the EKF

algorithm one can conclude that the developed approach
can be implemented to any systems with a maximum of 6–
DOF. To validate our approach in a real-time application, a
Stewart platform has been considered.

3.5 Stewart Platform

The Stewart platform consists of a fixed and a mobile
platform, connected by six linear actuators, which makes
this system capable of moving in all 6–DOF. According to
Dasgupta et al. [52], the Stewart platform, as a parallel-type
robot, presents several advantages over robots with series
structures, such as mechanical rigidity; high precision and
low torque demand in relation to the load [53]. Furthermore,
the type of joint used does not introduce bending efforts
on them, as it only imposes displacement restrictions. This,
added to the fact that the weight of the load is distributed,
allows minimizing the structural rigidity of the actuators,
reducing the power and the size required for them.

3.5.1 Stewart Platform Geometry

Figure 2a shows three coordinate systems: OI is the global
or interest coordinate system; OB is the reference system
located in the center at the bottom of the platform and OT

is the coordinate system located at the top of the platform.
The manipulator has the actuator i = (1...6) and the

bottom joints bi and top joints ti , arranged in pairs and
separated from each other at 120o

¯ , belong to a vertex of a
hexagonal enclose in a circle of bottom radius rB and top
radius rT , as seen in Fig. 2b [54]. Finally, ϕB and ϕT also
define the distance between the joints, as well as the size of
the platform edge.

Next, the position of the bi and ti joints are defined using
the vectors Bi ∈ R

3 for the bottom of the platform and
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Fig. 2 a Stewart Platform
Coordinate System, and b
Geometric Representation.
Adapted from [54]

(a) (b)

T i ∈ R
3 for the top of the platform in relation to their

respective local coordinate systems, which are expressed as
follows:

Bi =
⎡
⎣

rB cos (λi)

rB sin (λi)

0

⎤
⎦ , T i =

⎡
⎣

rT cos (ψi)

rT sin (ψi)

0

⎤
⎦, (10)

where

λi =
{

iπ
3 − ϕB

2 i = (1, 3, 5)

λi−1 − ϕB i = (2, 4, 6)
, ψi =

{
iπ
3 − ϕT

2 i = (1, 3, 5)

ψi−1 − ϕT i = (2, 4, 6)
.

(11)

3.5.2 Stewart Platform Dynamics

Lagrangian formalism, based on system energy, and
Newton-Euler formalism, which uses the forces surrounding
plant movement, are commonly used to describe the
dynamics of the Stewart platform. However, this work
proposes the use of quaternion-based formalism. This
makes our approach use a generic description of a 3D rigid
body with respect to the coordinate system whose origin
coincides with the body’s center of mass. Therefore, based
on the previous section and the equations presented by
Markley et al. [55], dynamical equations of the position and
orientation of the center of the top of the platform can be
expressed as:
⎡
⎢⎢⎢⎢⎣

q̇

ω̇

ṗ

v̇

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎣

1
2

[ −εT

ηI3 + S(ε)

]
ω

I−1
m (uτ + τ ext − S(ω)Imω)

v

M−1(uF + F ext ) + g

⎤
⎥⎥⎥⎥⎦

, (12)

where uτ ∈ R
3 and τ ext ∈ R

3 are the input and disturbance
torques related to the local coordinate system, uF ∈ R

3 and
F ext ∈ R

3 are the input and disturbance forces related to
the global coordinate system and g is the gravity vector.

Analyzing Eq. 12, it is noticed that the first two lines of
the matrix are related to the rotational movement of the top
of the platform, which is given by:

q̇(η, ε, ω) = 1
2

[ −εT

ηI3 + S(ε)

]
ω,

τ (ω, ω̇) = Imω̇ + S(ω)Imω,

(13)

where τ ∈ R
3 is the torque applied to the body, Im ∈ R

3

represents the inertia matrix and (̇ ) represents the time
derivatives. In the same sense, the last two lines of Eq. 12,
related to the translation dynamic equations at the top of the
platform, are defined as:

ṗ(v) = v,

F (v̇) = M v̇,
(14)

where ṗ = [
ṗx ṗy ṗz

]T ∈ R
3 is the velocity vector

of the platform top with respect to the global coordinate
system, with ṗx , ṗy and ṗz related to the x-, y- and z-axis,
respectively. M ∈ R

3×3 is the body mass matrix, F (v̇) ∈ R
3

is the inertial force matrix and v̇ ∈ R
3 is the acceleration

vector, the latter two being also represented in the global
coordinate system.

4 Proposed Pose Estimation Algorithm

4.1 Theoretical Pose Estimation

Based on the preliminary concepts shown in Section 3,
this section presents the Extended Kalman Filter design in
detail, which is divided into prediction and update steps.

In order to embedded the system into an FPGA, the
discrete representation of the model is needed. Thus,
through Euler’s discretization ẋk ≈ (xk+1 − xk)/Ts , for
a time interval Ts , the system model can be described as
follows:

xk+1 = f (xk) + εk, (15)

where the index k indicates the discrete representation.
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In the prediction step, the system state vector is given
by the orientation, angular velocity, angular acceleration,
position, linear velocity, linear acceleration, gyroscope bias
and accelerometer bias, which are respectively represented
by the following state vector:

x̂k :=
[
q̂

T
k ω̂

T
k α̂

T
k p̂

T
k v̂

T
k â

T
k b̂

T

G,k b̂
T

A,k

]T ∈ R
25, (16)

whereby

f (x̂k) = x̂k + Ts

⎡
⎢⎢⎢⎢⎢⎢⎣

F(ω̂k)q̂k

α̂k

03×1

v̂k

âk

09×1

⎤
⎥⎥⎥⎥⎥⎥⎦

, (17)

and

F(ω̂k) = 1

2

[
0 −ω̂

T
k

ω̂k −S(ω̂k)

]
. (18)

In this regard, the vector εk ∈ R
25 is the stochastic

process representing the uncertainty introduced in the
state transition equation. This uncertainty is related to the
covariance matrix Qx , which is a parameter that must be
adjusted.

The next step is the linearization of the Eq. 15, which is
given by the following Jacobian matrix:

F(x̂k) = ∂f (x̂k)

∂x̂k

= I25 + Ts diag{Φ(x̂k), Ψ, 06×6}, (19)

where diag{·} means the diagonal of a matrix,

Φ(x̂k) =
⎡
⎣
F(ω̂k) G(q̂k) 04×3

03×4 03 I3

03×4 03 03

⎤
⎦ , Ψ =

⎡
⎣

03 I3 03

03 03 I3

03 03 03

⎤
⎦ (20)

and

G(q̂k) = 1

2

[ −ε̂
T
k

η̂kI + S(ε̂k)

]
. (21)

In the update step, we first define the measurement vector
of the zk sensor. Note that in our application we selected to
use four markers with different colors. Thus, the vector zk ,
using the Eqs. 4, 5 and 7, is defined as:

zk =
⎡
⎣

ωG,k

aA,k

08×1

⎤
⎦ ∈ R

14. (22)

The nonlinear output equation described as zk will be
reconstructed from x̂k , which is represented by:

zk = h(x̂k) + δk, (23)

where we can define hk(x̂k) also from the Eqs. 4, 5 and 7,

hk(x̂k) =

⎡
⎢⎢⎢⎢⎢⎢⎣

Rimuω̂k + b̂G,k

RimuR
T (q̂k)((âk + g) + H(ω̂k, α̂k)Oimu + b̂A,k

CC· S(m̄1)KintRcamRT (q̂k)(ξ1 − p̂k)

CC· S(m̄2)KintRcamRT (q̂k)(ξ2 − p̂k)

CC· S(m̄3)KintRcamRT (q̂k)(ξ3 − p̂k)

CC· S(m̄4)KintRcamRT (q̂k)(ξ4 − p̂k)

⎤
⎥⎥⎥⎥⎥⎥⎦

(24)

and we define the stochastic variable δk as

δk = [
δT
G,k δT

A,k δT
cam,k

]T
, (25)

where CC = [
I2 02×1

]
.

Therefore, the Qz covariance matrix for all the uncer-
tainties of the sensor measurements is composed of the
covariance matrices of each sensor, forming a diagonal
block in the following form:

Qz = diag{QG, QA, Qcam}. (26)

The Jacobian matrix H(x̂k) ∈ R
14×25 is formed by the

partial derivatives of h(x̂k) in relation to x̂k and is defined
as:

Hk(x̂k) := ∂h(x̂k)

∂x̂k

=
[
H

q̂k

k H
ω̂k,α̂k

k H
p̂k

k H
v̂k,âk

k H
b̂k

k

]
,

(27)

where H
q̂k

k , H
ω̂k,α̂k

k , H
p̂k

k , H
v̂k,âk

k and H
b̂k

k are the
Jacobians related with the orientation, angular velocity and
acceleration, position, linear velocity and acceleration and
bias dynamics, respectively. The result of partial derivatives
are:

H
q̂k

k :=

⎡
⎢⎢⎢⎢⎢⎢⎣

03×4

RimuJ(q̂k, âk + g)

CC· S(m̄1)KintRcamJ(q̂k, ξ1 − p̂k)

CC· S(m̄2)KintRcamJ(q̂k, ξ2 − p̂k)

CC· S(m̄3)KintRcamJ(q̂k, ξ3 − p̂k)

CC· S(m̄4)KintRcamJ(q̂k, ξ4 − p̂k)

⎤
⎥⎥⎥⎥⎥⎥⎦

, (28)

H
ω̂k ,α̂k

k :=
[

RimuR(q̂k) 03×3−RimuR(q̂k)W(ω̂k, Oimu) −RimuR(q̂k)S(Oimu)
08×3 08×3

]
,

(29)

H
p̂k

k :=

⎡
⎢⎢⎢⎢⎣

06×3

−CC· S(m̄1)KintRcamR(q̂k)

−CC· S(m̄2)KintRcamR(q̂k)

−CC· S(m̄3)KintRcamR(q̂k)

−CC· S(m̄4)KintRcamR(q̂k)

⎤
⎥⎥⎥⎥⎦

, (30)

H
v̂k,âk

k :=
⎡
⎣

03 03

03 RimuR(q̂k)

08×3 08×3

⎤
⎦ (31)
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and H
b̂k

k = [
I6 06×8

]T
. The auxiliary functions J(q, u) and

W(y, u) ∀y, u ∈ R
3 are defined as:

J(q, u) : = ∂R(q)u

∂q
= ∂(I3 − 2ηS(ε) + 2S2(ε))u

∂

[
η

ε

]

= 2
[−S(ε)uS(u)η + W(ε, u)

]
(32)

and

W(y, u) := ∂S2(y)u

∂y
= yuT − 2uyT + yT uI3. (33)

From the definitions formulated in this section, we were
able to develop the EKF algorithm using the equations
shown in Table 2. Finally, to guarantee the consistency of
the proposed model, after the prediction and update steps, it
is mandatory to normalize the estimated quaternion qk [56],
that is, we have that qk = qk/||qk|| where || · || represents
the Euclidean norm.

4.2 Proposed Embedded Software

Due to the growing environment diversity in which 6–DOF
systems are employed, we necessarily require to develop
new cost-effective approaches that improve performance
and also reduce costs for the industry. In this sense, besides
demonstrating mathematically how we can improve pose
estimation with EKF based on IMU and visual marker
measurements, as shown in Section 4.1. This work proposed

Table 3 Developed libraries to simplify the implementation of the
pose estimation algorithm

Libraries Number of
Functions

Line of Code
(LOC)

EKF 2 496

Quaternion 7 141

Communication Protocol 12 420

Matrix Functions 24 406

its implementation through an embedded software that
fits into an FPGA device with commercial processors,
facilitating the reproduction and use of our approach in the
most diverse 6–DOF systems.

Figure 3 shows the adopted three-phase development
flow. The first phase was devoted to the development of the
algorithm. Initially, a MATLAB application was developed
to model the theoretical pose estimation presented in
Section 4.1. This is our golden reference for ensuring the
correctness of our mathematical expressions, as well as used
to validate our algorithm.

Next, the algorithm was described in C language to cal-
culate the pose estimates, as shown in Table 2. In this sense,
libraries were developed to handle operations with quater-
nions and matrices, e.g., functions to calculate the inverse
matrix, multiplications, divisions, Jacobian matrix, Euclidean
norm of the quaternion, derivative, cross product, among
other functions. Table 3 shows the number of functions and
lines implemented for each application library.

Fig. 3 Development flow with 3 distinct phases.
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In the second phase, after validating the algorithm, we
evaluated our application on a standard desktop PC based
on the x86 processor. This step allowed us to ensure the
correct implementation of our pose estimator and also aims
to facilitate the dissemination of our application to be
applied to other 6–DOF systems. At this stage, all input
data from the sensors (i.e., encoders, IMU and camera) have
been acquired and preprocessed offline, making it possible
to optimize the algorithm, i.e., adjust the covariances and
gains of the EKF. To validate our application, the estimated
states were compared with the real data, calculated from
the encoders using forward kinematics. After validation, we
increased support for ARM processors as well, to cover the
vast majority of devices found in the industry and prepare it
to be embedded into an FPGA device, either as embedded
software or through the use of high-level synthesis [57].

The third phase addresses the integration of the FPGA
with the Stewart platform to support online applications. First,
we prototype the application into the FPGA. Then, image pre-
processing is done by a Raspberry PI 3 Model B, where data
extracted from each frame are grouped with IMU data and
sent to the FPGA through a developed protocol. The goal
of dividing the problem into smaller tasks is to make imple-
mentation cheaper or even to take advantage of multitasking
support in a multi-core processor, since this design choice
helps such architectures to be more power-efficient [58].

Once the integration is validated, the experiments can be
started. After every rehearsal, which consists of several frames,
a data logging is created with the pose estimation calculated
by the FPGA with all sensor data (i.e., IMU and camera).
Then, this filter is evaluated by comparing the estimated
data with the actual data calculated from the Stewart
platform, showing the effectiveness of our approach.

4.3 Data Acquisition

This section is dedicated to detailing the data acquisition
process shown in the second phase of Fig. 3. The

Stewart platform used is equipped with an IMU and a
camera to estimate the pose. Regarding the sensing part,
the IMU contains a gyroscope, an accelerometer and
a magnetometer. The system orientation is obtained by
integrating the angular velocity measurements inferred by
the gyroscope. In contrast, acceleration and linear position
is obtained by integrating the signal from the accelerometer.
Figure 4a represents the DOF measured by the IMU.

On the other hand, the vision part is important due to the
large amount of information that an image provides. How-
ever, as seen in the literature review, the disadvantage is the
demand for a huge computational effort. Currently, the main
and most used tool for dealing with images is the OpenCV
library, which has algorithms optimized for different appli-
cations, such as face recognition, object identification, 3D
model extraction, filter applications and others.

To reduce the computing effort, our approach used a
Logitech C270 webcam with HD resolution to have the
lowest possible covariance in measurements. In addition,
markers with different colors and simple shapes were used
to reduce the computational effort involved. Figure 4b
shows how the markers were organized, where three
markers are on the same plane with different positions.
Furthermore, to enrich the image with information, another
marker was allocated with a different position and plane.

The procedure for acquiring the marker positions is as
follows: after making the image acquisition, a conversion
from RGB to HSV is performed; then the marker of interest
is selected according to the hue, saturation and brightness
values; after, the contour detection can be performed. If a
marker is in the camera’s field of view, it is then possible to
obtain the marker’s coordinate through the image’s invariant
moment properties, as formulated by Teague [59]. In this
work, the calculated centroid values are the positions of the
markers in pixels in the image plane.

To infer the pose through forward kinematics, we use
encoders arranged next to the DC motors, which are
responsible for driving the actuators. Figure 5 shows this

Fig. 4 a Graphical
representation of the DOF
measured by the IMU, and b
Markers organization to reduce
the computational effort to
estimate the pose of a Stewart
platform

(a) (b)
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Fig. 5 Integration of sensors and modules to data acquisition

integration of sensors and modules performed in the third
phase of Fig. 3.

All communication between the devices responsible for
filter processing, actuator control, and image processing is
managed by the central module and performed through an
RS-485 bus. In this regard, a communication protocol was
developed for data flow control. Table 4 shows the data packet
format developed for communication between the modules
(FPGA, Raspberry PI, and sensors), which includes a header
with 4 fields (i.e., start, address, command, and number of
data); a data payload with arbitrary size; a cyclic redundancy
check (CRC) to validate the entire packet; and a stop byte.
Note that each module is identified with a unique address,
allowing the individual control of each actuator. In addition,
the modules are connected via the RS-485 standard, making
it a serial communication system.

Through the developed communication protocol, the data
acquisition sequence can be performed, taking the following
steps: (1) data from the IMU located at the top of the
platform; (2) the position data of the markers located at
the base of the platform; and (3) the position data of the
actuators via the encoders. Once the data acquisition is
made, the central module sends the pre-processed data to
the FPGA to estimate the pose of the Stewart platform.

After each iteration of the quaternion-based EKF, all
available data, i.e., data from the IMU, camera, encoders,
and the pose estimated by the filter are saved in a data
logging. This makes it possible to assess the embedded EKF
afterward.

4.4 Validation of Estimated States

To validate this work, we made a comparison between
the pose estimated through the quaternion-based Extended
Kalman Filter with the pose inferred through the forward
kinematics, as illustrated in Fig. 6.

Forward kinematics is an approach that considers the
system geometry; however, this technique leads to several
solutions. Therefore, it is necessary to model the Stewart
platform according to the movement restrictions of each
moving part, and then use numerical methods to find the
unique solution [17]. In this sense, we use the Nelder-
Mead numerical method to minimize a cost function that
quantifies the error between the measured value and the
estimated value.

To perform the minimization process, we used the
fminsearch function of the MATLAB software, which
minimizes a cost function from an initial value. The initial

Table 4 Data packet format developed for the communication protocol

START ADDRESS COMMAND N DATA DATA CRC16 STOP

1 Byte 1 Byte 1 Byte 1 Byte N Bytes 2 Byte 1 Byte
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Fig. 6 Validation process of estimated states

position and orientation value can be obtained using the
following equations:

Bb,i(pk, qk) = BiR(qB) + pT
k ,

T b,i(pk, qk) = T iR(qT ) + pT
k ,

(34)

where R(qB) and R(qT ) are quaternion-based rotation
matrices between the global coordinate and the local
coordinates of the base and top of the Stewart platform,
respectively. The vectors Bi and T i can be found from (14)
and (15). Thus, it is possible to infer the estimated size of
actuators L̂i , such as:

L̂i = √
(T b,i − Bb,i)T (T b,i − Bb,i). (35)

Therefore, we have:

ϑk = arg min
ϑk

J (ϑk) = arg min
ϑk

6∑
i=1

(Li − L̂i (ϑk))
2, (36)

where ϑ refers to the estimated pose of the platform top,
i.e., ϑk = [p̂T

k q̂
T
k ]. However, because it is a nonlinear

optimization problem, in each iteration the algorithm must
consider the previous solution ϑk−1 as the initial value for
calculating ϑk . With these equations, we calculate the actual
pose of the Stewart platform and compare it with the pose
estimate of our quaternion-based EKF algorithm.

4.5 Experimental Setup

Table 5 shows the geometric parameters and the rotation
matrices associated with the sensors of the Stewart
platform used in this work, which is composed of an
STMicroelectronics LSM6DS3H IMU and a Logitech C270
camera, both attached to the bottom of the top of the
Stewart platform. In addition, to validate our approach,
measurements from the encoders mounted in each of the
Stewart legs are gathered. The encoders have a resolution
of 64 pulses per revolution and are connected to a reduction
box with a ratio of 18.75 : 1. To transmit the force, a

Table 5 Stewart platform geometric parameters and sensor rotation
matrices

Description Value

rB (Bottom radius) 0.35 (m)

rT (Top radius) 0.25 (m)

ϕB (Angle of each leg to bottom) π/6 (rad)

ϕT (Angle of each leg to end-efector) π/2 (rad)

RIMU (IMU Rotation Matrix)

⎡
⎢⎣

0 −1 0

1 0 0

0 0 1

⎤
⎥⎦

Rcam (Camera Rotation Matrix)

⎡
⎢⎣

−0.999 −0.0116 −0.003

−0.011 0.999 0.01

0.003 0.01 −0.999

⎤
⎥⎦

trapezoidal spindle with a 3 mm pace is used. Based on this,
our reference for validation has errors of ±0.0025 mm for
each actuator.

Figure 7 shows a photo of our experiments, highlighting
the four markers with distinct colors located at the base of
the Stewart platform. In addition, it is worth mentioning
that in our approach the camera position is considered
to be the origin of the local coordinate, causing an IMU
offset regarding the origin that corresponds to O imu =[
0.71 0.5 0.57

]T
meters.

5 Results

This section aims to evaluate the proposed quaternion-based
EKF pose estimation algorithm with IMU and visual marker

Fig. 7 Photo of the experiments showing the integration of the FPGA
and Raspberry PI with the Stewart platform
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Fig. 8 Position variation and the
measurement error of the 1st

experiment

data and validate it against the state-of-the-art. Note that
our approach is the first to estimate the pose through an
FPGA prototype with an ARM Cortex-M3 soft-core. In this
sense, the experiments were performed with a low sampling
rate (i.e., 0.833 Hz) and, therefore, with a Stewart platform
dynamics 100 times slower. This demonstrates the correct
implementation of the algorithm and the support to work at

low frequency, which will decrease power consumption in
a real environment, i.e., in the industry, where an integrated
circuit with a hard-core processor is likely to be used.

Three set of experiments were performed to evaluate
our quaternion-based EKF algorithm: the first having the
markers present all the time, the second forcing the loss of
the markers to demonstrate the efficiency of the proposed

Fig. 9 Orientation variation and
the measurement error of the 1st

experiment
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Table 6 Covariances associated with sensors from the 1st experiment

Sensor Accelerometer Gyroscope Camera

Exp. 1 diag{0.02793, 0.01708, 0.0465} 10−3×diag{0.7401, 0.697, 1.136} 10−3×I8

filter, and the third lasting twice as long. The results of the
experiments were acquired by running the Stewart platform
in real-time and saving them to a data log, as shown at the
end of the development flow in Fig. 3. Later, the results
are validated with the pose inferred through the forward
kinematics, as shown in Section 4.4.

The first experiment is dedicated to assessing the pose
estimation error of our quaternion-based EKF algorithm.
The top part of Fig. 8 shows the position variation of
the Stewart platform during the experiment, where the
continuous line represents the actual position and the
dotted line the pose estimated by the quaternion-based EKF
algorithm. To make the graph more didactic, the bottom
part of Fig. 8 highlights the position error. Complementary,
Fig. 9 shows the orientation of the top of the Stewart

platform, where the results are presented through the Euler
angles (roll, pitch and yaw).

For each application startup, a sensor data package is
acquired with the Stewart platform at rest and then the
covariance matrix of the sensors Qz and their respective
bias are calculated, as shown in Table 6. This application
startup is represented by the gray shaded part in Figs. 8 and
9 from n = 0 to n = 30, and we will not consider the error
presented at those moments, since it serves as an automatic
calibration. On the other hand, the covariance of the model
was previously defined empirically and consists of a matrix

given by Qx =
[

10−5×I19×19 019×6

06×19 06×6

]
.

Figures 8 and 9 show that the trajectories estimated by
the filter behave as expected in relation to the real states.

Fig. 10 Two additional experiments varying the position and orientation of the Stewart platform to determine the error found by the proposed
pose estimate under normal conditions
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Table 7 Statistical analysis of three experiments performed under normal conditions

Position Mismatch (mm) Euler angles error (o¯ )

Description Exp. 1 Exp. 2 Exp. 3 Description Exp. 1 Exp. 2 Exp. 3

mean x: p1 -0.7119 3.3123 3.4536 mean roll: θ1 0.1630 0.1238 0.0847

mean y: p2 -2.0394 -1.8161 -1.4119 mean pitch: θ2 -0.0452 0.2790 0.3017

mean z: p3 -4.1676 -0.4142 -0.6918 mean yaw: θ3 0.1456 0.1712 0.1669

σp1 1.3512 1.0078 1.1886 σθ1 0.1792 0.1064 0.1322

σp2 1.7648 0.8788 1.6779 σθ2 0.1289 0.1100 0.0945

σp3 1.3701 0.6304 0.8092 σθ3 0.1054 0.0807 0.1042

max(|p1|) 3.7803 6.4879 6.5842 max(|θ1|) 0.6304 0.3912 0.5879

max(|p2|) 7.2305 0.8578 4.2297 max(|θ2|) 0.3254 0.6328 0.5442

max(|p3|) 8.1471 0.9618 1.4290 max(|θ3|) 0.4268 0.5138 0.3584

In addition to these results, Fig. 10 shows two other similar
experiments varying the position and orientation of the
Stewart platform. This helps to determine the maximum
error found by the proposed pose estimate under normal
conditions. Table 7 presents the mean, standard deviation
(σ ) and the highest absolute value of the estimation errors
for each orientation and position axis from the FPGA
acquired data. This shows that the developed filter was able
to estimate the pose with an error below 8.14 mm and 0.63o

¯
error, as highlighted in red in Table 7. Note that the impact
of filter accuracy will depend on the application used. For
example, the Stewart platform can be used for both flight
simulators [18] and precision surgery [19]. While in the
former case this precision does not have much impact, it is
remarkable that in a precision surgery, the accuracy of the
filter can be decisive for saving or not saving a life, showing
why filter optimization is so important.

Considering the literature (summary shown in Table 1),
we compared our results with other methods to obtain
the pose estimate without using the forward kinematics
approach, in addition to validate and highlight the results
obtained. Zuo et al. [34] presented a vision-based approach
to estimate the pose of a Stewart platform and obtained
position errors around 3.00 mm, 0.88 mm and 1.09 mm,
for the x, y and z-axis and orientation errors of 0.079o

¯ ,
0.316o

¯ and 0.288o
¯ , for roll, pitch and yaw, respectively.

However, to estimate the pose in real-time, their stereo
vision approach use at least two cameras, requiring a higher
processing power compared to our approach. In addition,
the charge-coupled device (CCD) cameras used are large
and power-consuming, which is no longer recommended for
use in industry. Another vision-based work is presented by
Yoon et al. [35], their Kalman-Filter-based visual tracking
algorithm presents a worst-case position error of 9.2 mm
and an orientation error of 0.67o

¯ . This proves that our

quaternion-based EKF algorithm is more accurate than
Yoon et al. [35] (i.e., our worst-case is 8.14 mm and 0.63o

¯ ),
in addition to supporting online applications, while they rely
on pre-recorded scenes.

Similar to our approach, but visioning other applications,
i.e., not applied to a Stewart platform, Araguás et al. [36]
presented results that only estimates the orientation of an
UAV with an error around 0.22o

¯ . Also, Du and Zhang [40]
presented the pose estimate of a serial manipulator with
a maximum error of 1.99 mm in position and 1.02o

¯ in
orientation. However, their initial serial manipulator error
is 9.01 mm, while our Stewart platform (i.e., a parallel
manipulator) could reach hundreds of millimeters. Lastly,
Mirzaei and Roumeliotis [39] presented estimation errors
around 8.0 mm in position and 0.1o

¯ in orientation, where
the initial uncertainty was 90 mm and 6o

¯ , respectively.
These comparisons reinforce the prominence of our
approach using a low-cost IMU sensor (LSM6DS3H)
and a conventional webcam (Logitech C270) with simple
geometry markers to obtain excellent pose estimates from
the Stewart platform, with a maximum error of 8.14 mm in
position and 0.63o

¯ in orientation, which proves the quality
of the developed quaternion-based EKF algorithm.

The second set of experiments aim to assess the
reliability of our algorithm when dealing with the loss of
camera markers and also with the loss of all input data.
When it happens, the implemented filter algorithm reuses
the data from the previous instant. Figure 11 shows the filter
performance under such conditions.

Similar to the first set of experiments, in Fig. 11 the gray
shaded part means the application startup. As each sample
of the discrete-time is equivalent to 1.2 seconds, the Stewart
platform is at rest for 24 seconds (i.e., n = 20). In addition,
the covariance associated with the sensors in this experiment
are shown in Table 8. On the other hand, the differences are
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Fig. 11 Assessment to
determine pose estimation
mismatches when dealing with
the loss of input data

Table 8 Covariances associated with sensors from the 4th experiment

Sensor Accelerometer Gyroscope Camera

Exp. 4 diag{0.01158, 0.00806, 0.01276} 10−3×diag{0.9007, 1.2848, 0.3798} 10−3×I8
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Fig. 12 Two additional experiments varying the position and orientation with data loss to show the quick recovery time of the filter to converge
to the correct estimated pose values

in the conditions of the experiments. In Fig. 11, we force the
loss of markers in two different moments, when n = 85 and
n = 185, as shown in the orange shaded parts. In addition,
we also force the loss of all input data when n = 73, as
shown in the red shaded part. As a consequence of this
bias of information, the filter deviates from the real data
acquired from the platform. This is because the algorithm
keeps performing the update step with the previous data
measurements. However, once the markers are back in the
camera’s field of view in the orange shaded parts (i.e.,
n = 115 and n = 215) or all input data is back in the
red shaded part (i.e., n = 77), the filter converges to the
correct pose estimate values in only one sample. To support
this analysis, Fig. 12 shows two more experiments with the
same objective. It demonstrates that (1) the algorithm is
dependent on all input data and (2) the algorithm is able to
quickly recover and converge to the optimal pose estimation
value. Also note that the design choice to continue using the
previous marker values has increased the reliability of the
developed filter, as the error takes a little longer to grow.

Finally, the last experiment aims to analyze the behavior
of the proposed quaternion-based EKF pose estimation with
IMU and visual marker data over time using sinusoidal tra-
jectories. The experiment is evaluated under normal con-
ditions, where the Stewart platform legs constantly change
direction. The results shown in Fig. 13 suggest that the accu-
mulation of data acquired over time slightly improves the
pose estimate of the Stewart platform. Therefore, the mis-
matches are related to the initial estimates, as assessed in the
first set of experiments; and mainly, the loss of input data,
as assessed in the second set of experiments.

6 Conclusions

Nowadays, more and more six degrees of freedom systems
are present in industrial automation, which makes their
efficiency and diversity of use a constant challenge. In this
work, we proposed a quaternion-based Extended Kalman
Filter pose estimation algorithm with IMU and visual
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Fig. 13 An experiment
conducted with longer exposure
time to analyze the behavior of
the proposed quaternion-based
EKF pose estimation

marker data, which stands out for its low computational
effort and greater reliability to deal with partial sensors
availability. In addition, the position and orientation of
6–DOF systems are estimated in real-time. To validate
and evaluate our proposed pose estimation algorithm, the
implementation on a Stewart platform has been carried
out. Furthermore, our pose estimation solution was the
first to be embedded on an FPGA device with commercial

processors, demonstrating the ease of reuse of this approach
by other works. Further research work intend to decouple
the algorithm to be used in multicore systems, this will
bring performance gains and freedom to be implemented in
different ways.
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