
4772 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 68, NO. 11, NOVEMBER 2021

Applying Lightweight Soft Error Mitigation
Techniques to Embedded Mixed Precision

Deep Neural Networks
Geancarlo Abich , Student Member, IEEE, Jonas Gava , Student Member, IEEE,

Rafael Garibotti , Member, IEEE, Ricardo Reis , Senior Member, IEEE, and Luciano Ost , Member, IEEE

Abstract— Deep neural networks (DNNs) are being incorpo-
rated in resource-constrained IoT devices, which typically rely
on reduced memory footprint and low-performance processors.
While DNNs’ precision and performance can vary and are
essential, it is also vital to deploy trained models that provide
high reliability at low cost. To achieve an unyielding reliability
and safety level, it is imperative to provide electronic computing
systems with appropriate mechanisms to tackle soft errors. This
paper, therefore, investigates the relationship between soft errors
and model accuracy. In this regard, an extensive soft error
assessment of the MobileNet model is conducted considering
precision bitwidth variations (2, 4, and 8 bits) running on an Arm
Cortex-M processor. In addition, this work promotes the use of a
register allocation technique (RAT) that allocates the critical DNN
function/layer to a pool of specific general-purpose processor
registers. Results obtained from more than 4.5 million fault
injections show that RAT gives the best relative performance,
memory utilization, and soft error reliability trade-offs w.r.t.
a more traditional replication-based approach. Results also show
that the MobileNet soft error reliability varies depending on the
precision bitwidth of its convolutional layers.

Index Terms— Soft error, reliability, machine learning, IoT.

I. INTRODUCTION

MORE recently, there has been an expedited trend in
incorporating deep neural networks (DNNs), in par-

ticular the convolutional ones, in resource-constraint Internet
of Things (IoT) devices [1], [2]. To enable DNN mod-
els’ execution on the underlying devices, software libraries
and application programming interfaces (APIs) have been
proposed [3]–[5]. Such libraries/APIs are devoted to
streamlining the design and development of embedded
deep learning-based applications through the fine-tuning of
pre-trained network models, thus enabling their efficient exe-
cution in edge-computing platforms [2], [6]. For the time

Manuscript received April 15, 2021; revised June 23, 2021; accepted
July 13, 2021. Date of publication July 26, 2021; date of current version
November 9, 2021. This article was recommended by Associate Editor F.
Rivet. (Corresponding author: Luciano Ost.)

Geancarlo Abich, Jonas Gava, and Ricardo Reis are with the PGMicro,
Federal University of Rio Grande do Sul (UFRGS), Porto Alegre 90040-060,
Brazil (e-mail: gabich@inf.ufrgs.br; jfgava@inf.ufrgs.br; reis@inf.ufrgs.br).

Rafael Garibotti is with the School of Technology, PUCRS, Porto Alegre
90619-900, Brazil (e-mail: rafael.garibotti@pucrs.br).

Luciano Ost is with the Wolfson School, Loughborough University,
Loughborough LE11 3TU, U.K. (e-mail: l.ost@lboro.ac.uk).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TCSI.2021.3097981.

Digital Object Identifier 10.1109/TCSI.2021.3097981

being, the majority of embedded trained models and their
inference engines have been evaluated only according to their
accuracy and performance over a given dataset.

With the growing adoption of DNNs in safety-critical
embedded systems (e.g., medical devices, autonomous vehi-
cles), increases the demand for safe and reliable models.
To reach levels of reliability that are comparable to those
required by high safety standards [7], it is imperative to supply
electronic computing systems with appropriate mechanisms
to reduce their vulnerability to radiation-induced soft errors.
This work advocates that traditional redundancy mitigation
approaches may not be suitable templates for tackling the
occurrence of soft errors in IoT edge devices. The underly-
ing approaches, generally, incur high performance and mem-
ory overheads, making them impractical to be deployed in
resource-constrained systems. The resulting scenario poses
two challenging questions: (i) which is the relationship
between the soft error susceptibility and model accuracy?,
and (ii) how to reduce the risk of radiation-induced soft
errors in DNNs executing on resource-constrained devices?
An initial attempt to identify the relationship between the soft
error susceptibility and model accuracy was conducted in [8],
where authors show that MobileNet convolutional neural net-
work (CNN) with higher precision bitwidth configurations led
to a higher number of soft errors. This work only considers
4 and 8 bits per-layer (PL) compression. On the soft error
mitigation side, traditional techniques have been either imple-
mented in FPGA [9] or applied to DNN accelerators [10],
which benefit from substantial computational parallelism w.r.t.
microprocessors.

To address the aforementioned challenges, this paper con-
tributes by assessing the impact of precision bitwidth on
the soft error reliability of the MobileNet CNN [11] when
running on an Arm Cortex-M7 processor. It is the first work
to consider weights and activations quantization at 2, 4, and
8 bits while applying the per-channel (PC) compression and
integer-channel normalization activation (ICN) technique. The
other contributions of this work are as follows:

– Promote the use of RAT [12], a lightweight soft error
mitigation technique, as an effective alternative to the tra-
ditional replication techniques, which have a reasonable
impact on the resource-constraint system’s performance
and response time;

1549-8328 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on December 07,2021 at 11:45:26 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-9387-1523
https://orcid.org/0000-0001-7113-6448
https://orcid.org/0000-0002-7307-0128
https://orcid.org/0000-0002-5160-5232
https://orcid.org/0000-0001-5781-5858

ABICH et al.: APPLYING LIGHTWEIGHT SOFT ERROR MITIGATION TECHNIQUES 4773

– Extensive soft error assessment of MobileNet CNN
on ImageNet considering more than 4.5 million fault
injections;

– Relative performance, memory utilization, and soft error
reliability trade-offs analysis considering RAT and a
partial triple modular redundancy (P-TMR);

– Hardened MobileNet source code execution in a real
board.

The rest of this paper is organized as follows. Section II
presents the related works in machine learning algorithms
soft error assessment and mitigation, considering different
approaches. Section III details the adopted fault injection
framework, along with the description of the fault classifi-
cation, the mitigation techniques, and the evaluation metrics
used in this work. Section IV presents our case study, detailing
both MobileNet CNN and the CMix-NN library. Following,
Section V explores the soft error reliability of the MobileNet
CNN considering different aspects: precision bitwidth, layer
vulnerability, mitigation techniques, and relative trade-off
analysis. Finally, Section VI points out conclusions and future
work.

II. RELATED WORK IN MACHINE LEARNING SOFT

ERROR ASSESSMENT AND MITIGATION

The soft error assessment and mitigation literature is abun-
dant, requiring a taxonomy to classify the different approaches.
This proposal considers the definitions from [13] for fault,
error, and failure. A fault is an event that may cause the
internal state of the system to change, e.g., a radiation par-
ticle strike. When a fault affects the system’s internal state,
it becomes an error. If the error causes a deviation of at least
one of the system’s external states, then it is considered as
a failure. To achieve compliance with safety and reliability
standard requirements, it is utmost importance to provide
systems with appropriate mechanisms to tackle systematic or
transient faults, also known as soft errors or Single Event
Upset (SEU). While the former originates from hardware and
software design defects, soft errors are those caused by alpha
particles or atmospheric neutrons [14].

The occurrence of soft errors problem can be tackled
both in hardware and software. While hardware approaches
lead to the area and power overhead, software tech-
niques are generally implemented on a per-application basis
that usually incurs performance penalties. The following
Section reviews system-level soft error techniques rather than
technology-specific approaches that required control of the
chip fabrication process, which is often outsourced.

A. Review of System-Level Soft Error Mitigation Techniques

Nicolescu and Velazco [15] propose an error detec-
tion technique that is based on the introduction of data
and code redundancy using a set of transformation rules
applied to high-level code. In turn, Benso et al. [16] intro-
duce the REliable Code COmpiler (RECCO), a tool that
exploits code reordering and selective variable duplication
to generate hardened C/C++ source code automatically.

Serrano-Cases et al. [17] use genetic algorithms to find a com-
bination of optimization flags that can increase the final binary
reliability while maintaining a reasonable performance and
memory utilization trade-off. Rodrigues et al. [18] developed
software TMR and Conditional Modular Redundancy (CMR)
mitigation implementations, aiming to reduce the occurrence
of soft errors in a Cortex-A9 processor running Linux kernel.

Another software-based alternative to mitigate soft errors
comes from low-level code protection. Authors in [19], pro-
mote the SWIFT (SoftWare Implemented Fault Tolerance)
technique aiming to reduce the overhead associated with
EDDI (Error Detection by Duplicated Instructions) [20].
They remove duplicate store instructions, reducing both
memory and performance overhead. The SWIFT technique
assumes that the system’s memory architecture is protected
by some error correction mechanism. Results showed a 14%
speed-up over EDDI when tested with an Intel Itanium 2.
Authors in [21] improved SWIFT technique by checking the
load instructions right after a store instruction and creating
redundant load instructions in critical sections to achieve
near-zero the occurrence of silent data corruption (SDC).
A popular instruction-level mitigation technique introduced by
Reis et al. [22] is the SWIFT-R, which implements TMR
to recover from soft errors in the register file. Instead of
duplicating instructions, it triplicates, and change the checking
points to a voter mechanism.

In [23], authors presented the Shoestring technique, which
exploits a low-cost symptom-based error detection mechanism
that focuses on applying instruction duplication to protect only
those code segments that are likely to result in user-visible
faults and do not exhibit symptomatic behaviour. Results show
that Shoestring can recover from an additional 33.9% of
soft errors that are undetected by a symptom-only approach.
Reference [24] presents the Encore, a software-based error
recovery mechanism (paired with other error detection tech-
niques) that combines program analysis, profile data, and
simple code transformations to create code portions, which
can recover from faults at a minimal cost. Gathered results
show that Encore can recover from 97% of transient faults
on average with 14% additional runtime overhead. Another
TMR-based technique, called ELZAR, is proposed in [25].
It triplicates arithmetic and logical operations, and the voting
mechanisms are inserted between register operands of mem-
ory and control flow operations for recovery. To reduce the
performance overhead introduced by replicated instructions,
they utilize Intel AVX extensions (i.e., Single Instruction
Multiple Data - SIMD). The experiments show that the per-
formance overhead is reasonable for CPU-intense applications
with many floating-point operations. However, for some case
studies, the instruction-level parallelism was inefficient, result-
ing in a performance penalty that surpassed the SWIFT-R
technique.

The NEMESIS technique introduced by [26] is a duplication
with recovery technique. It replicates instructions and checks
the results of memory write operations and branches’ direction.
If an error is detected, it then recovers to a valid state if
possible; otherwise, a power restart is needed. The results
show that at least 97% of the detected errors were recoverable

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on December 07,2021 at 11:45:26 UTC from IEEE Xplore. Restrictions apply.

4774 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 68, NO. 11, NOVEMBER 2021

considering the ten selected applications. Another error recov-
ery technique is the InCheck [27], which is an extension of
the nZDC technique [21]. The proposed technique comprises
of error detection, diagnosis, and recovery schemes. Unlike
SWIFT-R, the InCheck mitigates faults by protecting error
handling routines in addition to the main program instructions.
The authors claim that their technique offers complete error
coverage for the tested applications.

B. Review of Soft Error Assessment of ML Algorithms

The number of products integrating Machine Learn-
ing (ML) algorithms is continuously increasing. With this
in mind, researchers have started to investigate the impact
of radiation-induced soft errors on the reliability of such
algorithms, as summarized in Table I.

In the context of soft error assessment, with the exception
of [34], [36] and this work, reviewed approaches do not con-
sider resource-constraint on their experiments. The majority
of these works consider either FPGA implementations of ML
algorithms [9], [32], [35] or their execution on GPU [30],
DNN accelerators [10], [29], [37] or general-purpose proces-
sors [31], [33]. On the soft error mitigation side, traditional
partial TMR or specific mitigation techniques have been
considered either in FPGA implementations [9] or applied
to specialized hardware accelerator [10] or more generic
GPUs [30].

Li et al. [10] assess the soft error resilience of DNNs
running on specific accelerators. In this work, the authors
conducted an in-depth study of the applications’ functioning
while promoting bespoke mitigation solutions to each case
seeking a lower cost. Different from this work, our approach
facilitates the application of mitigation techniques through a
more generic and automated approach to protect the most
critical functions/layers of generic or ML-based applications,
considering the possibility of manual configurations to guide
bespoke hardening tuning for resource-constraint devices.
Authors in [28], [32] assess the soft error reliability of
distinct ML algorithms implemented in FPGA devices, while
Libano et al. [9] increment the evaluation by presenting full
and partial hardware replication solutions to recover from
errors.

dos Santos et al. [30] focus on Graphics Processing Units
(GPUs), which are widely used in high-computational systems.
In this work, the Algorithm-Based Fault Tolerance (ABFT)
technique has been applied due to its efficient to detect soft
errors in dense linear algebra operations including matrix
multiplication, which is highly performed by CNNs. Although
ABFT brings less performance overhead w.r.t. replication-like
approaches (e.g., TMR), resulting overhead might still lead
to high response times - gold criteria to resource-constrained
devices.

This paper extends from previous work in three key
directions:

– First, this is the first work to investigate the relationship
between the soft error susceptibility and model accuracy,
which is completely ignored in the works presented
in Table I;

– Second, our work puts focus on reducing the occurrence
of soft errors in resource-constraint devices. Therefore,
this is the first work to evaluate the benefits of using a
lightweight technique (e.g., RAT) w.r.t. a partial replica-
tion technique;

– Third, this work explores the relative performance, mem-
ory utilization, and soft error reliability trade-offs of two
system-level mitigation techniques considering a micro-
processor running different precision bitwidth variations
of MobileNet on ImageNet.

III. ADOPTED FAULT INJECTION FRAMEWORK

Rather than developing a fault injection (FI) framework
from scratch, this work adopts the SOFIA soft error assessment
flow [38]. This choice is justified because SOFIA provides a
set of well-accepted FI techniques along with several facilities
(e.g., error tracer module), which allows to identify and
classify the effects of soft errors on the system’s behaviour,
considering both hardware and software architectures. This
Section covers all relevant steps used to assess the impact of
precision bitwidth on the soft error reliability of MobileNet
CNN, including the description of the adopted profiling,
the fault classification, the mitigation techniques, and the
evaluation metrics used in this work.

A. Profiling and Soft Error Assessment

To enable the soft error assessment of emerging ML-based
applications, software engineers must be able to execute com-
plex software stacks with hundreds of billions of instructions,
early in the design phase. Due to the complexity of such stacks
(e.g., kernels, drivers, and applications), analysing their soft
error reliability may take several months if conducted at low
level simulations (e.g., gate-level). In this regard, this work
uses SOFIA [38], a framework based on OVPsim [39], which
allows injecting faults at a speed of up to 1000 MIPS while
preserving the soft error analysis accuracy (i.e., mismatch
below to 10%) for single and multicore processors [40].
SOFIA emulates the occurrence of single-bit upsets (SBUs)
by injecting faults into pre-selected data storage elements
(i.e., registers and memory addresses) during the execution
of a given software stack. The fault injection configuration
(e.g., bit location and injection time) relies on a random
uniform function, which is a well-accepted fault injection
technique since it covers the majority of possible faults
on a system at a low computation cost. The framework
supports the injection of bit-flips in six different scopes:
register file, physical memory, application virtual memory,
application variables and data structures, function object
code, and function lifespan. These techniques allow covering
either architecture aspects as well as isolate specific kernel
(e.g., scheduling) or deep inference network function (e.g.,
matrix multiplication), thus covering both spatial and temporal
faults.

This work uses two complementary FI techniques to assess
deep inference networks’ soft error reliability: random register
file and function lifespan. On the one hand, random register file
FI is a well-accepted mechanism that homogeneously covers

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on December 07,2021 at 11:45:26 UTC from IEEE Xplore. Restrictions apply.

ABICH et al.: APPLYING LIGHTWEIGHT SOFT ERROR MITIGATION TECHNIQUES 4775

TABLE I

RELATED WORKS IN MACHINE LEARNING ALGORITHMS SOFT ERROR ASSESSMENT AND MITIGATION

most soft errors, striking the general-purpose registers while
both application and operating system codes are executing.
On the other hand, function lifespan reduces the FI spectrum
by limiting the insertion time to those small intervals where
the target function is active.

Figure 1 shows the fault injection flow used in this work.
First, the Platform Setup defines the parameters used in
the fault campaign, such as the target architecture and the
evaluated application. Then, the Gold Reference Model step
is performed to extract the execution data without fail, which

will generate our faultless reference. Fault Injection Setup is
another step with human intervention. This step defines the
number of bit-flips that will be performed according to a
statistical model, thus generating a list of simulation moments
and registers’ bit where the fault injections will occur. Next,
Fault Injection Simulation performs fault injection campaigns;
at the end of each run, SOFIA extracts the processor’s register
bank memory dump, in addition to the application output to
be used for comparison with the gold reference data. Finally,
Fault Analysis compares the experimental results, which are

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on December 07,2021 at 11:45:26 UTC from IEEE Xplore. Restrictions apply.

4776 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 68, NO. 11, NOVEMBER 2021

Fig. 1. FI flow: covering from the platform setup to the fault analysis.

grouped according to a fault classification that can be defined
by the user.

The fault classification adopted in this work follows the
pattern shown in [10], [34], [41], where the authors identify
the faults in the outputs as: correct output, tolerable faults,
critical faults, and crashes. Correct outputs are those where
the output data (e.g., output probability) is the same as the ones
obtained from the faultless execution (i.e., golden reference
data). In tolerable faults, the output data differs from the gold
reference data. However, they present a top-ranked classifi-
cation equals to the fault-free execution. On the other hand,
critical faults affect the output with incorrect probabilities and
no predictions (i.e., cases where odds are dispersed, therefore,
they have no probabilities in the output data). Finally, crash
comprises the application that ends abnormally with an error
indication or does not finish, requiring a preemptive removal
after a threshold execution time.

Note that the main difference between critical fault and
crash is that the former refers to a silent error (i.e., the appli-
cation ends without an error signal) while the latter is a
detectable one (i.e., an error signal or unexpected behaviour).
Silent errors are considered critical in this work as they can be
propagated, which might ultimately incur in human life losses
for safety-critical applications (e.g., autonomous vehicles).
In contrast, detectable errors can be handled by the system
as there is the possibility to reset the system or rerun the
algorithm to obtain the correct result.

B. Mitigation Techniques

To ensure failsafe functionality of ML-based systems, reli-
ability engineers should be able not only to identify but also
explore efficient mitigation solutions to reduce the occurrence
of soft errors. This work also aims to improve the soft
error reliability through the application of two software-based
mitigation techniques: P-TMR and RAT.

The first mitigation technique is based on a replication
approach, i.e., a technique that replicates instructions (except
stores and branches) and adds majority voters before con-
ditional branches, load, and store instructions on top of an
intermediate representation (i.e., LLVM IR [42]). However,
unlike traditional approaches that replicate the entire code,
this work uses the partial TMR (P-TMR) technique that
only replicates specific/critical functions, thus minimizing the
performance overhead.

The second adopted mitigation technique is the register
allocation technique (RAT) [12]. This hardening technique
restricts the number of available registers used to execute

specific functions, thus reducing the exposed area. Unlike
replication approaches, RAT does not involve code redundancy
and is an architecture-independent approach. Also, RAT is a
compiler-based technique; thus, it can be associated with other
mitigation techniques applied at the LLVM IR level (e.g., our
P-TMR technique).

C. Evaluation Metrics

To properly assess the soft error reliability impact on a given
system, reliability metrics must be used. This work uses the
mean work to failure (MWTF) metric [43].

Complementary to the fault classification, the MWTF shows
the average amount of work that an application can perform
until reaching a failure (i.e., higher values are better). This is a
fair metric to either compare or evaluate the effects generated
by different mitigation techniques. This metric is evaluated in
the Fault Analysis step (Figure 1). Note that for deep inference
networks, the unit work is defined as the relationship between
the application’s runtime and the most critical vulnerability
(i.e., critical faults), as shown in Equation (1).

MW T F = 1

(execution time × AV FCrit icalFaults)
(1)

The Architecture Vulnerability Factor (AVF) is used to
measure the probability of a fault result in an error (i.e., SDC
or Crash) [44]. The AVF critical considers only the SDCs that
actually led to wrong classifications in this case study (i.e.,
critical faults). For example, in safety-critical applications,
such as autonomous cars, a critical fault can alter the detection
of an obstacle in front of the vehicle, which can lead to an
accident. For this reason, this work used the critical-based AVF
(AV Fcrit ical f aults).

IV. CASE STUDY

This Section describes the MobileNet CNN [11], which was
used to investigate the relationship between soft errors and
model accuracy. The MobileNet CNN precision was set using
the CMix-NN library [5] and executed on an Arm Cortex-
M7 processor. The MobileNet is trained with the ImageNet
dataset [45], which consists of 10 million labelled images
divided into 1000 object classes. To present the adopted
CNN application, Section IV-A describes the MobileNet while
Section IV-B shows the CMix-NN library.

A. MobileNet CNN

MobileNet CNN [11] is a streamlined architecture that aims
to build lightweight deep inference networks. The MobileNet
CNN topology consists of several convolution layers com-
posed of depthwise and pointwise convolutions, average pool-
ing layers, and a fully connected layer. In this case study,
the adopted MobileNet CNN was configured with a 3 × 3
depthwise separable convolution, representing savings of up
to 9 times in computational cost compared to standard convo-
lutions. After convolution layers, an average pooling reduces
the spatial resolution to 1 before the fully connected layer.
In this sense, MobileNet has 29 layers, considering depthwise
and pointwise convolutions as separate layers, except for the
first layer that is a full standard convolution.

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on December 07,2021 at 11:45:26 UTC from IEEE Xplore. Restrictions apply.

ABICH et al.: APPLYING LIGHTWEIGHT SOFT ERROR MITIGATION TECHNIQUES 4777

Fig. 2. CMix-NN quantized convolutional layer (adapted from [5]).

B. CMix-NN Library

The adopted MobileNet CNN uses the CMix-NN library [5]
to implement mixed low-precision standard convolution and
depthwise separable convolution layers functions. While tra-
ditional CNN models are trained using 32-bit floating-point
data representation, the CMix-NN uses mixed low-precision
unsigned integer representation, where the weights and bias are
calculated using a custom precision training. The CMix-NN
kernels deploy optimizations focusing on enabling the exe-
cution of CNNs on Cortex-M based systems that support
single instruction/multiple data (SIMD) instructions, espe-
cially 16-bit multiply-and-accumulate (MAC) instructions
(e.g., SMLAD). The CMix-NN library provides a complete
set of convolutional kernels featuring a mixed low-bitwidth for
the weights, input, and output activations that support 8, 4, and
2 bitwidth combinations and different quantization techniques.

A typical mixed-precision quantized convolutional layer
(QCL) workload splits the convolution between quantized
image-to-column and a matrix multiplication loop. The quan-
tized functions load Q-bits input data in temporary buffers
casting from the original Q-bits format to execute through
vectorized SIMD 2×16 MAC instructions. Figure 2 illustrates
the QCL internal components with memory requirements
(e.g., inputs, weights, and structures) and the computational
dataflow, which implement the mixed low-precision convolu-
tional functions. The low-precision MAC unit accumulates the
convolution result over a temporary 32-bit precision variable
through vectorized MAC operations. In asymmetric quanti-
zations, Zw and Zi apply the offset to the loaded parameter
values to transpose them into the custom asymmetric domain.
While the Unpack operation loads the convolution operands,
the Compressor unit operates the final compression on the
high-precision accumulation, considering a set of parame-
ters TA, which varies depending on the applied quantization
technique.

In addition, CMix-NN library supports per-layer (PL) and
per-channel (PC) compression techniques for any combination
of bitwidth between input, output, and weights. While a PL
quantization exploits a single min/max value for the entire
layer, the PC computes a min/max value for any output
channel. This latter approach is most beneficial when the
weight distribution varies widely between channels. Further-
more, the CMix-NN library also supports the integer-channel
normalization activation (ICN) [46]. This technique allows

the introduction of lower bitwidth models with negligible
inference loss, opening opportunities to exploit the soft error
reliability of convolutional layers with precision bitwidth.

V. RESULTS

This Section explores the soft error reliability of the
MobileNet CNN considering different aspects: precision
bitwidth, layer vulnerability, mitigation techniques, and rel-
ative trade-off analysis. In this sense, Section V-A details
the experimental setup used to perform the fault injection
campaigns. Section V-B exploits the MobileNet soft error
reliability considering different precision bitwidth configu-
rations. Then, Section V-C presents the reduction of soft
errors when applying two system-level mitigation techniques.
Finally, Section V-D presents the relative performance and
reliability trade-off for the adopted soft error mitigation
techniques.

A. Experimental Setup
To provide trustworthy results, experiments consider more

than 4.5 million fault injections to assess the soft error reliabil-
ity of two mitigation techniques applied to the MobileNet on
ImageNet. This work considers two FI techniques (i.e., func-
tion lifespan and random register file) to inject flipped bits in
the general-purpose registers (i.e., r0-r15) of the Arm Cortex-
M7 processor. This choice was motivated for two reasons.
First, because the two FI techniques provide better coverage
of the soft errors presented. Second, because all CMix-NN
optimizations, including the SIMD instructions, require only
the general-purpose registers. Note that this work focuses on
the assessment and mitigation of soft errors originated from
general-purpose registers, and hence it is assumed that the
memory is protected by some type of error correction, such
as ECC or parity bit.

Table II shows the experimental setup. The adopted
MobileNet CNN has per-channel quantization with ICN lay-
ers (PC+ICN [46]), configured with the width multiplier
of 0.5 and input sizes of 192, since this configuration has
the minimum channel width required by 2-bit configurations.

In addition, this work uses the same compilation environ-
ment (i.e., Clang 6.0.1 and optimization flag -O2) to set the
bitwidth configurations and the mitigation techniques. Each
fault injection campaign considers a single input image for
each MobileNet CNN execution, thus not considering the fault
propagation to the subsequent executions. Also, each campaign
is a particular configuration scenario and the 270 campaigns
comprise: 10 target layers * 9 precision bitwidths * 3 mitiga-
tion cases (Code unprotected, P-TMR, and RAT). Furthermore,
conducting a precise, well-covered, and realistic approach is
key when assessing a system’s soft error reliability. In this
sense, to ensure the results’ statistical significance, this work
injects 17k faults per campaign, which according to Leveu-
gle et al. [47], generates a margin of error of 1% with a 99%
confidence level.

B. Soft Error Reliability Assessment of the MobileNet CNN
Considering the Precision Bitwidth

Initially, we validated the SOFIA framework’s faultless
reference against the outputs reported by the MobileNet

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on December 07,2021 at 11:45:26 UTC from IEEE Xplore. Restrictions apply.

4778 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 68, NO. 11, NOVEMBER 2021

TABLE II

EXPERIMENTAL SETUP

repository1 and its on-chip execution. In this regard, we exe-
cuted MobileNet CNN on an STM32H7432 device, and then
compared it with those collected from its execution on SOFIA,
where no difference in the output probabilities was shown.
This experiment is of paramount importance to guarantee the
reproducibility and meaningfulness of the results.

After validating the reference flow, we generate fault injec-
tion campaigns considering the variation of precision bitwidth
with weights raging from w2 to w8 and input/output activa-
tions from a2 to a8. Table III shows the MobileNet CNN soft
error results detailing the fault classification for each bitwidth
configuration.

In general, results show a similar soft error reliability
behaviour between the different quantization configurations.
For example, the results from fault injections in All layers
in Table III, crash occurrences handle 6.92% on average
across all precision bitwidth configurations; this is because
MobileNet CNN functions use multiple loops to process data
that require many control instructions. Note that CNNs are
known to have a lot of redundancy built-in, due to which
they present a reasonable masking rate, which justifies the
average of 86.7% of correct outputs. However, a single crit-
ical fault occurrence in safety-critical systems running the
underlying trained models can lead to fatal consequences
(i.e., life-threatening).

Table III also shows how the quantization of inference
activations affects the MobileNet CNN soft error reliability
by reducing the correct outputs in up to 10.12% when varying
from a2 to a8. Although it affects less, increasing the weight
bitwidth also reduces the soft error reliability by up to 2.21%
on the correct outputs when varying the configurations from
w2 to w8. This occurs because a SIMD MAC instruction
splits a 32-bits register into different segments, which are
set according to the bitwidth configuration. This leads to a
higher probability to overwrite the faulty bit, thus reducing

1https://github.com/EEESlab/mobilenet_v1_stm32_cmsis_nn.git
2https://www.st.com/en/microcontrollers-microprocessors/stm32h743vi.html

Fig. 3. Results showing fault classifications comparing MobileNet CNN
without protection, with P-TMR, and RAT mitigation techniques. The red
dots indicate the normalized MWTF (right y-axis).

the probability to propagate the fault to the inference phases.
Results show that both higher precision bitwidths and the
unpack/compress process can led to an increase number of
faults. The unpack/compress process is related to load and
store instructions that are executed before and after SIMD
MAC operations, which increases the probability of a fault
impacts on the output probabilities. Note that the increase in
the precision bitwitdh can also reduce the fault criticality since
a soft error in a less significant bit is less likely to generate
a critical fault. Such behaviour can be seen in Table III
All when comparing w8a4 and w8a8 configurations, where
the number of critical faults decreases and tolerable faults
increases significantly.

To understand the layers’ vulnerability to the soft errors,
Table III shows the results obtained from FI campaigns that
target distinct layers of the MobileNet CNN topology con-
sidering different data volumes. Results show that the most
effective faults tend to become either critical or system crashes
in low-precision activation configurations (i.e., a2 and a4).
Such an effect can be seen in convolutional layers with a
high volume of input data processing, where tolerable faults
tend to 0% (i.e., layers 1 to 4). In turn, the number of
tolerable faults increases as the input data volume reduces
in the convolution layers (i.e., layers 25 and 27). This is
because the dimensions of input activations are reduced during
MobileNet CNN execution, while the channel width increases,
thus making the data volume larger in weights w.r.t. input
activations. Consequently, faults occurring in these layers are
more likely to propagate to the output, i.e., the appearance of a
high number of tolerable and critical faults in layers 26 and 27.
Note that the occurrence of faults (i.e., Tolerable + Critical +
Crash) also increases alongside the precision bitwidth.

C. Applying Mitigation Techniques to MobileNet CNN

Aiming to reduce the MobileNet CNN susceptibility to soft
errors, this Section considers the use of two software-based
mitigation techniques: P-TMR and RAT. Both techniques
are applied to the matrix multiplication function, which is
considered here the most critical one due to its higher active
period within the MobileNet execution time.

Figure 3 shows the reliability improvement of MobileNet
CNN by applying the two mitigation techniques. The x-axis

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on December 07,2021 at 11:45:26 UTC from IEEE Xplore. Restrictions apply.

ABICH et al.: APPLYING LIGHTWEIGHT SOFT ERROR MITIGATION TECHNIQUES 4779

TABLE III

PERCENTAGES OF TOLERABLE AND CRITICAL FAULTS ON MOBILENET CNN CONSIDERING DIFFERENT PRECISION BITWIDTH CONFIGURATIONS

has three bars for each adopted precision bitwidth configura-
tion. The first bar represents MobileNet CNN with unprotected
code (λ), and the other two the mitigation techniques P-TMR
(γ) and RAT (β). The left-hand y-axis shows the soft error
percentage obtained from the fault injection campaigns, and
the right-hand y-axis shows the MWTF normalized by the
unprotected version. While the left-hand metric shows an
overview of the generated faults, the one at the right-hand
side relies on a well-accepted reliability metric to compare
the two mitigation techniques.

As expected, Figure 3 shows that both mitigation techniques
significantly increase the number of correct outputs while
reducing the number of critical faults. In general, a lower
precision bitwidth configuration (i.e., 2 and 4-bits to w and
a) lead to a reduction in fault occurrences. On the other
hand, 8-bit configurations present a higher occurrence of
tolerable faults. This is due to larger bitwidth operations that
reduce the fault masking rate. Even under these conditions,
both mitigation techniques protect the code and turn critical
faults into correct or tolerable ones. Figure 3 shows that
P-TMR has a significant AVF improvement in all scenarios,
but the performance penalty does not compensate for w4a2 and
w8a8 configurations (i.e., normalized MW T F < 1). In turn,
the RAT improved the MWTF in all configurations, raising up
to 4.7× in the w8a4 precision bitwidth.

Figure 4 shows the reliability improvement per layer
for the most affected precision bitwidth configurations (i.e.,
w8a4 and w8a8). Compared to the unprotected version, both

mitigation techniques show soft error reliability improvements.
On the one hand, Figure 4.a shows a reduction of up to 8%
in critical faults and system crashes in the 4-bit precision
activation. On the other hand, Figure 4.b illustrates that some
tolerable, critical, and crash faults become correct outputs for
8-bit precision activations. In the P-TMR perspective, this
effect occurs mainly due to faults striking registers used by
redundant instructions. Unlike, RAT reduces the number of
vulnerable registers during the critical function’s execution,
taking advantage of the inherent high resilience of MobileNet.

D. Trade-Off Between Performance and Reliability

This Section details the drawbacks introduced by the two
mitigation techniques and discusses the trade-off between
increased protection and performance penalty. Figure 5 shows
the performance overhead of the P-TMR and RAT compared to
no protection execution. The execution times were extracted
by running the MobileNet CNN on an STM32H743 board.
Results show a performance degradation of up to 1.2× for
RAT and 3.8× for P-TMR, depending on the precision
bitwidth configuration. In this regard, the original MobileNet
achieves ∼1.9 inferences per second. In turn, when applying
the P-TMR mitigation technique, the number of inferences
per second reduces to ∼0.5 while the RAT ∼1.5 in worst-case
scenarios. Note that the most remarkable performance over-
head occurs because P-TMR is applied to the applica-
tion’s intermediate code without further optimization, i.e., the

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on December 07,2021 at 11:45:26 UTC from IEEE Xplore. Restrictions apply.

4780 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 68, NO. 11, NOVEMBER 2021

Fig. 4. Results of fault classification by layer of the two most affected
precision bitwidth configurations.

Fig. 5. MobileNet execution time overhead considering P-TMR and RAT.

application is compiled with -O2 and the mitigation technique
is applied without architecture-specific optimizations. This
approach is required to avoid code removals made by the
compiler’s backend.

Figure 6 compares the relative trade-off between reliability,
accuracy, performance and memory footprint overhead for two
precision bitwidth configurations (w8a4 and w8a8). Table IV
shows the footprint overhead, which is calculated based on
the additional hardened application code size resulting from
both P-TMR and RAT mitigation techniques w.r.t. the original
application code (i.e., FLASH memory).

Fig. 6. Relative trade-off between P-TMR and RAT mitigation techniques
considering w8a4 and w8a8 precision bitwidth configurations, comparing
Mean Work To Failure (MWTF), Performance Overhead (PO), Footprint
Overhead (FO), Accuracy (AC), and Tolerable Faults (TF).

TABLE IV

NORMALIZED MOBILENET FOOTPRINT OVERHEAD WHEN
APPLYING SOFT ERROR MITIGATION TECHNIQUES

This comparison provides an overview of the advantages
and disadvantages of both mitigation techniques when applied
to the MobileNet CNN. Gathered values are normalized
between 1 and 5, and the top axis represents the MWTF
improvement, the two left axes represent the performance and
memory overheads, and the two right axes show the precision
and the tolerable percentages. Figure 6 clearly shows that
RAT presents a significant lower performance overhead, which
directly led to an improved MWTF w.r.t. the P-TMR.

The resulting performance overhead can be explained not
only by the increased number of instructions but also the
instruction set employed by each mitigation technique. Table V
shows that P-TMR consists of almost 5× more Thumb instruc-
tions, which correspond to near 90% of the entire hardened
code. This highly increase is mainly due to the register
spilling forced by the high register pressure and the impact
of replicated instructions. In turn, RAT slightly increases
the number of executed Thumb and SIMD, maintaining the
percentage of both instruction sets compared to the reference
MobileNet execution. Aforementioned results demonstrate that
RAT provides the best relative performance, reliability and
memory footprint utilisation trade-off.

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on December 07,2021 at 11:45:26 UTC from IEEE Xplore. Restrictions apply.

ABICH et al.: APPLYING LIGHTWEIGHT SOFT ERROR MITIGATION TECHNIQUES 4781

TABLE V

PERCENTAGE OF USE AND RELATIVE INCREASE IN EXECUTED
INSTRUCTIONS CONSIDERING DIFFERENT

INSTRUCTION SETS

These results are of paramount importance for safety-critical
applications because, in addition to reliability, these applica-
tions have real-time requirements. For example, in self-driving
cars, a late reaction can lead to a fatal accident [48]. In this
context, traditional soft error mitigation solutions involving
time redundancy, such as TMR, may not be suitable for
such kind of applications. Even when partially applied, this
technique might inflict a significant response time penalty that
is not tolerable in real-time applications, thus justifying the
need for lightweight techniques, such as RAT, especially for
resource constraint systems.

VI. CONCLUSION

This paper assesses the soft error reliability of the
MobileNet CNN when executed on the Arm Cortex-
M7 processor architecture. The evaluated results demonstrate
that the adopted CNN has a high susceptibility to soft errors
in higher precision bitwidth configurations, since the fault
occurrence achieves up to 20%. Results also demonstrate
that the variation of precision bitwidth of the activations
is more susceptible to soft errors than the weights, since
critical failures affect both the reliability and the accuracy
of CNN. Moreover, the reduction of weights and activations
precision bitwidth increases the fault-masking capability of up
to 10%, thus reducing the MobileNet CNN susceptibility to
the occurrence of soft errors. However, such precision bitwidth
reduction does not eliminate the occurrence of critical fail-
ures, requiring the use of fault mitigation techniques. Finally,
gathered results show that RAT provides significant soft error
reliability improvement at a lower performance penalty (i.e.,
∼1.2× on average) when compared to the P-TMR.

Future works will focus on two main directions. The
first direction comprises the soft error assessment of
accelerator-based IoT devices, which are more suitable for
highly computing-intensive AI applications. The second inves-
tigation aims to assess the MobileNet’s behaviour when inject-
ing faults in memory locations, considering different precision
bitwidth configurations.

REFERENCES

[1] V. Joshi et al., “Accurate deep neural network inference using computa-
tional phase-change memory,” Nature Commun., vol. 11, no. 1, p. 2473,
Dec. 2020.

[2] J. Amoh and K. M. Odame, “An optimized recurrent unit for ultra-
low-power keyword spotting,” Proc. ACM Interact., Mobile, Wearable
Ubiquitous Technol., vol. 3, no. 2, pp. 1–17, Jun. 2019.

[3] L. Lai, N. Suda, and V. Chandra, “CMSIS-NN: Efficient neural network
kernels for arm cortex-M CPUs,” 2018, arXiv:1801.06601. [Online].
Available: http://arxiv.org/abs/1801.06601

[4] STMicroelectronics. (2020). AI Expansion Pack for STM32CubeMX.
[Online]. Available: https://www.st.com/en/embedded-software/x-cube-
ai.html

[5] A. Capotondi, M. Rusci, M. Fariselli, and L. Benini, “CMix-NN: Mixed
low-precision CNN library for memory-constrained edge devices,” IEEE
Trans. Circuits Syst. II, Exp. Briefs, vol. 67, no. 5, pp. 871–875,
May 2020.

[6] M. S. Mahdavinejad, M. Rezvan, M. Barekatain, P. Adibi, P. Barnaghi,
and A. P. Sheth, “Machine learning for Internet of Things data analysis:
A survey,” Digit. Commun. Netw., vol. 4, no. 3, pp. 161–175, 2018.

[7] (2011). Road Vehicles—Functional Safety. [Online]. Available:
https://www.iso.org/standard/68383.html

[8] G. Abich, R. Reis, and L. Ost, “The impact of precision bitwidth on
the soft error reliability of the MobileNet network,” in Proc. IEEE Latin
Amer. Symp. Circuits Syst. (LASCAS), 2021, pp. 1–4.

[9] F. Libano et al., “Selective hardening for neural networks in FPGAs,”
IEEE Trans. Nucl. Sci., vol. 66, no. 1, pp. 216–222, Jan. 2019.

[10] G. Li et al., “Understanding error propagation in deep learning neural
network (DNN) accelerators and applications,” in Proc. Int. Conf. High
Perform. Comput., Netw., Storage Anal. (SC), Nov. 2017, pp. 1–12.

[11] A. G. Howard et al., “MobileNets: Efficient convolutional neural
networks for mobile vision applications,” 2017, arXiv:1704.04861.
[Online]. Available: http://arxiv.org/abs/1704.04861

[12] J. Gava, R. Reis, and L. Ost, “RAT: A lightweight system-level soft
error mitigation technique,” in Proc. IFIP/IEEE 28th Int. Conf. Very
Large Scale Integr. (VLSI-SOC), Oct. 2020, pp. 165–170.

[13] A. Avižienis, J.-C. Laprie, and B. Randell, “Dependability and its threats:
A taxonomy,” in Building the Information Society. Boston, MA, USA:
Springer, 2004, pp. 91–120.

[14] R. C. Baumann, “Radiation-induced soft errors in advanced semicon-
ductor technologies,” IEEE Trans. Device Mater. Rel., vol. 5, no. 3,
pp. 305–316, Sep. 2005.

[15] B. Nicolescu and R. Velazco, “Detecting soft errors by a purely software
approach: Method, tools and experimental results,” in Proc. Design,
Automat. Test Eur. Conf. Exhib. (DATE), 2003, pp. 57–62.

[16] A. Benso, S. Chiusano, P. Prinetto, and L. Tagliaferri, “A C/C++ source-
to-source compiler for dependable applications,” in Proc. IEEE/IFIP Int.
Conf. Dependable Syst. Netw. (DSN), Jun. 2000, pp. 71–78.

[17] A. Serrano-Cases, Y. Morilla, P. Martín-Holgado, S. Cuenca-Asensi, and
A. Martínez-Álvarez, “Nonintrusive automatic compiler-guided reliabil-
ity improvement of embedded applications under proton irradiation,”
IEEE Trans. Nucl. Sci., vol. 66, no. 7, pp. 1500–1509, Jul. 2019.

[18] G. S. Rodrigues, F. L. Kastensmidt, R. Reis, F. Rosa, and L. Ost,
“Analyzing the impact of using pthreads versus OpenMP under fault
injection in ARM cortex-A9 dual-core,” in Proc. 16th Eur. Conf. Radiat.
Effects Compon. Syst. (RADECS), Sep. 2016, pp. 1–6.

[19] G. A. Reis, J. Chang, N. Vachharajani, R. Rangan, and D. I. August,
“SWIFT: Software implemented fault tolerance,” in Proc. Int. Symp.
Code Gener. Optim., 2005, pp. 243–254.

[20] N. Oh, P. P. Shirvani, and E. J. McCluskey, “Error detection by
duplicated instructions in super-scalar processors,” IEEE Trans. Rel.,
vol. 51, no. 1, pp. 63–75, Mar. 2002.

[21] M. Didehban and A. Shrivastava, “nZDC: A compiler technique for near
zero silent data corruption,” in Proc. ACM/IEEE Design Automat. Conf.
(DAC), Jun. 2016, pp. 1–6.

[22] G. A. Reis, J. Chang, and D. I. August, “Automatic instruction-level
software-only recovery,” IEEE Micro, vol. 27, no. 1, pp. 36–47, Jan.
2007.

[23] S. Feng, S. Gupta, A. Ansari, and S. Mahlke, “Shoestring: Probabilistic
soft error reliability on the cheap,” ACM SIGARCH Comput. Archit.
News, vol. 38, no. 1, pp. 385–396, Mar. 2010.

[24] S. Feng, S. Gupta, A. Ansari, S. A. Mahlke, and D. I. August, “Encore:
Low-cost, fine-grained transient fault recovery,” in Proc. IEEE/ACM Int.
Symp. Microarchitecture (MICRO), Dec. 2011, pp. 398–409.

[25] D. Kuvaiskii, O. Oleksenko, P. Bhatotia, P. Felber, and C. Fetzer,
“ELZAR: Triple modular redundancy using Intel AVX (practical expe-
rience report),” in Proc. 46th Annu. IEEE/IFIP Int. Conf. Dependable
Syst. Netw. (DSN), Jun. 2016, pp. 646–653.

[26] M. Didehban, A. Shrivastava, and S. R. D. Lokam, “NEMESIS:
A software approach for computing in presence of soft errors,” in
Proc. IEEE/ACM Int. Conf. Comput.-Aided Design (ICCAD), Nov. 2017,
pp. 297–304.

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on December 07,2021 at 11:45:26 UTC from IEEE Xplore. Restrictions apply.

4782 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 68, NO. 11, NOVEMBER 2021

[27] M. Didehban, S. R. D. Lokam, and A. Shrivastava, “InCheck: An in-
application recovery scheme for soft errors,” in Proc. ACM/IEEE Design
Automat. Conf. (DAC), Jun. 2017, pp. 1–6.

[28] F. Libano, P. Rech, L. Tambara, J. Tonfat, and F. Kastensmidt, “On
the reliability of linear regression and pattern recognition feedforward
artificial neural networks in FPGAs,” IEEE Trans. Nucl. Sci., vol. 65,
no. 1, pp. 288–295, Jan. 2018.

[29] B. Reagen et al., “Ares: A framework for quantifying the resilience of
deep neural networks,” in Proc. 55th ACM/ESDA/IEEE Design Automat.
Conf. (DAC), Jun. 2018, pp. 1–6.

[30] F. F. dos Santos et al., “Analyzing and increasing the reliability of
convolutional neural networks on GPUs,” IEEE Trans. Rel., vol. 68,
no. 2, pp. 663–677, Jun. 2019.

[31] F. R. da Rosa, R. Garibotti, L. Ost, and R. Reis, “Using machine
learning techniques to evaluate multicore soft error reliability,” IEEE
Trans. Circuits Syst. I, Reg. Papers, vol. 66, no. 6, pp. 2151–2164,
Jun. 2019.

[32] M. G. Trindade et al., “Assessment of a hardware-implemented machine
learning technique under neutron irradiation,” IEEE Trans. Nucl. Sci.,
vol. 66, no. 7, pp. 1441–1448, Jul. 2019.

[33] Z. Chen, G. Li, K. Pattabiraman, and N. DeBardeleben, “BinFI: An effi-
cient fault injector for safety-critical machine learning systems,” in Proc.
Int. Conf. High Perform. Comput., Netw., Storage Anal., Nov. 2019,
pp. 1–23.

[34] M. G. Trindade, R. P. Bastos, R. Garibotti, L. Ost, M. Letiche, and
J. Beaucour, “Assessment of machine learning algorithms for near-
sensor computing under radiation soft errors,” in Proc. 27th IEEE Int.
Conf. Electron., Circuits Syst. (ICECS), Nov. 2020, pp. 1–4.

[35] L. M. Luza et al., “Investigating the impact of radiation-induced soft
errors on the reliability of approximate computing systems,” in Proc.
IEEE Int. Symp. Defect Fault Tolerance VLSI Nanotechnol. Syst. (DFT),
Oct. 2020, pp. 1–6.

[36] G. Abich, J. Gava, R. Reis, and L. Ost, “Soft error reliability assessment
of neural networks on resource-constrained IoT devices,” in Proc. 27th
IEEE Int. Conf. Electron., Circuits Syst. (ICECS), Nov. 2020, pp. 1–4.

[37] S. Kundu et al., “Special session: Reliability analysis for
ML/AI hardware,” 2021, arXiv:2103.12166. [Online]. Available:
http://arxiv.org/abs/2103.12166

[38] V. Bandeira, F. Rosa, R. Reis, and L. Ost, “Non-intrusive fault
injection techniques for efficient soft error vulnerability analysis,” in
Proc. IFIP/IEEE 27th Int. Conf. Very Large Scale Integr. (VLSI-SoC),
Oct. 2019, pp. 123–128.

[39] Imperas Software. (2021). Open Virtual Platforms (OVP). [Online].
Available: http://www.ovpworld.org/

[40] G. Abich et al., “Evaluation of the soft error assessment consistency
of a JIT-based virtual platform simulator,” IET Comput. Digit. Techn.,
vol. 15, no. 2, pp. 125–142, 2021.

[41] N. Khoshavi, C. Broyles, and Y. Bi, “A survey on impact of tran-
sient faults on BNN inference accelerators,” 2020, arXiv:2004.05915.
[Online]. Available: http://arxiv.org/abs/2004.05915

[42] C. Lattner and V. Adve, “LLVM: A compilation framework for lifelong
program analysis & transformation,” in Proc. Int. Symp. Code Gener.
Optim. (CGO), 2004, pp. 75–86.

[43] G. A. Reis, J. Chang, N. Vachharajani, R. Rangan, D. I. August, and
S. S. Mukherjee, “Software-controlled fault tolerance,” ACM Trans.
Archit. Code Optim., vol. 2, no. 4, pp. 366–396, Dec. 2005.

[44] S. S. Mukherjee, C. Weaver, J. Emer, S. K. Reinhardt, and T. Austin,
“A systematic methodology to compute the architectural vulnerabil-
ity factors for a high-performance microprocessor,” in Proc. 36th
Annu. IEEE/ACM Int. Sympo Microarchitecture (MICRO), Dec. 2003,
pp. 29–40.

[45] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “ImageNet:
A large-scale hierarchical image database,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit. (CVPR), Jun. 2009, pp. 248–255.

[46] M. Rusci, A. Capotondi, and L. Benini, “Memory-driven mixed
low precision quantization for enabling deep network inference
on microcontrollers,” 2019, arXiv:1905.13082. [Online]. Available:
http://arxiv.org/abs/1905.13082

[47] R. Leveugle, A. Calvez, P. Maistri, and P. Vanhauwaert, “Statistical fault
injection: Quantified error and confidence,” in Proc. Design, Automat.
Test Eur. Conf. Exhib. (DATE), Apr. 2009, pp. 502–506.

[48] S. S. Banerjee, S. Jha, J. Cyriac, Z. T. Kalbarczyk, and R. K. Iyer,
“Hands off the wheel in autonomous vehicles?: A systems perspective
on over a million miles of field data,” in Proc. 48th Annu. IEEE/IFIP
Int. Conf. Dependable Syst. Netw. (DSN), Jun. 2018, pp. 586–597.

Geancarlo Abich (Student Member, IEEE) received
the bachelor’s degree in computer engineering from
the University of Santa Cruz do Sul (UNISC)
in 2014, the M.Sc. degree in computer science
from the Federal University of Rio Grande do Sul
(UFRGS), and the Ph.D. degree from UFRGS. For
the past six years, he has been researching and
developing tools involving the implementation and
evaluation of reliable embedded systems based on
resource constrained devices. His research activ-
ity focuses on modeling and simulation of robust

MPSoCs and deep learning approaches targeting resource constrained devices.

Jonas Gava (Student Member, IEEE) received the
bachelor’s degree in computer engineering from the
Federal University of Rio Grande do Sul (UFRGS)
in 2019, where he is currently pursuing the M.Sc.
degree in microelectronics. He will pursue the
Ph.D. degree at UFRGS in 2021. For the past
three years, he has been researching and developing
tools involving the implementation and evaluation of
software-based soft error mitigation techniques.

Rafael Garibotti (Member, IEEE) received the
B.Sc. degree in computer engineering from PUCRS,
Brazil, the M.Sc. degree in microelectronics from
EMSE, France, and the Ph.D. degree in microelec-
tronics from the University of Montpellier, France.
He is currently an Associate Professor with PUCRS.
He was a former Visiting Scholar with Univer-
sité Grenoble Alpes, France. He was a former
Post-Doctoral Fellow with the prestigious School
of Engineering and Applied Sciences, Harvard Uni-
versity, and UFRGS, Brazil. His research activity

focuses on AI safety, robotics and autonomous systems, multicore architec-
tures, hardware accelerator, and robust deep learning.

Ricardo Reis (Senior Member, IEEE) received the
degree in electrical engineering from the Federal
University of Rio Grande do Sul (UFRGS), Brazil,
in 1978, the Ph.D. degree in informatics, option
microelectronics from the Institut National Poly-
technique de Grenoble, France, in 1983, and the
Doctor Honoris Causa degree from the University
of Montpellier, France, in 2016. He has been a
Full Professor with UFRGS since 1981. He is
also with research level 1A of the CNPq (Brazil-
ian National Science Foundation), and the head of

several research projects supported by government agencies and industry.
He has published over 700 papers in journals and conference proceedings and
authored or coauthored several books. His current research interests include
physical design, physical design automation, design methodologies, digital
design, EDA, circuits tolerant to radiation, and microelectronics education.
He was a recipient of the IEEE Circuits and Systems Society (CASS)
Meritorious Service Award in 2015. He was the Vice President of IEEE CASS
representing Region 9 (Latin America) and the President of the Brazilian
Computer Society (SBC).

Luciano Ost (Member, IEEE) received the Ph.D.
degree in computer science from PUCRS, Brazil,
in 2010. During the Ph.D., he worked as an
Invited Researcher with the Microelectronic Systems
Institute of the Technische Universitaet Darmstadt
from 2007 to 2008, and the University of York
October 2009. After the completion of the Ph.D.,
he worked as a Research Assistant for two years and
then as an Assistant Professor for two years with the
University of Montpellier II, France. He is currently
a Faculty Member with the Wolfson School, Lough-

borough University, U.K. He has authored more than 90 articles. His research
is devoted to advancing hardware and software architectures to improve
performance, security, and reliability of life-critical and multiprocessing
embedded systems.

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on December 07,2021 at 11:45:26 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

