
Received: 2 March 2017 Revised: 6 May 2018 Accepted: 30 August 2018

DOI: 10.1111/coin.12194

O R I G I N A L A R T I C L E

Allocating structured tasks in heterogeneous
agent teams

Tulio L. Basegio Rafael H. Bordini

School of Technology, PUCRS, Porto
Alegre, Brazil

Correspondence
Tulio L. Basegio and Rafael H. Bordini,
School of Technology, PUCRS,
90619-900 Porto Alegre-RS, Brazil.
Emails: tulio.basegio@acad.pucrs.br;
rafael.bordini@pucrs.br

Funding information
CNPq; CAPES; IFRS

Abstract
Task allocation is an important aspect of multiagent coordi-
nation. However, there are many challenges in developing
appropriate strategies for multiagent teams so that they
operate efficiently. Real-world scenarios such as flooding
disasters usually require the use of heterogeneous robots
and the execution of tasks with different structures and
complexities. In this paper, we propose a decentralized
task allocation mechanism considering different types of
tasks for heterogeneous agent teams where agents play dif-
ferent roles and carry out tasks according to their own
capabilities. We have run several experiments to evalu-
ate the proposed mechanism. The results show that the
proposed mechanism appears to scale well and provides
near-optimal allocations.

KEYWORDS

multiagent systems, multirobot systems, task allocation

1 INTRODUCTION

One of the challenges in developing multirobot systems is the design of coordination strategies
in such a way that robots perform their operations efficiently.1 Without such strategies, the use of
multirobot systems in complex scenarios such as rescue operations after natural disaster becomes
limited or even unfeasible. More generally, the same applies to multiagent systems.

Coordination is related to the social skills of agents, where agents communicate not only to
share data, but also communicating their beliefs, goals, and plans to other agents.2 With coordina-
tion, agents can achieve joint objectives and plans that otherwise might not be possible; it ensures
that agents perform their tasks in coherent and efficient ways, synchronizing their actions and
interactions with other agents.3,4

An important aspect considered in coordination problems is task allocation.1,5-10 There are
several features that should be considered by a mechanism for allocating tasks to multiple agents

124 © 2018 Wiley Periodicals, Inc. wileyonlinelibrary.com/journal/coin Computational Intelligence. 2019;35:124–155.

https://doi.org/10.1111/coin.12194
https://orcid.org/0000-0002-0964-9354
https://orcid.org/0000-0001-8688-9901
http://crossmark.crossref.org/dialog/?doi=10.1111%2Fcoin.12194&domain=pdf&date_stamp=2018-11-16


BASEGIO AND BORDINI 125

in real-world scenarios such as considering their heterogeneity (different physical and computa-
tional capacities, eg, different sensors and types of mobility), the impact of individual variability
to assign specific roles to individual robots, and the definition and allocation of different types of
tasks.

Although many current real-world scenarios, such as disaster rescue, typically require the use
of heterogeneous robots and the execution of tasks with different complexities and structures,
most of the solutions in the literature only deal with the allocation of one type of task, mainly
atomic tasks. The approaches that deal with more complex tasks generally focus on one type of
constraint only, and the ones that deal with more features generally have high computational
cost. Using the solutions available in an integrated way is not always possible due to the different
assumptions and architectural requirements used by different authors.

The main contribution of our work is a decentralized mechanism for the allocation of differ-
ent types of tasks to heterogeneous agent teams, considering that they can play different roles
during a mission and carry out tasks according to their own capabilities, which is particularly
important for applications in multirobot systems. Although in this paper we deal with static task
allocation problems, in ongoing work, we address a dynamic version of such problems, which
is important for our target application. The proposed mechanism was initially inspired from the
work of Luo et al,8 but it is significantly different since we are working with different types of
tasks, considering the use of roles and verification of constraints related to the heterogeneity of
robots. Some of the ideas in this paper first appeared in an earlier work of the authors.11 In this
paper, we provide further details about the process and algorithms, we provide new results from
the comparison with the optimal solution and we introduced a comparison with other decentral-
ized approaches. We also changed the way we determine the end of the allocation process; as in
our earlier work,11 we used the same approach as the work of Luo et al.8

In this paper, we use a flooding disaster scenario to exemplify our approach. Flooding disasters
are typically very dynamic and have complex tasks to be executed.12 In fact, it was the typical tasks
in flooding rescue that inspired us to work on a task allocation mechanism that could address
the various types of tasks we approach in this paper. During a rescue phase in a flooding disaster,
teams are called into action to work in tasks such as locating and rescuing victims.13 Such teams
are normally organized by a hierarchy model,14 with individuals playing different roles during
a mission. The execution of tasks during the rescue stage poses a number of risks to the teams.
Using robots in a coordinated way to help the team may minimize such risks. In our running
example, the term agent refers to the main control software of an individual robot, so we use both
terms interchangeably.

The remainder of this paper is organized as follows. Section 2 provides the background related
to task allocation describing relevant concepts to our work as well as formalize our task allocation
problem. Section 3 presents an overview about our task allocation process while Section 4 presents
the proposed task allocation mechanism. In Section 5, we evaluate the proposed approach by com-
paring it with the optimal solution and other two decentralized approaches. Section 6 describes
related works. Finally, in Section 7, we conclude this paper.

2 MULTIAGENT TASK ALLOCATION

Task allocation among multiple robots (and more generally among multiple agents) consists of
identifying which robots should perform which tasks to achieve cooperatively as many global
goals as possible and in the best possible way. Previous to the definition of our multiagent task



126 BASEGIO AND BORDINI

allocation (MATA) problem, it is important to review some relevant concepts for the allocation
process (such as task, constraint, and utility) and in particular how they are treated in this work.

2.1 Constraint
A constraint restricts the possibilities of allocation, reducing, consequently, the number of possi-
ble solutions but also making allocation more complex given one must ensure that any candidate
solution satisfies all constraints. Constraints may indicate, eg, that some subset of the tasks must
be carried out concurrently,15 or by a single robot, etc.

2.2 Utility
In this paper, utility is a value that expresses how much a task contributes to the robot's objectives
when executed by it. The utility for each task is quantified through a function, which can combine
several factors (eg, the quality with which a particular robot is likely to accomplish that task,
how quickly that is likely to be done, and so forth).16 The global team utility can be quantified
as a combination of the individual utilities. The utility values must be scalable and possible to
be compared with so that one can establish the best tasks for each robot. To calculate the utility
value of a task, relevant aspects of the robot, the environment, and the actual task requirements
should be taken into consideration.16 In this work, we assume that only the robot itself is able to
accurately determine its utility for a given task; there is no way to compute in a centralized way
the utility functions for all the robots, hence the importance of a decentralized approach to task
allocation.

2.3 Tasks
Different types of tasks can be used to address different requirements involved in real-world
scenarios, which cannot be adequately represented by only one type of task. This is because in
real-world scenarios tasks may have complex structures and other domain-specific dependencies.
In this paper, we use the following types of tasks, as defined in the work of Zlot17 (see Figure 1).

Atomic task: A task is atomic if it cannot be decomposed into subtasks. It can only be carried
out by a single robot. In this work, atomic tasks will be considered as subtasks of
both compound tasks and decomposable simple tasks.

Decomposable simple task: A task that can be decomposed into a set of atomic subtasks or other
decomposable simple tasks as long as the different decomposed parts cannot be
carried out by more than one robot, ie, the decomposed parts must all be carried
out by the same robot. We refer to this as a DS task throughout this paper.

Compound task: A task that can be decomposed into a set of atomic or compound subtasks,
presenting only one possible decomposition at any level. We consider that the
subtasks of a compound task may be affected by constraints and then we separate
the compound task type into two types. When each of the subtasks needs to be
allocated to a different robot, we call it a CN task (since there are N subtasks that
need exactly N robots). When there is no such constraint, the subtasks can be
allocated from one up to M (many) robots, where M is the number of subtasks;
in this case, we call it a CM task.



BASEGIO AND BORDINI 127

FIGURE 1 Types of tasks considered in our approach [Color figure can be viewed at wileyonlinelibrary.com]

Compound tasks have a list of subtasks that can be, in turn, atomic or compound; this way, it is
possible to create a complex hierarchy of tasks, which increases the applicability of this approach
to different scenarios. Similar structures are also possible for decomposable simple tasks.

Using a flooding scenario as follows, we exemplify how these types of tasks can be used.
Take as example a task where robots need to act as wireless repeater nodes in five specific

locations in a row. It means the task needs to be allocated to exactly five different robots, as a robot
cannot be in more than one place at a time. In this case, the multiagent organization will create
a CN task with five subtasks to have exactly five robots allocated to that task.

For mapping an area, for instance, the organization may want that at most three robots are
responsible for the mapping. In this case, the organization creates a CM task with three subtasks,
thus allowing for the task to be allocated to one, two, or at most, three robots.

In a flooding disaster, areas that are not populated offer low risk to people's lives. In this case,
the organization could determine that the collection of water samples for analysis in three differ-
ent locations of that area should be performed by a single robot. Therefore, the organization could
create a DS task with three subtasks, one for each collection location.

2.4 Multirobot task allocation
The most basic task allocation problem addressed in the robotics literature can be stated as fol-
lows: Given a set of robots R and a set of tasks T with each robot obtaining some utility value for
the execution of each task, each task must be allocated to exactly one robot and each robot must be
assigned to at most one task; the objective is to find an assignment of tasks to robots so that the overall
utility of all the robots is maximized.8

We here extend the basic problem in some aspects. First of all, we consider that each robot
has a maximum number of tasks that can allocate to itself rather than only one. This constraint
may be related to the amount of energy (fuel) available to a robot, thus limiting the number of
tasks it can be assigned. In addition, the basic problem assumes that tasks are independent atomic
units. We here consider that tasks can be composed of subtasks, with different restrictions on how
the subtasks are assigned to different robots. Moreover, because the approach can be used more
generally than only in multirobot systems, we often use the term agent instead of robot.

2.5 Problem statement
In this section, we formally state our MATA optimization problem. We assume that there are nr
available robots R = {r1, … , rnr}, nt tasks T = {t1, … , tnt}, and nst subtasks ST = {st1, … , stnst}
where each subtask stk belongs to exactly one task tj. Each task tj has one or more subtasks from

http://wileyonlinelibrary.com


128 BASEGIO AND BORDINI

ST, and we use Nj for the specific number of subtasks that the jth task has. Furthermore, we use the
binary variable pjk indicating whether stk belongs to tj to formalize the constraints aforementioned
as follows:

nt∑

𝑗=1
p𝑗k = 1, ∀k = 1, … ,nst. (1)

nst∑

k=1
p𝑗k >= 1, ∀𝑗 = 1, … ,nt. (2)

Each subtask stk may be allocated to at most one robot, and each robot ri can perform at most
Li subtasks (the task limit for robot ri). We assume that a task tj ∈ T is considered allocated if all
of its subtasks were allocated to robots following the constraints described in this section. Let fik
be a binary variable indicating whether stk is assigned to ri, and let uik ∈ R be the utility value
associated for the allocation of stk to ri

nr∑

i=1
𝑓ik ⩽ 1, ∀k = 1, … ,nst. (3)

nst∑

k=1
𝑓ik ⩽ Li, ∀i = 1, … ,nr. (4)

Let us consider further that there are nq types of tasks Q = {q1, … , qnq} and that each task
tj from T is associated with exactly one type of task from Q. The binary variable wjq indicates
whether tj is of type qn

nq∑

q=1
w𝑗q = 1, ∀𝑗 = 1, … ,nt. (5)

Each type of task q ∈ Q has a minimum and maximum (minq, maxq) number of subtasks that
a robot must take on when allocating to itself subtasks of a single task of type q. We use minj and
maxj for the minimum and maximum number of subtasks that a robot must take when allocating
subtasks of task tj.

Note that with the min and max constraints we can represent all task types DS, CN, and CM as
described earlier. For example, a robot trying to allocate a DS task must take all of the Nj subtasks,
ie, it must take a minimum of Nj and a maximum of Nj subtasks since the type DS requires the
allocation of all subtasks to exactly one robot. Similarly, a robot trying to allocate a CN task with Nj
subtasks must take only one subtask, ie, it must take a minimum and a maximum of one subtask.
A robot trying to allocate a CM task with Nj subtasks must take a minimum of one and a maximum
of Nj subtasks. Equations (6) and (7) state, for each task, the constraints on the number of subtasks
a robot must allocate to itself based on the type of that task

nst∑

k=1
𝑓ik.p𝑗k ⩾ min𝑗 , ∀𝑗 s.t. t𝑗 ∈ T; i = 1, … ,nr. (6)

nst∑

k=1
𝑓ik.p𝑗k ⩽ max𝑗 , ∀𝑗 s.t. t𝑗 ∈ T; i = 1, … ,nr. (7)

In addition, there are also constraints related to the roles the robots may play in the organiza-
tion according to their capabilities. Assume that there are nc capabilities C = {c1, … , cnc} and ne
roles E = {e1, … , ene}.



BASEGIO AND BORDINI 129

Each role e is associated with the capabilities a robot must have in order for it to be able to play
that role. Each robot ri has a set of capabilities, which determine the set of roles it is able to play.
Each subtask stk is associated with a set of roles a robot must be able to play to execute it. We use the
following binary variables to formalize the constraints aforementioned: g𝑦x indicates whether role
ey requires capability cx; hky indicates whether subtask stk requires role ey; vix indicates whether
robot ri has capability cx; and ziy indicates whether robot ri is able to play role ey

nc∑

x=1
g𝑦x ⩽ nc, ∀𝑦 = 1, … ,ne. (8)

ne∑

𝑦=1
hk𝑦 ⩽ ne, ∀k = 1, … ,nst. (9)

nc∑

x=1
vix ⩽ nc, ∀i = 1, … ,nr. (10)

ne∑

𝑦=1
zi𝑦 ⩽ ne, ∀i = 1, … ,nr. (11)

nc∑

x=1
g𝑦x.vix.zi𝑦 =

nc∑

x=1
g𝑦x.zi𝑦, ∀i = 1, … ,nr; 𝑦 = 1, … ,ne. (12)

ne∑

𝑦=1
hk𝑦.zi𝑦.𝑓ik =

ne∑

𝑦=1
hk𝑦.𝑓ik, ∀i = 1, … ,nr; k = 1, … ,nst. (13)

Finally, the objective of our MATA problem is to find an allocation that maximizes the sum
of utilities of the agents while satisfying all the above constraints. The idea is that the process
of maximizing the sum of individual utilities simultaneously improves the global utility.18 The
objective function of our optimization problem can be stated as follows.

Objective:

max
{𝑓ik}

nr∑

i=1

nst∑

k=1
uik.𝑓ik. (14)

3 OVERVIEW OF THE ALLOCATION PROCESS

We propose a decentralized mechanism for the allocation of different types of tasks to heteroge-
neous robot teams, considering that these robots may play different roles and they carry out tasks
according to the roles they can play. In this section, we first present a general view of the allocation
process, focusing on the main elements of the proposed mechanism.

The main elements considered in the proposed mechanism are presented in Figure 2. Ini-
tially, we consider the existence of an organization that is responsible for announcing the tasks
(with their corresponding subtasks) that need to be carried out by the agents in a given mission.
As mentioned before, we use the term agent to refer to the main control software of an indi-
vidual robot of any kind. The tasks provided by the organization are published on a blackboard
that can be viewed by all the agents available for the mission. Finally, the environment is the
place where agents carry out the tasks. Blackboard is a widely known architecture (see the works



130 BASEGIO AND BORDINI

FIGURE 2 Overview of the task allocation problem [Color figure can be viewed at wileyonlinelibrary.com]

of Hayes-Roth19 and Rudenko and Borisov20), which works as a global accessible space and can
be used, eg, for sharing information among agents.20

Regarding the process itself, it is initially considered that an organization has a set of agents
to carry out a mission and that these agents are waiting for the tasks they will be asked to carry
out (the agents start executing without having any assigned task). When needed, the organization
publishes a set of tasks on the blackboard to which all agents have access. By identifying the new
set of tasks available, the agents begin the allocation process based on the mechanism we describe
in this paper. Information about the roles required by the organization is also published on the
blackboard.

Simply put that each agent initially identifies the roles available in the organization, and based
on its capabilities, it checks which roles it can possibly play in the organization. The agent then
identifies on the blackboard tasks it can carry out based on the roles it can play. The agents then
exchange bids for the tasks they want to be allocated to (tasks with the highest utilities for them-
selves). When an agent receives a bid that improves on its bid for a task it wanted allocated to
itself, the agent withdraws that task from the list of its allocated tasks and checks which task it
will bid for in order to replace the task it withdrew. These steps are repeated until the robots agree
on the overall allocation. It is important to mention that our mechanism allows for all the sub-
tasks to be bid on asynchronously. When the agents finish the allocation process, the agents with
allocated tasks start to carry them out.

Note that, at the end of the allocation process, there might be agents without any allocated task
as well as tasks that could not be allocated to any suitable/available agent. Such results depend
on the constraints indicated and the features of available agents. For example, if the organization
announces more tasks than the total limit (capacity) of all the agents together, clearly some tasks
will not be allocated. On the other hand, if the total limit of the agents together is higher than
the number of tasks to be allocated, there may be agents without any task allocation. In addition,
the available agents may not be able to play the roles required to carry out some tasks, so those
tasks will not be allocated to any agent. If an agent is not able to play any of the roles required
by the tasks, it will not be able to allocate any of them. Furthermore, other constraints related to
the number of robots required for subtasks of certain types of tasks may also lead to incomplete
allocations.

Next, we provide an example for our allocation process using a flooding scenario. According
to the work of Murphy,21 there are several tasks that can be performed or assisted by robots during
flooding disasters. One of the key tasks to be accomplished is to obtain situational awareness of

http://wileyonlinelibrary.com


BASEGIO AND BORDINI 131

the affected region, which involves mapping the affected areas. In such a task, robots are asked
to obtain images of specific areas. Let us consider in this example that, to accomplish this task,
a robot needs to have flight capability and a camera to obtain the images. Note that it would be
possible to have the same task for a robot with sailing capability to get images from a different
perspective. Another task in flood disasters is the collection of water samples for analysis (ie, to
check the level of water contamination12). To perform such a task, in our example, the robot must
have water navigation capability and be able to collect water samples. In this example, we will
focus on these two specific types of tasks. Note that, for the sake of simplicity, the information
about tasks, roles, capabilities, and robots described are deliberately kept at rather high level, not
even including subtasks.

Regarding the process itself, consider that the organization needs to work on a flooding disas-
ter by performing the aforementioned tasks, ie, mapping areas and collecting water samples for
analysis. The organization has three robots available to carry out a mission, ie, one unmanned
surface vehicle (USV) and two unmanned aerial vehicles (UAVs), which we will call, respec-
tively, USV1, UAV1, and UAV2. The robots start executing without having any assigned tasks.
USV1 has water navigation capability* and resources to collect water samples, while UAV1 and
UAV2 have flying capabilities and cameras to take pictures. The following predicates represent
the information each robot has about itself:

USV1 ∶ capabilities([sail, sampler])
UAV1 ∶ capabilities([fly, camera])
UAV2 ∶ capabilities([fly, camera]).

In the organization, there are two possible roles to be played, ie, mapper and collector. In
order to play the mapper role, a robot must have the capability to fly and must have a camera
to take pictures. For the collector role, robots must have the capability to navigate on water and
resources to collect water samples. The organization publishes information about the roles on the
blackboard to which all robots have access. The following predicates represent this information:

role(mapper, [fly, camera])
role(collector, [sail, sampler]).

Considering the flooding scenario, the organization publishes the following tasks on the black-
board. The following predicates are composed of (and in this particular order): the task identifier,
the task name, the region where the task is to be performed, and the role required for a robot to
perform that task

task(t1, collectWater, regionA, collector)
task(t2, takeImage, regionA,mapper)
task(t3, takeImage, regionB,mapper).

By perceiving the new set of tasks available, the robots begin the allocation process based on
the proposed mechanism. First, each robot will identify which roles it can play in the organization.
USV1 identifies it can play the collector role, whereas UAV1 and UAV2 identify they can only play
the mapper role. Each robot is now able to identify the tasks it can bid for based on the roles it

*In order to make the presentation shorter, we will use the term sail to mean any form of water navigation capability.



132 BASEGIO AND BORDINI

can play. USV1 realizes it can bid only for task t1, whereas UAV1 and UAV2 realize they can bid
for tasks t2 and t3.

The robots start biding for the tasks they prefer until all the robots agree on the allocated
tasks and the allocation process finishes after that. The robots then can start the execution of the
allocated tasks, following their own plans and using the resources they have.

Note that, at any time, the organization may need to add new tasks or even new tasks might
be discovered by the robots while executing the current tasks. In addition, during the execution
of tasks in dynamic environments such as floodings, the robots may fail at any time. When the
others robots realize that a robot failed, they start the reallocation of the tasks assigned to the
failed robot. As we mentioned previously, here, we deal with static task allocation, but in ongoing
work, we are extending our approach to deal with such dynamic allocation aspects.

4 DECENTRALIZED TASK ALLOCATION

Our work aims at providing a decentralized solution for task allocation in environments with
heterogeneous robots that are capable of carrying out various different tasks. We assume that
an agent can have different capabilities. The capabilities of an agent can be related to its type
of locomotion (eg, the possibility of sailing or flying) or even to the resources available to the
agent (ie, the robot's payload such as cameras, sensors, etc). An agent may play one or more roles.
The roles are defined by the organization the agents belong to and each role is related to a set
of capabilities that an agent needs to have in order to play that role. The organization is also
responsible for stating the tasks that are required in a given mission.

Remember that we are working with the type of tasks described in Section 2, ie, DS tasks,
where all the subtaks need to be allocated to the same agent; CN tasks, where each subtask needs
to be allocated to a different agent; and CM tasks, where the subtasks can be allocated to different
agents (no constraints). The proposed mechanism allow us to work with those different type of
tasks through the definition of the minimum and maximum number of subtasks a robot must
take from each type.

We also assume that each agent has a maximum number of subtasks that can allocate to itself.
This constraint may be related, eg, to the amount of energy (fuel) available to a robot. This may
vary among robots as well as it may vary while the tasks are being carried out. The task allocation
is based on utility values and we consider that each agent is capable of calculating its own utility
value for each task. Furthermore, our approach assumes reliable communication.

4.1 Algorithms for the task allocation process
The proposed task allocation mechanism is based on algorithms that are executed by each agent
in the organization, characterizing a decentralized solution. A general view of algorithms that
constitute the core of the proposed mechanism is presented as follows.

Starting the allocation process (Algorithm 1): The initial algorithm is Algorithm 1, which
receives as input two parameters, ie, the list of tasks to be carried out by the agents as currently
available on the blackboard and the current list of roles within the organization (note that both
can change at runtime). In a new allocation process, the first step for an agent is to select only
the tasks that are compatible with the roles that it can play (line 5 shows the call to the function
in Algorithm 2, which takes care of that). Knowing the tasks that the agent can perform, it calls



BASEGIO AND BORDINI 133

Algorithm 3 (line 6), which updates for each task the minimum and maximum number of sub-
tasks that a robot must take. Finally, it calls Algorithm 4 (line 7), which starts the bidding process
for the tasks that can be allocated to that agent.

Identifying the possible tasks (Algorithm 2): Algorithm 2 receives as input the list of all
blackboard tasks that need to be carried out as well as the description of all the roles currently
defined within the organization. Initially, the algorithm identifies the possible roles that the agent
may play considering its capabilities and the capabilities required for each role (lines 1 to 12).
Then, given the roles the agent can play, the algorithm identifies which tasks can be allocated to
the agent (lines 13 to 17).

Update min/max subtasks by task type (Algorithm 3): Algorithm 3 receives as input the
list of all tasks the agent can execute. It goes through each task and updates the minimum and
maximum number of subtasks that a robot must take from that task (lines 2 to 16). Minimum and
maximum values are based on the type of the task and we assume they are defined a priori to the



134 BASEGIO AND BORDINI

execution of the mechanism. We consider that minimum and maximum values can be expressed
with a number or with the letter N to represent all subtasks.

Performing the task allocation (Algorithm 4): Algorithm 4 receives as input the list of
tasks that can be allocated to agent ri (which is running the algorithm). Initially, the algorithm
checks if the number of tasks the agent allocated to itself (nai) so far is lower than its capacity (the
task limit li), and if so, it begins the analysis of all possible tasks to identify the tasks that can still
be allocated (lines 5 to 16). The analysis goes through each task as described as follows. We use
l′i to refer to the difference between li and nai. For each task tj in the list of tasks the agent is able
to execute, the algorithm identifies the number of subtasks the agent can select as candidates for
allocation (line 12). In order to get this value, the algorithm first checks if the agent has capacity to
select the minimum number of subtasks required by task tj (line 10) and if there are still subtasks
of task tj that are not in the list of allocated subtasks (line 11). Then, it selects as candidates the
nToAlloc best subtasks from task tj (line 13). The choice of candidates is carried out based on the
utility of each subtask of that task. From the list of subtasks selected as candidate, the algorithm
selects the best subtasks for allocation, considering the task limit for the agent (line 17). For the
subtasks selected, the algorithm calculates the value for the bids to be sent to the other agents. This
calculation was inspired by the bid calculation formula introduced in the work of Luo et al.8 The
bid for a subtask is its utility value minus the amount that would be lost if the next best subtask
were taken instead. The subtasks in the bestCandidate list are not considered when identifying
the next best subtask. Lines 19 to 22 refer to the calculation of the bids and their broadcasting. As
noted earlier, our approach requires reliable communication.

Processing the received bids (Algorithm 5): Each agent processes the bids received from
other agents by executing Algorithm 5. When an agent receives a bid from another agent, which
is greater than the bid the agent itself provided when allocating the subtask to itself, the agent has
to remove that subtask from its allocated subtasks, and then it tries to allocate others subtasks by
executing Algorithm 4.



BASEGIO AND BORDINI 135

Algorithms 4 and 5 are repeated until the agents agree on the allocation, ie, until the
self-allocated subtasks do not undergo any further modifications.



136 BASEGIO AND BORDINI

TABLE 1 Example of candidate task list

Task DS1 DS2 CN1 CM1

Subtask (object) st1 st2 st3 st4 st5 st6 st7 st8 st9
#subtasks (weight) 3 2 1 1 1 1
Utility (value) 12 8 5 1 4 3

4.2 Selecting the best tasks from the candidate list using a knapsack
algorithm
In Algorithm 4, we call the getBest function (line 17) for selecting the best tasks for allocation to
an agent from its candidates list. Our getBest function is an algorithm for the knapsack problem.
In this section, we explain the basic idea behind it.

The basic knapsack problem consists in placing items with different weights and values inside
a knapsack, trying to maximize the total value of the items in the knapsack while respecting the
maximum weight it can take. Analogous to the knapsack problem, the limit of tasks that an agent
can be allocated corresponds to the weight limit of the knapsack; the number of positions that a
task will occupy in the agent's task limit, ie, the number of subtasks that need to be taken together,
corresponds to the weight of an item; and the utility value of a subtask corresponds to the value
of an item (see Table 1).

In order to explain the use of the knapsack algorithm in this paper, let us consider an agent
that has a limit to allocate up to five subtasks. Consider also the task samples available in Table 1.
Recall that, for a decomposable simple task (such as DS1 and DS2 in Table 1), the agent must take
all or none of its subtasks. Task DS1 for example has three subtasks that must all be taken by the
same agent. To deal with this type of task while selecting the best subtasks, we consider those
three subtasks as one, summing up the utility values of each subtask, and using the number of
subtasks as the total of positions occupied by the task in the agent's limit, ie, its weight. Thus, task
DS1 is considered as a task that has weight 3 (it will occupy three places in the agent's task limit)
and has a total value of 12 (the sum of the utilities of the individual subtasks).

The subtasks from CN and CM tasks can be independently allocated. Thus, each subtask will
occupy only one position in the agent's task limit and its utility value will also be considered
individually.

At each iteration of Algorithm 4, the agent runs the knapsack algorithm (called on line 26) to
select the best subtasks from the list of candidate subtasks up to its limit. That is, the algorithm
should select subtasks such that the sum of their utilities is maximized while respecting the limit
of subtasks the agent can take on at any given time.

Although it seems prohibitive to solve knapsack problems repeatedly and for each agent, it
should be noted that the previous steps of Algorithm 4 ensure that only a typically small selection
of tasks take part in this step of the overall allocation process, and agents typically have small task
limits. In other words, even if a large number of tasks are available, the process will filter the tasks
that will be sent to the getBest function (which calls our knapsack algorithm) and only a relatively
small number of tasks will be considered for a small task limit.

4.3 Determining the end of the allocation process
In distributed task allocation mechanisms, where agents place bids for the tasks they want to
allocate, one of the problem to solve is for each agent to know when the other agents finished
sending bids, hence determining that task allocation process is complete.



BASEGIO AND BORDINI 137

Some solutions to this problem, such as in the work of Luo et al,8 use the following approach
to determine the end of the allocation process. At each iteration, the agents send their list of bids
for all tasks they wish to allocate, that ie, if an agent wishes to allocate five tasks, a message with
five bids is sent to the other agents at each iteration, even though there has been no change in the
allocated tasks. Sending messages with the same content is used to control the end of the alloca-
tion process, ie, when the bids of all agents are the same for a number of iterations, it means that
the task allocation has ended. Due to this feature, at each iteration, a large number of messages
with size proportional to the number of tasks each agent is allocating to itself are sent to all other
agents. This can impact the communication infrastructure and unnecessarily waste resources,
which can be crucial in a solution for real-world environments. Choi et al22 also used a similar
approach.

In the following, we describe our approach to identify the end of the allocation process. In
our approach, each agent internally stores the winner for each task and its bid value in a list
(the TaskWinner list). Each agent keeps also an agent status list with each agent participating
in the allocation process (AgentBidStatus list). Consider an agent ai and its TaskWinner and
AgentBidStatus lists.

When an agent ai receives bids from another agent aj for the first time, it will add that agent to
the AgentBidStatus list, and in subsequent bids from that same agent aj, ai will update the value
associated with aj. In our approach, when an agent ai processes the list of bids received from each
of the other agents, it adds/updates to that agent one of the following values in the AgentBidStatus
list.

• 0 – Set this value when agent aj won all the tasks for which it has bid. It means that the agent
does not need to send further bids for now;

• 1 – Set this value to indicate that agent ai needs to wait for another bid from that agent aj. This
value is set in the following cases:

a. when aj does not win all of the tasks for which it has placed bids, ie, at least one of the tasks
has already received a higher bid from another agent. For example, if agent ai is processing
a bid list with bids for three tasks and it realizes that the agent only won two of them, it
means that aj will need to send further bids.

b. when aj is outbid by another agent, ie, when it loses one of its allocated tasks. That can be
checked when agent ai is processing bids from other agents or when it allocates a task to
itself that outbids aj.

When an agent is outbid, it will always try to select another task to bid for. However, when
that agent is not able to select another task, it will send a done message. When agent ai receives
a done message from an agent aj, agent ai will set its value for aj as 0 in its AgentBidStatus list,
meaning that aj does not need to send another bid for now. That value may change if that agent
is later outbid on another task.

Regardless of the value set in the AgentBidStatus list, each task a bidding agent wins will be
associated to it in TaskWinner list. In addition, when agent ai allocates a task to itself, it will be
associated to that task in the TaskWinner list.

In order to control the end of the whole allocation process, we do as follows. When there are
no more bids to be processed, an agent will check if the number of agents in the AgentBidStatus
list is equal to the number of agents considered in the allocation process and if the values for all
the agents is 0, which means all agents sent their bids or done messages, and tasks were allocated
in accordance with the bids.



138 BASEGIO AND BORDINI

In summary, at the beginning of the allocation process, each agent will send a bid list for all
tasks that it wishes to allocate. Next, only the agents that were outbid will send bids for other
tasks again, but only for the newly selected tasks. If the agent is not able to select another task,
it will send a done message. That reduces the number and size of messages each agent needs to
send to other agents and still allows a precise procedure to check for termination. Our approach
however has a higher storage cost, since it stores the winner of each task and the status of each
agent related to the bids they sent. Furthermore, as most other auction-based approaches, our
approach assumes reliable communication among agents.

4.4 Coping with partially allocated tasks
The algorithms previously described produced good results in the performed experiments, espe-
cially when the total capacity of the agents was greater than or equal to the total number of
subtasks that need to be allocated. However, when the number of subtasks is greater than the total
capacity of the agents, the final allocation of the algorithms can result in tasks not completely allo-
cated, ie, tasks in which at least one subtask was not allocated to any agent. The algorithms can
result in tasks not completely allocated also when none of the agents have the capability required
to perform one of the subtasks of a task.

For example, if a task is composed of four subtasks, the allocation process may result in three
subtasks allocated while one of them is not. This situation can occur because the agents always try
to allocate the subtasks with higher utility values. Thus, if some subtasks of a compound task have
higher utilities, they probably will be allocated while the ones with lower values may end up not
allocated. This may result in a compound task partially allocated, which should not be allowed.

Thus, in order to avoid tasks not completely allocated, at the end of the allocation process
previously described, it is necessary to perform a few more steps. First, we need to identify the
tasks that are not completely allocated, ie, the tasks in which at least one of their subtasks was
not allocated to any agent.

Knowing which tasks are partially allocated, each agent checks whether it has any of their
subtasks in its allocation list, and then removes those subtasks from its allocation. After this step,
there may be some completely unallocated tasks. Since the agents have removed previously allo-
cated subtasks, they may now have space for new allocations. Therefore, we run our allocation
process again, but one task at a time, ie, we run the process to fully allocate one task, and then
move on to the next task until all tasks have been allocated. The idea of allocating one task at a
time is due to the fact that the preferences of each agent tend to be the same as those that resulted
in partially allocated tasks.

The order in which the tasks will be allocated is relevant since the preference order for the
allocation may be different for the agents and may impact the quality of the final allocation. Thus,
the agents need to reach an agreement on the order in which the tasks will go through the this
stage of the allocation process. Thus, in this work, we use a social choice algorithm based on
voting to achieve such an agreement; in particular, we use Borda count as the voting method to
decide the order in which the tasks will be allocated.

In Borda count, each voter submits a full preference ordering on the candidates. Each place
in the ordered list provides points to the candidates. The first candidate receives n − 1 points,
the next receives n − 2, and so on (where n is the number of candidates). The global ordering is
determined by the sum of points from all the voters.23



BASEGIO AND BORDINI 139

Simply put, in our use of Borda count, the agents submit their order of preference to all other
agents. This preference lists can have different tasks and different lengths for each agent, because
some tasks may not be possible to be executed by some agents due to the roles required by the
task. All tasks not included in the list by an agent are assumed to be equally least preferred by
that agent.

Based on the voting from all agents, each agent individually calculate the global ordering for
the allocation process. The tasks will be allocated in that ordering. The agents know which task
should be first processed and then start providing bids on the subtasks of that task. After receiv-
ing the bids, the winner for each subtask is known. After this process, the agent checks whether
the task has been completely allocated or not. If it is fully allocated, the agent maintains its allo-
cated subtasks, otherwise they are ignored. Then, the agents start bidding on the subtasks of the
next task in the global ordering previously defined and this is repeated until all tasks have been
processed. At the end of this process, there may still be tasks that were not allocated. This may
happen because the agents have no space to allocate more subtasks or do not have the capability
required to perform one of the subtasks of a task.

5 EVALUATION

This section compares the performance of the proposed mechanism with the optimal solu-
tion. The GNU linear programming kit24 was used to obtain (centralized) optimal solutions
for comparison with our results. Our mechanism was implemented in belief-desire-intention
agents25,26 using a framework for multiagent systems development called JaCaMo.27 We also
compare the performance of our mechanism with two other decentralized solutions, ie, itera-
tive consensus-based auction algorithm (ICBAA)22 and sequential single-item auction algorithm
(SSIA).28 Finally, we compare our mechanism with two other task allocation approaches that
handle only one of the types of tasks in our approach, more specifically atomic tasks, ie, a task
allocation algorithm (we call it TAA) used in the work of Ghamry et al29 and a role-based task
allocation (we call it RBTA) available in the work of Gunn and Anderson.30

By performance, we mean the overall utility obtained by all the agents to take on all the sub-
tasks that they can. The coefficient of variation (standard deviation divided by the mean) was
used as a measure of dispersion (ie, the amount of variability relative to the mean). The lower the
coefficient of variation, the more homogeneous the data, ie, the dispersion in the data is smaller.
The number of bid messages sent is also measured to assess the impact of the different solutions
on the network traffic.

The simulations were run by varying a single parameter at each setting (Table 2). In all sim-
ulations, the subtasks of different types of task (CN, CM, and DS) were uniformly distributed.
Moreover, for each agent, we randomly selected the utility values for each subtask from the utility

TABLE 2 Settings used in the simulations

Setting Varying Agents Subtasks Limit Utility range

1 agents 5,10,15,20,25,30,35 24 5 1-6
2 subtasks 10 15,30,45,60 7 1-15
3 limit 5 24 6,8,10,12,14,16,20,24 1-6
4 utility 10 42 6 1-6,1-12,1-24,1-48
5 subtasks 3 21,28,35 6 1-6



140 BASEGIO AND BORDINI

range in the respective setting. For settings 1 to 4, we ran simulations with the total capacity of
the agents greater than or equal to the total number of subtasks. The results for each variation
in these simulations were averaged over 100 iterations each. There were also simulations where
we considered agents with capabilities to play any role, thus able to carry out any task, and there
were also simulations where we varied the number of capabilities from 1 to 4 for each agent. In
that case, some agents may not be able to play some roles, thus limiting the tasks they are able to
carry out.

For setting 5, the simulations were run with more subtasks than the total capacity of the
agents. Thus, after the first part of task allocation, we may have tasks partially allocated and
others completely unallocated, which the agents will try to allocate again, using the approach
described. The average results for these simulations were calculated from 20 iterations for each
variation.

5.1 Varying the number of agents (setting 1)
In order to understand the impact of varying the number of agents, these simulations were per-
formed using the values shown in setting 1 of Table 2. For comparison with the optimal results,
the simulations were run with 5, 10, 15, 20, 25, 30, and 35 agents, with 5 as the limit on the num-
ber of tasks to be allocated to each agent. The number of subtasks available to be allocated in
these simulations was 24 (including subtasks of CN, CM, and DS task types). For each agent, we
randomly selected the utility values from a range of 1 to 6 for each subtask.

First, we ran simulations considering agents with capabilities to play any role, thus able to
carry out any task. Figure 3A shows that the performance of the proposed solution improves and
is closer to the optimal solution as we increase the number of agents. In addition, the coefficient of
variation indicates that the consistency of the results obtained by both solutions is good and basi-
cally the same, with the results of the optimal solution being a little more stable when compared
with the results of the proposed solution (Figure 3B). However, this difference becomes smaller
for larger agent teams. Regarding the number of bid messages, Figure 3C shows that the average
number of bid messages placed by an agent remains stable for larger number of agents while the
average number of bid messages by subtask increases since there are more agents bidding for the
same subtasks.

Then, we ran simulations by randomly assigning from one to four capabilities to each agent.
Thus, some agents may not be able to play some roles, limiting the tasks they are able to carry
out. Figure 4 shows the results for these simulations with similar performance obtained in the
previous simulations.

(A) (B) (C)

FIGURE 3 Performance results varying the number of agents [Color figure can be viewed at
wileyonlinelibrary.com]

http://wileyonlinelibrary.com


BASEGIO AND BORDINI 141

(A) (B) (C)

FIGURE 4 Performance results varying the number of agents and agents capabilities [Color figure can be
viewed at wileyonlinelibrary.com]

5.2 Varying the number of subtasks (setting 2)
The simulations varying the number of subtasks were performed using the values available in
setting 2 of Table 2. The simulations were run with 15, 30, 45, and 60 subtasks to be allocated to
10 agents, each one with a task limit of 7. In these simulations, we uniformly distributed subtasks
of CN, CM, and DS task types. The utility values for each subtask were randomly selected from a
range of 1 to 15.

First, simulations considered agents with capabilities to play any role. Figure 5A shows that,
although the performance has decreased somewhat with more subtasks, it is still close to the opti-
mal solution. Even though the difference between the coefficients of variation of both solutions
increases with more subtasks, it is still relatively small (Figure 5B). The average number of bid
messages that each agent provides increases with more subtasks, while the average number of bid
messages per subtask decreases (Figure 5C).

Then, for the next simulations we randomly assign from 1 to 4 capabilities to each agent.
Figure 6 shows the results with similar performance achieved in the first part of the simulations.

(A) (B) (C)

FIGURE 5 Performance results varying the number of subtasks [Color figure can be viewed at
wileyonlinelibrary.com]

(A) (B) (C)

FIGURE 6 Performance results varying the number of subtasks and agents capabilities [Color figure can be
viewed at wileyonlinelibrary.com]

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
http://wileyonlinelibrary.com


142 BASEGIO AND BORDINI

(A) (B) (C)

FIGURE 7 Performance results varying the number of subtasks for each type of task [Color figure can be
viewed at wileyonlinelibrary.com]

5.2.1 Separate simulations for each type of task
The aforementioned results show that the performance decreases somewhat with the increase in
the number of subtasks. However, since CN, CM, and DS task types were uniformly distributed in
the simulations, it is not clear the contribution of each type of task in the results. For this reason,
we also ran separate simulations for each type of task.

For each type of task, we ran simulations with 12, 24, 36, and 48 subtasks. The number of
agents was kept 10 with 6 as the limit on the number of tasks to be allocated to each agent. For
each agent, we randomly selected the utility values from a range of 1 to 15 for each subtask. The
results were averaged over 100 simulations for each different number of subtasks.

Figure 7A shows that both type of tasks, when increased, have an impact on the performance
of our mechanism. However, we can see that, although CM and DS tasks had decrease somewhat,
the CN type had more impact when the number of subtasks was increased. The DS type had more
regular results for the different amounts of subtasks, having better performance for the greater
number of tasks compared with the other types.

Regarding the number of bids required to complete the allocation, Figures 7B and 7C show the
average number of bid messages placed for each subtask and the average number of bid messages
placed by each individual agent. As we can see in Figure 7, the CN type of task required the highest
average number of bid messages to complete the allocation for the different numbers of subtasks,
while the DS type required fewer bid messages than the others.

5.3 Varying the task limit (setting 3)
This section shows the performance results when we varied the limit of subtasks the agents can
take using the values of setting 3 in Table 2. In the simulations, the agents were set up with lim-
its from 6 to 24. The number of agents and subtasks were kept 5 and 24, respectively, in all the
simulations. The utility values were randomly selected from a range of 1 to 6.

Figure 8A shows that the performance of our approach increased when agents are able to
carry out more subtasks (higher agent limits). For the variation in the number of subtasks that the
agents can take, the coefficients of variation of our proposed solution and the optimal solution are
very close to each other. Regarding the bids, the average number of bid messages remains stable,
ie, the limit of subtasks an agent can take does not impact the number of exchanged bid messages.

5.4 Varying the utility range (setting 4)
In order to evaluate the impact of different ranges of utilities, we ran simulations with the utilities
varying from 1 up to 6, 12, 24, and 48. The utility values for each subtask were randomly selected
from each of those ranges. The number of agents and subtasks were kept 10 and 42, respectively.

http://wileyonlinelibrary.com


BASEGIO AND BORDINI 143

(A) (B) (C)

FIGURE 8 Performance results varying the limit of subtasks the agents can take [Color figure can be viewed at
wileyonlinelibrary.com]

(A) (B) (C)

FIGURE 9 Performance results varying the utility range [Color figure can be viewed at wileyonlinelibrary.com]

Figure 9A shows that the performance of our approach is better with broader utility ranges;
although, it is very close to the optimal solution for all available ranges.

For the variation of the utility ranges, the coefficients of variation of the proposed solution
and the optimal solution are very close to each other. Regarding the bids, the average number of
bid messages remains almost stable, ie, the utility ranges have a small impact in the number of
exchanged bid messages.

5.5 Coping with partially allocated tasks (setting 5)
Previous simulations were performed considering that the total capacity of the agents is greater
than or equal to the total number of subtasks that need to be allocated.

The next simulations we report were run with the number of subtasks greater than the total
capacity of the agents. Thus, at the end of allocation, we may have tasks partially allocated and
others completely unallocated, which the agents will try to allocate again using the mechanism
we proposed for this. For these simulations, the number of agents was three and the number of
subtasks to be allocated were 21, 28, and 35. We used 5 as the limit on the number of tasks each
agent can take, which means that the agents are able to take up to 15 tasks during the allocation
process.

TABLE 3 Simulations with the number of tasks greater than the total
capacity of agents

Tasks Subtasks PA NA EA PA NA EA

9 21 3 1 5 0 3 6
12 28 Phase 1 5 4 3 Phase 2 0 6 6
15 35 6 5 4 0 10 5

Abbreviations: EA, entirely allocated; NA, completely unallocated; PA, partially allocated.

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com


144 BASEGIO AND BORDINI

Table 3 shows reasonable performance results on reallocating partially allocated tasks, where
PA is the number of partially allocated tasks, NA is the number of completely unallocated tasks,
and EA is the number of entirely allocated tasks (ie, all subtasks were allocated). The average
results were calculated from 20 iterations for each variation.

5.6 Comparison with SSIA and ICBAA
Here, we compare the performance of our mechanism with ICBAA22 and SSIA.28 The simulations
were run by varying the number of subtasks to be allocated and also varying the number of agents.
The results for each variation of simulation parameters were averaged over 50 repetitions each.

5.6.1 Varying the number of subtasks
The simulations were run varying the number of subtasks from 17 up to 68 subtasks to be allo-
cated to 10 agents. Table 4 shows the results of the simulations for the three algorithms, where the
Utility represents the average utility of the simulations. Our algorithm is the one with higher util-
ity values for all simulations when compared with the others. For all algorithms, the coefficients
of variation are very low, indicating that the dispersion of the results is very small.

Table 5 shows the average number of bid messages that agents place during the execution
and the time taken to complete the allocation process. Our algorithm is the one requiring less bid
messages in all configurations.

In order to statistically analyze the results, we performed paired t-tests to determine that a
significant difference does exist between the results from our solution and the results from ICBAA
and SSIA algorithms. We statistically analyzed the utility values obtained and also number of bid
messages by setting the significance level 𝛼 = 0.05. The t-tests showed that the differences were
both statistically significant with p-values less than 0.05.

TABLE 4 Performance results varying the number of subtasks

ICBAA SSIA Our approach

Subtasks Utility Coef. Var Utility Coef. Var Utility Coef. Var
17 301 3.76% 306 3.38% 311 2.94%
34 608 2.00% 618 2.08% 625 1.85%
51 920 1.83% 931 1.49% 939 1.54%
68 1232 1.31% 1238 1.27% 1249 1.17%

Abbreviations: ICBAA, iterative consensus-based auction algorithm; SSIA, single-item
auction algorithm.

TABLE 5 Average number of bids and time to complete the allocation

ICBAA SSIA Our approach

Subtasks Bid messages Time, second Bid messages Time, second Bid messages Time, second
17 208 10 35 4 26 3
34 401 25 55 5 37 4
51 501 56 72 9 43 5
68 689 122 91 10 50 7

Abbreviations: ICBAA, iterative consensus-based auction algorithm; SSIA, single-item auction algorithm.



BASEGIO AND BORDINI 145

TABLE 6 Performance results varying the
number of agents

SSIA Our approach

Agents Utilty Coef. Var Utility Coef. Var
5 1117 2.45% 1129 2.24%

10 1218 1.49% 1230 1.41%
25 1300 0.78% 1307 0.65%

Abbreviations: SSIA, single-item auction algorithm.

TABLE 7 Average number of bids and time to complete allocation

SSIA Our approach

Agents Bid messages Time, second Bid messages Time, second
5 73 9 36 6

10 90 10 53 8
25 126 14 100 17

Abbreviations: SSIA, single-item auction algorithm.

5.6.2 Varying the number of agents
For these simulations, we varied the number of agents from 5 to 25 agents trying to allocate 68
subtasks. Since ICBAA requires a large number of bid messages to complete the allocation (see
Table 5), which could not be acceptable for real-world scenarios, here, we decide to focus only in
the comparison with SSIA.

Table 6 shows the results from the simulations for our mechanism and SSIA algorithm. Our
algorithm performs better (higher utility values) than SSIA algorithm for the different number
of agents. The coefficients of variation for both algorithms are basically the same. Table 7 shows
the average number of bid messages that agents place during the execution and the time taken to
complete the allocation process. Our algorithm requires less bid messages in all configurations.

We also statistically analyze the results our solution and the results from SSIA (utility val-
ues and number of bid messages) by performing paired t-tests setting the significance level 𝛼 =
0.05. The paired t-test showed that the differences were statistically significant with p-values less
than 0.05.

5.7 Comparison with TAA and RBTA
In this section, we compare the performance of our mechanism with the task assignment
approaches used in two frameworks, ie, a task allocation algorithm (we call it TAA) used in
the work of Gharmy et al29 and a role-based task allocation (we call it RBTA) introduced in the
work of Gunn and Anderson.30 Both approaches deal only with part of the task structures we
deal with, more specifically, atomic tasks. Our idea is to compare the performance of approaches
developed for specific types of tasks with the performance of our mechanism, which is broader,
given that we are not aware of other algorithms that deal with the same types of tasks as in our
approach. The results for each variation of the following simulation parameters were averaged
over 50 repetitions each.



146 BASEGIO AND BORDINI

TABLE 8 Performance results varying the number of
agents/tasks

TAA Our approach

Agents/Tasks Utilty Coef. Var Utility Coef. Var
5 23 10.59% 25 8.83%

10 53 5.80% 56 3.57%
15 83 3.61% 87 2.10%

Abbreviations: TAA, task allocation algorithm.

TABLE 9 Average number of bids and time to complete allocation

TAA Our approach

Agents/Tasks Bid messages Time, second Bid messages Time, second
5 15 6 8 2

10 55 7 19 2
15 120 8 30 3

Abbreviations: TAA, task allocation algorithm.

5.7.1 Comparison with TAA
In this approach, the number of agents and the number of tasks must be the same; each agent can
allocate only one task and the agents are homogeneous. Thus, this simulations were run with 5,
10, and 15 agents and tasks. Table 8 shows the results of the simulations for the algorithms, where
utility represents the average utility of the simulations. Our algorithm has higher utility values in
all simulations when compared with TAA. The coefficients of variation indicate some dispersion
of the results, especially for the simulation with five agents/tasks.

Table 9 shows the average number of bid messages that agents place during the execution and
the time taken to complete the allocation process. Our algorithm requires less bid messages in all
configurations.

We performed paired t-tests to statistically analyze the results. We analyzed the utility values
obtained and also the number of bid messages by setting the significance level 𝛼 = 0.05. The
t-tests showed that the differences were both statistically significant with p-values less than 0.05.

5.7.2 Comparison with RBTA
In the RBTA approach, each agent can allocate more than one task (restricted to a certain limit).
In addition, the agents may have different capabilities that limit the tasks they can allocate. The
RBTA approach was defined consider the suitability expression used in the approach to exactly the
same as the minimum task requirements. Thus, the simulations were run by varying the number
of tasks to be allocated and also varying the number of agents.

First, the simulations were run with 40, 50, and 60 tasks to be allocated to 10 agents. Table 10
shows the results of the simulations for the algorithms. Our algorithm obtained higher utility
values for all simulations, especially when the number of tasks was increased. The coefficients of
variation indicate that the dispersion of the results is small. Table 11 shows the average number of
bid messages that agents place during the execution and the time taken to complete the allocation
process. The RBTA approach required a much larger number of bid messages in all configurations.



BASEGIO AND BORDINI 147

TABLE 10 Performance results varying the
number of tasks

RBTA Our approach

Tasks Utilty Coef. Var Utility Coef. Var
40 218 6.50% 219 5.68%
50 280 3.29% 282 2.47%
60 333 3.78% 340 3.25%

Abbreviations: RBTA, role-based task allocation.

TABLE 11 Average number of bids and time to complete allocation

RBTA Our approach

Tasks Bid messages Time, second Bid messages Time, second
40 284 11 60 5
50 409 12 94 6
60 531 14 158 12

Abbreviations: RBTA, role-based task allocation.

TABLE 12 Performance results varying the
number of agents

RBTA Our approach

Agents Utilty Coef. Var Utility Coef. Var
10 333 3.78% 340 3.25%
12 338 3.80% 340 2.95%
15 334 4.68% 337 3.49%
18 338 4.51% 338 3.14%

Abbreviations: RBTA, role-based task allocation.

TABLE 13 Average number of bids and time to complete allocation

RBTA Our approach

Agents Bid messages Time, second Bid messages Time, second
10 531 14 158 10
12 537 13 126 10
15 542 14 110 9
18 608 14 113 11

Abbreviations: RBTA, role-based task allocation.

Then, we run the simulations by varying the number of agents (10, 12, 15, and 18 agents) to
allocate 60 tasks. Table 12 shows the results from the simulations for our mechanism and the
RBTA algorithm. Our algorithm performs better (higher utility values) than RBTA for the different
numbers of agents, except for the simulation with 18 agents, which had the same results. The
coefficients of variation for both algorithms are basically the same. Table 13 shows the average



148 BASEGIO AND BORDINI

number of bid messages that agents place during the execution and the time taken to complete the
allocation process. Again, the RBTA approach required a much larger number of bid messages.

For both variations (agents and tasks), we statistically analyze the results of our solution and
the results from RBTA (utility values and number of bid messages) by performing paired t-tests
setting the significance level 𝛼 = 0.05. The paired t-test showed that the differences were sta-
tistically significant with p-values less than 0.05, except for the simulation with 18 agents (see
Table 12), which had no statistical difference between the results.

5.8 Discussion
We have empirically evaluated our approach by comparing its results with the optimal solution
and the results from other two approaches. Our simulation results show that our approach pro-
vides near optimal solutions in all simulation variations (settings 1 to 4 in Table 2). In fact, the
results are closer to the optimal solution when the task types were simulated individually (see
Figure 7); although, even together, the results were clearly close to the optimal solution. The
coefficient of variation from all settings indicates that the consistency of the results obtained is
reasonably close to the centralized optimal solution.

Regarding the comparison with SSIA and ICBAA algorithms, the results show that our
approach performs better than the other two algorithms, although the coefficients of variation
for all the three algorithms were similar. In addition, there is a large difference in the number of
bid messages that were required, specially when compared with ICBAA. The number of bid mes-
sages sent by ICBAA shows that it tends not to be suitable for real-world scenarios. Although SSIA
requires fewer bid messages than ICBAA, it still sent on average 40% more bid messages than our
approach, going up to over 70% in some cases, and that can also be considered an important dif-
ference for applications to real-world scenarios. The results show that our approach also performs
better than the TAA and RBTA algorithms. Again, there is a large difference in the number of bid
messages that were required by TAA and RBTA when compared with our approach.

In real-world scenarios, such as flooding disasters, robots may be damaged while executing
their allocated tasks, and it may be necessary to reallocate the tasks that were assigned to the failed
robot. In some other approaches, identifying the tasks that were allocated to the failed robots
can be a challenge. Since at the end of our allocation process each robot knows which robot was
responsible for which tasks, in our approach, the available robots can easily identify the tasks that
were assigned to the failed robot and therefore need to be reallocated.

Although our approach showed good performance in the experiments we carried out, there
are real-world scenarios where other approaches in the literature might be more appropriate.
For example, in some scenarios, agents should be prepared to cooperate and collaborate without
precoordination, ie, agents are being developed by different organizations and should interact
with other agents in the absence of prior knowledge, agreements, and possibly not sharing the
same communication protocols and world models.31,32

In the work of Melo and Sardinha,33 for instance, learning agents must coordinate with other
agents to complete a cooperative task, identifying the teammates' strategies and also the tasks to
be completed, which is achieved by observing the actions of other agents.

Albrecht et al31 and Stone et al32 provided more details about the problem of collaboration
without precoordination. Albrecht et al31 also referred to research related to multiagent interac-
tion without prior coordination, such as the works of Hernandez-Leal et al34 and Liemhetcharat
and Veloso,35 while the work of Stone et al32 creates a challenge to the AI community to develop
research related to ad hoc agent teams.



BASEGIO AND BORDINI 149

6 RELATED WORK

There is a vast literature related to task allocation in multiagent or multirobot systems. Some such
work aim at allocating an initial set of tasks to a set of robots, while others focus on the allocation
of tasks that arise during the execution (for instance, tasks perceived in the environment or even
made available by some type of organization). Accordingly, we split this section into these two
main types of related work.

6.1 Allocation of tasks perceived or provided at runtime
The work by Macarthur et al36 introduced a distributed algorithm for task allocation where new
tasks can appear and the set of agents can change at any time. The allocation is performed by
forming coalitions, with the objective of finding coalitions which maximize the global utility. The
algorithm considers that coalitions are not overlapping, ie, each agent is allocated to one coalition
at a time. Constraints between tasks and subtasks are not considered by the algorithm.

In the work of Claes et al,37 task allocation was addressed through distributed planning in each
robot using Monte Carlo tree search. In the scenario they use, the tasks are single item orders that
robots need to gather and deliver, where items can have different costs and are distributed in a
warehouse. New tasks can be requested at any given time, but the robots have a limited capacity
to store items before delivering them. The solution does not consider tasks with constraints and
subtasks. In addition, they assume that the distribution of the orders is known, which allows them
to model the probabilities of tasks appearing at each location.

Keshmiri and Payandeh38 introduced a dynamic task allocation approach where the tasks are
grouped based on their distributional information and then agents are allocated to the groups of
tasks instead of tasks directly. The task space is reduced to the same number of agents and then
each subgroup is associated with one of the agents. The solution uses a centralized mediator that
coordinates agents through task subgrouping and the allocation of agents to groups through a cost
permutation process. Only the decision making is distributed, with each agent communicating its
decisions directly to the mediator. The approach differs from our since there is a central mediator
responsible for the allocation, while we are interested in a distributed solution.

Lerman et al39 put forward a mathematical model for dynamic task allocation using emergent
coordination. In emergent coordination, the robots use only local sensing and there is little or no
direct communication between robots. In the proposal, based on repeated local observations, the
robots estimate the state of the environment and choose (based on probabilities given by transition
functions) the task to execute. In that approach, the robots are equally capable of performing any
task, and can only be allocated to a single task at a time.

Chapman et al40 proposed a decentralized solution for planning agent schedules using a
Markov game formulation for tasks with hard deadlines. Each agent is allocated to perform a
sequence of tasks. Tasks are discovered during the mission execution, but it is assumed that the
task deadlines are always known. All the agents can be allocated to any task (ie, agents are homo-
geneous) and have the same costs to perform a given task. The solution does not consider subtasks,
only tasks as atomic units.

Cao et al41 proposed the allocation of new tasks to groups of robots. When new tasks arise,
the allocation is initially performed by a centralized algorithm, which distributes the tasks to the
groups of robots. Then, the tasks are allocated within each group in a decentralized manner using
an auction-based algorithm. That approach considers that only one new task should be allocated
to a group at time and that all new tasks need to be allocated.



150 BASEGIO AND BORDINI

Urakawa and Sugawara42 considered the allocation of tasks that can be divided into subtasks.
The agents are organized in a hierarchical structure composed of manager agents and worker
agents (the latter appear only at the bottom level of the hierarchy), which are those that have the
resources to execute the tasks. When the first manager in the hierarchy receives a new task for
allocation, it divides the task into subtasks and allocates them to the managers directly connected
to it in the hierarchy. Each of those managers divides the subtasks into smaller subtasks and the
process is repeated until they reach the worker agents. The worker agents form a team when they
are allocated to perform the subtasks of the same task and each worker can participate in only
one team at a time.

In the work of Gunn and Anderson,30 a solution for allocating new tasks discovered by robots
during their missions was put forward. The authors only considered atomic tasks. In that work,
each task has a specification of the minimum requirements for its execution and robots can play
different roles, and each role is based on types of tasks that could be carried out by robots playing
that role. The article focuses on disaster scenarios and proposes the use of heterogeneous robots,
in which the robot with the best computational resources plays the role of the coordinator, and
consequently, becomes responsible for the coordination of the task allocation process.30 Thus, it
could be said of that approach that there is still a single point of failure within each team, so it is
not exactly a decentralized solution like ours.

Turner et al43 proposed a distributed solution for the reallocation of tasks in order to maximize
the number of allocated tasks. The solution focuses on search and rescue scenarios, considering
heterogeneous vehicles and tasks with deadlines to start their execution. An algorithm is proposed
for the exchange of tasks which aims to increase the number of allocated tasks, even if some of
the tasks need to wait a longer time to be executed. The basic idea is to “move” the tasks in the
agents' schedules and also change tasks between the agents to create spaces for the inclusion of
new tasks. In that approach, each vehicle has a limit of tasks that it can perform and each task is
allocated to only one vehicle.

Many approaches for task allocation are based on Markov decision processes (MDPs). When
it is not possible to have a global view of the environment, partially observable MDPs (POMDPs)
can be used, which allows each agent to make decisions based only on their observations.44 In the
case of distributed multiagent systems, decentralized POMDPs are used. However, decentralized
POMDPs are known to be intractable in general settings.45

Most of the work aforementioned propose decentralized approaches, where each robot per-
forms a single task at a time and each task requires only a single robot. In addition, most of
them consider only the allocation of atomic tasks (with the exception of the work of Urakawa
and Sugawara,42 where the tasks are divided into subtasks). Most of the described research deals
with heterogeneous entities (agents or robots) considering at least some aspect related to their
physical capabilities, except other works,38-40 which consider homogeneous agents. Regarding the
use of roles in the system, Gunn and Anderson30 defined the leader role within each group of
robots, while Urakawa and Sugawara42 used managers and workers in a hierarchical structure.
With respect to the addition of new robots to the process; only Macarthur et al36 considered that
possibility, but the variation in resource availability is not taken into consideration. The approach
presented in the work of Gunn and Anderson30 makes considerations on that aspect. Only the
approaches proposed in the works of the aforementioned authors30 and Turner et al43 consider
that, at the end of the allocation process, tasks may not have been allocated, either by temporal
constraints as described in the work of the aforementioned authors,43 or because there is no robot
capable of performing the task as in the work of Gunn and Anderson.30



BASEGIO AND BORDINI 151

6.2 Allocating an initial set of tasks
In the work of Settimi and Pallottino,46 a distributed solution for task allocation to a set of hetero-
geneous robots was presented in which robots' capabilities are considered. Unlike our approach,
the solution presented in the work of the aforementioned authors46 requires that only one task is
allocated to each robot and that each task is allocated to one robot only.

In the work of Gernert et al,47 the authors proposed a decentralized mechanism for task allo-
cation along with an architecture that focuses on exploring disaster scenarios. Task allocation
follows a simple approach based on an auction, where any robot can carry out any task. Each
robot can be allocated to more than one task.

A decentralized solution for task allocation among multiple robots based on combinatorial
auctions has been introduced by Segui-Gasco et al.48 According to the authors, the solution cannot
avoid the computational overload characteristic of combinatorial auctions. The use of combinato-
rial auctions means that the robots provide bids for a combination of tasks rather than individually
for each task. At the end of the allocation process, each task must be allocated to exactly one robot
and all tasks must be allocated. The solution considers heterogeneous vehicles with different load
capacities.

The solutions presented by other works46-48 focus specifically on atomic tasks, unlike the
approach put forward in this paper, which comprises other types of tasks as well.

Luo et al presented a similar set of algorithms that focus on different aspects of the task alloca-
tion process.8,49,50 In the work of Luo et al,49 the authors described a distributed algorithm for the
allocation of tasks with deadline to multiple robots. It is considered that all tasks have the same
duration, represented by exactly one unit of time. The robots' batteries limit the amount of time
available to perform tasks, and consequently, the amount of tasks that can be allocated to each
agent. The solution works for a number of tasks less than or equal to the sum of the limit of tasks
the robots can take. In that approach, any robot can be allocated to any task and the tasks are inde-
pendent of each other. The work by Luo et al50 proposed an extension where tasks with different
durations are considered. Another work presented by the aforementioned authors8 served as an
initial inspiration for the mechanism proposed here, although we have departed in many ways
from the limitations of that work. The authors present a distributed algorithm focusing on the
allocation of groups of tasks. The constraints are in the number of total tasks that a robot can carry
out in the mission as well as in the number of tasks carried out by each group. It is assumed that
any robot can be allocated any task. Unlike our work, that work does not consider the allocation of
different types of tasks at the same time (which we have solved with the knapsack approach and
the reconsideration of partially allocated tasks with the Borda count technique), aspects related
to capabilities of robots, the use of roles associated with tasks is not considered either, and we
have changed also the way to check for termination of the allocation process as well as changed
the bid messages so that our approach requires the exchange of significantly less messages.

Flushing et al51 proposed a centralized approach for the allocation of tasks to robots, where
the ordering of execution of the allocated tasks is also defined for each robot. Tasks are consid-
ered independent of each other and are classified as atomic or nonatomic tasks. Nonatomic tasks
are tasks that can be partially executed, at different times and by different robots, until they are
completed. The solution considers that not all robots are able to perform all tasks and that time
constraints may prevent all tasks from being executed.

Furthermore, Das et al52 introduced a centralized approach for task allocation that needs to be
carried out in parallel, forming temporary coalitions of robots. It considers heterogeneous robots
with different capabilities and each task is divided into a set of subtasks that need a set of capacities



152 BASEGIO AND BORDINI

to be carried out. Each robot can be allocated only two subtasks at the same time, ie, the subtask
being currently carried out and the next subtask to be carried out.

Most of the approaches aforementioned propose decentralized solutions (with the exception
of the works of Flushing et al51 and Das et al52), consider heterogeneous entities and some aspect
related to their physical capabilities. The possibility of including new tasks in the course of exe-
cution was considered only by Gernert et al47 and Das et al.52 Das et al52 assumed that new
tasks are considered only in future allocation processes. In the work of Gernert et al,47 when
new tasks are perceived, a new allocation process begins among the robots within communica-
tion range. Only Das et al52 mentioned the possibility of adding new robots to a running allocation
process. None of the approaches aforementioned deals with the possibility of agents playing
particular roles.

7 CONCLUSION

A process to allocate tasks efficiently is crucial in many domains, especially if we consider that
different tasks can be performed by robots with different capabilities. In this paper, we have pro-
posed a decentralized mechanism for the allocation of different types of tasks to heterogeneous
robot teams, considering that they can play different roles and carry out tasks according to their
own capabilities.

The main objective of the proposed mechanism is to find an assignment that maximizes the
sum of the utilities obtained by each robot individually while satisfying all constraints. This is
based on the idea that the process of maximising individual utilities simultaneously improves the
global utility. The mechanism is based on an auction algorithm where the robots agree on the
allocation of tasks by exchanging messages with bid values for the tasks they intend to execute.

The proposed mechanism considers decomposable simple tasks, for which all the subtasks
need to be allocated to the same robot, compound tasks where each subtask needs to be allocated
to a different robot, and compound tasks where subtasks can be allocated to any robot. The pro-
posed mechanism allows us to use all those types of tasks and also to express other constraints
through the definition minimum and maximum values for the number of subtasks a robot can
take from a task type.

Each robot in the proposed solution has a limit on the amount of tasks that it can allocate to
itself and this limit may be different for individual robots. When the total capacity of the robots
is greater than or equal to the total number of subtasks that need to be allocated, the base algo-
rithms yield very good results. When the number of subtasks is greater than the total capacity of
the robots, our approach performs extra steps in order to identify tasks which are not entirely allo-
cated, and then we use a social choice algorithm based on voting and a simple auction mechanism
to allocate entirely at least some of those outstanding tasks.

The results of the proposed mechanism were compared with the optimal solutions obtained
with GNU linear programming kit. The results of various experiments we conducted show that
the proposed mechanism has reasonable performance in regards to maximizing the total utility
and also regarding the running time needed to reach a solution.

Future work aims to consider aspects such as task prioritizing and other task constraints.
Allowing all subtasks to take up more than one unit from the robot task limit (ie, different task
weights) would also be interesting. We also intend to evaluate the approach with real robots
as mentioned earlier or on robot operating system–based simulations that are currently being
developed.



BASEGIO AND BORDINI 153

ACKNOWLEDGMENT

We are grateful for the support given by CNPq and CAPES. Tulio Basegio thanks the support given
by Federal Institute of Rio Grande do Sul (IFRS), Campus Feliz.

ORCID

Tulio L. Basegio https://orcid.org/0000-0002-0964-9354
Rafael H. Bordini https://orcid.org/0000-0001-8688-9901

REFERENCES

1. Yan Z, Jouandeau N, Cherif AA. A survey and analysis of multi-robot coordination. Int J Adv Robot
Syst. 2013;10(12):399. http://www.intechopen.com/journals/international_journal_of_advanced_robotic_
systems/a-survey-and-analysis-of-multi-robot-coordination. https://doi.org/10.5772/57313

2. Bordini RH, Hübner JF, Wooldridge M. Programming Multi-Agent Systems in AgentSpeak Using Jason.
Chichester, UK: John Wiley & Sons; 2007. Wiley Series in Agent Technology; vol 8.

3. Brazier FM, Mobach DG, Overeinder BJ, Wijngaards NJ. Supporting life cycle coordination in open agent
systems. 2002.

4. Huhns MN, Stephens LM. Multiagent systems and societies of agents. In: Weiss Gerhard, ed. Multiagent
Systems: A Modern Approach to Distributed Artificial Intelligence. Cambridge, MA: MIT Press; 1999:79-120.
Intelligent Robotics and Autonomous Agents Series.

5. Correa A. Distributed team formation in urban disaster environments. Paper presented at: 2014 IEEE
Symposium on Intelligent Agents (IA); 2014; Orlando, FL. https://doi.org/10.1109/IA.2014.7009459

6. Fanti MP, Ukovich W, Mangini AM, Pedroncelli G. A quantized consensus algorithm for a multi-agent assign-
ment problem. In: Proceedings of the 2013 IEEE International Conference on Systems, Man, and Cybernetics
(SMC); 2013; Manchester, UK. https://doi.org/10.1109/SMC.2013.185

7. Li G, Tong S, Li Y, Cong F, Tong Z, Yamashita A, Asama H. Hybrid dynamical moving task allocation
methodology for distributed multi-robot coordination system. Paper presented at: 2015 IEEE International
Conference on Mechatronics and Automation (ICMA); 2015; Beijing, China. https://doi.org/10.1109/ICMA.
2015.7237692

8. Luo L, Chakraborty N, Sycara K. Provably-good distributed algorithm for constrained multi-robot task assign-
ment for grouped tasks. IEEE Trans Robot. 2015;31(1):19-30. ISSN 1552–3098 https://doi.org/10.1109/TRO.
2014.2370831

9. Segui-Gasco P, Shin H-S, Tsourdos A, Segui VJ. Decentralised submodular multi-robot task allocation. Paper
presented at: 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS); 2015;
Hamburg, Germany. https://doi.org/10.1109/IROS.2015.7353766

10. Smith D, Wetherall J, Woodhead S, Adekunle A. A cluster-based approach to consensus based distributed
task allocation. Paper presented at: 16th Euromicro Conference on Parallel, Distributed and Network-Based
Processing (PDP); 2014; Torino, Italy. https://doi.org/10.1109/PDP.2014.87

11. Basegio TL, Bordini RH. An algorithm for allocating structured tasks in multi-robot scenarios. In: Agent and
Multi-Agent Systems: Technology and Applications: 11th KES International Conference, KES-AMSTA 2017 Vil-
amoura, Algarve, Portugal, June 2017 Proceedings. Cham, Switzerland: Springer International Publishing AG;
2017:99-109. https://doi.org/10.1007/978-3-319-59394-4_10

12. Scerri P, Kannan B, Velagapudi P, et al. Flood disaster mitigation: a real-world challenge problem for
multi-agent unmanned surface vehicles. In: Advanced Agent Technology AAMAS 2011 Workshops, AMPLE,
AOSE, ARMS, DOCM3AS, ITMAS, Taipei, Taiwan, May 2-6, 2011. Revised Selected Papers. Berlin, Germany:
Springer-Verlag GmbH Berlin Heidelberg; 2012:252-269. https://doi.org/10.1007/978-3-642-27216-5_16

13. Murphy RR, Tadokoro S, Nardi D, et al. Search and rescue robotics. In: Springer Handbook of Robotics. Berlin,
Germany: Springer-Verlag Berlin Heidelberg; 2008:1151-1173. https://doi.org/10.1007/978-3-540-30301-5_51

14. Ramchurn SD, Huynh TD, Ikuno Y, et al. HAC-ER: a disaster response system based on human-agent collec-
tives. In: Proceedings of the 2015 International Conference on Autonomous Agents and Multiagent Systems
(AAMAS); 2015; Istanbul, Turkey. http://dl.acm.org/citation.cfm?id=2772879.2772947

https://orcid.org/0000-0002-0964-9354
https://orcid.org/0000-0002-0964-9354
https://orcid.org/0000-0001-8688-9901
https://orcid.org/0000-0001-8688-9901
http://www.intechopen.com/journals/international_journal_of_advanced_ robotic_systems/a-survey-and-analysis-of-multi-robot-coordination
http://www.intechopen.com/journals/international_journal_of_advanced_ robotic_systems/a-survey-and-analysis-of-multi-robot-coordination
https://doi.org/10.5772/57313
https://doi.org/10.1109/IA.2014.7009459
https://doi.org/10.1109/SMC.2013.185
https://doi.org/10.1109/ICMA.2015.7237692
https://doi.org/10.1109/ICMA.2015.7237692
https://doi.org/10.1109/TRO.2014.2370831
https://doi.org/10.1109/TRO.2014.2370831
https://doi.org/10.1109/IROS.2015.7353766
https://doi.org/10.1109/PDP.2014.87
https://doi.org/10.1007/978-3-319-59394-4_10
https://doi.org/10.1007/978-3-642-27216-5_16
https://doi.org/10.1007/978-3-540-30301-5_51
http://dl.acm.org/citation.cfm?id=2772879.2772947


154 BASEGIO AND BORDINI

15. Korsah GA, Stentz A, Dias MB. A comprehensive taxonomy for multi-robot task allocation. Int J Rob Res.
2013;32(12):1495-1512. https://doi.org/10.1177/0278364913496484

16. Gerkey BP, Matarić MJ. A formal analysis and taxonomy of task allocation in multi-robot systems.
Int J Robot Res. 2004;23(9):939-954. https://www.scopus.com/inward/record.uri?eid=2-s2.0-4444338336&
partnerID=40&md5=2ec33de9654d64c07a821075016b3dec

17. Zlot RM. An Auction-Based Approach to Complex Task Allocation for Multirobot Teams [PhD thesis]. Pitts-
burgh, PA: The Robotics Institute, Carnegie Mellon University; 2006.

18. Dias MB, Zlot R, Kalra N, Stentz A. Market-based multirobot coordination: a survey and analysis. Proc IEEE.
2006;94(7):1257-1270. https://doi.org/10.1109/JPROC.2006.876939

19. Hayes-Roth B. A blackboard architecture for control. Artif Intell. 1985;26(3):251-321. https://doi.org/10.1016/
0004-3702(85)90063-3

20. Rudenko D, Borisov A. An overview of blackboard architecture application for real tasks. Sci Proc Riga Tech
Univ. 2007;5:50-57.

21. Murphy RR. Disaster Robotics. Cambridge, MA: The MIT Press; 2014.
22. Choi H-L, Brunet L, How JP. Consensus-based decentralized auctions for robust task allocation. IEEE Trans

Robot. 2009;25(4):912-926. https://doi.org/10.1109/TRO.2009.2022423
23. Conitzer V. Comparing multiagent systems research in combinatorial auctions and voting. Ann Math Artif

Intell. 2010;58(3-4):239-259. https://doi.org/10.1007/s10472-010-9205-y
24. Makhorin A. Gnu linear programming kit reference manual. 2012. http://www.gnu.org/software/glpk/glpk.

html.
25. Bratman ME, Israel DJ, Pollack ME. Plans and resource-bounded practical reasoning. Comput Intell.

1988;4(3):349-355. https://doi.org/10.1111/j.1467-8640.1988.tb00284.x
26. Rao AS, Georgeff MP. BDI agents: from theory to practice. In: Proceedings of the First International Confer-

ence ON Multiagent Systems (ICMAS). 1995; San Francisco, CA.
27. Boissier O, Bordini RH, Hübner JF, Ricci A, Santi A. Multi-agent oriented programming with JaCaMo. Sci

Comput Program. 2013;78(6):747-761. https://doi.org/10.1016/j.scico.2011.10.004
28. Koenig S, Keskinocak P, Tovey C. Progress on agent coordination with cooperative auctions. In: Proceedings

of the Twenty-Fourth AAAI Conference on Artificial Intelligence (AAAI); 2010; Atlanta, GA. http://dl.acm.
org/citation.cfm?id=2898607.2898883

29. Ghamry KA, Kamel MA, Zhang Y. Multiple UAVs in forest fire fighting mission using particle swarm opti-
mization. Paper presented at: 2017 International Conference on Unmanned Aircraft Systems (ICUAS); 2017;
Miami, FL. https://doi.org/10.1109/ICUAS.2017.7991527

30. Gunn T, Anderson J. Dynamic heterogeneous team formation for robotic urban search and rescue. J Comput
Syst Sci. 2015;81(3):553-567. https://doi.org/10.1016/j.jcss.2014.11.009

31. Albrecht SV, Liemhetcharat S, Stone P. Special issue on multiagent interaction without prior coordination:
guest editorial. Auton Agent Multi-Agent Syst. 2017;31(4):765-766. https://doi.org/10.1007/s10458-016-9358-0

32. Stone P, Kaminka GA, Kraus S, Rosenschein JS. Ad hoc autonomous agent teams: collaboration without
pre-coordination. In: Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence (AAAI);
2010; Atlanta, GA. http://dl.acm.org/citation.cfm?id=2898607.2898847

33. Melo FS, Sardinha A. Ad hoc teamwork by learning teammates' task. Auton Agent Multi-Agent Syst.
2016;30(2):175-219. https://doi.org/10.1007/s10458-015-9280-x

34. Hernandez-Leal P, Zhan Y, Taylor ME, Sucar LE, Munoz de Cote E. Efficiently detecting switches against
non-stationary opponents. Auton Agent Multi-Agent Syst. 2017;31(4):767-789. https://doi.org/10.1007/s10458-
016-9352-6

35. Liemhetcharat S, Veloso M. Allocating training instances to learning agents for team formation. Auton Agent
Multi-Agent Syst. 2017;31(4):905-940. https://doi.org/10.1007/s10458-016-9355-3

36. Macarthur KS, Stranders R, Ramchurn SD, Jennings NR. A distributed anytime algorithm for dynamic
task allocation in multi-agent systems. In: Proceedings of the Twenty-Fifth AAAI Conference on Artificial
Intelligence (AAAI); 2011; San Francisco, CA. http://dl.acm.org/citation.cfm?id=2900423.2900535

37. Claes D, Oliehoek F, Baier H, Tuyls K. Decentralised online planning for multi-robot warehouse commission-
ing. In: Proceedings of the 16th Conference on Autonomous Agents and MultiAgent Systems (AAMAS); 2017;
São Paulo, Brazil. http://dl.acm.org/citation.cfm?id=3091125.3091198

38. Keshmiri S, Payandeh S. Multi-robot, dynamic task allocation: a case study. Intell Serv Robot.
2013;6(3):137-154. https://doi.org/10.1007/s11370-013-0130-x

https://doi.org/10.1177/0278364913496484.
https://www.scopus.com/inward/record.uri?eid=2-s2.0-4444338336&partnerID=40&md5=2ec33de9654d64c07a821075016b3dec
https://www.scopus.com/inward/record.uri?eid=2-s2.0-4444338336&partnerID=40&md5=2ec33de9654d64c07a821075016b3dec
https://doi.org/10.1109/JPROC.2006.876939
https://doi.org/10.1016/0004-3702(85)90063-3
https://doi.org/10.1016/0004-3702(85)90063-3
https://doi.org/10.1109/TRO.2009.2022423
https://doi.org/10.1007/s10472-010-9205-y
http://www.gnu.org/software/glpk/glpk.html
http://www.gnu.org/software/glpk/glpk.html
https://doi.org/10.1111/j.1467-8640.1988.tb00284.x
https://doi.org/10.1016/j.scico.2011.10.004
http://dl.acm.org/citation.cfm?id=2898607.2898883
http://dl.acm.org/citation.cfm?id=2898607.2898883
https://doi.org/10.1109/ICUAS.2017.7991527
https://doi.org/10.1016/j.jcss.2014.11.009
https://doi.org/10.1007/s10458-016-9358-0
http://dl.acm.org/citation.cfm?id=2898607.2898847
https://doi.org/10.1007/s10458-015-9280-x
https://doi.org/10.1007/s10458-016-9352-6
https://doi.org/10.1007/s10458-016-9352-6
https://doi.org/10.1007/s10458-016-9355-3
http://dl.acm.org/citation.cfm?id=2900423.2900535
http://dl.acm.org/citation.cfm?id=3091125.3091198
https://doi.org/10.1007/s11370-013-0130-x


BASEGIO AND BORDINI 155

39. Lerman K, Jones CV, Galstyan A, Mataric MJ. Analysis of dynamic task allocation in multi-robot systems.
CoRR. 2006. http://arxiv.org/abs/cs/0604111

40. Chapman AC, Micillo RA, Kota R, Jennings NR. Decentralised dynamic task allocation: a practical game: the-
oretic approach. In: Proceedings of The 8th International Conference on Autonomous Agents and Multiagent
Systems - Volume 2 (AAMAS); 2009; Budapest, Hungary. http://dl.acm.org/citation.cfm?id=1558109.1558139

41. Cao L, Shun Tan H, Peng H, Cong Pan M. Multiple UAVs hierarchical dynamic task allocation based on
PSO-FSA and decentralized auction. Paper presented at: 2014 IEEE International Conference on Robotics and
Biomimetics (ROBIO); 2014; Bali, Indonesia. https://doi.org/10.1109/ROBIO.2014.7090692

42. Urakawa K, Sugawara T. Task allocation method combining reorganization of agent networks and resource
estimation in unknown environments. Paper presented at: Third International Conference on Innovative
Computing Technology (INTECH); 2013; London, UK. https://doi.org/10.1109/INTECH.2013.6653641

43. Turner J, Meng Q, Schaefer G. Increasing allocated tasks with a time minimization algorithm for a search
and rescue scenario. Paper presented at: 2015 IEEE International Conference on Robotics and Automation
(ICRA); 2015; Seattle, WA. https://doi.org/10.1109/ICRA.2015.7139669

44. Lozenguez G, Mouaddib A-I, Beynier A, Adouane L, Martinet P. Simultaneous auctions for “rendez-vous”
coordination phases in multi-robot multi-task mission. In: Proceedings of the 2013 IEEE/WIC/ACM Inter-
national Joint Conferences on Web Intelligence (WI) and Intelligent Agent Technologies (IAT) - Volume 02;
2013; Atlanta, GA. https://doi.org/10.1109/WI-IAT.2013.92

45. Bernstein DS, Zilberstein S, Immerman N. The complexity of decentralized control of Markov decision pro-
cesses. In: Proceedings of the Sixteenth Conference on Uncertainty in Artificial Intelligence (UAI); 2000; San
Francisco, CA. http://dl.acm.org/citation.cfm?id=2073946.2073951

46. Settimi A, Pallottino L. A subgradient based algorithm for distributed task assignment for heterogeneous
mobile robots. Paper presented at: 52nd IEEE Conference on Decision and Control; 2013; Florence, Italy.
https://doi.org/10.1109/CDC.2013.6760447

47. Gernert B, Schildt S, Wolf L, et al. An interdisciplinary approach to autonomous team-based exploration in
disaster scenarios. Paper presented at: 2014 IEEE International Symposium on Safety, Security, and Rescue
Robotics (2014); 2014; Hokkaido, Japan. https://doi.org/10.1109/SSRR.2014.7017655

48. Segui-Gasco P, Shin HS, Tsourdos A, Segui VJ. A combinatorial auction framework for decentralised task
allocation. Paper presented at: 2014 IEEE Globecom Workshops (GC Wkshps); 2014; Austin, TX. https://doi.
org/10.1109/GLOCOMW.2014.7063637

49. Luo L, Chakraborty N, Sycara K. Distributed algorithm design for multi-robot task assignment with dead-
lines for tasks. Paper presented at: 2013 IEEE International Conference on Robotics and Automation; 2013;
Karlsruhe, Germany. https://doi.org/10.1109/ICRA.2013.6630994

50. Luo L, Chakraborty N, Sycara K. Distributed algorithms for multirobot task assignment with task deadline
constraints. IEEE Trans Autom Sci Eng. 2015;12(3):876-888. https://doi.org/10.1109/TASE.2015.2438032

51. Flushing E, Gambardella LM, Di Caro GA. A mathematical programming approach to collaborative missions
with heterogeneous teams. Paper presented at: 2014 IEEE/RSJ International Conference on Intelligent Robots
and Systems; 2014; Chicago, IL. https://doi.org/10.1109/IROS.2014.6942590

52. Das GP, McGinnity TM, Coleman SA. Simultaneous allocations of multiple tightly-coupled multi-robot tasks
to coalitions of heterogeneous robots. Paper presented at: 2014 IEEE International Conference on Robotics
and Biomimetics (ROBIO); 2014; Bali, Indonesia. https://doi.org/10.1109/ROBIO.2014.7090496

How to cite this article: Basegio TL, Bordini RH. Allocating structured
tasks in heterogeneous agent teams. Computational Intelligence. 2019;35:124–155.
https://doi.org/10.1111/coin.12194

http://arxiv.org/abs/cs/0604111
http://dl.acm.org/citation.cfm?id=1558109.1558139
https://doi.org/10.1109/ROBIO.2014.7090692
https://doi.org/10.1109/INTECH.2013.6653641
https://doi.org/10.1109/ICRA.2015.7139669
https://doi.org/10.1109/WI-IAT.2013.92
http://dl.acm.org/citation.cfm?id=2073946.2073951
https://doi.org/10.1109/CDC.2013.6760447
https://doi.org/10.1109/SSRR.2014.7017655
https://doi.org/10.1109/GLOCOMW.2014.7063637
https://doi.org/10.1109/GLOCOMW.2014.7063637
https://doi.org/10.1109/ICRA.2013.6630994
https://doi.org/10.1109/TASE.2015.2438032
https://doi.org/10.1109/IROS.2014.6942590
https://doi.org/10.1109/ROBIO.2014.7090496
https://doi.org/10.1111/coin.12194

	Allocating structured tasks in heterogeneous agent teams
	Abstract
	INTRODUCTION
	MULTIAGENT TASK ALLOCATION
	Constraint
	Utility
	Tasks
	Multirobot task allocation
	Problem statement

	Overview of the allocation process
	Decentralized task allocation
	Algorithms for the task allocation process
	Selecting the best tasks from the candidate list using a knapsack algorithm
	Determining the end of the allocation process
	Coping with partially allocated tasks

	Evaluation
	Varying the number of agents (setting 1)
	Varying the number of subtasks (setting 2)
	Separate simulations for each type of task

	Varying the task limit (setting 3)
	Varying the utility range (setting 4)
	Coping with partially allocated tasks (setting 5)
	Comparison with SSIA and ICBAA
	Varying the number of subtasks
	Varying the number of agents

	Comparison with TAA and RBTA
	Comparison with TAA
	Comparison with RBTA

	Discussion

	Related work
	Allocation of tasks perceived or provided at runtime
	Allocating an initial set of tasks

	Conclusion
	REFERENCES


