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Abstract

Production and characterization of polymeric nanoparticles, as colloidal dispersions, are processes that require time and
technical skills to make the results accurate. Computational simulations in nanoscience have been used to help in these
processes and provide agility and support to reach results: stability and quality in dispersions. Multi-Agent System for
Polymeric Nanoparticles (MASPN) is an innovative and original simulation environment with features to demonstrate
interactions of particles from physical-chemical parameters, ensuring Brownian motion of particles and attractive and
repulsive behaviour. The MASPN environment has been designed and has been built according to the feature-driven
development (FDD), as software methodology, and a multi-agent systems approach. In addition, we have used the event-
driven simulation package algs4, the JASON agent building environment, all integrated by Java language. This paper aims
to present the relation of the algs4 package and the JASON tool, both integrated into the MASPN environment to generate
Brownian motion with elastic and inelastic collisions. The MASPN environment as a simulation tool emerges as a result,
including the following features: graphical interface; integrated physical-chemical parameters; Brownian motion; JASON
and algs4 integration; and distribution charts (size, zeta potential, and pH).

Keywords Simulation software - Artificial intelligence - Nanotechnology - Particle collisions - Cooperative systems

Introduction

Nanoscience is the study of phenomena and manipulation of
materials at atomic, molecular, and macromolecular scale,
in which the properties differ significantly from those on a
larger scale. Nanotechnology is concerned with the design,
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characterization, production, and application of nanoscale
structures (10_9m) [1].

Nanoscience and nanotechnology (NN) use computa-
tional resources in the production and characterization of
nanoparticles, such as nanowires, nanocarriers, nanosen-
sors, etc. An example of a computational resource is event-
driven simulation [2], which could be used to observe (and
even predict) the behavior of nanostructured systems, such
as the agglomeration effect. This effect indicates instabil-
ity in nanoparticulate systems, given that the structures no
longer have inherent nanoscale properties. Nanoparticles
can carry a pharmaceutical load and, because of their size,
can escape the detection of the immune system [3]. On the
other hand, if a dispersion formed by nanoparticles presents
agglomeration, the system will be unstable [4].

Research in computing science has generated several
methods based on behavior derived from nature, particularly
in multi-agent systems (MAS) that support intelligent col-
lective behavior [5]. Thus, MAS simulation appears as an
alternative approach to investigate the agglomeration effect
of nanoparticles, since particles and environment of a nanos-
tructured system have characteristics and functionalities
that are suitable for modeling and implementation as MAS
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simulations. An important point in research in the very small
scale universe is the capacity for self-organization of mat-
ter, similar to what happens with biological entities that are
often modeled in MAS, i.e., mechanisms respond to stimuli
from the environment without conscious control [1].

This work presents the integration of the multi-agent
system for polymeric nanoparticles (MASPN) with multi-
agents techniques and event-oriented paradigm to support
in the observation of agglomeration effects in polymeric
nanoparticles (PNPs). So, the focus is the integration of
the algs4 package with JASON and particle interactions
according to Brownian motion.

The reason to work with PNPs, nanocapsules, is because
they are used for drug delivery in several treatments.
In addition, PNPs are generally coated with non-ionic
surfactants, which reduce immunological interactions and
intermolecular interactions between chemical groups of
different PNPs. Polymers must protect the drug from
degradation or metabolism, promoting sustained release of
the drug [4].

The research presented can be considered innovative
and interdisciplinary: there is no MAS simulation of
polymeric nanoparticle systems, and the proposed tool has
the flexibility of the simulation because it is possible to
deal empirical parameters such as zeta potential and size
(particle), and pH (environment).

The paper is structured as follows. The Back-
ground section introduces some important concepts around
nanoparticles and simulations. Sections “Development of
the simulation tool” and “Results and discussion” present
the research methodology and some images of the MASPN
tool as achieved results, respectively. Finally, conclusions
and discussions for future work are presented.

Background

MASPN uses input parameters related to the agents
(particles) and the environment (dispersion). Size, electric
charge surface (or zeta potential), and drug content are
the particles parameters, while pH is parameter of the
environment. MASPN embraces concepts of event-driven
simulation and particle collision system. In addition, all of
these are integrated with a multi-agent system approach.

In this section, related work is also discussed. No
relevant work was found which used MAS applied in the
simulation of bodies in the areas of biology and chemistry
in nanoscience.

Physico-chemical parameters

Particle size and size distribution (percentage of parti-
cles with specific size) are important characteristics of
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nanoparticle systems [6]. Zeta potential is used to charac-
terize the charge property of a nanoparticle’s surface and
reflects the particle’s electric potential. It is related to the
particle composition and the medium in which it is dis-
persed [7]. A particle is electrically charged when it has a
small amount of unbalanced charge. Electric force between
two charges with the same sign is repulsive, while the
electric force between two charges with opposite signs is
attractive. Thus, charged particles are stabilized when there
is repulsion, and they will be agglomerated when there is
attraction [4].

Stability of nanoparticulate systems may be obtained
by monitoring the pH over time. The pH of dispersion
determines the zeta potential of colloidal dispersions, which
may have an impact on their stability. The pH of the
dispersion can be an important element which to control
the nanoparticles size and, consequently, its biodistribution
[6]. Association rate (or drug content) refers to the
amount of drug associated with nanoparticles [8]. Drug
content influences the agglomeration effect (or instability
of concentration), because the nanocrystals formed in
formulations agglomerate and precipitate during storage of
nanocapsules in the course of time [9].

Due to the nanoscale, atoms are inter-facial, due to the
high surface-to-volume ratio, the relationship of physico-
chemical parameters to agglomeration behavior indicates a
migration from volume chemistry to surface chemistry.

Event-driven simulations - EDS

Computer science provides several resources to assist in
the measurement and manipulation of nanomaterials. Thus,
computational nanotechnology contributes to molecular
modeling, nanostructural simulation, and nanoinformatics,
which benefits from computing technology, for example
high-performance computing. Molecular modeling involves
computational methods and techniques to simulate the
behavior of atomic and molecular systems [10].

There are different simulation methods, such as Monte
Carlo (stochastic behavior), Brownian dynamics, and
molecular dynamics (both with dynamic behavior). Molec-
ular dynamics efficiently evaluates different structural prop-
erties and dynamic quantities that cannot be obtained by
Monte Carlo, because it has no temporal correlation [11].
In general, Brownian dynamics is considered an efficient
method for simulation of large polymeric molecules or
colloidal particles [2].

The event-driven simulation paradigm is appropriate
to address the motion of molecules in gas, dynamics
of chemical reactions, atomic diffusion, one-dimensional
gravitational systems, etc. [2]. Scientists use such systems to
understand and predict properties of physical systems. For
example, Einstein used the model to explain the Brownian



J Mol Model (2019) 25: 5

Page3of15 5

motion of pollen grains immersed in water [2]. Hence, EDS
applications recognize molecular dynamics because this
paradigm suggests that the hard body model of interaction
between particles obey to the following [2]:

1. a defined structure: » moving particles confined in a
box, where each particle has position, velocity, mass,
charge, and radius;

2. a predicted physical behavior: particles interact by
elastic and inelastic particle—particle collisions and
particle—wall elastic collisions;

3. other existing forces (or not): environment or box
(solvent) is a continuous viscous medium that dissipates
energy while the particle (solute) moves through it.

In simulation systems for polymeric nanoparticles,
inelastic collisions occur when bodies of opposite electrical
charge collide (attraction process) and elastic collisions
occur when bodies with electric charge with the same signal
collide (repulsive process). These collisions are influenced
by elements such as zeta potential and size particle, and
environment pH. There are three equations to coordinate
collisions of hard bodies [2]:

1. conservation of linear momentum;
conservation of kinetic energy;

3. after a collision, the normal force acts perpendicular to
the surface of the collision point.

Elastic and inelastic collisions

Perfectly elastic collision is defined when there is no loss
of kinetic energy!, in other words, there is no dissipation
of mechanical energy and the kinetic energy of the objects
remains the same after impact [12].

When a collision occurs, and the kinetic energy of
the system is not conserved (there is mechanical energy
dissipation), the concept of inelastic collision arises [13].
If there is no action of external forces on the system,
the principle of conservation of linear momentum? will be
obeyed, although there is no conservation of kinetic energy.
In isolation, as in colloidal systems (the focus of this study),
this dissipation occurs due to some properties of the collided
bodies, such as structure and molecular composition.

Equations 1 and 2 illustrate the velocity of two bodies
after inelastic collision in one dimension, in other words,

IKinetic energy is energy that is related to the state of motion of a
body. If a body is at rest, the kinetic energy is zero.

2In classical mechanics, the conservation of linear momentum is
implied by Newton’s laws and is the result of the multiplication of
mass by the velocity of a body. In addition, the conservation of linear
momentum (with modified formula and appropriate definitions) is
valid in electrodynamics, quantum mechanics, quantum field theory,
and general relativity [13].

components in the same line to the plane at the point of
contact.

Crmp(up — ug) + mag + mpup
Vg = (D

mgy + myp

o — Crma(Ua — up) + maitq + mpup @
b mg +myp

where v, is the final velocity of the first body after impact,
vy, is the final velocity of the second body after the collision,
u, is the initial velocity of the first body before the collision,
up is the initial velocity of the second body before impact,
m, is the mass of the first body, m, is the mass of the second
body, Cg is the resolution coefficient, where 1 is elastic
collision and O is collision perfectly inelastic.

For two-dimensional and three-dimensional collisions,
the velocities in the formulas of Eqs. 1 and 2 are the
perpendicular components to the tangent line or plane at the
point of contact.

In inelastic collisions, the collided particles remain
together, that is, the kinetic energy is lost joining two bodies.
In addition, it is necessary to consider the conservation
of the linear momentum, which occurs if the surface
has friction equal to zero’. However, partially inelastic
collisions are the most common form of collisions in the
real world, because the objects involved in collisions do not
bind, but some kinetic energy is still lost [12].

Multi-agent system

The object-oriented paradigm provides resources for event-
driven simulations, with frameworks or packages with
numerous functionalities. However, in a simulation system
in which particles interact by exchanging information
between them and perceiving the environment (feedback),
the MAS paradigm becomes a very attractive alternative:
“...the simulation studies the modeling of the operation of
a physical or conceptual system over time and for more
than 20 years, the MAS field and the simulation field were
combined in lines of research...” [14].

An agent internal architecture is associated with the type
of task the agent will perform and its role in the multi-agent
society. Thus, what defines an agent and the society where it
is situated are the interactions with the environment and the
internal processes that make possible the accomplishment
of these interactions [5]. Different architectures have been
proposed in order to specify the agents (and the society in
which they are inserted) with a level of intelligence and
autonomy. In this way, the architectures can be classified

3In event-driven simulations in nanoparticulate colloidal systems, the
surface (environment) is an aqueous medium that friction capacity is
zZero.
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according to the mechanism used by the agent to select
actions [15]. Definitions and properties that characterize the
notion of agency do not divide the world between entities
that are agents (or not), but serve as tools to analyze systems,
as well as to specify, design, and implement systems whose
basic elements are agents [16].

Simulation environments for nanostructures can be
considered essentially reactive, that is, suitable for reactive
agent architectures. A significant feature in agent-oriented
theory is autonomy, which also exists in small-scale
structures such as atoms and molecules, despite the
strong interaction [17]. Regarding the organization of a
reactive or cognitive multi-agent system, there are events,
constraints, and interactions that also occur in a nanoscale
environment.

In agent-based computing, the behavior of an agent
occurs through the cycle of perceiving, planning, and
acting [18], very similar to what occurs in event-oriented
simulations. For example, a particle can be considered an
agent that interacts with other particles and the wall of a
box. The box is the environment containing the solvent
(which would dissipate or not the interaction energy of
the particles). In this way, the particles must perceive
other particles, the walls of the box, and the environment
solvent. Next step, the particle plans next actions calculating
the elastic or inelastic collision forces, and act updating
trajectory and velocity data.

Related work

Drug delivery research can be considered one of the
most promising areas in nanoscience investigations. Ntika,
Kefalas, and Stamatopoulou [3] show that drug delivery
and MAS areas can be combined. The relationship with
this research is mainly due to the bibliographical references
used for simulation building tools, and statistical model
for the evaluation process, as well as the layers of
abstractions.

In the research discussed in [18], it was evaluate the
behaviour of interacting particles obeying a dynamics of
self-organisation, as in a hematopoietic system (intracellular
processes and events interacting among cells).

In the research conducted by Hogg [19], groups of robots
were collectively controlled (individual versus collective
behavior in response to the environment and other agents).
Generally, computational studies of controlling groups
of robots complement studies to individually controlled
one. This can be extended to a system with particles
that exhibits coordinated behavior in response to different
stimuli, namely agglomeration effect generated by physical-
chemical properties of the environment, such as pH.

The study discussed by Dan [20] brought contributions in
three points: (i) how simulations were conducted; (ii) how
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size distribution and particle positioning were implemented,;
and (iii) how specific particle and environmental parameters
were manipulated.

Finally, the research presented in this work can be
considered innovative and interdisciplinary. First, there is
no MAS simulation for nanoparticulate systems. Secondly,
the flexibility of the simulation is based on empirical input
parameters such as zeta potential and size (particle) and pH
(environment).

Development of the simulation tool

Computational resources (methodologies, languages, and
technologies) used for the construction of the MASPN were:

1. Feature-driven development (FDD): an iterative and
incremental software development process. It is an
agile method for developing software. There are
five processes, divided into two phases (design and
planning; construction). The first phase has three
processes in order to develop an overall model by listing
and planning the features and system requirements. The
second phase discusses the construction of the project,
always interactively, incrementally, and using visual
diagrams [21];

2. algs4* package: implementations of various functions
for scientific computing and event-driven simulation;

3. JASON’: multi-agent systems development platform,
with many user-customizable features. It is an inter-
preter for the AgentSpeak(L) language [22];

4. NetBeans®: a software development platform written
in Java. The NetBeans platform allows applications
to be developed from a set of modular software
components called modules. Applications based on the
NetBeans platform, including the NetBeans integrated
development environment (IDE), can be extended by
third-party developers.

The FDD methodology was selected for dealing
well with heterogeneous systems integration. This
is mainly because it is a flexible and customizable
methodology.

From the classes and methods available in the algs4
package, implementations were made to define the best
parameters of these methods, as well as the most adequate
ones, guaranteeing greater fidelity in the animations of
interactions among particles (Brownian motion). The algs4

“http://algs4.cs.princeton.edu/code/javadoc/
>htp://jason.sourceforge.net/wp

Shttps://netbeans.org/
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package has classes for event-driven simulation and to
determine the ordered sequence of collisions. The MinPQ
class is used to create a priority queue for future events,
ordered by time. For collision resolution, the package
has physical formulas that specify the behavior of the
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Fig.2 Process flow for agglomeration evaluation [17]
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Fig.3 a MASPN main interface.
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Several agent-based systems development tools have
been made available. Each one has particular features and
functionalities. There are comparative studies that evaluate
performance, robustness, usability, etc. [23]. JASON was
chosen because:

1. it can be easily integrated with the Java technology;
. it allows distributed and parallel programming;

3. itis the interpreter of the AgentSpeak(L) that obeys the
logical paradigm with declarative programming;

4. there is continuous update and maintenance process;

it has examples in several domains;

6. there is a collection of tutorials and documentation that
Supports new projects.

e

Technologies, features, and properties involved in the
construction of MASPN can be seen in Fig. 1.

@ Springer

Results and discussion

As mentioned, MASPN manages experiments, performs
simulations, generates distribution charts and performs 2D
animations. Figure 2 illustrates how the process takes place,
from the production and characterization phases to the
evaluation phase of colloidal dispersion results. MASPN
users can change values in the parameters and can follow
the updated behavior of the particles. The parameters shown
in the figure are the same as those used in the simulations of
the built tool. We decided on a reduced model to aid in the
evaluations of the initial simulations.

Figure 3a shows MASPN main interface in which it is
possible to enter values to the parameters or select values
embedded in experiments from scientific papers. After
that, it is possible to generate a simulation and observe
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Fig.4 MASPN process modelling diagram

interactions of particles according to Brownian motion
(elastic and inelastic collisions).
MASPN has some features implemented. The Man-

age Experiments and Generate Graphics features

were detailed in [17]. The Generate Size Distri-
bution and Generation Position Particles features
were implemented according to the object-oriented

approach and the algs4 package methods. The
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Fig.5 MAS project

1 MAS maspn {

2

3 infrastructure: Centralised

4

5 environment: MAS

6

7 agents:

8 particlel particle.asl [beliefs="charge(12),mass(1)"];

9 particle2 particle.asl [beliefs="charge(10),mass(0.8)"];
10 1 s wis

11 particle_n particle.asl [beliefs="charge(13),mass(0.9)"];
12

13 aslSourcePath:

14 "src/asl";

15 }

Pattern Recognition feature was designed but not yet
implemented.

Once an experiment has been chosen to be simulated
in MASPN, the main process obeys the flow shown in
Fig. 4. The process has three levels: (i) GUI (Graphical User
Interface); (ii) collision; (iii) JASON.

The main process begins in the GUI with the “Generate
Particles” task. Here, the user triggers the simulation
in the graphical interface. The next action is to “Make
(or create) animation”, with information about particle
amount, maximum and minimum particle diameter, mean
distribution, mass, and zeta potential of the particles. In
parallel, two tasks are triggered: “Create particles vector”
and “Create MAS project file”.

1. The “Create particles vector” task contains the Parti-
cleSimulation class (Fig. 6 shows the class diagram),

in which all the parameters of the main interface are
received so that the Brownian motion of the particles is
executed. For each particle parameter, such as position
in the Cartesian coordinate system, velocity, mass and
radius, the uniform method from the StdRandom class in
the algs4 package is used. Then, the six sub-processes
are executed concurrently: “Draw MASPN interface”;
“Create priority queue”; “Generate distribution approx-
imation”; “Draw particles”; “Calculate Elastic/Inelastic
collisions”; “Refresh pH”;

The “Create MAS project file” task triggers the
beginning of the MAS with pH values. Here, we
generate a project file (mas.mas2j), which is the main
JASON project file. Figure 5 illustrates what the project
file looks like. This point is fundamental, since each
particle has specific properties that must be mapped
as beliefs. In this example, the instantiation of each

Fig.6 Class diagram for okg
MASPN
1 1
jason collision
MaspnDraw CollisionSystem
Environment |
MinPQ \
— Particle
StdRandom
\ ]
JFrameMain model
—
\
\ ParticleSimulation
| Draw
[~ Graph Researcher
| 1 Experiment Polymer Drug
factor* / —]
ConnectionFactory //
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Table 1 Comparative performance: amount of particles versus maximum size

Maximum size (nm)

Computer 1 200 300 400
amount of particle (~) 10000 8000 5400
Computer 2 200 300 400
amount of particle (~) 1200 8000 5500

500 600 700 800 900
3400 2500 2000 1500 1300
500 600 700 800 900
3500 2700 2000 1600 1300

particle with charge and mass is done, and both values
are inserted as beliefs of agents.

After building a particle, it is inserted into the vector.
Finally, the vector is sent to simulation (“Simulate collision
system” task). Brownian motion simulation is initiated,
obeying a maximum execution time.

Once the multi-agent system is started, the values of
the physical-chemical parameters must be sent to the
environment class (MAS) and to the agents in the MAS. The
“Run Environment (MAS)” process ensures that particle
control will not be centralized but distributed to agents,
including collisions control (elastic and inelastic). This
process is responsible for triggering the initial events of the
simulation. It is also responsible for receiving and executing
all actions sent by the agents (particles) to be performed
in the environment. The multi-agent system adds the pH
perception to the agents, as it is an environment parameter.
In addition, always at the end of the executionAction method
(within the “Run Environment MAS” task), there is a
method call to check if the pH has been updated (“Refresh
pH”).

The Particle class (within the “Draw particle” task)
represents a particle moving in the unit box, with a
given position, velocity, radius, and mass. Methods are
provided to move the particle and predict and resolve
elastic collisions between other particles and vertical or
horizontal walls. This data type is mutable because position
and velocity change. The CollisionSystem class (within the
“Draw particle” task) represents a collection of particles
moving in the unit box, according to the laws of elastic
collision. This event-based simulation relies on a priority
queue. The MinPQ class (within the “Create priority queue”
task) represents a priority queue of generic keys. It supports
the usual insert and delete-the-minimum operations, along
with methods for peeking at the minimum key, testing if the
priority queue is empty, and iterating through the keys. This
implementation uses a binary heap. The insert and delete-
the-minimum operations take logarithmic amortized time
[2]. The min, size, and is-empty operations take constant
time.

Construction takes time proportional to the specified
capacity or the number of items used to initialize the data

structure. The StdRandom class (within the “Draw parti-
cle” task) provides static methods for generating random
numbers from various discrete and continuous distribu-
tions, including Bernoulli, uniform, Gaussian, exponential,
Pareto, Poisson, and Cauchy [2].

G I P S
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.- * s - - -y -.
.. ) - H ‘ - .‘- :
. '; L ] L
- i . * -
- . - - - .
LI o - " - .
. : -I" . i - -. - :O
(c) (d)
* -0
L
[ ]
‘- . 0y
Q. " .
- - -
- " v
- |. g J .
L ]
(f)
l‘. - ]
. L
L
® L]
- . -’.
.. .
®e ,

() (h)
Fig.7 Amount of particles versus maximum size: (a) 10000 - 200 nm;

(b) 8000 - 300 nm; (¢) 5400 - 400 nm; (d) 3400 - 500 nm; (e) 2500 -
600 nm; (F) 2000 - 700 nm; (g) 1500 - 800 nm; (h) 1300 - 900 nm
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Fig.8 Behavior of zeta
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The charge parameter uses the Gaussian method because
it takes into account the standard deviation. The uniform
and Gaussian methods are static methods for generating
random numbers (continuous distributions). At this point,
Fig. 3b shows the substitution of the circle of each
particle by the absolute charge of the particle; thus,
proving that particle distribution and their charges are in
agreement with the simulation model. If the zeta potential
distribution graph is observed, it is possible to notice the
equivalence.

The class diagram (Fig. 6) provides an overview of
the package organization, classes, and the dependency
relationships among them. In the diagram, it is possible

to see the MASPN integration with JASON and algs4. At
this point, we emphasize that the diagrams have mostly a
conceptual function.

Some limitations have occurred, for example the
maximum number of agents instantiated. For initial
performance testing, we have used two computers:

1. Computer: Mac-book Pro, 2.7 GHz, Intel i7 processor,
8 GB 1867 MHz DDR3 memory and Intel Iris Graphics
6100 1536 MB;

Computer: Avell Titanium, 2.6 GHz, Intel i7 processor,
16 GB 2133 MHz DDR4 memory and NVIDIA
GFORCE GTX 950M 2048 MB.

2.

Fig. 9 Experiment published in
[26], with original values Chaves et al., 2017
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Fig. 10 Experiment published in
[26], with pH value equal to 14 Chaves etal., 2017 Experiment ‘@ ". e o
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All results are shown in Table 1. versus amount of particles, and we realized that the lower

Regardless of the equipment, the result is very similar. ~ the average particle size distribution, the more particles
We believe that the NetBeans tool, when allocating memory  can be handled. So, the ability to handle particles at the
to the program, tries to assign a RAM memory default value.  nanoscale is conditioned by the average particle size.

For this reason, the results are similar on both computers. The images in Fig. 7 were scaled to the proportion
We have evaluated the ratio of particle size (mean size)  100x100 pixels, following the relation presented in Table 1.

Fig. 11 Experiment published
in [26], with pH value equal to 2 Chaves et al., 2017 a Experiment a e o 0
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Fig. 12 Experiment published

in [27], with original values Lopes etal, 2016 g
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We decided to use the minimum particle size of 50 nm in
all comparisons, varying only the maximum size. Also, we
decided to use grayscale and yellow for the animation of
the particles. This decision was made to facilitate visual
analysis.

Fig. 13 Experiment published in
Lopes et al., 2016
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The greater the difference between the minimum and
maximum particle size, for example, 50 nm and 900 nm,
the quality of the animation will also be impaired. That
is because particles of minimum size will not be drawn
correctly. Within this context, we believe that increasing the
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Fig. 14 Experiment published

in [27], with pH value equal to 2 Lopes.et.al,, 2016
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computational resources or using parallel and distributed
programming techniques could support simulations with
more particles in MASPN.

Comparison between MASPN and real experiments

To ensure fidelity to the reality of colloidal dispersion, we
address the influence of pH on zeta potential, since the
most important factor affecting the electric charge is pH. A

Fig. 15 Experiment in [28],
with manual zeta potential
change (from 55 to 10 mV)

Lollo et al., 2016
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zeta potential value used without an environment definition
(pH, ionic strength, concentration of any additives) is a
nonsense number [24]. Dispersion with pH less than 7
is considered acidic, and pH is higher than 7, basic or
alkaline. The investigation carried out in [6] shows that
if a particle in a dispersion with negative zeta potential
had its pH changed (more alkaline), it would be more
negative; and it would have neutral potential if acid was
added to the dispersion. In general, zeta potential is positive

Experiment

nerate Clean Inelastic collisions: 1500

Polyarginine

Elisidepsin

sD 7 Atention

0.25

ATENTION! The system is getting agglomerated.

SD 6

3 SD 1

Not stable

pH

0.06

=4
=)
@

0.04
0.03
0.02
0.01

pruvaviny

0.00

-60 -40 -20

20 40 60

charges

@ Springer



5 Page140of15

J Mol Model (2019) 25: 5

when pH is less than 6, and negative if pH is higher. In
the example of Fig. 8, we can observe that if the pH of
the dispersion is less than 5 or greater than 8, there is
sufficient charge to produce stability. However, if the pH
of the system is between 5 and 8, the dispersion may be
unstable.

In this research, we do not consider the steric hindrance
property, which has relation to volume and isolation of
a particle. Steric hindrance can obstruct the approach
even though the particles have different charges [25]. This
property is influenced by the choice of polymer type.

In [26], there are values for pH equal to 6.8 and standard
deviation of 0.03; zeta potential equal to -6.6 and standard
deviation of 0.6 (Fig. 9). By manually changing the pH
value to 14.0 while maintaining the standard deviation, the
zeta potential value changed to -13.8 with the same standard
deviation (Fig. 10).

Subsequently, by manually modifying the pH value to 2
with the same standard deviation, the zeta potential value
changed to -1.81. After 5 min of simulation, the amount of
inelastic collisions was 640 (Fig. 11).

In [27], the value for pH is equal to 6.32 and standard
deviation equal to 0.31; zeta potential -23.3 and standard
deviation equal to 3.0 (Fig. 12). By manually changing the
pH value to 14.0 while maintaining the standard deviation,
the zeta potential value changed to -30.98 with the same
standard deviation (Fig. 13).

Subsequently, by manually modifying the pH value to 2
with the same standard deviation, the zeta potential value
changed to -18.98. We note that the three figures show that
the system is not agglomerated (Fig. 14).

In the research presented in [28], we assume that if the
system is not agglomerated and the zeta potential is 55 mV,
it would be logical that the pH value was between 2 and
5. However, we manually switched the zeta potential value
to 10 mV, keeping the standard deviation and we realized
that the system went into the agglomerate state, as shown in
Fig. 15.

Conclusions

Using agents as particles helps to simulate the particle—
environment interaction because ambient pH values must
be perceived by the particles. In this case, the pH has a
very important relation with colloidal system because it can
excite dispersion or not, i.e., speed and surface charge of the
particles alter.

This research uses the JASON tool, agent-oriented
approach, and provides features to aid in simulations of
inelastic collisions. First, because in order to generate or
produce inelastic collisions, the colliding particles need to
interact, share or exchange information of electric charge

@ Springer

(zeta potential), mass (drug content), speed, and direction.
Second, the behavior of the particles (velocity, for example)
is conditioned to ambient information, such as pH value.

The MAS paradigm is based on natural systems, which
shows intelligent behavior from the interaction of its
elements, as in an anthill (the colony has an intelligent
behavior, while the ant does not) and the neurons (simple
cells, but interaction and organization emerges complex and
intelligent behavior). At this point, we do not intend to say
nanoparticles have intelligent behavior, but rather complex,
as they interact with an organization scheme and a very
reactive environment.

The MAS area of research is consolidated, with method-
ologies and tools for the projection and implementation of
multi-agent systems, both reactive and cognitive. However,
even if the reactive architecture best fits the research, it is
possible to design and implement nanoparticle simulation
based on the intentional theory of agents based on men-
tal states. This theory is based on the intentional approach,
since it has a strong conceptual appeal (as abstraction),
being quite natural for designers and analysts who use the
agent-oriented approach. In the MASPN environment, we
opted for a reactive architecture, but implemented with a
tool for cognitive programming.

Another pertinent conclusion is that the Brownian motion
of a colloidal system on the macro scale is equivalent on
the nanometer scale because with the integration of the
physicochemical parameters of the MASPN in the functions
of the algs4 package, it was possible to guarantee fidelity
of the elastic collisions system interactions, while MAS
contributed to the inelastic collisions system.

This research is relevant because the approach is
innovative and interdisciplinary in a way that helps to
understand the agglomeration effect on polymer particles by
means of a simulated environment. Future work prospects
are to introduce high-performance computing techniques
to increase the particle handling capacity. Designing and
implementing an online Web-based version can also lead to
wider use of the system.

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.
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