
Argument & Computation 12 (2021) 357–395 357
DOI 10.3233/AAC-210555
IOS Press

A computational model of argumentation
schemes for multi-agent systems

Alison R. Panisson a,∗, Peter McBurney b and Rafael H. Bordini c

a Department of Computing, UFSC, Araranguá, Brazil
E-mail: alison.panisson@ufsc.br
b Department of Informatics, KCL, London, UK
E-mail: peter.mcburney@kcl.ac.uk
c School of Technology, PUCRS, Porto Alegre, Brazil
E-mail: rafael.bordini@pucrs.br

Abstract. There are many benefits of using argumentation-based techniques in multi-agent systems, as clearly shown in the
literature. Such benefits come not only from the expressiveness that argumentation-based techniques bring to agent communi-
cation but also from the reasoning and decision-making capabilities under conditions of conflicting and uncertain information
that argumentation enables for autonomous agents. When developing multi-agent applications in which argumentation will
be used to improve agent communication and reasoning, argumentation schemes (reasoning patterns for argumentation) are
useful in addressing the requirements of the application domain in regards to argumentation (e.g., defining the scope in which
argumentation will be used by agents in that particular application). In this work, we propose an argumentation framework that
takes into account the particular structure of argumentation schemes at its core. This paper formally defines such a framework
and experimentally evaluates its implementation for both argumentation-based reasoning and dialogues.

Keywords: Argumentation, multi-agent systems, argumentation schemes, agent-oriented programming languages

1. Introduction

Argumentation schemes are patterns for arguments (or for inferences), representing the structure of
common types of arguments used both in everyday discourse as well as in special contexts such as legal
and scientific reasoning [89]. Argumentation schemes have become a well-known concept from Dou-
glas Walton’s book “Argumentation schemes for presumptive reasoning” [87], a seminal contribution to
the literature on argumentation, in which Walton argues about common forms of arguments, considered
“valid” or correct, addressing the question of what are those forms of arguments or so-called argumen-
tation schemes. Walton’s work on argumentation schemes became influential across a range of areas of
study, e.g., legal and scientific argumentation [89], as well as being a central element in the development
of argumentation in computer science, in particular artificial intelligence [41,67].

Considering that argumentation is a complex and important ability that demonstrates cognitive capac-
ity [5], the Artificial Intelligence (AI) community sees argumentation schemes as an important compo-
nent to model and implement intelligent-agent technologies embedding such cognitive capacity, enabling

*Corresponding author. E-mail: alison.panisson@ufsc.br.

1946-2166 © 2021 – The authors. Published by IOS Press. This is an Open Access article distributed under the terms of the
Creative Commons Attribution-NonCommercial License (CC BY-NC 4.0).

mailto:alison.panisson@ufsc.br
mailto:peter.mcburney@kcl.ac.uk
mailto:rafael.bordini@pucrs.br
mailto:alison.panisson@ufsc.br
https://creativecommons.org/licenses/by-nc/4.0/


358 A.R. Panisson et al. / A computational model of argumentation schemes for multi-agent systems

argument mining [28,35,36], agent decision-making, reasoning, and communication [32,33,77,82]. Ap-
plying such technologies on a variety of domains such as legal reasoning, medical argumentation, e-
government, debating technologies, and many others [5,69,86].

Particularly in Multi-Agent Systems (MAS), argumentation plays an important role in both agent
reasoning and communication [37], providing an expressive communication method [33], as well as a
powerful reasoning mechanism under conditions of conflicting and uncertain information [5]. Conse-
quently, interesting multi-agent system applications using argumentation-based techniques have been
developed in the last few years, for example [32,46,52,78]. Most of those applications define argumen-
tation schemes (often only one) that are used by agents to instantiate arguments used for reasoning
and/or communication, fulfilling the application needs regarding argumentation. However, the link be-
tween argumentation schemes and the (few) practical approaches and frameworks for argumentation,
particularly in multi-agent systems, has not been fully investigated in the literature. We believe that it
is necessary to address the particular structure of argumentation schemes, keeping the essence of the
argumentation schemes as devised by Walton [89] and reflecting natural (human-like) argumentation, in
such practical frameworks and in particular in agent-oriented programming languages, which will allow
us to implement multi-agent systems empowered by argumentation techniques in a more principled way.
This is so because, firstly, Walton’s approach provides an elegant model for knowledge engineering in
multi-agent systems based on argumentation schemes, which seems an essential step towards developing
multi-agent system applications that take advantage of argumentation schemes. Secondly, because Wal-
ton’s approach provides a refined and modular mechanism for agents to reason and communicate using
argumentation schemes, reflecting the essence of how humans argue. Also, our approach allows implicit
information in argumentation schemes to be kept implicit at the implementation level, whereas other
practical approaches explicitly represent them as additional premises or need to break an argumentation
scheme into separate arguments.

In this work, we propose a novel argumentation framework, formally defined and implemented, that
takes into consideration the general structure of argumentation schemes and agent-oriented program-
ming languages as its core. Thus, after modelling (or importing) argumentation schemes into our frame-
work, agents are directly able to construct, communicate, and reason with arguments instantiated from
those argumentation schemes, also addressing important properties when using argumentation schemes,
e.g., scheme awareness [91]. This work extends our previous paper [50], in which we took the initial
steps towards the development of this framework. In this paper, we not only present the framework,
but we also describe in detail how it can be used to implement argumentation-based reasoning and
argumentation-based dialogues using argumentation schemes, presenting various examples of their use.

The main contributions of this work are: (i) we propose an argumentation framework that has the
general structure of argumentation schemes as its core. Using that general structure, we can represent
argumentation schemes of different levels of specificity, including those in which there is implicit infor-
mation pointed out by critical questions; our framework maintains the essence of argumentation schemes
as defined by Walton [89], in which it is the matching between the argument and its reasoning pattern
(argumentation scheme) that brings to light the relevant implicit information necessary to judge the
validity of an argument; (ii) we show how our framework can be used to implement argumentation-
based reasoning mechanisms based on argumentation schemes, in which agents first instantiate and
evaluate each argument individually using its respective argumentation scheme and then, considering
the acceptable instances of arguments, agents define the set of acceptable arguments given a particular
argumentation semantics; (iii) we experimentally evaluate the performance of our implementation for
argumentation-based reasoning considering different levels of specificity for argumentation schemes,



A.R. Panisson et al. / A computational model of argumentation schemes for multi-agent systems 359

i.e., using single or chained argumentation schemes, varying the number of premises and critical ques-
tions. Our results confirm our hypothesis that the more complex the reasoning needed (using chained
argumentation schemes), the longer it takes for agents to reach a conclusion. Also, our results provide
guidance to the process of knowledge engineering for argumentation schemes in multi-agent systems us-
ing our approach, depending on the application’s needs, i.e., detailed reasoning versus faster reasoning;
(iv) we show how our framework can be used to implement argumentation-based dialogues based on ar-
gumentation schemes. We propose a dialogue protocol in which agents can question the argumentation
scheme used to instantiate arguments when they are not aware of that argumentation scheme, consid-
ering the problem of scheme awareness in argumentation-based dialogues [91]. We implemented the
proposed protocol in an agent-oriented programming language and we show the outputs generated from
different argumentation-based dialogues, considering different lines of argumentation; and (v) we pro-
vide an open-source implementation of our framework in the Jason multi-agent programming platform
[12].

This paper is organised as follows. In Section 2, we present the background of this work, giv-
ing an overview of how argumentation techniques have been used in artificial intelligence and multi-
agent systems, also introducing the notion of argumentation schemes. In Section 3, we introduce our
argumentation-scheme-centred framework and formally define it. In Section 4, we describe our approach
to argumentation-based reasoning using argumentation schemes, presenting examples and an empirical
evaluation of our implementation. In Section 5, we describe our approach to argumentation-based dia-
logues using argumentation schemes, introducing a dialogue protocol based on argumentation schemes,
and showing various examples of dialogues generated according to the implementation of that protocols.
In Section 6, we discuss the main properties of our framework. In Section 7, we describe some work
related to our approach. In Section 8, we conclude the paper also pointing out future directions for our
research.

2. Background

2.1. Argumentation in artificial intelligence and multi-agent systems

Computational argumentation has been largely studied as an abstract formalism [19], which provides
important insights into the nature of argumentation. In abstract argumentation, arguments are represented
as atomic entities and they have no internal structure. Thus, arguments and attacks between arguments
are left unspecified. This abstract perspective provides some advantages in studying argumentation [10],
in which it is possible to consider only the semantic level, i.e., given a set of arguments and an unspecified
attack relation it is possible to analyse which arguments are acceptable in that set/context/perspective.

When we need a more detailed formalisation than abstract argumentation, regarding the structure of
arguments and the nature of attack relations, we need to adopt a formalism based on structured argumen-
tation, which specifies a computational model of argument [10]. In structured argumentation, a formal
language is used to represent knowledge, and arguments and counterarguments can be constructed from
that knowledge. Arguments are structured in the sense that premises and conclusion of arguments are
made explicit, and the relationship between premises and conclusion is formalised, normally using log-
ical entailment. Attacks between arguments than can be formalised identifying conflicting information
in their structure. The best known structured argumentation frameworks are ASPIC+ [42], Assumption-
Based Argumentation (ABA) [80], Defeasible Logic Programming (DeLP) [26], and Deductive Argu-
mentation [11].



360 A.R. Panisson et al. / A computational model of argumentation schemes for multi-agent systems

Studies in computational models of argument can be classified into two classes: monological argumen-
tation and dialogical argumentation [10]. Monological argumentation has an emphasis on analysing a
set of arguments and counterarguments (generated from some knowledge or a neutral third party), evalu-
ating them in order to define which ones are acceptable and, consequently, making decisions based on the
conclusions of those acceptable arguments. Dialogical argumentation has an emphasis on the exchange
of arguments and counterarguments between agents, including not only how arguments are generated
and evaluated (i.e., monological argumentation) but also how agents interact, how agents change their
beliefs, protocols, and strategies that agents can adopt in argumentation-based dialogues.

In artificial intelligence, particularly in multi-agent systems, monological argumentation is used to
implement reasoning mechanism for agents, in which agents are able to execute reasoning over uncer-
tain and conflicting information, reaching well supported conclusions, and consequently, well supported
decisions [17,47,65]. On the other hand, dialogical argumentation is used to design and implement
argumentation-based communication between agents. Using a variety of types of dialogues, for example
those described in [88], agents are able to explain their positions in a deliberation dialogue, to persuade
their opponents in a negotiation, and so forth [4,33,38,58,59]. Normally, approaches to dialogical argu-
mentation have a direct dependence on some monological argumentation framework, given that agents
first need to construct and evaluate arguments from the knowledge available to them (their knowledge
bases and arguments from others agents), then they can communicate arguments in argumentation-based
dialogues. Also, some approaches use a third party in argumentation-based dialogues in order to describe
the current “winning” arguments in that dialogue; this agent executes monological argumentation over
the other agents’ arguments, for example, as in [62].

The history of development, from abstract argumentation to structured argumentation, have made the
field of computational argumentation mature in theory, and a few approaches to applying argumentation-
based techniques in multi-agent systems started to appear in practice. Most of this practical work focuses
on using an argumentation scheme (reasoning pattern) as the core component of the argumentation
mechanism. Normally, the argumentation scheme used is specified for particular applications, modelling
the needs of that application domain. For example, in [81] argumentation schemes have been specified
for analysing the provenance of information, in [57] argumentation schemes have been specified for
reasoning about trust, in [77] argumentation schemes have been specified for arguing about transplanta-
tion of human organs, in [46] argumentation schemes have been specified for implementing data access
control between smart applications, and so forth. Thus, we believe that argumentation schemes can play
an important role in the development of applications that take advantage of argumentation-based tech-
niques, as the literature also suggests.

However, even though some authors (e.g., [48,63,70]) have suggested that argumentation schemes
could be represented into such structured argumentation frameworks, for example using defeasible in-
ferences rules, there is no formal and general framework that takes into account the particular structure of
argumentation schemes in multi-agent systems, e.g., capturing the role of the implicit critical questions
associated with each argumentation scheme. Similar claims that reinforce the missing computational
representation for argumentation schemes can be found in papers by others, for example in [7]: “Dou-
glas Walton’s influential argumentation schemes remain an important insight, one which needs to be
embraced by computational modelling of argument. His work comes from informal logic and was de-
signed for manual analysis of argumentation. For computational purposes much detailed work remains
to be done before the use of argumentation schemes can be as standard and well understood as logical
deduction” [7].



A.R. Panisson et al. / A computational model of argumentation schemes for multi-agent systems 361

In this work, we propose a formal argumentation framework in multi-agent systems in which ar-
gumentation schemes are the core of the framework. Our approach considers a general structure for
representing argumentation schemes (with or without implicit critical questions).

2.2. Argumentation schemes

Argumentation schemes are patterns for arguments (or inferences) representing the structure of com-
mon types of arguments used both in everyday discourse as well as in special contexts such as legal
and scientific argumentation [87,89]. Besides the familiar deductive and inductive forms of arguments,
argumentation schemes represent forms of arguments that are defeasible.1 This means that an argument
may not be strong by itself (i.e., it is based on disputable inferences), but it may be strong enough to pro-
vide evidence that warrants rational acceptance of its conclusion [83]. Conclusions from argumentation
schemes can be inferred in conditions of uncertainty, lack of knowledge, lack of resources, or insufficient
time. This means that the reasoner must remain open-minded to new pieces of evidence that can inval-
idate previous conclusions [89]. These circumstances of uncertainty and lack of knowledge, resources,
or time are, inevitably, characteristics of multi-agent systems, which deal with dynamic environments
and organisations [92]. Thus, argumentation schemes have a natural application in multi-agent systems.

Many arguments include non-explicit (implicit) conditional premises or warrants, linking the explicit
premises to the conclusion. Critical questions pointed by the argumentation scheme used to instantiate an
argument are used to reveal such implicit information, playing an important role shifting the dialogue (or
reasoning) to the revealed information [87]. Thus, the acceptance of a conclusion from an instantiation
of an argumentation scheme is directly associated with so-called critical questions, which may be asked
before the default conclusion from an argument (labelled by an argumentation scheme) is accepted.
Together, the argumentation scheme and the matching set of critical questions are used to evaluate a
given argument in a particular case, considering the context in which the argument occurred [89].

Arguments instantiated from argumentation schemes and properly evaluated utilising their critical
questions can be used by agents in their reasoning and communication processes. In both situations,
other arguments, probably instantiated from other argumentation schemes, are compared in order to
arrive at an acceptable conclusion. After an argument is instantiated from an argumentation scheme and
evaluated by its set of critical questions, the process follows the same principle of any argumentation-
based approach, where arguments for and against a point of view (or just for an agent’s internal decision
making) are compared until eventually arriving at a set of acceptable arguments.

To exemplify our approach, we adapted the argumentation schemes Argument from Position to Know
from [87] to the context of a multi-agent (organisational) platform, so that we are able to refer to concepts
present in multi-agent systems, for example roles that agents play in the system can be referred to within
the scheme (it enables a clear reference to concepts of multi-agent systems). Consider the Argument
from role to know in multi-agent systems [48] (role to know for short):

“Agent Ag is currently playing a role R (its position) that implies knowing things in a certain subject
domain S containing proposition A (Major Premise). Ag asserts that A (in domain S) is true (or
false) (Minor Premise). A is true (or false) (Conclusion)”.

The associated critical questions are: CQ1: Does playing role R imply knowing whether A holds?
CQ2: Is Ag an honest (trustworthy, reliable) source? CQ3: Did Ag assert that A is true (or false)? CQ4:
Is Ag playing role R?

1Sometimes called presumptive, or abductive as well.



362 A.R. Panisson et al. / A computational model of argumentation schemes for multi-agent systems

The argumentation scheme from role to know (and the argumentation scheme from position to know
as well) exemplify some aspects of argumentation schemes pointed out by Walton in [87]:

“argumentation schemes have more of a rhetoric or persuasive function than a logical function”

in which the position/role and trustworthiness of the individual from where the information comes has
an important weight in evaluating an argument instantiated from those schemes. Instantiating this argu-
mentation scheme means replacing the variables Ag, R, A and S with some atomic formulas from the
application domain, as we will see in the next section.

3. An argumentation-scheme-centred argumentation framework

Some approaches in the argumentation literature have suggested that argumentation schemes [87,89]
could be translated into defeasible inferences [48,49,63], and the acceptability of arguments, instantiated
using these rules, could be used to extend frameworks such as ASPIC+ [43], DeLP [27], and others [47,
53]. However, those approaches do not take into consideration that most of the critical questions related
to the argumentation schemes are not explicitly represented in the argument, as clearly argued by Walton
[87]. Thus, those approaches would require to make the critical questions related to the scheme used to
instantiate that argument explicit in the representation of that argument; that is, it would be necessary
to include an explicit representation of all critical questions (usually representing presumptions and/or
exceptions for the application of that scheme [66]), as premises of the argument, or even modelling
those critical questions using other arguments undercutting the main argument (i.e., an argument saying
that defeasible inference rule does not apply in that particular case) [64]. Otherwise, when such critical
questions are not represented as part of the argument, and an agent is not able to infer from which
argumentation scheme that argument comes from, all that information is lost.

Although approaches that explicitly represent critical questions on arguments do not face the problem
of losing information, we believe they do not embrace the essence of argumentation schemes2 discussed
by Walton [89], in which arguments are instances of reasoning patterns (argumentation schemes) and
it is this link (identifying the argumentation scheme used to instantiate an argument) that bring to light
the critical questions applying to an argument. We also believe it is essential to keep this essence when
applying argumentation in dialogues between agents and between agents and humans.

In this work, we present an argumentation framework in which argumentation schemes are the core
of our framework. We propose a computational representation for argumentation schemes, and of ar-
guments instantiated from those reasoning patterns, that overcomes the problem of making explicit in-
formation that should be implicit in an argument. Moreover, we describe how agents may reason and
communicate using our proposed structure of arguments.

In order to make explicit the representation of arguments, we introduce the language L used in
this work. We use a first-order language as the basis for our representation, given that most agent-
oriented programming languages are based on logic programming, and we are interested not only
in the formal specification of our framework but also in its implementation. In particular, we have
a set of atomic formulæ {p0, . . . , pn} ∈ L, and a set of defeasible inference rules {(pi, . . . , pj ⇒
pk), . . . , (pl, . . . , pm ⇒ po)} ∈ L. In order to refer to the unification process, we use a most-general
unifier θ (as usual in logic programming). We use uppercase letters to represent variables – e.g., Ag
and R in role(Ag,R) – and lowercase letters to represent terms and predicate symbols – e.g.,

2Extensively used in other areas, for example teaching critical thinking skills.



A.R. Panisson et al. / A computational model of argumentation schemes for multi-agent systems 363

john, doctor and role(john,doctor). We use “¬” to represent strong negation in L, e.g.,
¬reliable(pietro) means that pietro is not reliable. We also use negation as failure “not”,
e.g., not(reliable(pietro)) means that an agent does not know if pietro is reliable. Atomic
formulæ, sets of atomic formulæ, and defeasible inference rules can be annotated with relevant infor-
mation used in the inference mechanism. In this paper, annotations are ground literals representing the
names of argumentation schemes, e.g., pl[sn] and {pi ∧· · ·∧pj }[sn] are used to represent critical questions
related to the argumentation scheme sn, and (pl, . . . , pm ⇒ po)[sn] is used to represent the defeasible
inference rule corresponding to the inference modelled by the argumentation scheme sn.

Further, all knowledge available to an agent ag is represented as �ag. When an agent ag is aware of
some information ψ (i.e., ψ is part of or can be inferred from its belief base), we write �ag |= ψ , with
ψ ∈ L. For example, when an agent ag is aware of a defeasible inference rule (pl, . . . , pm ⇒ po) we
write �ag |= (pl, . . . , pm ⇒ po). For example, �ag |= (penguin(X) ⇒ ¬flies(X)) means that
agent ag is aware of the defeasible inference stating that presumably, all penguins do not fly.

We introduce the formal definition for argumentation schemes used in this paper as follow:

Definition 1 (Argumentation scheme). Formally, an argumentation scheme is a tuple 〈sn, C, P, CQ〉 with
sn the argumentation scheme identifier (i.e., its name), C the conclusion of the argumentation scheme, P
the premises, and CQ the associated critical questions.

Considering the logic language L, an argumentation scheme 〈sn, C, P, CQ〉 is represented using a
(not ground) defeasible inference rule of the type (pi, . . . , pj ⇒ pk)[sn], in which {pi, . . . , pj } = P and
pk = C. Note that the inference rule is annotated3 with the name of the argumentation schemes sn, which
is used to refer to the critical questions associated with that schemes. The critical questions related to the
scheme are (not grounded) formulæ of the type {p0[sn], . . . , pn[sn] } ∈ L, with {p0[sn], . . . , pn[sn] } = CQ.

For example, the argumentation scheme role to know can be represented using the following defeasible
inference rule:4

( role(Agent,Role), role_to_know(Role,Domain),
asserts(Agent,Conclusion), about(Conclusion,Domain)
⇒ Conclusion )[as(role_to_know)]

with the argumentation scheme name sn = role_to_know, the conclusion C = Conclusion, and
premises P = {role(Agent,Role), role_to_know(Role,Domain), asserts(Agent,
Conclusion), about(Conclusion,Domain)}.

The associated critical questions CQ are:

• role_to_know(Role,Conclusion)[as(role_to_know)].
• reliable(Agent)[as(role_to_know)].
• asserts(Agent,Conclusion)[as(role_to_know)]
• role(Agent,Role)[as(role_to_know)].

Definition 2 (Argument). An argument is a tuple 〈S, c〉θsn, where 〈sn, P, C, CQ〉 is the argumentation
scheme used to instantiate that argument, θ is a most-general unifier for the premises in P and the
agent’s current beliefs, S is the set of premises and the inference rule of the scheme used to draw c

(the conclusion of the argument). That is, S includes all instantiated premises from P – i.e., for all

3We took inspiration from Labelled Deductive Systems (LBS) [24,25] to model annotated formulæ.
4Recall that an argumentation scheme is a non grounded reasoning pattern.



364 A.R. Panisson et al. / A computational model of argumentation schemes for multi-agent systems

p ∈ P, pθ ∈ S – and the inference rule corresponding to the scheme (P ⇒ C); the conclusion c is the
instantiation Cθ such that S |= c (c can be inferred from S).

For example, considering the argumentation scheme role to know, imagine that an agent ag knows
that john (another agent in the system) is playing the role of doctor – role(john,doctor) –
within the organisation of the multi-agent system. Further, ag knows that doctors know about
cancer – knows(doctor,cancer). Therefore, if john asserts that “smoking causes cancer” –
asserts(john,causes(smoking,cancer)), and given that causes of cancer are a subject mat-
ter related to cancer – about(causes(smoking,cancer),cancer), ag is able to instantiate
the argumentation scheme role to know, which allows ag to conclude that smoking causes cancer –
causes(smoking,cancer).

Note that an agent can instantiate different arguments, say 〈S1, c1〉θ2
sn and 〈S2, c2〉θ1

sn, from the same
argumentation scheme sn, when θ1 �= θ2. Also, an agent is able to use the same argumentation
scheme to instantiate conflicting arguments. Following our example, imagine that another agent also
(presumably) playing the role of doctor, called pietro, asserts that “smoking does not cause cancer” –
asserts(pietro, ¬causes(smoking,cancer)). Any agent aware of both assertion, John’s and
Pietro’s assertions, is able to construct conflicting arguments for ¬causes(smoking,cancer) and
causes(smoking,cancer) (as we will see later, both attacking each other). However, the agents
are able to question whether john and pietro are reliable (trustworthy) sources, if they really play
the role of doctor, and the other questionable points indicated by the critical questions in the argu-
mentation scheme used in order to check the validity of that particular conclusion. Here, an important
issue on the representation of arguments appears, as not all critical questions (for example the reliability
of an agent) refer to information explicitly represented in the structure of arguments instantiated from
argumentation schemes. As described in [84], the critical questions of an argumentation scheme play an
important role in: (i) criticising the scheme’s premises; (ii) pointing out exceptional situations in which
the scheme should not be used; (iii) representing conditions for a scheme’s use (for example, a particular
context). Thus, it is essential to consider the critical questions when evaluating an individual instance of
argument from an argumentation scheme, and when the critical questions are not positively answered,
that argument instance might not be acceptable.5 For example, imagine that an agent has the information
that “Pietro is not a reliable source” – ¬reliable(pietro). In that case, that agent is not able to
answer positively the critical question reliable(pietro), thus it is rational to think that instance
of the argumentation scheme (i.e., that argument) might not be acceptable for that agent; the argument
concluding ¬causes(smoking,cancer) might not be an acceptable instance of the argumentation
scheme role to know for such a rational agent.

Definition 3 (Acceptable instance of an argument from an argumentation scheme). An argument
〈S, c〉θsn, instantiated from an argumentation scheme 〈sn, P, C, CQ〉, is an acceptable instance of that
argumentation scheme to an agent ag (with �ag its knowledge base) iff: (i) for all premises p ∈ S,
�ag |= pθ either because p is asserted in its knowledge base, or because p can be inferred from �ag

(possibly using other acceptable instances of argumentation schemes); and (ii) all critical questions re-
lated to the argumentation scheme 〈sn, C, P, CQ〉 are positively answered by ag, that is, ∀Cqi ∈ CQ,
�ag |= Cqiθ .

5Different agent profiles can be explored, for example, those presented in [58,60]; they will be considered in our future
work when applying our framework in argumentation-based dialogue. When using our framework for argumentation-based
reasoning, it makes sense an agent to evaluate such arguments being able to answer all critical questions related to them.



A.R. Panisson et al. / A computational model of argumentation schemes for multi-agent systems 365

Note that instantiating an argumentation scheme requires an agent checking the acceptability of the
premises used in that argument, this automatically refers to the agent checking attacks against the
premises of that argument instance.6 Also, positively answering the critical questions related to the
argumentation schemes used to instantiate that argument requires instantiating the critical questions.
Considering the language introduced above, we are able to model critical questions that cover all roles
mentioned by [84], for example, for some scenarios it would be interesting to model critical questions
pointing out to the absence of a particular piece of information – not(¬reliable(pietro)) (the
agent does not have the information that Pietro is not reliable). When the application requires more
complex argumentation (inferences) regarding critical questions, predicates representing critical ques-
tions may be the conclusion of other arguments, which will be instantiated from argumentation schemes
with their own critical questions, as we show later in this paper.

After instantiating arguments from the argumentation schemes available to it, an agent needs to check
if those arguments result in conflicts. Considering a dialectical point of view, two types of attack (con-
flict) between arguments can be considered, according to [89]: (i) a strong kind of conflict, where one
party has a thesis to be proved, and the other party has a thesis that is the opposite of the first thesis,
and (ii) a weaker kind of conflict, where one party has a thesis to be proved, and the other party doubts
that thesis, but has no opposing thesis of their own. In the strong kind of conflict, each party must try to
refute the thesis of the other in order to win. In the weaker form, one side can refute the other, showing
that their thesis is doubtful. When considering the computational model of arguments, this difference
between conflicts is inherent from the structure of arguments and can be found in the work of others
(e.g., [63]). Both types of conflicts are also considered in monological argumentation frameworks. On
the one hand, the stronger kind of conflict refers to arguments supporting conflicting conclusions, in
which each argument has its own set of evidence (i.e., its support). On the other hand, the weaker kind
of conflict refers to an argument attacking (in conflict with) part of the support of another argument, that
is, an argument does not imply that the conclusion of another argument is false, but it implies that some
information used as support of that conclusion (e.g., some piece of information in the support of another
argument) is not true.

Definition 4 (Conflicting information). Two pieces of information ϕ and ψ are said to be in conflict
with each other when:

• ψ and ϕ are the negation of each other, e.g., ψ = causes(smoking,cancer) and ϕ =
¬causes(smoking,cancer).

• ψ and ϕ are semantically declared as conflicting information, i.e., ψ = reliable(john) and
ϕ = unreliable(john), with some declaration of complement, conflict, or contrary informa-
tion, e.g., complement(reliable(X),unreliable(X)).

For both cases we adopt a general operator for conflict ψ , in which ϕ ≡ ψ means that ψ and ϕ are
conflicting information. It follows that ¬φ ≡ φ and φ ≡ ¬φ.

Attacks between arguments are identified by looking at their structures and finding conflicting infor-
mation, as formalised below.

Definition 5 (Attacks between arguments). An argument 〈S1, c1〉θ1
sni

attacks another argument
〈S2, c2〉θ2

snj
, when:

6In ASPIC+ for example, attacks against the premises are described as undermine attacks [42].



366 A.R. Panisson et al. / A computational model of argumentation schemes for multi-agent systems

• c1 is in conflict with c2, i.e., c1 ≡ c2.
• c1 is in conflict with some part of S2, i.e., c1 ≡ ψ , with ψ ∈ S2.

�ag =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

reliable(john)

reliable(pietro)

asserts(john,causes(smoking,cancer))

asserts(pietro, ¬causes(smoking,cancer))

role(john,doctor)

role(pietro,doctor)

role_to_know(doctor,cancer)

about(causes(smoking,cancer),cancer).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

For example, considering an agent ag and its knowledge base �ag, ag is able to construct two different
arguments using the argumentation scheme role to know; both arguments are in conflict with each other
at their conclusions:

〈{role(john,doctor), role_to_know(doctor,cancer),
asserts(john,causes(smoking,cancer)),
about(causes(smoking,cancer),cancer),
(role(Agent,Role), role_to_know(Role,Domain),

asserts(Agent,Conclusion),
about(Conclusion,Domain) ⇒ Conclusion)},

causes(smoking,cancer)〉[as(role_to_know)].
〈{role(pietro,doctor), role_to_know(doctor,cancer),
asserts(pietro,¬causes(smoking,cancer)),
about(¬causes(smoking,cancer),cancer),
(role(Agent,Role), role_to_know(Role,Domain),

asserts(Agent,Conclusion),
about(Conclusion,Domain) ⇒ Conclusion)},

¬causes(smoking,cancer)〉[as(role_to_know)].
Note that both arguments above are acceptable instances of the argumentation scheme role

to know, according to Definition 3. However, when defining the acceptability of an argument
(semantically), it is not enough to check if it is an acceptable instance of an argumentation
scheme; it is necessary to check if that argument survives attacks from other acceptable in-
stances of argumentation schemes. At this point, it would be reasonable to conclude that both ar-
guments are not (semantically) acceptable to ag, and it would not be able to conclude either
causes(smoking,cancer) or ¬causes(smoking,cancer). However, imagine that pietro
is not a doctor, i.e., role(pietro,doctor) is not true (it was a misperception of ag), and ag be-
comes aware of that information through the hospital director named mathew.

�ag =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

reliable(mathew)

asserts(mathew,role(pietro,cleaning_staff))

role(mathew,hospital_director)

role_to_know(hospital_director,employees)

about(role(pietro,cleaning_staff),employees).

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭



A.R. Panisson et al. / A computational model of argumentation schemes for multi-agent systems 367

Given the knowledge that ag has about the hospital, partially shown above, in �ag, it is able to con-
struct an argument using the argumentation scheme role to know concluding that pietro is a cleaning
staff and not a doctor:

〈{role(mathew,hospital_director),
role_to_know(hospital_director,employees),
asserts(mathew,role(pietro,cleaning_staff)),
about(role(pietro,cleaning_staff),employee),
(role(Agent,Role), role_to_know(Role,Domain),

asserts(Agent,Conclusion),
about(Conclusion,Domain) ⇒ Conclusion)},

role(pietro,cleaning_staff)〉[as(role_to_know)].
Thus, the argument concluding ¬causes(smoking,cancer) is not an acceptable instance of the

argumentation scheme role to know anymore, considering that role(pietro,cleaning_staff) is
conflicting information with role(pietro,doctor) (semantically declared at ag knowledge base).
At this point, it would be reasonable for ag to conclude causes(smoking,cancer).

Definition 6 (Acceptable arguments). An argument 〈S1, c1〉θsni is acceptable to an agent if it is an accept-
able instance of the argumentation scheme sni, according to Definition 3, and either it is not attacked
by any other acceptable argument instance or, when attacked, the attacking argument is itself attacked
by an acceptable argument. That is, considering the set of arguments an agent is able to construct from
its knowledge base, an acceptable argument is either not attacked by any other argument, or when it is
attacked by another argument, that other argument is attacked by some other acceptable argument.

Considering the three arguments above, the argument concluding that causes(smoking,cancer)

is attacked by the argument concluding ¬causes(smoking,cancer), which is attacked by the
argument concluding role(pietro,cleaning_staff). Considering that the argument conclud-
ing role(pietro,cleaning_staff) is not attacked by any other argument, role(pietro,

cleaning_staff) and causes(smoking,cancer) are the two acceptable conclusions (and their
respective arguments) in our example. We write �ag |= 〈S1, c1〉θsni to represent when 〈S1, c1〉θsni is an
acceptable argument for ag. Also, we write �ag |= c1 to represent that c1 is an acceptable conclusion
for ag.

4. Argumentation-based reasoning using argumentation schemes

One characteristic we desire in our framework is generality. The generality of our framework to rep-
resent argumentation schemes has been evaluated in Panisson’s PhD thesis [44], in which 11 argumenta-
tion schemes (with and without implicit critical questions) from different areas in the literature have been
specified using our framework, evaluated, and implemented in an agent-oriented programming language.
Here, starting from Section 4.1, we focus on demonstrating examples of how our framework for argu-
mentation schemes can be used to implement argumentation-based reasoning in multi-agent systems.
Also, in Section 4.2, we evaluate our implementation in order to demonstrate how fast agents are able
to reach a particular conclusion supported by arguments instantiated from argumentation schemes using
our implementation, investigating how much the number of premises and critical questions influence the
time necessary for agents to reach such a conclusion.



368 A.R. Panisson et al. / A computational model of argumentation schemes for multi-agent systems

4.1. Representing and reasoning with argumentation schemes

It is important to mention that in our approach we are able to specify argumentation schemes for
agents with different levels of bounded rationality, depending on the application needs. This is an im-
portant characteristic of our approach, given that different applications might require different levels
of specificity for argumentation schemes [84]. The most common approach when applying argumen-
tation schemes in multi-agent systems is to consider only one argumentation scheme without chained
arguments. Examples of this kind of argumentation schemes are found in [28,34,57,79,81]. In all those
cases, during reasoning, agents check if they are able to construct acceptable instances of arguments
from the argumentation schemes, according to Definition 3, used in a particular application domain.
When the application domain does not require chained arguments, then premises and critical questions
related to an argument are directly asserted (or omitted from) agents’ belief bases. Thus, after construct-
ing acceptable instances of arguments, an agent will check for conflicts between the conclusions of
arguments,7 determining the acceptable ones, according to Definition 6. When the application domain
requires chained arguments (e.g., as in [46]), agents check if they are able to infer the premises and criti-
cal questions of a particular argument, according to Definition 3, then constructing acceptable instances
of arguments from the argumentation schemes available to them. Thus, agents check the acceptability of
those instances of arguments, checking both kinds of attacks, given that premises can be inferred from
arguments and those arguments can be attacked by other arguments.

Consider the argumentation scheme from role to know, extensively used as an example in this paper;
its representation was introduced in Section 2.2 followed by a few examples demonstrating how agents
are able to reason using arguments instantiated from it. In the first example given, ag uses the argumen-
tation scheme role to know to instantiate arguments for and against the conclusion that “smoking causes
cancer”. In the second example, the agent ag uses the same argumentation scheme to construct an ar-
gument supporting that Pietro is a cleaner, which then is used to attack the argument concluding that
“smoking does not cause cancer” based on Pietro’s assertions, because now ag does not believe Pietro
is in a role to know about the subject of cancer. Here, we extend those examples to demonstrate when
agents are also able to construct arguments supporting/attacking critical questions of other arguments
using this single argumentation scheme.

Imagine a scenario in which an agent ag needs to make a decision about quitting smoking or
not, and it will make that decision based on information about whether smoking causes cancer or not.
That is, the agent will quit smoking if it concludes that smoking causes cancer. In our scenario, ag will
reason about that conclusion based on Pietro’s and John’s assertions (assuming that both are doctors).

�ag =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

asserts(john,causes(smoking,cancer))

asserts(pietro, ¬causes(smoking,cancer))

role(john,doctor)

role(pietro,doctor)

role_to_know(doctor,cancer)

about(causes(smoking,cancer),cancer).

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

However, initially ag does not know if John and Pietro are reliable, reliable(john) and
reliable(pietro) /∈ �ag. Thus, ag asks other agents (we will call those agents reliability advisers)

7We are considering that argumentation schemes are consistently modelled, and they do not allow circular arguments [90].



A.R. Panisson et al. / A computational model of argumentation schemes for multi-agent systems 369

whether Pietro and John are reliable or not, executing a broadcast message and receiving the following
assertions from Ana: asserts(ana,reliable(john)), asserts(ana, ¬reliable(pietro)),
Jana: asserts(jana,reliable(pietro)), asserts(jana, ¬reliable(john)), and Carlo:
asserts(carlo, ¬reliable(pietro)), asserts(carlo,reliable(john)).

�ag =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

asserts(ana,¬reliable(pietro)) asserts(ana,reliable(john))

asserts(jana,reliable(pietro)) asserts(jana,¬reliable(john))

asserts(carlo,¬reliable(pietro)) asserts(carlo,reliable(john))

role(ana,reliability_adviser) reliable(ana)

role(jana,reliability_adviser) ¬reliable(jana)

role(carlo,reliability_adviser) reliable(carlo)

role_to_know(reliability_adviser,reliability)

about(reliable(_),reliability)

about(¬reliable(_),reliability)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

Considering the assertions made by Ana, Jana, and Carlo (the reliability advisers), and also consider-
ing that ag believes Ana and Carlo are reliable advisers and Jana is not a reliable adviser, as shown in
the knowledge base above, ag concludes that John is reliable, reliable(john), and that Pietro is not
reliable, ¬reliable(pietro). Both conclusions are supported by acceptable arguments, according
to Definition 6, which are first built as acceptable instances of the argumentation scheme role to know,
according to Definition 3. While Ana’s and Carlo’s assertions are used to instantiate arguments that are
acceptable instances of the argumentation scheme role to know, and they are used to support information
used to help answering critical questions by ag, Jana’s assertions are ignored because Jana is not reliable
and then ag is not able to build acceptable instances of arguments from the argumentation scheme role
to know using her assertions, according to Definition 3, i.e., ag is not able to answer the critical question
related to the reliability of Jana.

Using that information, ag concludes that smoking causes cancer, given it has an acceptable argu-
ment supporting causes(smoking,cancer) based on John’s assertion, also considering that John
is a reliable source of information, which is supported by arguments built using Carlo’s and Ana’s as-
sertions, who also are reliable. On the other hand, the information that smoking does not cause cancer,
¬causes(smoking,cancer), is not supported by an acceptable argument, given that ag is not able
to construct an acceptable instance of argument using the argumentation scheme role to know based on
Pietro’s assertion, according to Definition 3, because it concludes that Pietro is not a reliable source of
information, which is supported by the arguments built using Ana’s and Carlo’s assertions.

4.2. Experimental results

We have implemented our approach8 extending the argumentation-based framework reported in [47,
53], which is implemented in the Jason [12] multi-agent platform. We have evaluated our implementation
to check how much time an agent needs to construct an acceptable instance of an argument from an
argumentation scheme, depending on the number of premises and critical questions present in such
scheme. In our experiments, we have considered both approaches for modelling argumentation schemes,
i.e., with and without chained arguments.

First, we evaluate our implementation when modelling argumentation schemes without chained argu-
ments, in which premises and critical questions are asserted into agents’ belief base. Figure 1 shows our

8The implementation is available in https://github.com/AlisonPanisson/ASinMAS.

https://github.com/AlisonPanisson/ASinMAS


370 A.R. Panisson et al. / A computational model of argumentation schemes for multi-agent systems

Fig. 1. Time (ms) for reaching a conclusion considering one level of inference.

Fig. 2. Time (ms) for reaching a conclusion considering 2 levels of inference.

results, varying the number of premises and critical questions from 1 to 10. It can be noted that there
is a similar influence of the number of premises and critical questions in the final time for an agent to
construct an acceptable instance of an argumentation scheme.

We then evaluate our implementation considering chained arguments, in which the premises of the
main argument are conclusions of other arguments constructed from different argumentation schemes.
Thus, first an agent constructs acceptable instances of arguments from their respective argumentation
schemes for each premise of the main argument, and using those premises it constructs the main ar-
gument as an acceptable instance of its respective argumentation scheme. Figure 2 shows our results,



A.R. Panisson et al. / A computational model of argumentation schemes for multi-agent systems 371

Fig. 3. Abstract inference tree generated for chained argumentation schemes with 4 premises and 4 critical questions.

varying the number of premises (and respective argumentation schemes, given each premise is the con-
clusion of an acceptable instance from a different argumentation scheme) and the critical questions. It
can be noted that the number of premises has a greater influence on the time to construct the main argu-
ment than the number of critical questions. This results from the fact that premises of the main argument
are conclusions of other arguments, which are constructed and evaluated from their respective argumen-
tation schemes,9 according to Definition 3, which means that they have their own critical questions to be
positively answered.

Our results provide a guide for the process of knowledge engineering of argumentation schemes in
multi-agent systems (specially useful when using our implementation), showing how those reasoning
patterns could be modelled depending on the multi-agent application requirements. On the one hand,
when defining chained argumentation schemes (generating chained arguments), which will allow agents
to execute a more detailed and refined reasoning process based on argumentation, as in [46], more time
is required for agents to analyse and evaluate a particular conclusion from those argumentation schemes.
On the other hand, when defining a single argumentation scheme, such reasoning is simplified but faster
results are reached.

Figure 3 shows an abstract example for an inference tree generated by an agent reaching a conclu-
sion conc using chained argumentation schemes (i.e., all sni argumentation schemes are chained to the
argumentation scheme sn) with four premises and four critical questions.

5. Argumentation-based dialogues with argumentation schemes

When participating in argumentation-based dialogues using argumentation schemes, agents must be
aware of such reasoning patterns in order to have a full understanding of what is being communicated,
which has been referred to as “scheme awareness” by Wells [91]. Being aware of the argumentation
schemes used by others, when receiving an argument, allows agents to understand which argumentation

9For example, when considering chained argumentation schemes with 2 premises and 2 critical questions, besides answering
the 2 critical questions of the main argumentation scheme, the premises of the main argument are the conclusion of 2 differ-
ent arguments constructed from different argumentation schemes which also have 2 premises and 2 critical questions to be
positively answered.



372 A.R. Panisson et al. / A computational model of argumentation schemes for multi-agent systems

scheme has been used to instantiate that argument, identifying the critical questions related to it, being
able to understand what implicit information was used by the speaker when building that argument.

Definition 7 (Scheme awareness). An agent ag is aware of an argumentation scheme 〈sn, P, C, CQ〉
when that argumentation scheme is in its knowledge base �ag. We write 〈sn, P, C, CQ〉 ∈ �ag to
represent the fact that ag is aware of the argumentation scheme sn.

A few approaches in the literature, for example [48,49], propose that agents should openly share such
argumentation schemes in order to deal with the inherent problem of scheme awareness. An overview
of those approaches to argumentation schemes in MAS is shown in Fig. 4, where all agents are able
to instantiate arguments from shared argumentation schemes at runtime. Whilst those approaches solve
the problem of scheme awareness as defined by Wells [91], and it is adequate to many multi-agent
architectures using shared domain-specific knowledge [23,52,74], we propose a more general approach,
allowing agents to have knowledge of specific argumentation schemes and to be able to communicate
them when necessary.

In communication, the acceptability of arguments received from other agents is directly associated
with the agents’ rationality, i.e., when an agent ag receives an argument 〈S, c〉θsni from another agent,
it is able to check whether or not that information is acceptable to itself, adding S to its knowledge
base �ag (i.e., �ag = �ag ∪ S) and checking the acceptability of c. Thus, it is essential that such
an agent is aware of the argumentation scheme sni to adequately check whether that argument is an
acceptable instance of that argumentation scheme according to Definition 3. Afterwards, an agent can
proceed to further consider that argument looking for arguments that attack it, arguments that attack
those arguments attacking the initial one, and so on, according to Definition 6.

We use �ag |= c to say that agent ag is able to construct an acceptable argument 〈S, c〉θsni according
to Definition 6, with S ⊂ �ag. Argument 〈S, c〉θsni refers to an acceptable instance of the argumentation
scheme 〈sni, P, C, CQ〉 ∈ �ag. An agent never has acceptable arguments for conflicting information,
i.e., �ag |= c and �ag |= c never both hold simultaneously. We use �ag �|= c to mean that an agent is not

Fig. 4. Argumentation schemes shared by all agents.



A.R. Panisson et al. / A computational model of argumentation schemes for multi-agent systems 373

able to construct an acceptable argument for c. �ag �|= c does not imply �ag |= c; however, �ag |= c

implies �ag �|= c.

5.1. Performatives for argumentation-based dialogues

In the multi-agent paradigm, communication is often based on the speech-act theory [75]. In such
approaches, messages have the following format 〈Ags,performative,content〉, where Ags rep-
resents the agent (or set of agents) to which the message is addressed, performative denotes the
illocutionary force of the speech act, and content is the (propositional) content of the message. The
performatives we use in this work, and their intended meaning are informally presented below:

• assert: the performative assert is used by agents to introduce a particular claim in the dia-
logue. The agents receiving such a message become aware of that claim.

• question: the performative question is used by agents to question a claim, part of arguments,
or a critical question related to an argument, put forward by agents in the dialogue. The content
will be a proposition ϕ that either: (i) refers to a claim put forward by some agent in the dialogue;
or (ii) refers to part of the support of an argument put forward by some agent in the dialogue, i.e.,
ϕ ∈ S for some argument 〈S, c〉θsn that has been put forward by some agent in the dialogue; or (iii) a
critical question associated to an argument that has been put forward by some agent in the dialogue,
i.e., ϕ = qθsn, with q ∈ CQ, for an argumentation scheme10 〈sn, C,P, CQ〉, with 〈S, c〉θsn the
argument.

• justify: the performative justify is used by agents to introduce an argument in the dialogue.
The content will be 〈S, c〉θsn, the argument supporting c.

• refuse: the performative refuse is used by agents to refuse a previous proposition put forward
by some agent in the dialogue.

• accept: the performative accept is used by agents to accept a previous proposition put forward
by some agent in the dialogue.

• question_scheme: the performative question_scheme is used by agents to question which
argumentation scheme has been used to instantiate an argument previously communicated during
the dialogue by another agent.

• inform_scheme: the performative inform_scheme is used by agents to inform another agent
about the argumentation scheme it has used to instantiate an argument previously communicated by
it during the dialogue.

In the course of argumentation-based dialogues, agents make commitments based on which speech
act they use. These commitments are stored in the commitment store (CS) that consists of one or more
structures, accessible to all agents in a dialogue.11 The CS is simply a subset of the knowledge base,
and the union of the CSs can be viewed as the global state of the dialogue at a given time [59]. The
rules that define how CSs are updated, depending on the speech act used by agents, are summarised
as follows: (i) assert: the agent’s CS is updated with the asserted content p, CS ← CS ∪ {p};
(ii) accept: the agent’s CS is updated with the accepted content p, CS ← CS ∪ {p}; (iii) question
and refuse: no effect over the CS; (iv) justify: the agent’s CS is updated with the justified content
contained in the set of rules and facts S (the support of the intended argument for p), CS ← CS ∪ S;

10Recall that S is different from P , considering that P are non-instantiated premises, and S the entire support for c.
11Other names are used for CS, such as dialogue obligation store in [40] and dialogue store in [73].



374 A.R. Panisson et al. / A computational model of argumentation schemes for multi-agent systems

and (v) question_scheme and inform_scheme: no effect over the CS. Using these speech acts,
various protocols can be specified.

5.2. A framework for argumentation-based dialogues

In this section, we describe a framework for the specification of dialogue games. In previous work
[54], we used this framework to model argumentation-based dialogues based on a particular protocol.
Here, we use the same framework to specify an argumentation-based protocol based on our approach for
argumentation schemes in multi-agent systems. The framework for dialogue games is based on work by
McBurney et al. [38,39], in which the elements that correspond to the dialogue game specification are:

• Commencement Rule: the condition for an agent to start a dialogue.
• Locutions: it describes the set of locutions, in our case the locutions from Section 5.1, an agent is

allowed to use, following a particular protocol.
• Combination Rules: the possible combination of locutions. Normally, the choice of the next move

also depends on the strategy of the agent on choosing among the allowed moves at each stage of the
dialogue (e.g., corresponding the agent attitudes to assert and accept claims in the dialogue [58,60]).

• Commitments: the update of commitments of the participants following the semantics of the
speech acts used, in our case the updates described in Section 5.1, where each speech-act/per-
formative introduces commitments of participants.

• Termination Rules: when a dialogue ends.

In particular, Dialogue rules will govern the interactions between the agents, where each agent moves
by performing one of the allowed utterances. These rules (which correspond to a dialogue game [39])
are expressed as if-then rules, which are then easy to implement. The dialogue rules specify the moves
each player can make, and so specify the protocol under which the dialogue takes place [3].

Definition 8 (Dialogue game protocol [54]). A dialogue game protocol is formally represented as a tuple
〈MO,DI〉, where MO is a finite set of allowed moves, and DI a set of dialogue rules.

Definition 9 (Dialogue move [54]). We denote a move in MO as Mi(α, β,content,t), where i is
the type of move made by agent α and addressed to agent β at time t regarding content content.
We consider the following set of types of moves, denoted by P (q.v. Section 5.1): assert, accept,
refuse, question, justify, question_scheme and inform_scheme. The content of a
move (content) can be an argument (a set of predicates and rules), a single predicate, or and ar-
gumentation scheme.

The dialogue rules in DI indicate the possible moves that an agent can make following a previous
move by the other agent. The formalisation we give here follows the work of Bentahar et al. [9]. To
define the dialogue rules, we use a set of conditions (denoted by C) which reflect the agents’ strategies.
Formally, we have:

Definition 10 (Dialogue rules [54]). Dialogue rules can assume one of two forms:

1) we have dialogue rules that specify which moves are allowed given the previous move and condi-
tions (corresponding to the combination rules of the dialogue game).

∧
0<k�ni,
i,j∈P

(Mi(α, β,content,t) ∧ Ck ⇒ Mjk
(
β, α,contentk,t

′)



A.R. Panisson et al. / A computational model of argumentation schemes for multi-agent systems 375

where P is the set of move types, Mi and Mj are in MO, t < t′ and ni is the number of allowed
communicative acts that β could perform after receiving a move of type i from α.

2) we have the initial conditions (corresponding to the commencement rules of the dialogue game),
which do not require any moves to have been previously executed.

∧
0<k�n,
j∈P

(Ck ⇒ Mjk(α, β,contentk,t0)

where t0 is the initial time and n is the number of allowed moves that α could make initially.

Using this framework for dialogue games, we will define a protocol that takes argumentation schemes
under consideration. we then show how we implement that protocol (and respective dialogue rules) for
Jason agents [12].

In order to define the dialogue rules we use the following notation:

• We write �ag to represent agent ag’s knowledge base. �ag includes ag’s private knowledge and
argumentation schemes.

• We write CSag to represent agent ag’s commitment store, which is updated according to the rules
described in Section 5.1.

• We write �ag |= 〈S, c〉θsn to denote that an agent ag is able to instantiate an acceptable argument
supporting c (according Definition 6) from the information available in its knowledge base �ag,
which includes the argumentation scheme sn used to instantiate that argument.

• We write (�agi
∪ CSagj

) |= 〈S, c〉θsn to denote that an agent agi is able to construct an acceptable
argument supporting c from its knowledge base and agj ’s commitment store.

5.3. A protocol using argumentation schemes

Our protocol combines persuasion and information-seeking dialogues. A persuasion dialogue is used
when an initiator agent believes something that it wants another agent to be convinced to believe as
well [76]. In this type of dialogue, an agent starts the dialogue with an assert move, asserting the
information (the subject of the dialogue) it wants the other agent to believe [54]. After that, agents are
able to present their arguments supporting or attacking the subject of the dialogue. In the end, either the
other agent accepts the subject of the dialogue, when the arguments from the initiator agent convince it,
or the initiator agent accepts that it cannot convince the other agent to accept the subject of the dialogue,
then closing the dialogue. However, our protocol mixes information-seeking dialogues when we allow
agents to ask for the argumentation scheme used to instantiate arguments used by other agents in the
dialogue.

In the previous sections, we have used examples of arguments typically used in persuasion dialogues,
instantiated from the argumentation scheme from role to know. For example, in a hospital nurses usu-
ally use arguments based on doctors’ assertions in order to convince patients to accept a treatment, a
diagnostic, etc.

In order to evaluate our framework, we have implemented the following protocol, which is an extended
version of [54], making reference to components of our framework for argumentation schemes in multi-
agent systems, as well as allowing agents to question the argumentation scheme used by other agents
during the dialogue:



376 A.R. Panisson et al. / A computational model of argumentation schemes for multi-agent systems

(1) an agent agi starts a dialogue with another agent agj , executing an assert move assert(agi,

agj, p), trying to make agj believe in p; p becomes the subject of the dialogue (the protocol goes
to (2)).

(2) an agent agj receives an assert move assert(agi, agj, p), and it checks if it has an argu-
ment against p. When it has no argument against p, it accepts p executing an accept move
accept(agj, agi, p) (the protocol goes to (5)). Otherwise, when agj is able to construct an argu-
ment against p, it executes a question move question(agj, agi, p), asking for an argument
supporting that assertion (the protocol goes to (3)).

(3) an agent agi receives a question move question(agj, agi, p), and it responds with a
justify move justify(agi, agj, 〈S, p〉θsn), introducing an argument which supports the ques-
tioned proposition (the protocol goes to (4)).

(4) an agent agj receives a justifymove justify(agi, agj, 〈S, p〉θsn), checking whether it is aware
of the argumentation scheme sn used to build that argument. When it is not aware of the argu-
mentation scheme sn, it questions agi about the scheme executing a question_scheme move
question_scheme(agj, agi, sn) (the protocol goes to (6)). Otherwise, when it is aware of the
argumentation scheme used by agi , then it checks if the new information received from agi is
enough to make it accept the subject of the dialogue, i.e., if it has no argument against the sub-
ject of the dialogue, considering the new information received from agi . In case agj has no ar-
gument against the subject of the dialogue, it accepts the subject of the dialogue executing an
accept move accept(agj, agi, p) (the protocol goes to (5)). Otherwise, when agj is able to
construct an argument against the subject of the dialogue, either (i) it executes an assert move12

assert(agj, agi, ¬p), committing itself to provide support for ¬p (the protocol goes to (2));
or (ii) it checks whether it is able to answer negatively any critical question related to the argu-
mentation scheme sn that agi has used to instantiate its argument. In the case it is able to answer
negatively a critical question from sn, it executes an assert move assert(agj, agi, ¬cq), with
cq the critical question (the protocol goes to (2)).

(5) an agent agj receives an accept move accept(agi, agj, p), and in the case where the accepted
proposition is the subject of the dialogue, the dialogue ends with both agents believing that the
subject of the dialogue holds. In the case where the accepted proposition is a critical question, the
agent that accepts the critical question returns to step (4) of the protocol, accepting the subject
of the dialogue, questioning another critical question, or committing itself to give support for the
subject of the dialogue not being the case.

(6) an agent agj receives a question_scheme move question_scheme(agi, agj, sn)

and answers that move by informing agi about the argumentation scheme sn executing a
inform_scheme move inform_scheme(agj, agi, 〈sn, C,P, CQ〉) (the protocol goes to (7)).

(7) an agent agj receives an inform_scheme move inform_scheme(agi, agj, 〈sn, C,P, CQ〉),
recalling the subject of the dialogue and then checking if it has no argument against the subject of
the dialogue. In case agj has no argument against the subject of the dialogue, it accepts the subject
of the dialogue executing an accept move accept(agj, agi, p) (the protocol goes to (5)). Other-
wise, when agj is able to construct an argument against the subject of the dialogue, either (i) it ex-
ecutes an assert move assert(agj, agi, ¬p), committing itself to provide support for ¬p (the
protocol goes to (2)); or (ii) it checks if it is able to answer negatively any critical question related

12Note that agj is able to execute this move only when it did not assert ¬p previously, i.e., ¬p /∈ CSagj
.



A.R. Panisson et al. / A computational model of argumentation schemes for multi-agent systems 377

to the argumentation scheme sn that agi has used to instantiate its argument. In case it is able to an-
swer negatively a critical question from sn, it executes an assert move assert(agj, agi, ¬cq),
with cq the critical question that it was able to answer negatively (the protocol goes to (2)).

5.3.1. Dialogue rules
Initial Rule: The first move (commencement rule) introduces the subject of the dialogue (where

subject(p) means that the atomic formula p is the subject of the dialogue). Each dialogue has only
one subject. The agent that introduces the subject of the dialogue is called proponent, and the other
agent participating in the dialogue is called opponent [18] (we use Pr and Op, respectively, to refer to
them).

Cin1 ⇒ assert(agi , agj ,p)

where:

Cin1 = ∃〈S, p〉θsn : �agi
|= 〈S, p〉θsn

The dialogue starts when an agent wants to argue about a given subject. The initial rule states that an
agent must have an argument that supports its claim in order to start an argumentation-based dialogue
(as the agent will be committed to defend the initial assertion). Considering our framework for argu-
mentation scheme in multi-agent systems, it requires the agent being able to instantiate an acceptable
instance of an argument from an argumentation scheme in �AS, according to Definition 6.

Assert Rules: We have two dialogue rules that restrict the possible next move for agents to respond to
an assert move:

assert(agi , agj ,p) ∧ Cas1 ⇒ accept(agj , agi ,p)

assert(agi , agj ,p) ∧ Cas2 ⇒ question(agj , agi ,p)

where:

Cas1 = �〈S, p〉θsn : (�agj
∪ CSagi

) |= 〈S, p〉θsn

Cas2 = ∃〈S, p〉θsn : (�agj
∪ CSagi

) |= 〈S, p〉θsn

The options of the agent are: (i) to accept the previous claim, where condition Cas1 means that the
agent will accept a claim if it has no argument against it; and (ii) when the agent has an argument against
the previous assertion, Cas2, the agent will question the other agent to provide the support for its previous
claim.

Question Rule: The dialogue rule that restricts the moves after an agent receives a question mes-
sage is:

question(agi , agj ,p) ∧ Cqs1 ⇒ justify
(
agj , agi , 〈S, p〉θsn

)

where:

Cqs1 = ∃〈S, p〉θsn : (�agj
∪ CSagi

) |= 〈S, p〉θsn



378 A.R. Panisson et al. / A computational model of argumentation schemes for multi-agent systems

Considering that the agent has asserted p previously (which allowed the question move), the agent
is committed to defending its claim in the dialogue, so it will provide the support for this claim.

Justify Rules: We have six dialogue rules that restrict the possible next move for agents to respond to
a justify move:

justify
(
agi , agj , 〈S, c〉θsni

) ∧ Cjs1 ⇒ question_scheme(agj , agi , sni)

justify
(
agi , agj , 〈S, c〉θsni

) ∧ Cjs2 ⇒ accept(agj , agi , p)

justify
(
agi , agj , 〈S, c〉θsni

) ∧ Cjs3 ⇒ assert(agj , agi , p)

justify
(
agi , agj , 〈S, c〉θsni

) ∧ Cjs4 ⇒ assert(agj , agi , cq)

justify
(
agi , agj , 〈S, c〉θsni

) ∧ Cjs5 ⇒ closedialogue(agj , agi)

justify
(
agi , agj , 〈S, c〉θsni

) ∧ Cjs6 ⇒ justify
(
agj , agi ,

〈
S ′, c

〉θ
snj

)

where:

Cjs1 = 〈sni , C,P, CQ〉 /∈ �agj

Cjs2 = �
〈
S ′, p

〉θ
snj

: (�agj
∪ CSagi

) |= 〈
S ′, p

〉θ
snj

∧ Op(agj ) ∧ subject(p)

Cjs3 = ∃〈
S ′, p

〉θ
snj

: (�agj
∪ CSagi

) |= 〈
S ′, p

〉θ
snj

∧ p /∈ CSagj
∧ Op(agj ) ∧ subject(p)

Cjs4 = ∃cqθ : (�agj
∪ CSagi

) |= cqθ ∧ cqθ /∈ CSagj
∧ cqθ ∈ CQ ∧ 〈sni , C,P, CQ〉 ∈ �agj

Cjs5 = �
〈
S ′, p

〉θ
snj

: (�agj
∪ CSagi

) |= 〈
S ′, p

〉θ
snj

∧ 〈
S ′, p

〉θ
snj

/∈ CSagj
∧ Pr(agj ) ∧ subject(p)

Cjs6 = ∃〈
S ′, p

〉θ
snj

: (�agj
∪ CSagi

) |= 〈
S ′, p

〉θ
snj

∧ 〈
S ′, p

〉θ
snj

/∈ CSagj
∧ Pr(agj ) ∧ subject(p)

When the agent is not aware of the argumentation schemes used by the other agent, it questions the
other agent about such scheme, so that it will be able to properly evaluate that argument when receiving
the information about the argumentation scheme used to instantiate it. Otherwise, the agent will accept
the subject of the dialogue, Cjs2, if the justification received from the proponent has made the subject of
the dialogue acceptable to it, otherwise either the agent will assert that it is committed to supporting a
claim against the subject of the dialogue when it has an argument against it, Cjs3, or it will assert that
some critical question related to that argument are not positively answered, Cjs4. In the case in which the
agent that receives the justify move from the opponent cannot itself reach the same conclusion, given
the new information received (i.e., the agent does not have an acceptable argument for the subject of the
dialogue anymore), the agent closes the dialogue, Cjs5. In the final case, the agent sends a new argument13

to support the subject of the dialogue, Cjs6.
Accept Rule: The dialogue rule that restricts the moves when an agent receives an accept message

is:

accept(agi , agj ,p) ∧ Cac1 ⇒ closedialogue(agj , agi)

13The argument is new because, as defined in the protocol, the agent cannot repeat a move with the same content.



A.R. Panisson et al. / A computational model of argumentation schemes for multi-agent systems 379

where:

Cac1 = subject(p) ∧ Pr(agj )

When the agent receives an accept move it will close the dialogue. Only the proponent will receive an
accept move when the opponent accepts the subject of the dialogue.

Question Scheme Rule: The dialogue rule that restricts the moves when an agent receives a
question_scheme message is:

question_scheme(agi , agj , sni) ∧ Cqsc1 ⇒ inform_scheme
(
agj , agi , 〈sni , C,P, CQ〉)

where:

Cqsc1 = 〈sni , C,P, CQ〉 ∈ �agj

An agent is supposed to be aware of the argumentation scheme previously used to instantiate an
argument used in that particular dialogue move, thus it will provide such an argumentation scheme
when questioned.

Inform Scheme Rules: The dialogue rules that restricts the moves when an agent receives a
question_scheme message are:

inform_scheme
(
agi , agj , 〈sni , C,P, CQ〉) ∧ Ciss1 ⇒ accept(agj , agi , p)

inform_scheme
(
agi , agj , 〈sni , C,P, CQ〉) ∧ Ciss2 ⇒ assert(agj , agi , p)

inform_scheme
(
agi , agj , 〈sni , C,P, CQ〉) ∧ Ciss3 ⇒ assert(agj , agi , cq)

inform_scheme
(
agi , agj , 〈sni , C,P, CQ〉) ∧ Ciss4 ⇒ closedialogue(agj , agi)

inform_scheme
(
agi , agj , 〈sni , C,P, CQ〉) ∧ Ciss5 ⇒ justify

(
agj , agi ,S

′)

where:

Ciss1 = �
〈
S ′, p

〉θ
snj

: (�agj
∪ CSagi

) |= 〈
S ′, p

〉θ
snj

∧ Op(agj ) ∧ subject(p)

Ciss2 = ∃〈
S ′, p

〉θ
snj

: (�agj
∪ CSagi

) |= 〈
S ′, p

〉θ
snj

∧ p /∈ CSagj
∧ Op(agj ) ∧ subject(p)

Ciss3 = ∃cqθ : (�agj
∪ CSagi

) |= cqθ ∧ cqθ /∈ CSagj
∧ cqθ ∈ CQ

Ciss4 = �
〈
S ′, p

〉θ
snj

: (�agj
∪ CSagi

) |= 〈
S ′, p

〉θ
snj

∧ 〈
S ′, p

〉θ
snj

/∈ CSagj
∧ Pr(agj ) ∧ subject(p)

Ciss5 = ∃〈
S ′, p

〉θ
snj

: (�agj
∪ CSagi

) |= 〈
S ′, p

〉θ
snj

∧ 〈
S ′, p

〉θ
snj

/∈ CSagj
∧ Pr(agj ) ∧ subject(p)

The dialogue then follows as when the agent receives a justify move being aware of the argumentation
scheme used by agi , recovering the subject of the dialogue, accepting the subject of the dialogue, Ciss1,
if the justification received from the proponent has made the subject of the dialogue acceptable to it,
otherwise either the agent will assert that it is committed to supporting a claim against the subject of the



380 A.R. Panisson et al. / A computational model of argumentation schemes for multi-agent systems

dialogue when it has an argument against it, Ciss2, or it will assert that some critical question related to
that argument are not positively answered, Ciss3. In the case in which the agent that receives the justify
move from the opponent cannot itself reach the same conclusion, given the new information received
(i.e., the agent does not have an acceptable argument for the subject of the dialogue anymore), the agent
closes the dialogue, Ciss4. In the final case, the agent sends a new argument14 to support the subject of
the dialogue, Ciss5.

5.3.2. Implementation in Jason agents
The dialogue rules presented in the previous section can be easily implemented in multi-agent

platforms in which agent practical reasoning is inspired by reactive planning systems, such as
the Jason platform [12]. In Jason, when an agent receives a message, an event of the form
+!msg_received(Sender,Performative,Content) is generated to the receiver agent, and the
agent can handle that event thereby generating new goals. To achieve their goals, agents look for plans.
Thus, the dialogue rules presented in this section can be implemented as agents plans that aim to respond
to received messages.

The number of plans to handle the event of receiving a particular message will be equivalent to the
number of dialogue rules that restrict the next possible move with which the agent can respond. For
example, the assert rules presented in the previous section can be implemented using the following
agent plans:

+!respondAssert(Sender,Content): not(has_argument_against(Content,Arg))
<- !accept(Sender,Content).

+!respondAssert(Sender,Content): has_argument_against(Content,Arg)
<- !question(Sender,Content).

Similarly, other conditions used in dialogue rules can be easily implemented using our framework
through a code library that we implemented and made publicly available [47,55].

5.3.3. Experiments
We ran some experiments to show different dialogues resulting from the protocol presented in Sec-

tion 5.3 and implemented in our framework. In our experiments, two agents, named proponent and
opponent, use the argumentation scheme role to know in order to argue about whether smoking causes
cancer or not, based on assertions by hospital staff. So agent proponent starts a dialogue asserting that
causes(smoking,cancer), which becomes the subject of the dialogue. The proponent’s knowledge
is denoted by �proponent, as defined below.

�proponent =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

reliable(john)

¬reliable(pietro)

asserts(john,causes(smoking,cancer))

role(john,doctor)

role_to_know(doctor,cancer)

about(causes(smoking,cancer),cancer).

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

14The argument is new because, as defined in the protocol, the agent cannot repeat a move with the same content.



A.R. Panisson et al. / A computational model of argumentation schemes for multi-agent systems 381

Fig. 5. First example.

In the case where agent opponent has no argument against the subject of the dialogue, i.e.,
causes(smoking,cancer), it accepts the opening assertion, as shown in the output from our im-
plementation in Fig. 5.

In the case where agent proponent has an argument against the subject of the dialogue, we have a
different output.

�opponent =

⎧⎪⎪⎨
⎪⎪⎩

asserts(pietro, ¬causes(smoking,cancer))

role(pietro,doctor)

role_to_know(doctor,cancer)

about(causes(smoking,cancer),cancer).

⎫⎪⎪⎬
⎪⎪⎭

Considering the opponent’s knowledge represented as �opponent, in which the opponent agent assumes
that Pietro is reliable and he is a doctor, initially the opponent has an argument against the subject of the
dialogue. But, after receiving the information that Pietro is not reliable from proponent, it accepts the
subject of the dialogue. The output of this dialogue is shown in Fig. 6.

These two first examples demonstrate dialogues that occur when we do not have chained arguments.
Using chained arguments, agents may have more interesting dialogues. For example, continuing our
example from Section 4.1, imagine that the proponent agent has asked reliability advisers about whether
Pietro and John are reliable sources of information or not. Then, the proponent is able to provide an
argument supporting that Pietro is not reliable, i.e., ¬reliable(pietro), based on those advisers’
assertions (in our example, Ana’s assertion). The output of this dialogue is showed in Fig. 7.

The dialogue shown in Fig. 7 demonstrates an example in which agents are able to argue about the
critical questions pointed by the argumentation scheme used to instantiate the arguments used during the
dialogues. Besides, agents are also able to argue about the premises of arguments. For example, imagine
that the opponent agent believes that Pietro is a doctor because he is dressing white and he is in the
hospital, i.e., role(pietro,doctor) is a belief the opponent creates based on its own perception;
however, Pietro is actually a member of the cleaning staff. Also, imagine that the proponent knows that
Pietro is a cleaner because the hospital director Mathew has told so. Thus, continuing our example, also
based on the example from Section 3, the output of this dialogue is shown in Fig. 8.

6. Discussion

There are some interesting properties of our approach that are important for the development of multi-
agent systems when applying our argumentation framework. One important property is that our approach
is general regarding the computational representation of argumentation schemes of different forms, with



382 A.R. Panisson et al. / A computational model of argumentation schemes for multi-agent systems

Fig. 6. Second example.

or without implicit critical questions, with any number of premises and critical questions, etc. The gen-
erality of the knowledge representation is further discussed in Panisson’s PhD thesis [44], in which a set
of argumentation schemes from the literature are represented using the same formalisation used in this
paper. It is shown that our approach allows us to represent argumentation schemes of different levels of
specificity, including those that use chained arguments (supporting premises and critical questions), as
well as argumentation schemes with and without critical questions. To the best of our knowledge, there
is no other computational representation for argumentation schemes with critical questions, whether
formalised or implemented, in the specific context of agent-oriented programming languages.

Our approach keeps the essence of argumentation schemes discussed by Walton [89] into the knowl-
edge representation, reasoning, and dialogues, while also keeping the knowledge engineering of argu-
mentation schemes as straightforward as possible. To model an argumentation scheme into our approach,
engineers only need to think about the premises, conclusion, and critical question that will implement
that reasoning pattern, representing such information using first-order formulas and linking them by a
defeasible inference rule (premises and conclusion) and labels (inference rule and associated critical
questions). After that, in case there are critical questions or premises resulting from other argumentation
schemes (if the application requires nested argumentation schemes), they only need to model those ar-
gumentation schemes in the same way, matching the conclusion of that argumentation scheme with the
corresponding premise or critical question. When reasoning, agents are going to evaluate arguments that
are instances of those argumentation schemes, and being aware of the reasoning pattern being used to
instantiate a particular argument, agents are able to link the critical questions associated with it, bringing
to light that implicit information used to construct the argument, so properly evaluating its validity. Most
importantly, during dialogues, agents will communicate arguments similar to how humans do. Also,
by identifying the reasoning pattern used by others when instantiating an argument, agents will have a



A.R. Panisson et al. / A computational model of argumentation schemes for multi-agent systems 383

Fig. 7. Third example.

complete understanding of all information used by the speaker to evaluate the validity of the argument,
including the implicit information pointed by the critical questions. It is very different from including
those critical questions as additional premises into the arguments: in our approach they need not be
communicated by agents, which reflects rationality and intelligence as observed in human dialogues,
also reflecting some of Grice’s maxims [29]. Also, it is fundamentally different from modelling critical
questions as undercutting arguments, in which the receiver of an argument only will be able to evaluate
those critical questions when aware of such arguments (which would not be provided by a speaker, typ-
ically). Providing the argumentation scheme used to instantiate an argument would be natural for many
types of dialogues and in various scenarios such as legal argumentation, for example.

Our approach takes into consideration the role of critical questions in argumentation schemes, cover-
ing all the possible roles of critical questions pointed out in [84], i.e., critical questions that: (i) criticise
premises, as shown in our examples when criticising the role of an agent; (ii) point out exceptional situa-
tions in which the scheme could not be used, as shown in our examples when criticising the reliability of
an agent; and (iii) representing conditions for the schemes’ use, given that we are able to model context-
dependent argumentation schemes including critical questions of the type: “Is C (the current context) the
right context?”, representing it as context(C)[sn], that is, requiring a particular context C that should
hold when attempting to instantiate arguments from that scheme, according to Definition 3. Note that
such context information is not part of the argument itself, but it is required to reach an acceptable (and
rational) conclusion from that argumentation scheme.



384 A.R. Panisson et al. / A computational model of argumentation schemes for multi-agent systems

Fig. 8. Fourth example.

Using this computational representation for argumentation schemes combined with the consideration
of all roles of the critical questions, we provide a refined and modular argumentation-based reasoning
mechanism, in which agents first instantiate and evaluate arguments individually, according to Defini-
tion 3, using those acceptable instances of argumentation schemes to check which ones are collectively
acceptable given a particular argumentation semantics, according to Definition 6. To the best of our
knowledge, there is no other work that proposed argumentation-based reasoning using a general struc-
ture for argumentation schemes with implicit critical questions. Also, we provided an empirical evalua-
tion, showing how our (open source) implementation performs according to different levels of specificity
for argumentation schemes (single and chained argumentation schemes, with varying numbers of criti-
cal questions and premises). Those results might guide the knowledge engineering process of modelling
argumentation schemes according to the application needs.

Further, our framework has important properties regarding argumentation-based dialogues: (i) first, we
allow agents to be able to communicate argumentation schemes when necessary, solving the problem
of scheme awareness as discussed by Wells [91]. Thus, when an agent receives an argument and it
is not able to identify which argumentation scheme has been used to instantiate that argument (and
consequently not being able to evaluate individually that argument), the agent can ask other agents
to inform which argumentation schemes have been used; (ii) second, when engineering multi-agent
systems, our approach may guide the modelling of argumentation-based protocols, in regards to the
purpose of such dialogues and supporting agents with different levels of bounded rationality; (iii) third,
when considering (deep) disagreements among the participants, our approach allows agents to engage in
subdialogues concerning the critical questions related to the argumentation schemes used to instantiate



A.R. Panisson et al. / A computational model of argumentation schemes for multi-agent systems 385

arguments, in the fashion of a dialogue-subdialogue structure. Althgouh this is part of our ongoing
research efforts, note that it means agents possibly entering into a subdialogue about some implicit
information used in that argument, as shown in the dialogue in Fig. 7, which has feature that may be
regarded as intelligent behaviour for autonomous agents.

Finally, our work provides interesting directions for the development of Explainable AI [30,31] and
the interaction between humans and agents in the context of Hybrid Intelligence [1]. When modelling
argumentation schemes to this end (explainability), agents are directly able to create, evaluate, and com-
municate arguments providing explanations for one another or for humans [41]. Templates of the argu-
mentation schemes can be used to provide a translation between the natural language and the compu-
tational representation of arguments, allowing for more sophisticated human-agent interactions [51], or
even using chatbot technologies [20–22]. These research directions are part of our ongoing work.

7. Related work

Related work exists using argumentation schemes in multi-agent systems [28,34,46,57,79,81], all of
which concern the modelling and using one (two in [46]) argumentation scheme that covers the appli-
cation needs. However, none of those approaches proposes a general representation of argumentation
schemes in agent-oriented programming languages.

In [71], the authors have described a formal account for argumentation schemes; however, such for-
mal representation does not directly give to agents a mechanism either for reasoning with schemes or
for constructing arguments using schemes. That work focused on the integration of the ARAUCARIA
[70] tool (used to specify argumentation schemes) and agent platforms. Although we took inspiration
from [71], we proposed a general structure for argumentation schemes in agent-oriented programming
languages, which directly enables agents to use such representation for reasoning and communication.

In [84], the authors described a method to investigate argumentation schemes, which consists of: (i) de-
termining the relevant types of sentences; (ii) determining the argumentation schemes; (iii) determining
the exceptions blocking the use of the argumentation schemes; (iv) determining the conditions for the
use of the argumentation scheme. We took inspiration from [84], using the desiderata for computational
models of argumentation schemes, and [89], as a guide to propose a general structure for argumentation
schemes, also considering all roles that critical questions could play.

In [15], the authors introduce a proposal to represent and share arguments, called the Argument In-
terchange Format (AIF), which represents a standard “abstract model” established by researchers across
the fields of argumentation, artificial intelligence, and multi-agent systems. As described in [15], one of
the major barriers to the development and practical deployment of an argumentation system is the lack
of shared, agreed notation for argumentation and arguments. AIF aims to establish the following princi-
ples: (i) a machine-readable syntax for argumentation schemes; (ii) an explicit and machine-processable
semantics for argumentation schemes; (iii) a unified abstract model with multiple reifications; (iv) core
concepts within multiple extensions. AIF has at its core arguments and argument networks, communi-
cation (locutions and protocols), and context (the environment in which argumentation takes place). The
AIF has been extended to capture dialogic argumentation in [72]. Furthermore, in [66], the authors also
extend AIF to incorporate the representation of argumentation schemes by Walton [89]. Thus, critical
questions are considered through a particular ontological relation named hasException, which points out
the exceptions that can lead an argument to being considered unacceptable by a reasoning agent. Also,
an ontological relation named hasPresumption is used to represent the information that is not explicit



386 A.R. Panisson et al. / A computational model of argumentation schemes for multi-agent systems

in the argument, as in the case of the credibility of a source in the argumentation scheme from role
to know described in Section 2.2. AIF also has been used in interesting proposals that aim to create
a Web infrastructure (Argument Web) that allows for storage and automatic retrieval and analysis of
linked argument data [15]. Although the AIF provides a means for sharing arguments, to the best of
our knowledge, there is no work on the integration of AIF and agent-oriented programming languages,
and such an integration would be an interesting approach to pursue. In our approach, the AIF could be
used to represent arguments at a higher level, allowing agents to share that knowledge in a multi-agent
system. Those arguments and argumentation schemes could be translated into an agent-oriented pro-
gramming language based on our approach, using our knowledge representation, which can be directly
manipulated by agents, considering that agents can manipulate arguments and argumentation schemes
represented using our approach in the same manner as they manipulate their beliefs.

In [93], the authors classify different levels of representation for argumentation schemes found in the
literature, namely: (i) atomic level; (ii) functional roles and typed propositional functions; (iii) functional
roles and instantiated predicates; (iv) labelled roles and strings; and (v) canonical sentences. Thus, the
authors in [93] propose a functional language for computational analysis of argumentation schemes,
so that different argumentation schemes can be compared. Although our aim is not to investigate the
relationship between different argumentation schemes but to represent argumentation schemes in agent-
oriented programming languages in order for the agents to be directly able to manipulate them, we took
some inspiration from [93], inheriting the most refined and detailed representation for argumentation
schemes given by (ii).

In [91], the authors describe how argumentation schemes could be exploited in dialogue games, in-
troducing the idea of “scheme awareness”, providing not only a guideline for the development of new
dialogue games using argumentation schemes but also a mechanism to extend dialogue-game frame-
works to account for scheme awareness. They claim that current approaches to dialogue games can be
categorised into three levels: (i) games unable to utilise argumentation schemes; (ii) games able to utilise
a single scheme; and (iii) games able to utilise multiple/arbitrary schemes. Also, they claim that currently
there are no approaches to games at level (iii). Whilst our work focuses on how agents represent, manip-
ulate, and instantiate arguments from an internal representation of argumentation schemes to carry out
argumentation-based reasoning, our approach forms the basis for argumentation-based dialogues using
multiple argumentation schemes, i.e., as in (iii), given that agents can reason over any number of argu-
mentation schemes, communicate those arguments, and communicate the argumentation schemes used
to instantiate those arguments when necessary.

In [33], the authors present an approach for structured argumentation in multi-agent system dialogues.
The authors claim that the use of argumentation in inter-agent dialogues may be beneficial to the agents.
Also, they state that existing work on the experimental evaluation of the benefits of argumentation in
agent dialogues make use of very simple models of argumentation, in which arguments have no or very
little structure. We follow some directions pointed out in [33], defining a complete structure for argu-
ments based on argumentation schemes, and experimentally evaluating our approach for argumentation-
based dialogues.

The idea of labelling arguments with meta-information used in this paper comes from Gabbay’s work
[24], further developed by other authors in [13,14,16,45,56]. While all that work focuses on modelling
an argumentation framework in which the labels play an important role in the inference mechanism
(mostly propagating strength of premises to the conclusions of arguments), here we propose a more
modest use in which labels are used to make reference to argumentation schemes used to instantiate
those arguments, pointing out the critical questions related to those instances of arguments.



A.R. Panisson et al. / A computational model of argumentation schemes for multi-agent systems 387

In [41], the authors explore two important contributions of Walton’s work to AI (particularly in the
design of autonomous software agents able to reason and argue with one another), namely argumenta-
tion schemes and dialogue protocols, describing how they may apply to current research on Explainable
AI by automated decision-making systems. The authors also mention an example of how argumenta-
tion schemes could be chained, not only regarding their premises and conclusion but also regarding the
critical questions, in which the answer of a critical question could be the conclusion of an argumen-
tation scheme. The work presented by [41] inspired us to develop our argumentation-scheme-centred
framework, keeping the essence of argumentation schemes presented by Walton’s work. Our approach
moves towards the directions pointed out in [41] for using argumentation schemes in multi-agent sys-
tems, which also can be used to support explainability. Some initial steps towards this direction are found
in [51].

In [6,64], the authors present a formal account of legal reasoning, which can be seen as moving from
evidence to facts, from facts to factors, and from factors to legal consequences. Their previous work,
the CATO system presented in [2] and [8], implemented a single step of argumentation, concerning
the last phase for legal reasoning, i.e., moving from factors to legal cases. Thus, they extend CATO
system to bring the assignment of factors within the scope of the system, i.e., moving from facts to
factors, and so open this aspect to explicit argumentation [6]. The authors propose CATO style argu-
mentation schemes, in which schemes and undercutting attacks associated with them are formalised as
defeasible inference rules within the ASPIC+ framework [42]. Differently from our approach, they use
CATO style argumentation schemes. Argumentation schemes correspond to defeasible inference rules in
ASPIC+, in which premises can be axioms (indisputable facts) or the conclusion from another argumen-
tation scheme. Attacks are captured by defining undercutting CATO style argumentation schemes, which
allow instantiating arguments against the application of another CATO style argumentation scheme. Un-
dercutting arguments also may have undercutting arguments against their application. The work in [6,64]
moves towards a similar direction, which considers first using argumentation schemes to instantiate ar-
guments (for and against deciding for a plaintiff, in their case), rebutting each other, and later solving
those conflicts using argument graphs (with preference, in their case). Their formalism allows using
nested argumentation schemes, similar to our approach. However, while undercutting schemes enable
capturing the critical questions related to an argumentation scheme, their approach requires using nested
argumentation schemes to model critical questions. That is, undercutting schemes allow agents to look
for arguments concluding that the previous scheme does not apply in that particular case, implement-
ing one particular role for critical questions [84]. Also, the approach in [64] may require more effort
from the knowledge engineering point of view, in which modelling critical questions requires additional
argumentation schemes.

8. Conclusion

In this paper, we have presented an argumentation framework developed on top of an agent-oriented
programming language, in which argumentation schemes are at the core of the framework.

We first proposed a general structure for argumentation schemes represented in agent-oriented pro-
gramming languages, in which argumentation schemes of different levels of specificity can be modelled,
allowing the development of applications that use argumentation schemes with and without implicit
critical questions, as well as using single or chained argumentation schemes.

We then presented an argumentation-based reasoning mechanism, in which agents consider those
modelled argumentation schemes in order to construct and define the acceptability of arguments. In



388 A.R. Panisson et al. / A computational model of argumentation schemes for multi-agent systems

order to evaluate our framework in regards to argumentation-based reasoning, we implemented our
framework and ran some experiments to show the performance of agents that follow our approach,
considering different levels of specificity of argumentation schemes, i.e., using single and chained argu-
mentation schemes. Our results confirm our initial hypothesis that using argumentation schemes without
chained arguments is computationally more efficient than using chained arguments. These results reflect
on the development of intelligent agents with different levels of bounded rationality, and also might
guide knowledge engineers in the process of modelling argumentation schemes. While using a single
argumentation scheme has been sufficient for the development of many multi-agent applications us-
ing argumentation [28,34,57,79,81], there are application domains in which a more complex reasoning
process is required, for example, [46,64], and our implementation supports both approaches.

We also presented an approach for argumentation-based dialogues using argumentation schemes,
defining a protocol for argumentation-based dialogues that combines deliberation and information-
seeking dialogues. We implemented that protocol for Jason agents [12], and showed different lines of
argumentation using that protocol. Not only did we validate our framework through those examples, but
we also provided a solution for the problem of scheme awareness described in [91].

Finally, we discussed how our work contributes to the development of the area of argumentation in
multi-agent systems. We also discuss how our work moves towards the practical use of argumentation as
a technique for explainable AI [30,31]. In future work, we intend to implement applications with human-
agent interaction using argumentation schemes. We intend to use argumentation schemes represented in
both natural language and the formal representation presented in this work, as in [51], so that agents can
use the appropriate representation depending on whether they are communicating with software agents
or with human beings.

Acknowledgements

The authors dedicate this work to the memory of Professor Douglas Walton. Alison had the pleasure to
meet Professor Douglas Walton in person during COMMA 2018. During one of Alison’s presentations
during that conference, Professor Walton asked a question, concluding his speech with a compliment,
saying that our approach to knowledge representation for argumentation schemes was “elegant”. That
was an unforgettable moment for Alison, considering Alison’s great admiration of Walton’s work and
as a person. Also, it was that comment (and further discussion during that conference) that motivated
us to pursue many of the directions taken in this work. Rafael Bordini and Alison Panisson gratefully
acknowledge partial funding from CNPq and CAPES.

Appendix A. Semantics for speech-acts using argumentation schemes

In this appendix, we formalise the operational semantics for the speech acts described above. We
define the semantics of speech acts for argumentation-based dialogues in AgentSpeak [68] (and in par-
ticular the Jason dialect [12]) using a widely-known method for giving operational semantics to pro-
gramming languages [61]. Although we use AgentSpeak, the formal semantics makes reference for
general components of the BDI architecture, therefore any language based on concepts such as beliefs,
intentions, etc., could also benefit from our formalisation.



A.R. Panisson et al. / A computational model of argumentation schemes for multi-agent systems 389

The operational semantics is given by a set of inference rules that define a transition relation between
agent configurations 〈ag, C, M, T , s〉, and we here use the semantics for AgentSpeak originally defined
in [85], where:15

• An agent ag is a set of beliefs bs and a set of plans ps.
• An agent circumstance C is a tuple 〈I, E〉 where:

– I is a set of intentions {i, i ′, . . .}. Each intention i is a stack of partially instantiated plans.
– E is a set of events {(te, i), (te′, i ′), . . .}. Each event is a pair (te, i), where te is a triggering event

and i is an intention – a stack of plans in the case of an internal event, or the empty intention T in
the case of an external event. For example, when the belief revision function (which is not part of
the AgentSpeak interpreter but rather of the agent’s overall architecture), updates the belief base,
the associated events – i.e., additions and deletions of beliefs – are included in this set. These
are called external events; internal events are additions or deletions of goals generated by plans
currently executing.

• M is a tuple 〈In, Out〉 whose components characterise the following aspects of communicating
agents (note that communication is typically asynchronous):

– In is the mail inbox: the MAS runtime infrastructure includes all messages addressed to this agent
in this set. Elements of this set have the form 〈mid, id, ilf , cnt〉, where mid is a message identifier,
id identifies the sender of the message, ilf is the illocutionary force of the message, and cnt its
content: a (possibly singleton) set of AgentSpeak atomic formulæ (beliefs), an argument, etc.

– Out is where the agent posts messages it wishes to send; it is assumed that some underlying
communication infrastructure handles the delivery of such messages. Messages in this set have
exactly the same format as above, except that here id refers to the agent to which the message is
to be sent.

• When giving semantics to an AgentSpeak agent’s reasoning cycle, it is useful to have a structure
which keeps track of temporary information that may be subsequently required within a reasoning
cycle. T is a tuple with such temporary information originally defined in [85]; in this paper, we
only need the ι component, which keeps track of a particular intention being considered along the
execution of a reasoning cycle.

• The current step within an agent’s reasoning cycle is symbolically annotated by s ∈ {ProcMsg,

SelEv, RelPl, ApplPl, SelAppl, AddIM, SelInt, ExecInt, ClrInt}. Here, we make use of only ProcMsg,
the step for processing a message from the agent’s mail inbox, and ExecInt for executing the selected
intention.

• The semantics of AgentSpeak makes use of “selection functions” which allow for user-defined
components of the agent architecture. We use here only the SM function, which is used to select one
message from an agent’s mail inbox, as originally defined in [85].

In the interest of readability, we adopt the following notational conventions in our semantic rules:

• If C is an AgentSpeak agent circumstance, we write CE to make reference to the E component of
C, and similarly for other components in our semantics.

• We write: (i) b[s(id)] to identify the origin of a belief b, where id is an agent identifier (s is an
abbreviation for source).

• We use a function prem(S) which returns all premises in the support of the argument 〈S, c〉.
15We use here only the components that are needed to define our semantics.



390 A.R. Panisson et al. / A computational model of argumentation schemes for multi-agent systems

A.1. Semantics for sending messages

(EXACTSNDASSERT)

Tι = i[head ← .send(id,assert, c);h]
〈ag, C, M, T , ExecInt〉 −→ 〈ag, C ′, M ′, T , ProcMsg〉

where:

M ′
Out = MOut ∪ {〈mid, id,assert, c〉}

C ′
I = (CI \ {Tι}) ∪ {i[head ← h]}

Sending an assert, question, accept, question_scheme, and refuse message: when an
agent executes the internal action for sending a message with these performatives, that message is posted
in the agent mailbox, MOut, and the current agent intention is updated, removing the internal action, given
that its execution is completed. In the semantic rule EXACTSNDASSERT, the intention being considered
is given by Tι, and it corresponds to i[head ← .send(id,assert, c);h], in which the current step of
the plan adopted to reach that particular goal is to execute the action .send(id,assert, c). Thus, after
executing that action, that particular intention is updated to i[head ← h], given that action has already
been executed by the agent. Note that the semantic rules for the performatives question, accept,
and refuse are similar to rule EXACTSNDASSERT, thus we omit them in this paper.

(EXACTSNDJUSTIFY)

Tι = i[head ← .send(id,justify, 〈S, c〉θsni);h]
S ⊂ �ag �ag |= c 〈sni, C,P, CQ〉 ∈ �ag ∀p ∈ P, pθ ∈ prem(S) c = Cθ

〈ag, C, M, T , ExecInt〉 −→ 〈ag, C ′, M ′, T , ProcMsg〉
where:

M ′
Out = MOut ∪ {〈mid, id,justify, 〈S, c〉θsni〉}

C ′
I = (CI \ {Tι}) ∪ {i[head ← h]}

Sending a justify message: when an agent executes the internal action for sending a message with
the performative justify, the agent needs to have an argument for that particular conclusion16 that
was drawn using the argumentation scheme sni, according to Definition 6. The corresponding message
is posted in the agent’s mailbox, MOut, and the current agent intention is updated, removing the internal
action, given that its execution is completed.

A.2. Semantics for receiving messages

(QUESTION)

SM(MIn) = 〈mid, sid,question, p〉
〈ag, C, M, T , ProcMsg〉 −→ 〈ag, C ′, M ′, T , ExecInt〉

16While we use, in this work, the thoughtful attitude [58,60], other agent attitudes could be used just as well.



A.R. Panisson et al. / A computational model of argumentation schemes for multi-agent systems 391

where:

M ′
In = MIn \ {〈mid, sid,question, p〉}

C ′
E = CE ∪ {〈+questions(sid, p), T

〉}

Receiving question, refuse, accept, assert messages: the agent receiving the message will
just remove the message from its mailbox and an event will be generated for that. The event is handled
as usual by the agent’s plans, which determine its strategy in the dialogue.

(QUESTION_SCHEME)

SM(MIn) = 〈mid, sid,question_scheme,sni〉
〈sni, C,P, CQ〉 ∈ �ag

〈ag, C, M, T , ProcMsg〉 −→ 〈ag, C, M ′, T , ExecInt〉
where:

M ′
In = MIn \ {〈mid, sid,question_scheme,sni〉

}

M ′
Out = MOut ∪ {〈

mid, sid,inform_scheme, 〈sni, C,P, CQ〉〉}

Receiving an inform_scheme message: the agent receiving the message will response the argumen-
tation scheme questioned using a message with the performative inform_scheme, the agent needs to
be aware of the argumentation scheme 〈sni, C,P, CQ〉, according to Definition 7. The corresponding
message is posted in the agent’s mailbox, MOut, and the current agent intention is updated, removing the
internal action, given that its execution is completed.

(JUSTIFY)

SM(MIn) = 〈mid, sid,justify, 〈S, c〉θsni〉〈sni, C,P, CQ〉 ∈ �AS ∀pθ ∈ S, p ∈ P c = Cθ

〈ag, C, M, T , ProcMsg〉 −→ 〈ag′, C ′, M ′, T , ExecInt〉
where:

M ′
In = MIn \ {〈

mid, sid,justify, 〈S, c〉θsni
〉}

ag′
bs = agbs ∪ {pθ

[
s(sid)

]| for all pθ ∈ S

C ′
E = CE ∪ {〈+justifies

(
sid, 〈S, c〉θsni

)
, T

〉}

Receiving a justify message: when an agent selects a justify message from its mailbox, the
message is removed from the mailbox, the agent’s belief base is updated with all information contained
in the support of the argument, annotating that formulæ have been received from the sender sid, and
an event +justifies(sid, 〈S, c〉θsni) is generated for that. The event can be handled by the agent’s plans
according to its strategy in the dialogue.



392 A.R. Panisson et al. / A computational model of argumentation schemes for multi-agent systems

References

[1] Z. Akata, D. Balliet, M. de Rijke, F. Dignum, V. Dignum, G. Eiben, A. Fokkens, D. Grossi, K. Hindriks, H. Hoos et al.,
A research agenda for hybrid intelligence: Augmenting human intellect with collaborative, Adaptive, Responsible, and
Explainable Artificial Intelligence, Computer 53(8) (2020), 18–28.

[2] V.A. Aleven, Teaching case-based argumentation through a model and examples, Citeseer, 1997.
[3] L. Amgoud, N. Maudet and S. Parsons, Modeling dialogues using argumentation, in: ICMAS, IEEE Computer Society,

2000, pp. 31–38.
[4] L. Amgoud and S. Vesic, A formal analysis of the role of argumentation in negotiation dialogues, J. Log. and Comput.

22(5) (2012), 957–978. doi:10.1093/logcom/exr037.
[5] K. Atkinson, P. Baroni, M. Giacomin, A. Hunter, H. Prakken, C. Reed, G. Simari, M. Thimm and S. Villata, Towards

artificial argumentation, AI Magazine 38(3) (2017), 25–36. doi:10.1609/aimag.v38i3.2704.
[6] K. Atkinson, T.B.-C.H. Prakken and A. Wyner, Argumentation schemes for reasoning about factors with dimensions,

in: Legal Knowledge and Information Systems: JURIX 2013: The Twenty-Sixth Annual Conference, Vol. 259, IOS Press,
2013, p. 39.

[7] T. Bench-Capon and K. Atkinson, Argumentation schemes: From informal logic to computational models, in: Dialec-
tics, Dialogue and Argumentation: An Examination of Douglas Walton’s Theories of Reasoning and Argument, 2010,
pp. 103–114.

[8] T. Bench-Capon and G. Sartor, A model of legal reasoning with cases incorporating theories and values, Artificial Intelli-
gence 150(1–2) (2003), 97–143.

[9] J. Bentahar, R. Alam and Z. Maamar, An argumentation-based protocol for conflict resolution, in: KR2008-Workshop on
Knowledge Representation for Agents and MultiAgent Systems (KRAMAS 2008), 2008.

[10] P. Besnard, A. Garcia, A. Hunter, S. Modgil, H. Prakken, G. Simari and F. Toni, Introduction to structured argumentation,
Argument & Computation 5(1) (2014), 1–4. doi:10.1080/19462166.2013.869764.

[11] P. Besnard and A. Hunter, Constructing argument graphs with deductive arguments: A tutorial, Argument & Computation
5(1) (2014), 5–30. doi:10.1080/19462166.2013.869765.

[12] R.H. Bordini, J.F. Hübner and M. Wooldridge, Programming Multi-Agent Systems in AgentSpeak Using Jason, Wiley
Series in Agent Technology, John Wiley & Sons, 2007.

[13] M.C. Budán, M.G. Lucero, I. Viglizzo and G.R. Simari, A labeled argumentation framework, Journal of Applied Logic
13(4) (2015), 534–553. doi:10.1016/j.jal.2015.02.005.

[14] M.C. Budán, G.I. Simari, I. Viglizzo and G.R. Simari, An approach to characterize graded entailment of arguments
through a label-based framework, International Journal of Approximate Reasoning 82 (2017), 242–269. doi:10.1016/j.
ijar.2016.12.016.

[15] C. Chesnevar, S. Modgil, I. Rahwan, C. Reed, G. Simari, M. South, G. Vreeswijk, S. Willmott et al., Towards an argument
interchange format, The Knowledge Engineering Review 21(4) (2006), 293–316. doi:10.1017/S0269888906001044.

[16] C.I. Chesnevar and G.R. Simari, Modelling inference in argumentation through labelled deduction: Formalization and
logical properties, Logica Universalis 1(1) (2007), 93–124. doi:10.1007/s11787-006-0005-4.

[17] V. de Oliveira Gabriel, A.R. Panisson, R.H. Bordini, D.F. Adamatti and C.Z. Billa, Reasoning in BDI agents using Toul-
min’s argumentation model, Theoretical Computer Science 805 (2020), 76–91. doi:10.1016/j.tcs.2019.10.026.

[18] F. Dignum, B. Dunin-Keplicz and R. Verbrugge, Creating collective intention through dialogue, Logic Journal of IGPL
9(2) (2001), 289–304. doi:10.1093/jigpal/9.2.289.

[19] P.M. Dung, On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming
and n-person games, Artificial Intelligence 77 (1995), 321–357. doi:10.1016/0004-3702(94)00041-X.

[20] D. Engelmann, J. Damasio, T. Krausburg, O. Borges, L.D. Cezar, A.R. Panisson and R.H. Bordini, Dial4JaCa – a demon-
stration, in: International Conference on Practical Applications of Agents and Multi-Agent Systems, Springer, 2021,
pp. 346–350.

[21] D. Engelmann, J. Damasio, T. Krausburg, O. Borges, M. Colissi, A.R. Panisson and R.H. Bordini, Dial4JaCa – a com-
munication interface between multi-agent systems and chatbots, in: International Conference on Practical Applications
of Agents and Multi-Agent Systems, Springer, 2021, pp. 77–88.

[22] D.C. Engelmann, L.D. Cezar, A.R. Panisson and R.H. Bordini, A conversational agent to support hospital bed allocation,
in: Brazilian Conference on Intelligent Systems, BRACIS, 2021.

[23] A. Freitas, D. Schmidt, A. Panisson, R.H. Bordini, F. Meneguzzi and R. Vieira, Applying ontologies and agent tech-
nologies to generate ambient intelligence applications, in: Agent Technology for Intelligent Mobile Services and Smart
Societies, Springer, 2014, pp. 22–33.

[24] D.M. Gabbay, Labelled Deductive Systems, 1996.
[25] D.M. Gabbay, Introduction to labelled deductive systems, in: Handbook of Philosophical Logic, Springer, 2014,

pp. 179–266. doi:10.1007/978-94-007-6600-6_3.

https://doi.org/10.1093/logcom/exr037
https://doi.org/10.1609/aimag.v38i3.2704
https://doi.org/10.1080/19462166.2013.869764
https://doi.org/10.1080/19462166.2013.869765
https://doi.org/10.1016/j.jal.2015.02.005
https://doi.org/10.1016/j.ijar.2016.12.016
https://doi.org/10.1016/j.ijar.2016.12.016
https://doi.org/10.1017/S0269888906001044
https://doi.org/10.1007/s11787-006-0005-4
https://doi.org/10.1016/j.tcs.2019.10.026
https://doi.org/10.1093/jigpal/9.2.289
https://doi.org/10.1016/0004-3702(94)00041-X
https://doi.org/10.1007/978-94-007-6600-6_3


A.R. Panisson et al. / A computational model of argumentation schemes for multi-agent systems 393

[26] A.J. García and G.R. Simari, Defeasible logic programming: Delp-servers, contextual queries, and explanations for an-
swers, Argument & Computation 5(1) (2014), 63–88. doi:10.1080/19462166.2013.869767.

[27] A.J. García and G.R. Simari, Defeasible logic programming: Delp-servers, contextual queries, and explanations for an-
swers, Argument & Computation 5(1) (2014), 63–88. doi:10.1080/19462166.2013.869767.

[28] N. Green, Implementing argumentation schemes as logic programs, in: The 16th Workshop on Computational Models of
Natural Argument, CEUR, Vol. 30, 2016.

[29] H.P. Grice, Logic and conversation, in: Speech Acts, P. Cole and J. Morgan, eds, Academic Press, New York, 1975,
pp. 41–58.

[30] D. Gunning, Explainable artificial intelligence (xai), Defense Advanced Research Projects Agency (DARPA), nd Web 2
(2017), 2.

[31] D. Gunning, M. Stefik, J. Choi, T. Miller, S. Stumpf and G.-Z. Yang, XAI – explainable artificial intelligence, Science
Robotics 4(37) (2019). doi:10.1126/scirobotics.aay7120.

[32] E. Karafili, A.C. Kakas, N.I. Spanoudakis and E.C. Lupu, Argumentation-based security for social good, in: AAAI, 2017.
[33] E.M. Kok, J.-J.C. Meyer, H. Prakken and G.A. Vreeswijk, Testing the benfits of structured argumentation in multi-agent

deliberation dialogues, in: Proceedings of the 11th International Conference on Autonomous Agents and Multiagent Sys-
tems, 2012, pp. 1411–1412.

[34] N. Kokciyan, I. Sassoon, A.P. Young, M. Chapman, T. Porat, M. Ashworth, V. Curcin, S. Modgil, S. Parsons and E. Sklar,
Towards an argumentation system for supporting patients in self-managing their chronic conditions, in: AAAI Joint Work-
shop on Health Intelligence, 2018.

[35] J. Lawrence and C. Reed, Argument mining: A survey, Computational Linguistics 45(4) (2020), 765–818. doi:10.1162/
coli_a_00364.

[36] M. Lippi and P. Torroni, Argumentation mining: State of the art and emerging trends, ACM Transactions on Internet
Technology (TOIT) 16(2) (2016), 1–25. doi:10.1145/2850417.

[37] N. Maudet, S. Parsons and I. Rahwan, Argumentation in multi-agent systems: Context and recent developments, in:
ArgMAS, N. Maudet, S. Parsons and I. Rahwan, eds, Lecture Notes in Computer Science, Vol. 4766, Springer, 2006,
pp. 1–16.

[38] P. Mcburney and S. Parsons, Games that agents play: A formal framework for dialogues between autonomous agents,
Journal of Logic, Language and Information 11 (2002), 315–334.

[39] P. Mcburney and S. Parsons, Dialogue games in multi-agent systems, Informal Logic 22 (2002).
[40] P. McBurney and S. Parsons, Locutions for argumentation in agent interaction protocols, in: AC, R.M. van Eijk, M.-

P. Huget and F. Dignum, eds, Lecture Notes in Computer Science, Vol. 3396, Springer, 2004, pp. 209–225.
[41] P. McBurney, S. Parsons et al., Argument schemes and dialogue protocols: Doug Walton’s legacy in artificial intelligence,

Journal of Applied Logics 8(1) (2021), 263–286.
[42] S. Modgil and H. Prakken, The ASPIC+ framework for structured argumentation: A tutorial, Argument & Computation

5(1) (2014), 31–62. doi:10.1080/19462166.2013.869766.
[43] S. Modgil and H. Prakken, The ASPIC+ framework for structured argumentation: A tutorial, Argument & Computation

5(1) (2014), 31–62. doi:10.1080/19462166.2013.869766.
[44] A.R. Panisson, A framework for reasoning and dialogue in multi-agent systems using argumentation schemes, PhD thesis,

Pontifícia Universidade Católica do Rio Grande do Sul, 2019.
[45] A.R. Panisson, M-arguments, in: IEEE/WIC/ACM International Joint Conference on Web Intelligence and Intelligent

Agent Technology (WI-IAT), 2020.
[46] A.R. Panisson, A. Ali, P. McBurney and R.H. Bordini, Argumentation schemes for data access control, in: Computational

Models of Argument (COMMA), 2018, pp. 361–368.
[47] A.R. Panisson and R.H. Bordini, Knowledge representation for argumentation in agent-oriented programming languages,

in: 2016 Brazilian Conference on Intelligent Systems, BRACIS, 2016.
[48] A.R. Panisson and R.H. Bordini, Argumentation schemes in multi-agent systems: A social perspective, in: International

Workshop on Engineering Multi-Agent Systems, 2017, pp. 92–108.
[49] A.R. Panisson and R.H. Bordini, Uttering only what is needed: Enthymemes in multi-agent systems, in: Proceedings of

the 16th Conference on Autonomous Agents and MultiAgent Systems, International Foundation for Autonomous Agents
and Multiagent Systems, 2017, pp. 1670–1672.

[50] A.R. Panisson and R.H. Bordini, Towards a computational model of argumentation schemes in agent-oriented program-
ming languages, in: IEEE/WIC/ACM International Joint Conference on Web Intelligence and Intelligent Agent Technology
(WI-IAT), 2020.

[51] A.R. Panisson, D.C. Engelmann and R.H. Bordini, Engineering explainable agents: An argumentation-based approach,
in: International Workshop on Engineering Multi-Agent Systems (EMAS), 2021.

[52] A.R. Panisson, A. Freitas, D. Schmidt, L. Hilgert, F. Meneguzzi, R. Vieira and R.H. Bordini, Arguing about task re-
allocation using ontological information in multi-agent systems, in: 12th International Workshop on Argumentation in
Multiagent Systems, 2015.

https://doi.org/10.1080/19462166.2013.869767
https://doi.org/10.1080/19462166.2013.869767
https://doi.org/10.1126/scirobotics.aay7120
https://doi.org/10.1162/coli_a_00364
https://doi.org/10.1162/coli_a_00364
https://doi.org/10.1145/2850417
https://doi.org/10.1080/19462166.2013.869766
https://doi.org/10.1080/19462166.2013.869766


394 A.R. Panisson et al. / A computational model of argumentation schemes for multi-agent systems

[53] A.R. Panisson, F. Meneguzzi, R. Vieira and R.H. Bordini, An approach for argumentation-based reasoning using de-
feasible logic in multi-agent programming languages, in: 11th International Workshop on Argumentation in Multiagent
Systems, 2014.

[54] A.R. Panisson, F. Meneguzzi, R. Vieira and R.H. Bordini, Towards practical argumentation-based dialogues in multi-agent
systems, in: IEEE/WIC/ACM International Conference on Intelligent Agent Technology, 2015.

[55] A.R. Panisson, F. Meneguzzi, R. Vieira and R.H. Bordini, Towards practical argumentation in multi-agent systems, in:
2015 Brazilian Conference on Intelligent Systems, BRACIS 2015, 2015.

[56] A.R. Panisson, S. Parsons, P. McBurney and R.H. Bordini, Choosing appropriate arguments from trustworthy sources, in:
Computational Models of Argument (COMMA), 2018, pp. 345–352.

[57] S. Parsons, K. Atkinson, K. Haigh, K. Levitt, P.M.J. Rowe, M.P. Singh and E. Sklar, Argument schemes for reasoning
about trust, in: Computational Models of Argument: Proceedings of COMMA 2012, Vol. 245, 2012, p. 430.

[58] S. Parsons and P. McBurney, Argumentation-based dialogues for agent co-ordination, Group Decision and Negotiation
12(5) (2003), 415–439. doi:10.1023/B:GRUP.0000003742.50038.d3.

[59] S. Parsons, M. Wooldridge and L. Amgoud, An analysis of formal inter-agent dialogues, in: 1st International Conference
on Autonomous Agents and Multi-Agent Systems, ACM Press, 2002, pp. 394–401.

[60] S. Parsons, M. Wooldridge and L. Amgoud, An analysis of formal inter-agent dialogues, in: Proceedings of the First
International Joint Conference on Autonomous Agents and Multiagent Systems: Part 1, AAMAS’02, ACM, New York,
NY, USA, 2002, pp. 394–401.

[61] G.D. Plotkin, A structural approach to operational semantics, 1981.
[62] H. Prakken, A formal model of adjudication dialogues, Artificial Intelligence and Law 16(3) (2008), 305–328. doi:10.

1007/s10506-008-9066-4.
[63] H. Prakken, An abstract framework for argumentation with structured arguments, Argument and Computation 1(2) (2011),

93–124. doi:10.1080/19462160903564592.
[64] H. Prakken, A. Wyner, T. Bench-Capon and K. Atkinson, A formalization of argumentation schemes for legal case-based

reasoning in ASPIC+, Journal of Logic and Computation 25(5) (2015), 1141–1166. doi:10.1093/logcom/ext010.
[65] I. Rahwan and L. Amgoud, An argumentation based approach for practical reasoning, in: AAMAS, H. Nakashima,

M.P. Wellman, G. Weiss and P. Stone, eds, ACM, 2006, pp. 347–354.
[66] I. Rahwan, C. Reed and F. Zablith, On building argumentation schemes using the argument interchange format, in: Work-

ing Notes of the 7th Workshop on Computational Models of Natural Argument (CMNA 2007), Hyderabad, 2007.
[67] I. Rahwan and G.R. Simari, Argumentation in Artificial Intelligence, Vol. 47, Springer, 2009.
[68] A.S. Rao, AgentSpeak(L): BDI agents speak out in a logical computable language, in: Proceedings of the 7th European

Workshop on Modelling Autonomous Agents in a Multi-Agent World: Agents Breaking Away: Agents Breaking Away,
MAAMAW’96, Springer-Verlag New York, Inc., Secaucus, NJ, USA, 1996, pp. 42–55.

[69] C. Reed, Argument Technology for Debating with Humans, Nature Publishing Group, 2021.
[70] C. Reed and G. Rowe, Araucaria: Software for argument analysis, diagramming and representation, International Journal

on Artificial Intelligence Tools 13(04) (2004), 961–979. doi:10.1142/S0218213004001922.
[71] C. Reed and D. Walton, Towards a formal and implemented model of argumentation schemes in agent communication,

Autonomous Agents and Multi-Agent Systems 11(2) (2005), 173–188. doi:10.1007/s10458-005-1729-x.
[72] C. Reed, S. Wells, J. Devereux and G. Rowe, AIF+: Dialogue in the argument interchange format, Frontiers in Artificial

Intelligence and Applications 172 (2008), 311.
[73] F. Sadri, F. Toni and P. Torroni, Logic agents, dialogues and negotiation: An abductive approach, in: Proceedings AISB’01

Convention, AISB, 2001.
[74] D. Schmidt, A.R. Panisson, A. Freitas, R.H. Bordini, F. Meneguzzi and R. Vieira, An ontology-based mobile application

for task managing in collaborative groups, in: Florida Artificial Intelligence Research Society Conference, 2016.
[75] J.R. Searle, Speech Acts: An Essay in the Philosophy of Language, Cambridge University Press, 1969.
[76] E.I. Sklar and M.Q. Azhar, Argumentation-based dialogue games for shared control in human-robot systems, Journal of

Human-Robot Interaction 4(3) (2015), 120–148. doi:10.5898/JHRI.4.3.Sklar.
[77] P. Tolchinsky, K. Atkinson, P. McBurney, S. Modgil and U. Cortés, Agents deliberating over action proposals using the

ProCLAIM model, in: International Central and Eastern European Conference on Multi-Agent Systems, Springer, 2007,
pp. 32–41.

[78] P. Tolchinsky, U. Cortés, J. Nieves, A. López-Navidad and F. Caballero, Using arguing agents to increase the human organ
pool for transplantation, in: Third Workshop on Agents Applied in Health Care, 2005.

[79] P. Tolchinsky, S. Modgil, K. Atkinson, P. McBurney and U. Cortés, Deliberation dialogues for reasoning about safety
critical actions, Autonomous Agents and Multi-Agent Systems 25(2) (2012), 209–259. doi:10.1007/s10458-011-9174-5.

[80] F. Toni, A tutorial on assumption-based argumentation, Argument & Computation 5(1) (2014), 89–117. doi:10.1080/
19462166.2013.869878.

https://doi.org/10.1023/B:GRUP.0000003742.50038.d3
https://doi.org/10.1007/s10506-008-9066-4
https://doi.org/10.1007/s10506-008-9066-4
https://doi.org/10.1080/19462160903564592
https://doi.org/10.1093/logcom/ext010
https://doi.org/10.1142/S0218213004001922
https://doi.org/10.1007/s10458-005-1729-x
https://doi.org/10.5898/JHRI.4.3.Sklar
https://doi.org/10.1007/s10458-011-9174-5
https://doi.org/10.1080/19462166.2013.869878
https://doi.org/10.1080/19462166.2013.869878


A.R. Panisson et al. / A computational model of argumentation schemes for multi-agent systems 395

[81] A. Toniolo, F. Cerutti, N. Oren, T.J. Norman and K. Sycara, Making informed decisions with provenance and argumen-
tation schemes, in: Proceedings of the Eleventh International Workshop on Argumentation in Multi-Agent Systems, 2014,
2014.

[82] A. Toniolo, T.J. Norman, A. Etuk, F. Cerutti, R.W. Ouyang, M. Srivastava, N. Oren, T. Dropps, J.A. Allen and P. Sul-
livan, Supporting reasoning with different types of evidence in intelligence analysis, in: International Conference on
Autonomous Agents and Multiagent Systems, 2015, pp. 781–789.

[83] S.E. Toulmin, The Uses of Argument, Cambridge University Press, 1958.
[84] B. Verheij, Dialectical argumentation with argumentation schemes: An approach to legal logic, Artificial intelligence and

Law 11(2–3) (2003), 167–195. doi:10.1023/B:ARTI.0000046008.49443.36.
[85] R. Vieira, A. Moreira, M. Wooldridge and R.H. Bordini, On the formal semantics of speech-act based communication in

an agent-oriented programming language, J. Artif. Int. Res. 29(1) (2007), 221–267.
[86] J. Visser, J. Lawrence and C. Reed, Reason-checking fake news, Communications of the ACM 63(11) (2020), 38–40.

doi:10.1145/3397189.
[87] D. Walton, Argumentation Schemes for Presumptive Reasoning, Routledge, 1996.
[88] D. Walton and E. Krabbe, Commitment in Dialogue: Basic Concept of Interpersonal Reasoning, State University of New

York Press, Albany NY, 1995.
[89] D. Walton, C. Reed and F. Macagno, Argumentation Schemes, Cambridge University Press, 2008.
[90] D.N. Walton and L.M. Batten, Games, graphs and circular arguments, Logique et Analyse 27(106) (1984), 133–164.
[91] S. Wells, Supporting argumentation schemes in argumentative dialogue games, Studies in Logic, Grammar and Rhetoric

36(1) (2014), 171–191. doi:10.2478/slgr-2014-0009.
[92] M. Wooldridge, An Introduction to Multiagent Systems, John Wiley & Sons, 2009.
[93] A. Wyner, A functional perspective on argumentation schemes, Argument & Computation 7(2–3) (2016), 113–133. doi:10.

3233/AAC-160010.

https://doi.org/10.1023/B:ARTI.0000046008.49443.36
https://doi.org/10.1145/3397189
https://doi.org/10.2478/slgr-2014-0009
https://doi.org/10.3233/AAC-160010
https://doi.org/10.3233/AAC-160010

	Introduction
	Background
	Argumentation in artificial intelligence and multi-agent systems
	Argumentation schemes

	An argumentation-scheme-centred argumentation framework
	Argumentation-based reasoning using argumentation schemes
	Representing and reasoning with argumentation schemes
	Experimental results

	Argumentation-based dialogues with argumentation schemes
	Performatives for argumentation-based dialogues
	A framework for argumentation-based dialogues
	A protocol using argumentation schemes
	Dialogue rules
	Implementation in Jason agents
	Experiments


	Discussion
	Related work
	Conclusion
	Acknowledgements
	Appendix A. Semantics for speech-acts using argumentation schemes
	Semantics for sending messages
	Semantics for receiving messages

	References

