
0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3099532, IEEE
Transactions on Software Engineering

1

What Makes Agile Software Development Agile?
Marco Kuhrmann, Paolo Tell, Regina Hebig, Jil Klünder, Jürgen Münch, Oliver Linssen, Dietmar Pfahl,

Michael Felderer, Christian R. Prause, Stephen G. MacDonell, Joyce Nakatumba-Nabende, David Raffo,
Sarah Beecham, Eray Tüzün, Gustavo López, Nicolas Paez, Diego Fontdevila, Sherlock A. Licorish,

Steffen Küpper, Günther Ruhe, Eric Knauss, Özden Özcan-Top, Paul Clarke, Fergal McCaffery,
Marcela Genero, Aurora Vizcaino, Mario Piattini, Marcos Kalinowski, Tayana Conte, Rafael Prikladnicki,

Stephan Krusche, Ahmet Coşkunçay, Ezequiel Scott, Fabio Calefato, Svetlana Pimonova,
Rolf-Helge Pfeiffer, Ulrik Pagh Schultz, Rogardt Heldal, Masud Fazal-Baqaie, Craig Anslow,

Maleknaz Nayebi, Kurt Schneider, Stefan Sauer, Dietmar Winkler, Stefan Biffl, Maria Cecilia Bastarrica,
and Ita Richardson

Abstract—Together with many success stories, promises such as the increase in production speed and the improvement in
stakeholders’ collaboration have contributed to making agile a transformation in the software industry in which many companies want
to take part. However, driven either by a natural and expected evolution or by contextual factors that challenge the adoption of agile
methods as prescribed by their creator(s), software processes in practice mutate into hybrids over time. Are these still agile? In this
article, we investigate the question: what makes a software development method agile? We present an empirical study grounded in a
large-scale international survey that aims to identify software development methods and practices that improve or tame agility. Based
on 556 data points, we analyze the perceived degree of agility in the implementation of standard project disciplines and its relation to
used development methods and practices. Our findings suggest that only a small number of participants operate their projects in a
purely traditional or agile manner (under 15%). That said, most project disciplines and most practices show a clear trend towards
increasing degrees of agility. Compared to the methods used to develop software, the selection of practices has a stronger effect on the
degree of agility of a given discipline. Finally, there are no methods or practices that explicitly guarantee or prevent agility. We conclude
that agility cannot be defined solely at the process level. Additional factors need to be taken into account when trying to implement or
improve agility in a software company. Finally, we discuss the field of software process-related research in the light of our findings and
present a roadmap for future research.

Index Terms—Agile Software Development, Hybrid Development Methods, Survey Research, Software Development, Software
Process.

F

1 INTRODUCTION

FASTER, higher, stronger—the Olympic motto1 could also
be the motto for today’s software development practice.

Software development needs to be creative, conducted by
self-organizing cross-functional teams. Collaboration is key
and working software is in the spotlight. This aspiration,
which is also reflected in the “Agile Manifesto” [1], has
become an ideal pursued by many companies. Agile software
development has now been around for 20 years, and there is
no denying that it has led to several improvements [2] such
as increased speed of software development and intensified
collaboration between different stakeholders.

However, when asking project managers and developers
what agile software development means, the answer is
likely: Scrum or XP [3]. Refining the question and adding
further contextual factors, e.g., globally distributed software
development or software development in regulated do-
mains, the answer is not that simple anymore [4]–[6]. Due to
the hype and numerous (partially) contradicting definitions,
there is much confusion regarding the terminology and the
concepts. However, quite often, people only think that they
work agile or even pretend to work agile [3]. That is, there

Manuscript received April 19, 2005; revised August 26, 2015. (Corresponding
author: Marco Kuhrmann, University of Passau, kuhrmann@acm.org)

1. from Latin: “Citius, Altius, Fortius”

are software development processes that are associated with
the term “agile software development”, and there are meth-
ods and practices that are perceived as “agile”. However,
the use of many of these methods in practice is limited
by contextual factors and in certain settings, practices often
associated with agile may have been in use prior to the agile
manifesto [7]. In response, projects compose their individual
processes to address the respective needs (we refer to these
as hybrid methods [8]). Still, companies want to participate
in the “Agile Transformation” for various reasons and,
therefore, there is also interest in creating “agile” methods.
This motivates the primary question of this article: What
makes a software development method agile?

In this article, we present an empirical study grounded
in a large-scale international survey2, which identified meth-
ods and practices that either enable or impede agility of
software development methods. Based on 556 data points,
we analyze the degree of agility in the implementation of
eleven standard project disciplines, which are based on the

2. This research is based on the HELENA study (Hybrid dEveLop-
mENt Approaches in software systems development, online: https:
//helenastudy.wordpress.com), which is a large-scale international
survey in which 75 researchers and practitioners from 25 countries
participated. We give further details on the implementation of the
HELENA study in Section 3.2.

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on December 08,2021 at 12:24:03 UTC from IEEE Xplore. Restrictions apply.

https://helenastudy.wordpress.com
https://helenastudy.wordpress.com

0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3099532, IEEE
Transactions on Software Engineering

2

SWEBOK categories [9], such as requirements engineering
and testing as perceived by the survey participants. We link
these reports to the 24 methods and 36 practices used by the
participants to run their projects and we study if methods
and practices affect the degree of agility.

Our findings indicate that few participants run their
projects in a purely agile or a purely traditional manner,
and most of them use home-grown hybrid development
methods. Out of 660 cases (pairwise combinations of 60
methods and practices with 11 project disciplines), 146 show
a significant shift in the perceived degree of agility when
using specific methods and practices. Of these 146 changed
perceptions, 88 cases show a trend of moving from tradi-
tional to agile. Another 29 cases show a significant shift with
no explicit tendency towards agile or traditional. Hence, we
conclude that about half of the shifts found are towards
agile, even though we acknowledge that some shifts exist
that are neutral regarding the perceived degree of agility.

The remainder of this article is organized as follows:
Section 2 presents related work. Section 3 describes the
research design before we present the results in Section 4.
Section 5 provides a summary and a discussion of our
findings. Furthermore, we derive a roadmap to steer future
research before we conclude the paper in Section 6.

2 RELATED WORK

The development of software process models dates back to
the 1960s and, over time, numerous different approaches
have been published. From the very beginning, the different
approaches used to organize software development have
been critically discussed. These discussions have begun with
Royce [10] stating that strict sequential models do not3 prop-
erly reflect the needs of software development. In response,
shorter iterations and incremental approaches became pop-
ular, such as Boehm’s Spiral model [11] representing an
iterative, risk-driven process, and Mills [12] and Dyer [13]
suggesting incremental development processes in the 1970s
and 1980s. In the following years, more software processes
emerged. They included more methods, practices, and tools,
becoming increasingly “heavy-weighted”, for example the
Rational Unified Process (RUP; [14]). Over time, developers
began to reject these approaches as being too large, with too
few degrees of freedom, or too much focus on documenta-
tion rather than on producing working software. A counter-
movement started to move away from documentation- and
specification-based software development towards making
software, which culminated in Beck’s Extreme Programming
[15] and, eventually, in the Agile Manifesto in 2001 [1].

Complementing all these developments in practice, a
considerable body of research has been accumulated on the
software process. However, since researchers are naturally
interested in “modern” software development [2], especially
in the past two decades, research has been overloaded
with results regarding drivers, challenges, benefits, prac-
tices, case studies, popularity and so on of agile processes
(e.g., [2], [16]–[20]). This generates the impression that the
“traditional” processes have been entirely replaced, only
playing a role in process modeling in domains with special

3. Royce is often considered the “inventor” of the Waterfall model,
but, in fact, the term was coined later by Boehm.

requirements (e.g., regulations and norms), or in discussions
why certain companies do not use agile methods [19], [21],
[22]. This trend can also be observed in many surveys that
aim to collect evidence on agile methods, but barely put it
into context. For instance, the State of Agile survey [23] on a
global scale, and several regional surveys such as the Swiss
Agile Study [24], the Status Quo Agile study [25], and [26] pro-
vides a snapshot of the status of agile methods being used in
industry. However, these studies cover traditional processes
only marginally—if at all. Furthermore, the perception of
what “agile” actually means is fairly diffuse. For instance,
Jalali et al. [27] conclude that agility is judged differently
and is not a well-defined concept. This is also reflected in the
considerable effort that is spent on defining agile maturity,
e.g., [20], [28], [29]. Yet, so far, there is no standardized
agile maturity model that is comparable with and as widely
accepted as CMMI or ISO/IEC 15504. The results of these
studies thus generate an incomplete picture, and numerous
companies and project teams remain—or even become—
skeptical and do not consider agile methods as the “Silver
Bullet” [17], [22], [30], [31].

In 2011, West et al. [32] stated that modern software
development evolved again. They coined the term Water-
Scrum-Fall to reflect that software processes are in fact
combinations of different traditional and agile methods and
practices. Supporting this claim, Aitken and Ilango [33] state
that “there is nothing really incompatible” with applying agility
along with most traditional methods. A balanced combi-
nation is needed, an assertion already stated by Boehm
and Turner [34], who aimed to overcome the situation-
specific shortcomings of agile and traditional development
by defining five dimensions that describe a project envi-
ronment. This helped to determine a balanced method and,
eventually, to achieve a hybrid sweet spot [35]. These balanced
combinations have become reality as several studies show
[36]–[40]. Traditional and agile approaches coexist and form
the majority of practically used hybrid development methods
[8], [41], [42]. Specifically, Tell et al. [8] found hundreds
of process variants which are composed of different agile
and traditional methods and practices, concluding that, for
instance, there is no “one and only” correct implementation
of Scrum, and that agile methods and practices are not
implemented by the book [43]. Noll and Beecham [42]
hypothesize that the mindset of the company determines
whether a project will adopt a purely agile approach.

Even though current literature provides an increasing
amount of research focusing on agile methods and practices,
it is still unclear what “agile” means. Is it the process model?
Is it a mindset or a cultural question? Beck describes the
driving concept of the process modeling behind Extreme
Programming as: “crank up all the knobs to 10 on the things
I thought were essential and leave out everything else”4, which
points to a more behavioral perspective. Hence, we take the
position that agile is a mindset, i.e., the degree of agility is a
personal perception of the managers and developers involved in
a project [27]. In this article, we seek to study this personal
perception of agility through a data-driven characterization

4. Taken from an interview by informIT, March 23, 2001: http://
www.informit.com/articles/article.aspx?p=20972, last access: February
6, 2019.

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on December 08,2021 at 12:24:03 UTC from IEEE Xplore. Restrictions apply.

http://www.informit.com/articles/article.aspx?p=20972
http://www.informit.com/articles/article.aspx?p=20972

0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3099532, IEEE
Transactions on Software Engineering

3

of reality, which captures details about individual processes
reported by practitioners, as well as their perceived de-
gree of agility [44]. We aim to overcome subjectivity as
mentioned by Jalali et al. [27] and, therefore, to objectively
identify those process elements that are more likely to be
associated with agility. Our work does not aim to provide a
precise definition of the term “agile software development”.
Instead, we provide information about individual percep-
tions and characterizations of agility which we quantify to
determine their relation to software development processes.

3 RESEARCH DESIGN

We describe our research design by presenting the research
questions in Section 3.1, the instrument development and
data collection procedures in Section 3.2, the detailed de-
scription of the data analysis procedures in Section 3.3, and
the validity threats in Section 3.4.

3.1 Research Objective and Research Questions
Research on agility and software processes is focused largely
on frameworks, methods, and practices. However, does that
mean that methods and practices are the (only) building blocks for
agility? In this paper, we aim to better understand whether
and how the degree of agility derives from the methods and
practices used. We pose the following research questions:
RQ 1: What is the degree of agility in implementing typical

project disciplines in software companies? Software de-
velopment consists of a variety of activities grouped
in project disciplines, such as project and quality man-
agement, architecture and design, implementation,
and so forth [9]. Our first question addresses the
degree of agility across these project disciplines. We
aim to identify setups having either consistently low
or consistently high degree of agility in their imple-
mentation of the project disciplines, which serve as
input for studying the second research question.

RQ 2: Which methods and practices influence the degree of
agility of implementing the project disciplines in soft-
ware companies? The first research question provides
an overview of the implementation of the different
project disciplines, but it provides no details about
the influence of specific methods and practices on
the degree of agility. The second research question
aims at statistically analyzing which methods and
practices increase or decrease the degree of agility.

3.2 Instrument Development and Data Collection
We used the survey method [45] to collect our data. We
designed an online questionnaire to collect data from prac-
titioners about the processes they use in their projects. The
unit of analysis was either a project or a software product.

3.2.1 Instrument Development
We used a multi-staged approach to develop the survey
instrument [41], which is illustrated in Fig. 1. Initially, three
researchers developed the questionnaire and tested it with
15 German practitioners to evaluate its suitability. Based on
the findings and feedback presented in [46], a team of 11
researchers from across Europe revised the questionnaire.

Stage 0: Initial instrument development
(2015, 3 researchers, test: 15 subjects in Germany)

Stage 1: Public instrument test, initial data collection
(2016, 11 researchers, collection: May-July 2016 in Europe, 69 data points)

Stage 2: Final instrument and data collection
(2017, 75 researchers, collection: May-November 2017 worldwide, 1,467 data points)

- Team extension
- Instrument revision and quality assurance

- Team extension
- Instrument revision and quality assurance
- Instrument translation (4 languages)

Fig. 1. Overview of the multi-staged data collection approach

The public test of the revised questionnaire, that included
up to 25 questions, was conducted in 2016 in Europe and
yielded 69 data points [39], which were analyzed and used
to initiate the next stage. In Stage 2, the team was extended,
with 75 researchers and practitioners from all over the
world. The revision of the questionnaire for Stage 2 focused
on the improvement of structure and scope, e.g., relevance
and precision of the questions, value ranges for variables,
and relevance of the topics included. Furthermore, the ques-
tionnaire, which was available at that stage in English only,
was translated to German, Spanish, and Portuguese. Further
details of the instrument are available in [44].

3.2.2 Instrument Structure
The final questionnaire consisted of five parts: Demographics
(group/question code D, 10 questions), Process Use (code
PU, 13 questions), Process Use and Standards (code PS, 5
questions), Experiences (code EX, 2 questions), and Closing
(code C, 8 questions). In total, the questionnaire consisted of
up to 38 questions including the conditional questions that
depend on previously given answers [44]. The questions on
Process Use covered 24 methods and 36 practices that were
derived from literature.

3.2.3 Data Collection
The data collection period was May to November 2017
following a convenience sampling strategy [45]. The survey
was promoted through personal contacts of the 75 par-
ticipating researchers and practitioners, through posters at
conferences, and through posts to mailing lists, social media
channels (Twitter, Xing, LinkedIn), professional networks
and websites (ResearchGate and personal home pages). In
total, the survey yielded 1,467 responses (every response is
a data point used for analyses). While the raw dataset and
a basic characterization of the population can be obtained
from [44], Section 4.1 provides a summary of the 556 data
points selected for this study after cleaning and reducing
the data (cf. Section 3.3.1).

3.3 Data Analysis Procedures
This section describes the analysis procedures in detail. We
present the data cleaning and data reduction procedures,
introduce our overall analysis model and provide detailed
information on the procedures implemented to study our
research questions.

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on December 08,2021 at 12:24:03 UTC from IEEE Xplore. Restrictions apply.

4

3.3.1 Data Cleaning and Data Reduction
Due to the analysis model adopted as shown in Fig. 2,
we had to discard some data points and aggregate data
to support the different analyses. Hence, we execute the
analyses with varying reported n-values.

To clean the dataset, we analyzed the data for NA and
-9 values captured by the online survey tool. While NA val-
ues indicate that participants did not provide information
for optional questions, -9 values indicate that participants
skipped a question. The base dataset consisted of all data
points that provided information for at least one of the
project disciplines in PU05 (see Fig. 2), leading to a sample
size of n=556. In the different analysis steps, we analyzed
varied data sets (emerging from this base dataset), depend-
ing on (a) the project disciplines covered in the data points
(analyses per project discipline for RQ1 and RQ2) and (b)
the awareness that a specific method or practice is used
(analyses per method or practice for RQ2).

3.3.2 Development of the Analysis Model
Figure 2 shows the analysis model which we developed to
provide a framework for the analysis. It consists of three
questions in the questionnaire. In the rest of the paper, we
use short versions of the questions from Fig. 2 (together with
the question ID to allow the mapping).

Which of the following practices
do you use?

PU10

36 practices to categorize from:
1. Do not know the practice
2. Do not know if we use it
3. We never use it
4. We rarely use it
5. We sometimes use it
6. We often use it
7. We always use the practice

Category:
Frequent Use

Category:
No Frequent Use

Which of the following
frameworks and methods do you

use?

PU09

24 methods to categorize as:
1. Do not know the framework
2. Do not know if we use it
3. We never use it
4. We rarely use it
5. We sometimes use it
6. We often use it
7. We always use the framework

Category:
Frequent Use

Category:
No Frequent UseH

yp
ot

he
si

s
H

i,j
,o

Select ALL

For the following standard activi-
ties (project disciplines) in the

development, please indicate to
which degree...

PU05

11 project disciplines to categorize as:
1. Fully Traditional
2. Mainly Traditional
3. Balanced
4. Mainly Agile
5. Fully Agile

Category:
Traditional

Category:
Agile

Select PER ACTIVITY

Fig. 2. Analysis model. The model shows the three questions (incl.
question IDs), the value ranges and the linked hypotheses

To analyze the degree of agility (RQ1) in the different
project disciplines (PU05, following the SWEBOK categories
[9]), we reduced the categories by merging and creating two
new sets:

Straditional(p) = Sfully trad(p) ∪ Smainly trad(p) (1)
Sagile(p) = Sfully agile(p) ∪ Smainly agile(p) (2)

S is the selection of the participants indicating whether
they implement a specific project discipline p in a “more”
traditional or agile fashion. All analyses use the two new
selection sets Sagile(p) and Straditional(p).

To answer RQ2, and in contrast to our previous studies
[8], [41], we do not consider all methods (PU09) and prac-
tices (PU10) independent from their respective frequency of
use (Fig. 2). Instead, we only use those methods and prac-
tices that have been used “often” or “always”. We discard

the “rarely” or “sometimes” used methods and practices to
avoid noise introduced by exceptional cases. As we wish to
analyze if the use of a method or practice has an influence on
the degree of agility of the project disciplines (PU05), we test
whether both data sets (consisting of all data points having
reported on the degree of agility of the respective project
discipline and on not or rarely using a specific method or
practice and those data points that use this method often or
always) belong to the same population.

We use the χ2 test to compare the distributions for
each of the 24 methods and the 36 practices and their
respective use per project discipline (11 disciplines). That
is, we performed (24 + 36) × 11 = 660 χ2 tests (one test
per case where a case is a pair (method/practice, project
discipline)). Each test analyzes the null hypothesis Hi,j,0,
where i ∈ {1, . . . , 60} represents a specific method or
practice and j ∈ {1, . . . , 11} represents one of the 11 project
disciplines in a software-producing organization. In cases
where we have few data points, we used Fisher’s exact test,
which can be applied instead of the χ2 test for small sample
sizes. However, as the χ2 test—if applicable—is stronger
than Fisher’s exact test, we decided to use Fisher’s exact
test only if the χ2 test is inapplicable. Eventually, our null
hypotheses have the form:

Hi,j,0 : P (Xi,j) = P
(
Xī,j

)
(3)

That is, we test if the distribution Xi,j belongs to the same
population as the distribution Xī,j . Hence, Xi,j is the set
of data points having reported on the degree of agility
for project discipline j and using method or practice i
often or always (Fig. 2). Likewise, Xī,j is the set of data
points having reported on the degree of agility for project
discipline j and not or rarely using method or practice i.

Since we performed 660 tests analyzing the same hy-
pothesis (with adjustments), we apply the Bonferroni cor-
rection to adjust the p-value accordingly. Compared to other
corrections, e.g., Holm’s step-down or Hochberg’s step-up
procedures, the Bonferroni correction is, according to Strass-
burger and Bretz [47], the most pessimistic option leading
to the smallest (less or equal) adjusted p-value, which is in
our study pcorr = 0.05

660 ≈ 7.57 × 10−5. We clearly highlight
differences in the results if the correction is (not) applied.

3.3.3 Specific Analysis Procedures for RQ 1

Using our analysis model (Fig. 2), we first study the state
of practice regarding the degree of agility of the project
disciplines (PU05) in software producing organizations. We
study, for instance, if project management is implemented
in a more agile or in a more traditional fashion. For this,
we calculate the distribution of the degree of agility per
project discipline using all data points reporting the degree
of agility in the respective project discipline. This results in
11 distributions of the degree of agility.

From our previous studies [8], [41] we know that ap-
proximately 75% of the participants use hybrid methods
to run their projects. In this regard, in the second step, we
study how many participants state that they implement all
project disciplines in a “purely” traditional or agile manner.
To get this specific distribution, we increase the strictness of
the data point selection, i.e., analyze those data points only

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on December 08,2021 at 12:24:03 UTC from IEEE Xplore. Restrictions apply.

0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3099532, IEEE
Transactions on Software Engineering

5

that claim to implement all project disciplines either fully or
mainly agile or, respectively, fully or mainly traditional.

3.3.4 Specific Analysis Procedures for RQ 2
The different project disciplines are to a large extent imple-
mented by a combination of different methods and practices
[8], [41]. Therefore, an investigation of the impact on a
project discipline’s implementation needs to start with the
question if a method or practice is used in that project
discipline. Our data does not provide such a direct mapping,
as an assessment of these details would have unacceptably
increased the length of the questionnaire. Yet, we can derive
such information from the data using two assumptions:
Assumption 1: A method or practice that has no influ-

ence on the degree of agility of the project
discipline of interest will not change the
distribution of cases with different degrees
of agility compared to the project discipline
in general.

Assumption 2: A method or practice that has an effect on
agility, but is not used in the context of a
project discipline is not likely to correlate
with a shift in the distribution of degrees of
agility of that project discipline.

Figure 3 illustrates Assumption 1. The figure provides two
integrated histograms, which show (a) the distribution of
the degree of agility in the project discipline Architecture
and Design among all data points that use Feature-Driven
Development (FDD), and (b) the distribution of the degree
of agility in the discipline Architecture and Design among all
data points that do not use FDD to embody this discipline.
The two trend-lines in Fig. 3 indicate that FDD appears to
be relevant in this discipline, yet, FDD seems to have no
impact on the degree of agility, as the distribution shows
the tendency, revealing only marginal differences.

25

61

85
92

45

5
10 13

21

10

0

20

40

60

80

100

Fully Traditional Mainly
Traditional

Balanced Mainly Agile Fully Agile

Not FDD for Arch. and Design

FDD for Arch. and Design

Poly. (Not FDD for Arch. and Design)

Poly. (FDD for Arch. and Design)

no significant shift

Fig. 3. Integrated histogram for the project discipline Architecture and
Design (n=536) and for the method Feature-Driven Development (n=59)
within the Architecture and Design discipline (note that, even though we
illustrate this as a curve, the applied test works on categorical data)

Figure 4 illustrates Assumption 2. The figure shows the
distribution of the degree of agility for the project discipline
Risk Management among all data points, and the distribution
of the degree of agility in the discipline Risk Management
among all data points that use the V-shaped Process (V-
Model) to embody this discipline. The integrated histogram
indicates a shift in the distribution, i.e., the V-Model is a
relevant method in Risk Management, but its use causes
a shift towards a lower degree of agility. However, the
second assumption has to be taken with care, as a spurious
correlation might exist due to confounding factors.

24

68

51 50

1919
29

9
3 2

0

20

40

60

80

100

Fully Traditional Mainly
Traditional

Balanced Mainly Agile Fully Agile

Not V-Model for Risk Management

V-Model for Risk Management

Poly. (Not V-Model for Risk
Management)
Poly. (V-Model for Risk Management)

significant shift

Fig. 4. Integrated histogram for the project discipline Risk Management
(n=462) and for the method V-shaped Process (V-Model) (n=62) within
the Risk Management discipline

Since a visual inspection is not sufficient, we use sta-
tistical tests to compare the distributions of the degree of
agility for a project discipline between the cases that use
and that do not use a practice or method (Eq. 3). For this,
we calculate the frequencies of different degrees of agility
per project discipline of the data points using a specific
method or practice, e.g., Scrum or Pair Programming. For the
examples in Fig. 3 and Fig. 4, the χ2 test results are:

• Project discipline Architecture and Design using Feature-
Driven Development: p-value=0.827 > 7.57×10−5. That
is, the use of Feature-Driven Development does not sig-
nificantly change the degree of agility of the discipline
Architecture and Design, as there is no significant differ-
ence in the distributions.

• Project discipline Risk Management using V-shaped Pro-
cess (V-Model): p-value=1.28×10−5<7.57×10−5. That is,
the use of the V-Model significantly changes the degree
of agility of the discipline Risk Management, as there is
a significant difference in the distributions.

These results support the impressions taken from the visual
inspection of Fig. 3 and Fig. 4. In the case of significant
results, i.e., a p-value<7.57×10−5 for the scenario in Fig. 4,
the test indicates only that a specific method or practice
leads to a shift. However, we cannot characterize this shift,
i.e., whether this is a shift towards agile or traditional. We
only know that a specific method or practice is likely to
have an impact on the degree of agility. That is, in a first
step, we identify the influencing methods and practices without
quantifying the actual influence.

To analyze and quantify the influence (the shifts) in
more detail, we compared the median degrees of agility
for the distribution limited to the rare use, if at all, of the
respective method or practice with the distribution limited
to the use of the respective method or practice. For example,
for Risk Management (Fig. 4), the median degree of agility
is 3 for data points not working with the V-Model and 2
for those working with the V-Model, thus indicating a ten-
dency towards a more traditional development approach.
In other words, using the V-Model makes Risk Management
in a project “more traditional”. In several cases the median
does not change despite a significant difference in the dis-
tribution. In these cases, we assume that the extent of the
difference is negligible.

3.4 Threats to Validity
We discuss the threats to validity following the classification
presented in Wohlin et al. [48].

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on December 08,2021 at 12:24:03 UTC from IEEE Xplore. Restrictions apply.

0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3099532, IEEE
Transactions on Software Engineering

6

Construct validity: The dataset analyzed in this paper
emerged from a survey. One of the main threats of survey-
based research is the risk of misunderstood questions lead-
ing to incomplete or wrong responses. To mitigate this risk,
several researchers were involved in designing and revising
the questionnaire, including pre-tests, internal and external
reviews as described in Section 3.2.1. In addition, native
speakers from the team translated the English version of
the questionnaire into German, Spanish, and Portuguese
to reduce the risk of misunderstandings due to language
issues. We distributed the questionnaire using the conve-
nience sampling strategy [45] as described in Section 3.2.3.
This introduced the risk of losing control in terms of sam-
pling, response rate and so forth. To ensure that the partici-
pants still represent our target population, we implemented
rigorous data pre-processing including consistency checks.
Analyzing free-text questions in the questionnaire led to
reasonable results [41]. Hence, we are confident that this
threat can be considered mitigated.

Software engineering is challenged with terminological
confusion [49]. Study participants will as a result have
somewhat varying understandings of agile software devel-
opment, however, the practices included in this research are
widely used (as demonstrated by the survey responses),
they support agile principles as identified in the Agile
Manifesto [1], and as such support an examination of hybrid
software engineering. We mitigated that threat by analyzing
a large population and quantifying the perceptions using
an explicit metric (Likert scale, Section 3.3.2). However,
even the aggregated results could be biased and, therefore,
require independent research for confirmation.

Internal Validity: Threats to internal validity were po-
tentially introduced while preparing and cleaning the data.
Also, the selection of the statistical tests can threaten internal
validity. To mitigate these risks, all analysis steps have been
performed by at least two researchers and reviewed by
at least two other researchers not involved in the actual
analyses. The remaining researchers in the team were asked
to provide quality assurance. Implementing these rigorous
review processes, we are confident that our research method
is reliable and can be reproduced. Another threat to internal
validity might have been introduced by the dataset itself.
Analyzing the overall degree of agility in the dataset, we
find a general tendency towards agile that is potentially
caused by the data collection procedure. Hence, every sub-
set used in the data analysis can be biased towards this
direction. We discuss potential effects in Section 5.

The implementation of the analysis model (Section 3.3.2)
might introduce another threat: we include data points in
multiple analyses, e.g., when analyzing the influence in
dependence of the industry target domain. If a participant
selected multiple industry target domains, this data point
was considered for each analysis. Consequently, the applied
statistical tests are executed on a potentially biased dataset
(base population) and, thus, the impact of specific methods
and practices could have been underestimated. As the statis-
tical tests analyze differences in the distributions of specific
datasets, this bias may have influenced the results. However,
as we do not claim generalizability, we discuss potential
effects in Section 5.

Conclusion Validity: Since we perform 660 tests for the

same hypothesis and using the same dataset (Section 3.3.2),
we applied the Bonferroni correction leading to an adjusted
significance level of pcorr ≈ 7.57×10−5 (we highlight re-
sults still significant using the adjusted p-value instead of
the normal p-value of 0.05). To analyze the effect of the
significant results, we compared the median values of the
respective distributions, assuming that the effect size of
the difference is negligible for same median values. In the
other cases, the shift in the median indicates the direction of
the effect of a specific method or practice towards agile or
towards traditional. Nonetheless, the identified significant
results have to be confirmed in future studies.

External Validity: Our data analysis is based on a dataset
comprised of 1,467 data points. Nevertheless, due to the
data collection strategy (Section 3.2.3) and its impact on the
population, we cannot claim generalizability. In some cases,
we find statistically significant differences between two sub-
sets. However, as we lack sufficient data to provide a solid
conclusion, we consider these observations as candidates for
which further research is necessary to confirm the results.

4 RESULTS

This section is structured according to the two research
questions as introduced in Section 3.1. The interpretation
and discussion of the results are provided in Section 5.

4.1 Demographics

Before we present the study results, in this section, we
briefly describe the study population. As described in Sec-
tion 3.2.3, the survey yielded 1,467 data points of which we
selected 556 for this study (Section 3.3.1). Among the 556
participants, 555 provided information about their company
size: 133 (23.92%) work in micro or small companies with
less than 51 employees, 137 (24.64%) work in medium-sized
companies (≤250 employees), 156 (28.06%) work in large
companies with up to 2.500 employees, and 129 (23.20%)
work in very large companies with more than 2.500 em-
ployees. In total, 351 out of 556 participants (63.13%) state
that they are involved in distributed development (region-
ally, nationally, and globally). Finally, 336 (60.43%) of the
participants state that they work on very large software
projects, i.e., projects that have a staffing level of more
than one person year. Another 189 participants (33.99%) are
involved in medium to large projects with staffing levels of
two person months to one person year.

Role / Experience <1
 y

ea
r

1-
2

ye
ar

s

3-
5

ye
ar

s

6-
10

 y
ea

rs

>1
0

ye
ar

s

Analyst/Requirements Engineer 1 3 3 4 18
Architect 0 2 3 8 35
C-level Management 0 1 2 4 31
Developer 5 13 37 38 49
Product Manager/Owner 1 2 5 11 31
Project/Team Manager 2 3 10 22 76
Quality Manager 0 0 1 2 26
Scrum Master/Agile Coach 3 3 3 2 28
Tester 1 0 2 1 3
Trainer 0 0 1 0 5
Other 2 2 9 6 36

Fig. 5. Participant roles and experience (alphabetically sorted)

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on December 08,2021 at 12:24:03 UTC from IEEE Xplore. Restrictions apply.

0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3099532, IEEE
Transactions on Software Engineering

7

60
14

15
17

20
22

24
25
29

36
42

43
57

61
67

83
88

102
144

157

0 40 80 120 160 200

Other

Robotics (incl. UAVs/drones)
Home Automation and Smart Buildings

Games
Aviation

Defense Systems

Media and Entertainment
Space Systems

Energy (Smart Grid etc.)
Telecommunication

Logistics and Transportation
Other Embedded Systems and Services

Medical Devices and Health Care
Automotive Software and Systems

Public Sector/Public Contracting
Other Information Systems (ERP, SAP etc.)

Cloud Applications and Services

Mobile Applications
Financial Services (Banking, Insurance,…

Web Applications and Services (e.g.,…

Fig. 6. Overview of the application domains of the project/products

22
36

82
92

101
225

309
359

401

418

0 150 300 450

Other
…impact the environment

…threaten human heatlh or life
…lead to a complete system loss

…have legal consequences (criminal law)
…have legal consequences (civil law)

…lead to system (service) degradation

…lead to financial loss
…impact your company's business

…impact your company's reputation

Fig. 7. Overview of the different criticality levels of the project/products

The study participants have different roles reflecting a
good bandwidth of skills combined with a high level of ex-
perience (Fig. 5). Developers (142; 25.54%) and project/team
managers (113; 20.32%) are the largest participant groups,
and a majority of the participants (338; 60.79%) has more
than 10 years of professional experience.

The survey’s unit of analysis was a project or product in
which the participants are involved. The projects/products
address different application domains, which are sum-
marized5 in Fig. 6. The figure shows that Web Appli-
cations and Services (157; 28.24%), Financial Services (144;
25.90%), and Mobile Applications (102; 18.35%) are the
most frequently mentioned application domains. Also, 60
participants (10.79%) mentioned they work in other do-
mains such as Agriculture, Geo-Information Systems or
CAD/Electronic Design. Furthermore, participants were
asked about the importance of software and systems de-
velopment, i.e., the criticality of software to their company.
Figure 7 shows that an impact on reputation and business
are the most frequently mentioned risks. Yet, 82 participants
(14.75%) state that issues of the software could impact
human health or life and another 36 (6.47%) see risks to

5. Please note that the participants could choose multiple options for
the application domains (Fig. 6) and the criticality levels (Fig. 7).

the environment, which underlines the critical role software
has gained today.

4.2 RQ 1: Degree of Agility of Project Disciplines

To answer the first research question, we evaluate the degree
of agility per project discipline as reported by the study
participants.

a) Project Management (n=551)

41

117
149

173

71

0

50

100

150

200

fully
traditional

mainly
traditional

balanced mainly
agile

fully agile

b) Quality Management (n=515)

c) Risk Management (n=462) d) Configuration Management (n=489)

e) Change Management (n=513) f) Requirements Engineering (n=536)

g) Architecture and Design (n=536) h) Implementation/Coding (n=552)

i) Integration and Testing (n=546) j) Transition and Operation (n=453)

k) Maintenance and Evolution (n=510)

52

142
119

144

58

0

50

100

150

200

fully
traditional

mainly
traditional

balanced mainly
agile

fully agile

64

154

112
94

38

0

50

100

150

200

fully
traditional

mainly
traditional

balanced mainly
agile

fully agile

59

134

99

135

62

0

50

100

150

200

fully
traditional

mainly
traditional

balanced mainly
agile

fully agile

55

90
115

159

94

0

50

100

150

200

fully
traditional

mainly
traditional

balanced mainly
agile

fully agile

44

107
138

182

65

0

50

100

150

200

fully
traditional

mainly
traditional

balanced mainly
agile

fully agile

42

111

150
164

69

0

50

100

150

200

fully
traditional

mainly
traditional

balanced mainly
agile

fully agile

24
49

125

198

156

0

50

100

150

200

fully
traditional

mainly
traditional

balanced mainly
agile

fully agile

30

77

127

198

114

0

50

100

150

200

fully
traditional

mainly
traditional

balanced mainly
agile

fully agile

45

116 129
112

51

0

50

100

150

200

fully
traditional

mainly
traditional

balanced mainly
agile

fully agile

43

96

134

166

71

0

50

100

150

200

fully
traditional

mainly
traditional

balanced mainly
agile

fully agile

Fully
Traditional

Mainly
Traditional

Balanced Mainly
Agile

Fully
Agile

Fully
Traditional

Mainly
Traditional

Balanced Mainly
Agile

Fully
Agile

Fully
Traditional

Mainly
Traditional

Balanced Mainly
Agile

Fully
Agile

Fully
Traditional

Mainly
Traditional

Balanced Mainly
Agile

Fully
Agile

Fully
Traditional

Mainly
Traditional

Balanced Mainly
Agile

Fully
Agile

Fully
Traditional

Mainly
Traditional

Balanced Mainly
Agile

Fully
Agile

Fully
Traditional

Mainly
Traditional

Balanced Mainly
Agile

Fully
Agile

Fully
Traditional

Mainly
Traditional

Balanced Mainly
Agile

Fully
Agile

Fully
Traditional

Mainly
Traditional

Balanced Mainly
Agile

Fully
Agile

Fully
Traditional

Mainly
Traditional

Balanced Mainly
Agile

Fully
Agile

Fully
Traditional

Mainly
Traditional

Balanced Mainly
Agile

Fully
Agile

Fig. 8. Number of data points in dependence of the degree of agility per
project discipline (n=556)

Figure 8 provides an integrated perspective by pre-
senting one histogram for each project discipline. The his-
tograms show that there is no general trend evident towards
purely agile or traditional development. Instead, a general
tendency towards a hybrid development approach can be
noted (as already observed in [8], [39], [41]). The disci-
plines Project Management, Change Management, Requirements

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on December 08,2021 at 12:24:03 UTC from IEEE Xplore. Restrictions apply.

0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3099532, IEEE
Transactions on Software Engineering

8

Engineering, Architecture and Design, Implementation/Coding,
Integration and Testing, and Maintenance show a tendency
towards a more agile implementation.

Yet, Fig. 8 does not provide information about the con-
sistent implementation of the respective project disciplines,
i.e., if a project is undertaken in a consistently traditional or
agile way. In Fig. 9, we provide an aggregated perspective
on the consistent use of agile or traditional methods and
practices. We selected all data points for which we found a
consistent selection of the degree of agility, i.e., for all project
disciplines, participants selected the same category, e.g.,
Fully Agile or Mainly Agile. The figure shows that few partic-
ipants implement their projects consistently traditional (7)
or consistently agile (9). Another 14 participants claim to
consistently implement their projects in a balanced manner.
Figure 9 shows that 46 participants implement their projects
in an agile style and, of these, nine participants do it “fully
agile”, 21 “mainly agile”, and another 16 participants imple-
ment their projects either fully or mainly agile, i.e., at least
mainly agile. In total, from the 556 analyzed data points,
83 (14.93%) claim to consistently implement the different
project disciplines fully or mainly agile or traditional, or in a
balanced fashion. With some 15% of the studied population,
the “pure doctrine” accounts for a small share only.

14
7 9

10

216

16

0

10

20

30

40

50

Traditional Balanced Agile

Mixed

Mainly

Fully

Balanced

Fig. 9. Aggregated degree of agility for participants implementing all
project disciplines consistently (n=83)

Finding 1a: Most project disciplines show a clear trend
towards an agile implementation. Exceptions are the three
project disciplines Quality Management, Configuration Man-
agement and Transition and Operation, which are balanced,
as well as the discipline Risk Management that has a trend
towards traditional development.
Finding 1b: A small share of approx. 15% of the participants
implement all project disciplines consistently, either agile,
traditional, or balanced.

4.3 RQ 2: Influence on the Degree of Agility
To answer the second research question, we compare the
distributions of the degrees of agility in relation to the
frequency of use of a specific method or practice. For this,
we first identify those methods and practices causing a shift,
before we characterize the found shifts.

4.3.1 Identifying Influencing Methods and Practices
Figure 10 presents the results of the χ2 tests and, if there
were too few data points, the results of the Fisher’s exact
tests (as described in Section 3.3.2).

Figure 10 shows 146 cases where the frequent use of
a specific method or practice changes the distribution of

the degrees of agility (blue numbers). For example, using
Waterfall or Scrum changes the distribution for all project
disciplines. Yet, other methods and practices seem to have
no influence, e.g., Nexus, DSDM, and RUP. Furthermore,
Fig. 10 shows that practices seem to have a greater influence
on the degree of agility than the methods, as they are
more likely to result in a significant shift. Compared to
the methods, we observe more significant differences in the
distributions of the degrees of agility, i.e., p < 7.57×10−5.
Specifically, from the 24 methods, two (Scrum and Water-
fall) have an impact on all disciplines, and from the 36
practices, one (Formal Specification) has an impact on all
disciplines. These numbers change to five methods and 15
practices influencing all project disciplines at a significance
level of p < 0.05 (black numbers in Fig. 10). Furthermore,
the disciplines are impacted differently. For instance, 20
out of 60 methods and practices have an impact on the
discipline Implementation and Coding, followed by Integration
and Testing (18), and Architecture and Design (15).

Finding 2: Compared to the selection of methods used, the
selection of practices used has a stronger effect on the degree
of agility of a given discipline.

Finding 3a: Few methods and practices affect the degree of
agility of all project disciplines. These are marked in Fig. 10
in green (3; p<7.57×10−5) and yellow (17; p<0.05).
Finding 3b: The project discipline Implementation and Coding
is most likely to be affected in its degree of agility by changes
in the selected methods and practices, followed by Inte-
gration and Testing, and Architecture and Design. The project
discipline least likely to be affected is Risk Management.

4.3.2 Quantifying Influencing Methods and Practices

While Fig. 10 summarizes significant differences in the de-
gree of agility depending on method and practice selection,
the figure does not show how these differences are mani-
fested. For this, as described in Section 3.3.4, we study the
median values of the degrees of agility per project discipline
as reported by the participants. This comparison includes
the frequency of use of a specific method or practice and
targets participants that use or do not use a method or
practice. As differences occur at different levels of signif-
icance, and even non-significant trends can be found, we
integrated these information pieces into a color-coded and
flagged representation. Figure 11 provides a guideline on
how to read the resulting charts.

The color code shows the “starting state” of those partic-
ipants that use a specific method or practice, i.e., what the
median degree of agility is for this group. The flag shows
the “trend” when comparing this group to the other group
that does not use this method or practice. While the flags
tr and ag stand for traditional and agile (see also Fig. 4),
the flag n requires an extra explanation. This flag indicates
that there is a significant difference. However, this difference
does not indicate a specific trend as also explained by Fig. 3.
In the following section, we first discuss the significant
results found in Section 4.3.1, before we present the findings
regarding observed trends that are not significant.

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on December 08,2021 at 12:24:03 UTC from IEEE Xplore. Restrictions apply.

0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3099532, IEEE
Transactions on Software Engineering

9

Project
Management

Quality
Management

Risk
Management

Configuration
Management

Change
Management

Requirements
Analysis/

Engineering

Architecture and
Design

Implementation
and Coding

Integration and
Testing

Transition and
Operation

Maintenance
and Evoution

Methods Waterfall 0.00E+00 8.00E-13 1.42E-08 1.92E-05 5.71E-13 1.44E-13 2.87E-13 3.24E-16 1.74E-15 3.92E-08 1.85E-12
Crystal
DevOps 1.67E-08 4.71E-06 5.90E-05 5.65E-10 2.51E-07 1.44E-04 4.61E-08 8.75E-08 2.51E-08 3.57E-10 1.06E-04
Domain-Driven Design 2.23E-02 3.53E-02 3.62E-02
DSDM
Extreme Programming 5.40E-05 1.66E-05 1.19E-03 4.83E-05 2.98E-05 5.76E-03 1.08E-02 1.93E-06 8.68E-10 1.26E-08 2.74E-05
Feature-driven Development 3.45E-02
Iterative Development 4.34E-03 2.66E-02 3.37E-02 1.69E-03 3.18E-04 1.84E-05 2.62E-04 1.96E-02 8.71E-03
Kanban 2.49E-02 4.66E-02 1.19E-02 4.55E-02 9.74E-03 1.03E-02 5.17E-04 5.95E-03
Large-scale Scrumm (LeSS) 3.41E-02 9.82E-03 4.00E-02
Lean Software Development 1.36E-02 3.84E-02 6.87E-03 1.27E-02 1.30E-02 9.56E-05 1.03E-03 1.59E-04 8.48E-05 5.19E-03
Model-Driven Architecture (MDA) 3.10E-02
Nexus
Personal Software Process (PSP)
Phase / Stage-gate model 9.78E-04 9.85E-04 9.85E-03 2.53E-02 3.81E-02 9.19E-03
PRINCE2
Rational Unified Process (RUP)
Scaled Agile Framework (SAFe) 9.91E-03
Scrum 3.10E-10 4.90E-05 5.23E-05 4.73E-08 3.73E-08 2.85E-08 4.80E-07 2.97E-14 8.03E-12 3.52E-07 6.36E-07
ScrumBan 5.13E-03 4.01E-02 4.51E-02 1.08E-03 9.20E-04 3.10E-02 4.32E-02 1.43E-03
Spiral Model 1.76E-02 1.11E-02
SSADM 4.69E-02 2.69E-02 2.01E-03 4.10E-03 2.48E-03 2.71E-03 2.68E-02
Team Software Process (TSP) 1.77E-02 1.43E-02
V-Shaped Process (V-Model) 5.50E-05 6.03E-09 1.28E-05 1.44E-04 3.58E-04 1.66E-05 1.01E-05 1.22E-04 4.54E-03 4.00E-04 1.36E-05

Practices Architecture Specifications 1.09E-02 3.24E-02 3.28E-02 2.22E-02 7.75E-03 2.30E-02 6.83E-04 1.03E-02 3.61E-02
Automated Code Generation
Automated Theorem Proving 1.75E-02
Automated Unit Testing 4.09E-04 2.87E-03 3.12E-03 2.74E-02 2.83E-06 2.18E-06 7.31E-03 1.10E-02
Backlog Management 7.13E-10 3.28E-06 7.84E-05 2.00E-04 1.87E-07 4.52E-07 5.43E-09 8.26E-12 8.91E-09 1.00E-05 1.41E-07
Burn-Down Charts 1.59E-03
Code Reviews 1.47E-03 2.15E-02 7.17E-03 8.74E-03 6.06E-04 4.31E-04 8.13E-03
Coding Standards 2.69E-02 8.36E-03 4.16E-02
Collective Code Ownership 8.35E-05 2.24E-04 2.07E-03 1.26E-06 9.39E-08 5.29E-04 5.44E-06 6.58E-07 1.15E-04 2.41E-03 5.65E-05
Continuous Deployment 2.75E-04 5.35E-05 1.32E-04 6.23E-06 1.10E-05 6.31E-05 1.71E-03 9.09E-05 5.34E-09 2.24E-09 1.66E-04
Continuous Integration 5.36E-06 6.97E-06 1.77E-04 2.47E-05 8.70E-06 1.52E-07 1.63E-06 1.05E-07 6.26E-11 2.20E-05 6.86E-06
Daily Standup 8.02E-07 7.42E-04 2.72E-02 2.13E-03 9.96E-06 1.86E-06 3.48E-05 6.49E-11 2.41E-09 4.68E-05 3.37E-04
Def. of Ready/Done 1.17E-05 2.01E-04 2.17E-04 7.57E-06 1.27E-06 1.22E-05 1.28E-04 3.67E-09 2.00E-07 4.38E-07 2.50E-06
Design Reviews 3.59E-03 3.14E-02
Destructive Testing 1.16E-02
Detailed Designs 6.22E-03 3.80E-04 2.06E-03 5.71E-03 4.30E-03 3.78E-04 1.67E-07 1.23E-07 2.07E-05 4.26E-02 1.17E-03
Limit Work-in-Progress 1.59E-02 1.17E-02 1.66E-02 5.11E-03 1.08E-02 3.38E-03 1.45E-03 6.92E-04
End-to-End (System) Testing
Expert/Team based estimation 1.77E-02 2.12E-03 6.53E-03 3.96E-05 2.80E-03 2.02E-03 5.41E-04 1.66E-05 2.81E-03 1.18E-03 3.34E-02
Formal estimation 1.49E-02 2.44E-02 3.88E-03 4.49E-05 2.70E-04 8.89E-03 1.44E-02
Formal Specification 8.68E-07 9.36E-07 4.34E-05 2.57E-06 7.12E-08 8.41E-09 1.40E-09 4.42E-07 7.47E-07 6.91E-05 1.69E-08
Iteration Planning 1.27E-02 4.53E-02 3.30E-02 6.19E-05 1.08E-02 3.78E-02
Iteration / Sprint Reviews 4.31E-09 2.06E-04 1.85E-04 4.82E-04 4.49E-05 4.95E-08 8.32E-07 1.13E-10 3.16E-07 8.82E-06 3.80E-06
Model Checking 2.86E-02 4.39E-02
On-Site Customer 3.59E-02 1.15E-02 2.63E-02
Pair Programming 1.42E-02 2.95E-03 1.51E-02 2.11E-02 5.65E-04 1.01E-02 4.01E-03
Prototyping 1.19E-02 8.35E-03
Refactoring 9.36E-05 2.12E-05 5.91E-03 1.97E-06 8.01E-06 7.56E-06 1.30E-07 1.55E-09 1.87E-12 5.19E-05 1.80E-04
Release planning
Retrospectives 3.54E-06 2.36E-04 3.05E-02 2.08E-04 2.11E-06 1.19E-06 2.92E-05 3.92E-12 1.37E-09 4.89E-04 4.59E-05
Scrum of Scrums 1.33E-02 4.79E-02 5.60E-03 1.27E-02
Security Testing
Test-driven Development 1.06E-02 4.56E-03 5.93E-03 5.94E-04 1.64E-02 3.77E-02 4.66E-04 2.03E-02 5.11E-06 7.49E-07 2.62E-03
User Stories 5.17E-04 4.39E-04 1.04E-03 3.21E-03 1.03E-03 4.15E-07 2.07E-04 2.71E-05 2.43E-05 2.35E-02 1.89E-03
Velocity-based Planning 1.16E-04 6.35E-06 1.26E-05 1.63E-05 8.37E-04 1.05E-06 4.03E-06 7.84E-10 3.14E-06 2.99E-04 1.56E-03
Use Case Modeling 1.91E-02 1.71E-02 4.09E-03

Fig. 10. Summary of the significant results with p<0.05 (black) and p<pcorr = 7.57×10−5 (blue) of the χ2 tests. A green background indicates
methods and practices on all project disciplines at a significance level of p<pcorr = 7.57×10−5 and, likewise, the yellow background indicates a
significance level of p<0.05. Gray-colored cells indicate the use of Fisher’s exact test as described in Section 3.3.2

trMethod/Practice

D
is

ci
pl

in
e

ag

D
is

ci
pl

in
e

n

D
is

ci
pl

in
e

ag

D
is

ci
pl

in
e

ag

D
is

ci
pl

in
e

…

D
is

ci
pl

in
e

…

D
is

ci
pl

in
e

Participants using this method or practice implement this
discipline typically fully traditional (yellow) and they are
more traditional than participants not using this method or
practice (tr)

Participants using this method or practice implement
this discipline typically mainly agile (light blue) and
they are more agile than participants not using this
method or practice (ag)

Participants using this method/practice
implement this discipline typically balanced
(white) and the difference to participants that
don’t use this method/practice cannot be
associated to a trend (n)

- fully agile

- mainly agile

- Balanced (neutral)

- mainly traditional

- fully traditional

tr

ag
n

- trend towards traditional
- trend towards agile
- trend towards neutral

- nothing to report…

…

D
is

ci
pl

in
e

Starting State

Trend

Fig. 11. Reading guideline for the trend analysis in Figures 12 – 14

4.3.2.1 Corrected Significance: Figure 12 summa-
rizes the trends and the shifts for the significant differences
(using pcorr). The figure also shows those methods and

practices for which no significant trend could be found at
all (gray-italic items). In total, of the 660 cases, 146 (22.12%)
show a significant difference, i.e., a potential shift in the
degree of agility. Figure 12 shows that most of the trends
identified cause an agile shift (88 out of 146, 60.27%). That
is, applying a specific method or practice increases the
degree of agility. This effect can be especially observed for
cases that already have an agile starting state. Likewise,
if a shift towards traditional occurs, the starting state is
either balanced or traditional. Yet, a few methods only show
a shift towards traditional, such as Waterfall and Formal
Specifications.

Finding 4: Most practices are associated with an increase in
the degree of agility.

Figure 12 also shows that there is no “radical” shift. That
is, there is no case that, for instance, is usually traditional and
shifts to agile when using a specific method or practice. This
is in line with Noll and Beecham [42], who found method

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on December 08,2021 at 12:24:03 UTC from IEEE Xplore. Restrictions apply.

0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3099532, IEEE
Transactions on Software Engineering

10

Pr
oj

ec
t M

an
ag

em
en

t

Q
ua

lity
 M

an
ag

em
en

t

R
is

k
M

an
ag

em
en

t

C
on

fig
ur

at
io

n
M

an
ag

em
en

t

C
ha

ng
e

M
an

ag
em

en
t

R
eq

ui
re

m
en

ts
 A

na
ly

si
s/

En

gi
ne

er
in

g

Ar
ch

ite
ct

ur
e

an
d

D
es

ig
n

Im
pl

em
en

ta
tio

n
an

d
C

od
in

g

In
te

gr
at

io
n

an
d

Te
st

in
g

Tr
an

si
tio

n
an

d
O

pe
ra

tio
n

M
ai

nt
en

an
ce

 a
nd

 E
vo

ut
io

n

Waterfall tr tr tr tr tr tr tr tr tr tr tr
Crystal
DevOps ag ag ag ag ag ag n n ag
Domain-Driven Design
DSDM
Extreme Programming ag ag ag ag ag ag ag ag
Feature-driven Development
Iterative Development n
Kanban
Large-scale Scrumm (LeSS)
Lean Software Development
Model-Driven Architecture (MDA)
Nexus
Personal Software Process (PSP)
Phase / Stage-gate model
PRINCE2
Rational Unified Process (RUP)
Scaled Agile Framework (SAFe)
Scrum ag n ag ag ag ag n ag ag ag ag
ScrumBan
Spiral Model
SSADM
Team Software Process (TSP)
V-Shaped Process (V-Model) tr tr tr tr tr tr
Architecture Specifications
Automated Code Generation
Automated Theorem Proving
Automated Unit Testing n ag
Backlog Management ag ag ag ag ag ag ag n ag
Burn-Down Charts
Code Reviews
Coding Standards
Collective Code Ownership ag ag ag n ag
Continuous Deployment ag ag ag ag ag ag
Continuous Integration ag n ag ag ag ag n ag n ag
Daily Standup ag ag ag ag ag ag n
Def. of Ready/Done ag ag ag ag n ag n ag
Design Reviews
Destructive Testing
Detailed Designs tr tr tr
Limit Work-in-Progress
End-to-End (System) Testing
Expert/Team based estimation n n
Formal estimation n
Formal Specification n tr tr tr tr tr tr tr tr n tr
Iteration Planning n
Iteration / Sprint Reviews ag ag ag n n ag n ag
Model Checking
On-Site Customer
Pair Programming
Prototyping
Refactoring ag ag ag ag ag n ag n
Release planning
Retrospectives ag ag ag ag n ag ag
Scrum of Scrums
Security Testing
Test-driven Development n ag
User Stories ag n ag
Velocity-based Planning ag ag ag ag ag ag n
Use Case Modeling

 - fully traditional - balanced - fully agile
 - mainly tradtional - mainly agile

Fig. 12. Significant shifts (p<7.57×10−5) in the degree of agility

combinations tend to “stay in their class”, e.g., findings
are confirmatory, that projects that mainly use agile methods
are more likely to use agile practices. Yet, no single practice
determines whether a project is agile or not.

Finding 5a: Methods and practices have a stable influence
towards either a high or low degree of agility, which does
not change with the project discipline.
Finding 5b: No method or practice determines whether a
project is traditional or agile, i.e., any method or practice
can be found in traditional and agile development.

Figure 12 also shows that 36 methods and practices,
seemingly, have no significant impact at all (using pcorr).
Furthermore, for 29 cases, a significant difference could be
found, but no tendency towards agile or traditional could

Pr
oj

ec
t M

an
ag

em
en

t

Q
ua

lity
 M

an
ag

em
en

t

R
is

k
M

an
ag

em
en

t

C
on

fig
ur

at
io

n
M

an
ag

em
en

t

C
ha

ng
e

M
an

ag
em

en
t

R
eq

ui
re

m
en

ts
 A

na
ly

si
s/

En

gi
ne

er
in

g

Ar
ch

ite
ct

ur
e

an
d

D
es

ig
n

Im
pl

em
en

ta
tio

n
an

d
C

od
in

g

In
te

gr
at

io
n

an
d

Te
st

in
g

Tr
an

si
tio

n
an

d
O

pe
ra

tio
n

M
ai

nt
en

an
ce

 a
nd

 E
vo

ut
io

n

Waterfall
Crystal
DevOps ag ag
Domain-Driven Design ag n ag
DSDM
Extreme Programming ag ag ag
Feature-driven Development ag
Iterative Development ag n n n ag ag n ag
Kanban ag n n ag n n n ag
Large-scale Scrumm (LeSS) ag n n
Lean Software Development ag n ag ag ag ag n n ag ag
Model-Driven Architecture (MDA) n
Nexus
Personal Software Process (PSP)
Phase / Stage-gate model n tr tr tr tr n
PRINCE2
Rational Unified Process (RUP)
Scaled Agile Framework (SAFe) ag
Scrum
ScrumBan ag ag ag ag ag ag n n
Spiral Model n tr
SSADM tr tr tr tr tr tr tr
Team Software Process (TSP) n tr
V-Shaped Process (V-Model) tr tr tr tr tr
Architecture Specifications tr n tr n tr tr tr n tr
Automated Code Generation
Automated Theorem Proving tr
Automated Unit Testing ag n n n n ag
Backlog Management ag n
Burn-Down Charts n
Code Reviews ag n ag n n ag ag
Coding Standards n ag ag
Collective Code Ownership ag n n ag n n
Continuous Deployment ag ag ag n ag
Continuous Integration ag
Daily Standup n ag n ag
Def. of Ready/Done n n ag
Design Reviews tr n
Destructive Testing tr
Detailed Designs tr n tr tr tr tr n tr
Limit Work-in-Progress ag n ag ag n n n ag
End-to-End (System) Testing
Expert/Team based estimation ag n ag ag ag n n n ag
Formal estimation n tr n n tr n
Formal Specification
Iteration Planning ag ag n ag n
Iteration / Sprint Reviews n ag n
Model Checking tr n
On-Site Customer ag ag n
Pair Programming ag ag ag ag ag n ag
Prototyping n n
Refactoring ag ag ag
Release planning
Retrospectives n ag n n
Scrum of Scrums n n n n
Security Testing
Test-driven Development ag ag n ag ag ag ag n ag
User Stories ag n ag n ag ag n ag
Velocity-based Planning ag ag n ag
Use Case Modeling n n n

 - fully traditional - balanced - fully agile
 - mainly tradtional - mainly agile

Fig. 13. Significant shifts (p<0.05) in the degree of agility.

be found (all entries in Figure 12 with entry “n”). These
29 cases represent methods and practices that show no
tendency in the context of a specific project discipline only,
e.g., Scrum (Quality Management and Architecture and Design).
This means that using these methods or practices makes no
difference, this method or practice is not impacting agility
in general or in specific contexts.

Finding 6: Some methods and practices are “neutral”. That
is, they are not associated with a changing perception of the
degree of agility. These are marked gray in Fig. 12.

4.3.2.2 Non-Corrected Significance: Figure 13 sum-
marizes the trends and shifts for the differences at a signifi-
cance level of p<0.05 that do not satisfy the adjusted p-value
pcorr. In total, of the 660 studied cases, 209 (31.67%) show a

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on December 08,2021 at 12:24:03 UTC from IEEE Xplore. Restrictions apply.

0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3099532, IEEE
Transactions on Software Engineering

11

Pr
oj

ec
t M

an
ag

em
en

t

Q
ua

lity
 M

an
ag

em
en

t

R
is

k
M

an
ag

em
en

t

C
on

fig
ur

at
io

n
M

an
ag

em
en

t

C
ha

ng
e

M
an

ag
em

en
t

R
eq

ui
re

m
en

ts
 A

na
ly

si
s/

En

gi
ne

er
in

g

Ar
ch

ite
ct

ur
e

an
d

D
es

ig
n

Im
pl

em
en

ta
tio

n
an

d
C

od
in

g

In
te

gr
at

io
n

an
d

Te
st

in
g

Tr
an

si
tio

n
an

d
O

pe
ra

tio
n

M
ai

nt
en

an
ce

 a
nd

 E
vo

ut
io

n

Waterfall
Crystal ag ag ag ag ag
DevOps
Domain-Driven Design ag ag ag
DSDM ag ag ag ag ag
Extreme Programming
Feature-driven Development ag ag ag
Iterative Development ag
Kanban ag ag
Large-scale Scrumm (LeSS) ag ag ag ag
Lean Software Development ag
Model-Driven Architecture (MDA) tr tr
Nexus ag ag ag
Personal Software Process (PSP) tr tr tr
Phase / Stage-gate model tr tr tr
PRINCE2 tr tr tr
Rational Unified Process (RUP) tr tr
Scaled Agile Framework (SAFe) ag ag ag ag ag
Scrum
ScrumBan ag ag ag
Spiral Model tr tr tr tr
SSADM tr
Team Software Process (TSP) tr tr tr tr
V-Shaped Process (V-Model)
Architecture Specifications
Automated Code Generation tr tr
Automated Theorem Proving ag ag ag tr tr
Automated Unit Testing ag ag ag
Backlog Management
Burn-Down Charts ag
Code Reviews ag ag
Coding Standards ag
Collective Code Ownership
Continuous Deployment
Continuous Integration
Daily Standup
Def. of Ready/Done
Design Reviews tr
Destructive Testing tr
Detailed Designs
Limit Work-in-Progress ag
End-to-End (System) Testing ag
Expert/Team based estimation
Formal estimation tr tr
Formal Specification
Iteration Planning ag ag
Iteration / Sprint Reviews
Model Checking tr tr tr tr
On-Site Customer ag ag
Pair Programming ag
Prototyping
Refactoring
Release planning ag
Retrospectives
Scrum of Scrums ag ag ag ag
Security Testing tr
Test-driven Development
User Stories
Velocity-based Planning
Use Case Modeling tr tr

 - fully traditional - balanced - fully agile
 - mainly tradtional - mainly agile

Fig. 14. Shifts in the degree of agility (without significant shifts)

difference. Figure 13 shows that most of the trends identified
cause an agile shift (89 out of 209, 42.58%) and that 84 out
of 209 (40.19%) do not show a notable trend. It can also be
observed that there is still no “radical” shift. That is, even at
this more coarse-grained level of abstraction (compared to
Fig. 12), there is no case that started in traditional and shifts
to agile.

Finding 7: Using the weaker significance level of p<0.05,
we find many more tendencies compared to Finding 4, but
we still find no radical shift.

Figure 13 shows only one special case: Design Reviews.
In the project discipline Risk Management, this practice is
considered fully traditional and shows a trend towards tradi-
tional. Yet, the same practice is considered mainly agile in the

context of the project discipline Implementation and Coding,
but with no explicit tendency.

Finding 8: Combining all results at a significance level of
p < 0.05, we find 10 methods and practices that have no
impact at all. This strengthens Findings 5a and 5b.

4.3.2.3 Non-Significant Trends: Besides the tenden-
cies presented above, further tendencies which are not sig-
nificant can be identified. These tendencies are shown in
Fig. 14, which also uses the notation described in Fig. 11.
These non-significant results point to candidate methods or
practices that cannot be decided based on the available data.
However, these candidate methods and practices point to
further subjects worth investigating. For instance, for the
practice Model Checking, we see a trend towards traditional
with a mainly agile starting state—a trend that we have not
observed in the significant results. Also, compared to the
significant results, Fig. 14 makes “clear statements”, i.e.,
we do not find one n-label, which means that the potential
trends have a clear direction towards agile or traditional.

Figure 14 also fills some gaps mentioned above. For
instance, while Fig. 12 lacks information about agile scaling
frameworks, e.g., LeSS, Nexus, and SAFe, Fig. 14 provides
this information. Linking this information to Fig. 10 that
shows that Fisher’s exact test was used for these methods
due to low numbers of selections of these methods, we can
conclude that these methods are either barely used or have
not yet been implemented extensively in practice. Analyzing
this observation requires further research.

Finding 9: There are methods and practices for which we
find an initial, yet not significant, indication for having an
impact on the degree of agility. These candidate methods
and practices warrant further research.

5 SUMMARY, DISCUSSION, AND ROADMAP

We summarize our key findings, which are used to steer
a discussion that aims at identifying key issues in current
research to develop a roadmap for future research.

5.1 Answering the Research Questions
The first research question defined in Section 3.1 was: What
is the degree of agility in implementing typical project disciplines
in software companies? A purely agile or traditional imple-
mentation of all project disciplines is seldom evident (Sec-
tion 4.2, Finding 1b). This finding shows an even lower share
than a previous study in the area of global software devel-
opment that found that the number of predominantly agile
projects is around 25% [50]. Finding 1a together with Fig. 8
also shows that there is a clear trend towards operating
projects in an agile manner. However, the more traditional
implementation of Risk Management indicates that agility is
not implemented all the time. We argue that this points to
a potential limitation of agile software development when
dependable system development is the primary subject of a
project. In addition, this may indicate a lack of explicit risk
management techniques in agile methods.

The second research question was: Which methods and
practices influence the degree of agility of implementing the project

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on December 08,2021 at 12:24:03 UTC from IEEE Xplore. Restrictions apply.

0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3099532, IEEE
Transactions on Software Engineering

12

disciplines in software companies? Figure 10 shows that two
methods and one practice are associated with a significant
change of the degree of agility (using pcorr, and five methods
and 15 practices with the unadjusted p-value), while the
practices show a stronger association with changing degrees
of agility (Finding 2). Also, a subgroup of methods and
practices affect the degree of agility of all project disciplines,
while the Implementation and Coding discipline is the most
affected one (Finding 3). Most practices are associated with
an increase in the degree of agility (Finding 4 and 7), and
once a method or practice has such an impact (high or low),
this impact holds for all project disciplines (Finding 5 and
8). For instance, Test-driven Development is associated with a
trend towards agile within all project disciplines (Fig. 12).
Nevertheless, methods and practices are not exclusive, i.e.,
any method or practice can be found in traditional and agile
software development alike. Finally, there are also methods
and practices that are considered neutral with regards to the
degree of agility (Finding 6, Fig. 12 and Fig. 14). Further-
more, for several methods and practices, the data does not
allow for drawing final conclusions. Finding 9 and Fig. 14
summarize these methods, which indicate some trend and
call for further research on their influence.

5.2 Discussion and Roadmap

We discuss our findings in light of current research on
software processes and derive a roadmap of future research
activities. We present a non-exhaustive list of topics, which
emerged from discussing our findings in the context of the
different research profiles of the author team. To provide
some structure, the resulting topics are grouped by thematic
clusters, which are provided as consecutive subsections.

5.2.1 General Challenges in Software Engineering
The first thematic cluster is concerned with general chal-
lenges of software and systems engineering with a partic-
ular focus on the organization of software projects. It must
be noted that the topics in this section are well-known and
subject to research for many years. However, especially in
the context of the new application domains discussed in
Section 5.2.2, these challenges are still relevant.

Software Engineering Theory: Aligning software engineer-
ing practices with evolving contexts is a detail-oriented and
highly complex undertaking. Contexts are subject to regular
change [51] and process adaptation in response to this is
perhaps even more complex than some software engineers
appreciate [52]. One of the conclusions from this research
is that different practitioners have different views on what
agility is in practice, and there is quite a significant spectrum
of interpretation (findings 1, 2, 3, and 4). This leads to
what might be considered an inconvenient truth for the
broader community: there is insufficient theory in software
engineering, this being acknowledged in earlier published
material [53]. This insufficiency of theory contributes to
a lack of clarity around key concepts such as agility, as
highlighted in this research. Clarity is not always readily
available in philosophy, and the agile manifesto [1] is cer-
tainly a philosophical artifact. But software engineering is not
a philosophy, it is a concrete part of our day-to-day lives,
we depend on it. The HELENA data research has started

to create theories [42], yet, future research must put more
emphasis on theorizing software engineering.

Agile Teams in Traditional Settings: There are specific work
scenarios where agile teams have to work within more tradi-
tional structures that are influenced by traditional methods
and practices [54]. It is important to understand the chal-
lenges that exist within such contexts [51], [52]. More work
is necessary to understand how agile teams can work within
traditional settings and in the various industry domains.

Agile Teams in Globally Distributed Settings: Recent re-
search [42] suggests that hybrid organizations have in av-
erage a lower degree of agility. Most distributed software
projects are neither purely agile or purely traditional in
their approach to software development, but rather combine
agile and traditional methods. Also, projects adopting agile
scaling frameworks such as SAFe [55] or LeSS [56], nearly
always employ traditional methods. Future research thus
needs to provide more studies that investigate whether
the mindset determines the adoption of a (purely) agile
approach. This would help the community to learn whether
agile is really a mindset, and shifting away from the Water-
fall, or becoming mainly agile in any transition, is unlikely
to occur unless there is a change in outlook and attitude
[50]. This investigation of agile scaling frameworks and their
comparison with traditional methods and “core” agile meth-
ods is necessary to determine if these scaling frameworks
are really predominantly agile.

5.2.2 Development Methods in new Contexts
Based on the general challenges discussed above, this the-
matic cluster is concerned with the engineering activities as
such—notably with their evolution in the context of recent
technological advances.

New Technologies: Recent research shows that develop-
ment methods have to change with emerging technologies
such as machine learning (ML; [57], [58]). These changes will
impact several—if not all—project disciplines. In this regard,
Finding 3 is of particular interest as it shows how the differ-
ent project disciplines are affected by development methods
and practices, i.e., whether to develop ML applications in
an agile or traditional manner. Given [59]–[61], Finding 6
becomes relevant as specific domain-relevant items can be
added to a process without impacting the perception of
agility. ML-research mainly focuses on the stages to build
the ML model as part of software development, but meth-
ods and practices used in ML-based software development
are rarely discussed. More research is required to collect,
structure, and understand how software and system devel-
opment methods need to change in the context of new tech-
niques such as ML. Furthermore, in application domains
such as safety-critical systems or the Internet of Things [62]–
[65], companies already face pressure to become more agile.
More research is necessary to understand the particularities
of these domains and to design suitable methods and proper
developer support for these contexts.

Agile Model-driven Engineering: Still, there is the open
question of whether Model-driven Engineering (MDE) can
be agile. These two concepts are traditionally considered
incompatible, which has been questioned in previous work
[66], [67]. The same discussion can be found when it comes
to architecture-centric methods. Some researchers argued

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on December 08,2021 at 12:24:03 UTC from IEEE Xplore. Restrictions apply.

0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3099532, IEEE
Transactions on Software Engineering

13

that architectural design does not align well with agile prac-
tices [68], [69], while others start to combine architecture-
centric with agile approaches [70]. The findings 2, 4, and
7 imply that the question of a process’ degree of agility
is relatively independent of the method chosen. This is in
line with first results on MDE-processes, indicating that
agile MDE processes are feasible. These results open the
potential for future research to investigate how practices can
be deliberately chosen to create agile MDE-processes.

5.2.3 Challenges in Process Design and Evolution
While the first two thematic clusters motivate a change in
the engineering of modern software-intensive systems in
general, this cluster is concerned with the process as such.

Future SPI and Agile Transitions: In recent research, we
found that Software Process Improvement (SPI) changed
due to the increasing presence of agile methods. In [71],
we found that (i) SPI is still conducted, but under different
names, and (ii) the way SPI is conducted in the context of
agile software development has changed towards the con-
tinuous learning paradigm, and also includes the various
tools used in project environments [72]. In addition, many
questions regarding the agile transition are left open, e.g.,
with respect to understanding an agile flavor of project dis-
ciplines such as requirements [73]. In this regard, findings 4,
6, and 7 are relevant in setting up and steering SPI activities.
They concern the perception of project teams regarding an
increased agility (Finding 4 and 7) or introduce the risk of
dissatisfaction due to an unchanged degree of agility (Find-
ing 6). Methods and practices as identified in the findings
5 and 8 provide the “low-hanging fruit”. More research is
required to collect, structure, and understand factors that
positively or negatively affect projects and organizations,
and to link these factors to methods and practices. It is
imperative to understand under which conditions a high
degree of agility is desirable and when a high degree of
agility is counter-productive or even dangerous.

Process Evolution: We investigated how technology and
processes co-evolve over time [74], [75]. A main finding is
that technological changes are likely to change processes as
well. Also, processes are changing continuously for various
reasons. Especially in the context of regulated software
development, awareness about evolving processes is critical,
since it needs to be ensured that updated process variants
remain compliant with standards [76]. Findings 5, 6, and 8,
are of special importance as they enable practitioners and
researchers for the first time to investigate the implications
that process changes have on the degree of agility. Future
research must focus on developing new prediction methods
that allow practitioners to assess early on how the evolution
of technologies and processes will affect agility.

Process Deviations and Process Variants: Process deviations
and process variants seem to be common [76], [77]. We
found them on the method- and practice-level. Furthermore,
we know that deviations and variants can negatively impact
goal achievement and teamwork [41]. Finding 2 confirms
that agility is affected more strongly by practices than by
methods. If a company does not reach the desired degree
of agility, process deviations and variants at the level of
practices should be considered as a potential cause. Future
research requires more studies to identify how the degree

of agility is impacted by common deviations from practice,
and to develop strategies for mitigating these deviations and
potential negative effects. Furthermore, new process model-
ing tools need to be developed that provide sophisticated
design-support mechanisms, notably for the management
of variants and for analyzing the effects of deviations.

5.2.4 Human Factors in Software Engineering Practice
Processes (Section 5.2.3) are instantiated in projects and,
thus, project teams have to be enabled to undertake projects
as efficiently and effectively as possible. This thematic clus-
ter is therefore concerned with the human dimension.

General Human Factors: Projects and their progress are
strongly affected by human and social factors [78]. Forecasts
can support teams with information required to improve
their performance in future iterations [79]. Especially, find-
ings 2 and 3 highlight the influence of the used methods and
practices on human perception. The chosen development
methods and practices likely affect social aspects in the team
such as communication behavior, which potentially influ-
ences the likelihood of social conflicts [80]. It is necessary
to further study this relationship to improve the quality of
forecasting instruments.

Specialists in Software Teams: Research on software teams
composed of interdisciplinary specialists becomes more cru-
cial as development goes agile. How this affects the process,
what new tasks are emerging, and the role of team maturity
are subject to research [58], [81]. Team members who are not
software developers cannot be expected to find their place in
the process without process change. Noll et al. [82] observed
an emerging theme in literature: the original balance of
scrum master, product owner and team roles are being
adapted, conflated, and possibly corrupted, to suit the needs
of organizations transitioning from waterfall to Scrum, or
scaling Scrum to large scale organizations. Therefore, it be-
comes crucial to distinguish between methods and practices
that are neutral with regards to agility, and methods and
practices that are not (findings 5, 6, and 8). Future research
on integrating such team members will benefit from the
insights in this paper by classifying observed or necessary
process changes according to their impact on agility. This
further leads to research on enabling teams to maintain their
agility while integrating specialists into their workflow.

Teaching Processes and Project Disciplines: The knowledge
level of students and their readiness for the software indus-
try are subject to regular discussions among practitioners,
educators, and researchers. There exist studies, e.g., [83],
[84] to measure and improve the knowledge gap between
software engineering education and industrial needs. Find-
ing 3 provides us with the new insight that the different
software engineering disciplines/tasks are not isolated from
the question of whether development happens in an agile
or traditional way. We need to investigate how teaching the
software engineering disciplines, e.g., quality management
or maintenance and evolution, should incorporate and ad-
dress the question of how tasks change when different agile
and traditional processes are applied.

6 CONCLUSIONS

Throughout the progress of this extensive industrial study,
much consideration and reflection have been focused on the

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on December 08,2021 at 12:24:03 UTC from IEEE Xplore. Restrictions apply.

0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3099532, IEEE
Transactions on Software Engineering

14

broader state of software engineering in general and this has
suggested that there are some axioms that we would do well
to acknowledge and work on. The fact that no one software
development process or set of practices is universally and
perfectly suited to all software development settings [51]
should be more than just an inconvenience to those evan-
gelists of certain processes and practices. Rather, this reality
seems to reflect a basic principle: software engineering is
highly applied across a very large range of situational
contexts [85], [86]. Just as civil engineering uses different
materials, processes and techniques for bridges, houses and
roads, so too should we expect software engineers to use
different tools, practices and hardware for nuclear power
plants, computer games and customer relationship man-
agement. Advocating continuous software engineering [87]
for nuclear reactor control software makes no more sense
than evangelizing the practices for bridge builders as being
perfectly suited to house builders. Therefore, we find that it
is not necessarily a question of whether a context requires
agility or not, it is a question of what type of agility is
suitable in different contexts: which practices? Which parts
of which practices? Which practices in combination?

We studied the question: What makes agile software de-
velopment agile? To answer that question, based on 556
data points obtained in a large-scale international online
survey, we studied the participants’ perception of agility
and whether this perception changes depending on the
used methods and practices. Our findings show that (i) a
clear trend towards agile software development can be ob-
served, (ii) purely agile or traditional software development
happens in rarely, (iii) most practices are associated with
“being agile” and practices have a stronger impact on the
perception of agility compared to methods, and (iv) there
are methods and practices that are considered neutral.

However, our findings also clearly show that “agility”
is in the eye of the beholder and, therefore, is a subjective
concept. For instance, if people know that the base process
is the V-Model or the Waterfall, everything is considered
“traditional”, while everything that is connected to Scrum or
XP is considered “agile”, regardless of whether the process
of interest is the (objectively) best choice for the respective
context [88]. Taking into account that the methods and
practices are not used stand-alone, but to a large extent
in combination with other methods and practices [8], we
argue that there is no agile software development process. Agile
software development has to be considered a cultural topic
of project teams and software-producing organizations and
how these choreograph collaboration, rather than a process
modeling topic. This conclusion is supported by our finding
that practices, i.e., the actual description of how the work is
done, have a bigger impact than methods on the perception
as to whether a process is agile.

We have presented our findings and outlined routes for
future research. We consider it imperative to objectively
discuss development in the context of emerging trends and
technologies, which have nothing to do with being agile or
not being agile in the first place. We argue that more emphasis
must be put on process modeling and evolution to provide
a meaningful methodological “backend” for the challenges
in software and system development. Finally, we call for
action in intensifying interdisciplinary research on (globally

distributed) software teams. In a world that vitally relies on
software and increasingly on remote working to produce
software, as we have seen with the Covid19 pandemic, we
need a clear understanding of how to organize the success-
ful and sustainable development of high-quality software.

This research has discovered important new information
about what practitioners consider agility to mean (expressed
through association with various practices/methods). This
has raised our sophistication of understanding of the agile
concept, but, in-so-doing, has also crystallized aspects of our
thinking regarding some more general realities in software
engineering. The observations above could—and we sug-
gest should—be transformed into research questions to be
worked on by the broader research community.

ACKNOWLEDGMENTS
HELENA is a huge endeavor in which many people par-
ticipated and helped improve the understanding of modern
software and system development. We would like to thank
all persons who directly or indirectly supported HELENA.
Notably, the authors would like to thank Philipp Diebold,
Eckhart Hanser, Simon Oberthür, Sabrina Marczak, Guilherme
Horta Travassos, Vahid Garousi, Kai Petersen, Nauman Ali,
Abdur Razzak, Casper Lassenius, Nicole Novielli, Giuseppe
Iaffaldano, Dan Houston, Ian De Silva, Martin Kropp, Ben-
jamin Kanagwa, Mushtaq Raza, João Pascoal Faria, Julian Bass,
Filippo Lanubile, Andreas Meier, and John Noll. Our special
thanks goes to Rory V. O’Connor, who sadly left us and will be
missed as a great colleague and friend.

D. Pfahl and E. Scott are partly funded by the Estonian
Centre of Excellence in ICT Research (EXCITE). S. Beecham,
I. Richardson, Ö. Özcan-Top, P. Clarke, and F. McCaffery were
partially supported with the financial support of the Science
Foundation Ireland grant 13/RC/2094 2 and co-funded un-
der the European Regional Development Fund through the
Southern & Eastern Regional Operational Programme to Lero
- the Science Foundation Ireland Research Centre for Software
(www.lero.ie). M. Genero, A. Vizcaino and M. Piattini research
is partly funded by ECLIPSE Project (Ministerio de Ciencia,
Innovación y Universidades—FEDER, RTI2018-094283-B-C31,
Spain). E. Knauss has partially been funded through the Soft-
ware Center research network (https://www.software-center.
se) and the Vinnova FFI NGEA project (https://www.vinnova.
se). R. Prikladnicki is partially funded by CNPq and Fapergs.
D. Winkler and S. Biffl are supported by the Christian Doppler
Research Association, the Austrian Federal Ministry for Dig-
ital and Economic Affairs and the National Foundation for
Research, Technology and Development.

REFERENCES

[1] K. Beck, M. Beedle, A. Van Bennekum, A. Cockburn, W. Cunning-
ham, M. Fowler, J. Grenning, J. Highsmith, A. Hunt, R. Jeffries
et al., “Manifesto for agile software development,” 2001.

[2] T. Dingsøyr, S. Nerur, V. Balijepally, and N. B. Moe, “A decade of
agile methodologies: Towards explaining agile software develop-
ment,” Journal of Systems and Software, vol. 85, no. 6, pp. 1213–1221,
2012.

[3] P. Hohl, J. Klünder, A. van Bennekum, R. Lockard, J. Gifford,
J. Münch, M. Stupperich, and K. Schneider, “Back to the future:
origins and directions of the “agile manifesto”–views of the orig-
inators,” Journal of Software Engineering Research and Development,
vol. 6, no. 1, p. 15, 2018.

[4] P. Lous, M. Kuhrmann, and P. Tell, “Is scrum fit for global software
engineering?” in 2017 IEEE 12th International Conference on Global
Software Engineering (ICGSE), May 2017, pp. 1–10.

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on December 08,2021 at 12:24:03 UTC from IEEE Xplore. Restrictions apply.

www.lero.ie
https://www.software-center.se
https://www.software-center.se
https://www.vinnova.se
https://www.vinnova.se

0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3099532, IEEE
Transactions on Software Engineering

15

[5] B. Fitzgerald, K.-J. Stol, R. O’Sullivan, and D. O’Brien, “Scal-
ing agile methods to regulated environments: An industry case
study,” in International Conference on Software Engineering, ser. ICSE.
Piscataway, NJ, USA: IEEE Press, 2013, pp. 863–872.

[6] M. McHugh, F. McCaffery, and V. Casey, “Barriers to adopting
agile practices when developing medical device software,” in
Software Process Improvement and Capability Determination, A. Mas,
A. Mesquida, T. Rout, R. V. O’Connor, and A. Dorling, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2012, pp. 141–147.

[7] P. Clarke, R. V. O’Connor, and M. Yilmaz, “In search of the
origins and enduring impact of agile software development,” in
Proceedings of the International Conference on Software and System
Process, ser. ICSSP. ACM, 2018, pp. 142–146.

[8] P. Tell, J. Klünder, S. Küpper, D. Raffo, S. G. MacDonell, J. Münch,
D. Pfahl, O. Linssen, and M. Kuhrmann, “What are hybrid devel-
opment methods made of?: An evidence-based characterization,”
in Proceedings of the International Conference on Software and System
Processes, ser. ICSSP. IEEE Press, 2019, pp. 105–114.

[9] P. Bourque and R. E. Fairley, Eds., Guide to the Software Engineering
Body of Knowledge, Version 3.0. IEEE Computer Society, 2014.

[10] W. W. Royce, Managing the development of large software systems.
IEEE Wescon, 1970.

[11] B. W. Boehm, “A spiral model of software development and
enhancement,” Computer, vol. 21, no. 5, pp. 61–72, 1988.

[12] H. D. Mills, “The management of software engineering, part i:
Principles of software engineering,” IBM Systems Journal, vol. 19,
no. 4, pp. 414–420, 1980.

[13] M. Dyer, “The management of software engineering, part iv:
Software development practices,” IBM Systems Journal, vol. 19,
no. 4, pp. 451–465, 1980.

[14] P. Kruchten, The rational unified process: an introduction. Addison-
Wesley Professional, 2004.

[15] K. Beck, Extreme programming explained: embrace change. addison-
wesley professional, 2000.

[16] L. Vijayasarathy and D. Turk, “Drivers of agile software develop-
ment use: Dialectic interplay between benefits and hindrances,”
Information and Software Technology, vol. 54, no. 2, pp. 137–148, 2012.

[17] S. Nerur, R. Mahapatra, and G. Mangalaraj, “Challenges of migrat-
ing to agile methodologies,” Communications of the ACM, vol. 48,
no. 5, pp. 73–78, 2005.

[18] T. Dyba and T. Dingsoyr, “What do we know about agile software
development?” IEEE Software, vol. 26, no. 5, pp. 6–9, Sep. 2009.

[19] J. F. Tripp and D. J. Armstrong, “Exploring the relationship be-
tween organizational adoption motives and the tailoring of agile
methods,” in Hawaii International Conference on System Sciences.
IEEE, 2014, pp. 4799–4806.

[20] A. Qumer and B. Henderson-Sellers, “An evaluation of the degree
of agility in six agile methods and its applicability for method
engineering,” Information and Software Technology, vol. 50, no. 4,
pp. 280–295, 2008.

[21] S. Balaji and M. S. Murugaiyan, “Waterfall vs. v-model vs. agile:
A comparative study on sdlc,” International Journal of Information
Technology and Business Management, vol. 2, no. 1, pp. 26–30, 2012.

[22] B. Murphy, C. Bird, T. Zimmermann, L. Williams, N. Nagappan,
and A. Begel, “Have agile techniques been the silver bullet for
software development at microsoft?” in International Symposium
on Empirical Software Engineering and Measurement, ser. ESEM.
IEEE/ACM, 2013, pp. 75–84.

[23] VersionOne, “State of agile survey,” Available from: http://www.
versionone.com, 2006-2014.

[24] A. Meier and M. Kropp, “Swiss agile study,” Online http://www.
swissagilestudy.ch, 2019.

[25] GPM Dt. Gesellschaft f. Projektmanagement, “Status quo agile,”
2017.

[26] V. Garousi, A. Coşkunçay, A. Betin-Can, and O. Demirörs, “A
survey of software engineering practices in turkey,” Journal of
Systems and Software, vol. 108, pp. 148–177, 2015.

[27] S. Jalali, C. Wohlin, and L. Angelis, “Investigating the applicability
of agility assessment surveys: A case study,” Journal of Systems and
Software, vol. 98, pp. 172–190, 2014.

[28] O. E. Adalı, Ö. Özcan-Top, and O. Demirörs, “Evaluation of
agility assessment tools: A multiple case study,” in Software Pro-
cess Improvement and Capability Determination, P. M. Clarke, R. V.
O’Connor, T. Rout, and A. Dorling, Eds. Cham: Springer Inter-
national Publishing, 2016, pp. 135–149.

[29] I. Nurdiani, J. Börstler, S. Fricker, K. Petersen, and P. Chatzipetrou,
“Understanding the order of agile practice introduction: Compar-

ing agile maturity models and practitioners’ experience,” Journal
of Systems and Software, vol. 156, pp. 1–20, 2019.

[30] A. Begel and N. Nagappan, “Usage and perceptions of agile soft-
ware development in an industrial context: An and exploratory
study,” in International Symposium on Empirical Software Engineering
and Measurement, ser. ESEM. IEEE/ACM, 2007, pp. 255–264.

[31] G. van Waardenburg and H. van Vliet, “When agile meets the
enterprise,” Information and Software Technology, vol. 55, no. 12, pp.
2154–2171, Dec 2013.

[32] D. West, M. Gilpin, T. Grant, and A. Anderson, “Water-Scrum-
Fall is the reality of agile for most organizations today,” Forrester
Research Inc., Tech. Rep., July 2011.

[33] A. Aitken and V. Ilango, “A comparative analysis of traditional
software engineering and agile software development,” in Hawaii
International Conference on System Sciences, ser. HICSS. IEEE,
March 2013, pp. 4751–4760.

[34] B. Boehm and R. Turner, “Using risk to balance agile and plan-
driven methods,” IEEE Computer, vol. 36, no. 6, pp. 57–66, 2003.

[35] ——, “Management challenges to implementing agile processes
in traditional development organizations,” IEEE Software, vol. 22,
no. 5, pp. 30–39, September 2005.

[36] G. Theocharis, M. Kuhrmann, J. Münch, and P. Diebold, “Is Water-
Scrum-Fall reality? On the use of agile and traditional develop-
ment practices,” in International Conference on Product Focused Soft-
ware Development and Process Improvement, ser. Profes. Springer,
2015, pp. 149–166.

[37] M. Cusumano, A. MacCormack, C. F. Kemerer, and B. Crandall,
“Software development worldwide: the state of the practice,” IEEE
Software, vol. 20, no. 6, pp. 28–34, Nov 2003.

[38] L. R. Vijayasarathy and C. W. Butler, “Choice of software de-
velopment methodologies: Do organizational, project, and team
characteristics matter?” IEEE Software, vol. 33, no. 5, pp. 86–94,
2016.

[39] M. Kuhrmann, P. Diebold, J. Münch, P. Tell, V. Garousi,
M. Felderer, K. Trektere, F. McCaffery, O. Linssen, E. Hanser,
and C. R. Prause, “Hybrid software and system development in
practice: Waterfall, scrum, and beyond,” in International Conference
on Software and System Process, ser. ICSSP. ACM, 2017, pp. 30–39.

[40] A. Solinski and K. Petersen, “Prioritizing agile benefits and limita-
tions in relation to practice usage,” Software Quality Journal, vol. 24,
no. 2, pp. 447–482, 2016.

[41] J. Klünder, R. Hebig, P. Tell, M. Kuhrmann, J. Nakatumba-
Nabende, R. Heldal, S. Krusche, M. Fazal-Baqaie, M. Felderer,
M. F. G. Bocco, S. Küpper, S. A. Licorish, G. Lopez, F. McCaffery,
Ö. Ö. Top, C. R. Prause, R. Prikladnicki, E. Tüzün, D. Pfahl,
K. Schneider, and S. G. MacDonell, “Catching up with method and
process practice: An industry-informed baseline for researchers,”
in International Conference on Software Engineering, ser. ICSE (SEIP).
IEEE, May 2019, pp. 255–264.

[42] J. Noll and S. Beecham, “How agile is hybrid agile? an analysis of
the helena data,” in Product-Focused Software Process Improvement,
X. Franch, T. Männistö, and S. Martı́nez-Fernández, Eds. Cham:
Springer International Publishing, 2019, pp. 341–349.

[43] P. Diebold, J.-P. Ostberg, S. Wagner, and U. Zendler, “What do
practitioners vary in using scrum?” in International Conference on
Agile Software Development, ser. XP. Springer, May 2015, pp. 40–51.

[44] M. Kuhrmann, P. Tell, J. Klünder, R. Hebig, S. A. Licorish, and S. G.
MacDonell, “Complementing materials for the HELENA Study
(Stage 2),” [online] https://www.researchgate.net/publication/
329246439 HELENA Stage 2 Results, 2018.

[45] C. Robson and K. McCartan, Real World Research. John Wiley &
Sons, 2016.

[46] M. Kuhrmann, J. Münch, P. Diebold, O. Linssen, and C. R. Prause,
“On the use of hybrid development approaches in software and
systems development: Construction and test of the helena survey,”
in Special Interest Group Meeting Projektmanagement und Vorgehens-
modelle. Gesellschaft für Informatik (GI), 2016, pp. 59–68.

[47] K. Strassburger and F. Bretz, “Compatible simultaneous lower
confidence bounds for the holm procedure and other bonferroni-
based closed tests,” Statistics in medicine, vol. 27, no. 24, pp. 4914–
4927, 2008.

[48] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and
A. Wesslén, Experimentation in software engineering. Springer
Science & Business Media, 2012.

[49] P. M. Clarke, A. L. Mesquida, D. Ekert, J. J. Ekstrom, T. Gornostaja,
M. Jovanovic, J. Johansen, A. M. Picahaco, R. Messnarz, B. N.
Villar, A. O’Connor, R. V. O’Connor, M. Reiner, G. Sauberer,

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on December 08,2021 at 12:24:03 UTC from IEEE Xplore. Restrictions apply.

http://www.versionone.com
http://www.versionone.com
http://www.swissagilestudy.ch
http://www.swissagilestudy.ch
https://www.researchgate.net/publication/329246439_HELENA_Stage_2_Results
https://www.researchgate.net/publication/329246439_HELENA_Stage_2_Results

0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3099532, IEEE
Transactions on Software Engineering

16

K. Schmitz, and M. Yilmaz, “An investigation of software develop-
ment process terminology,” in Proceedings of the 16th International
Conference on Software Process Improvement and Capability Determina-
tion, ser. Communications in Computer and Information Science,
vol. 609. Springer, June 2016, pp. 351–361.

[50] M. Marinho, J. Noll, I. Richardson, and S. Beecham, “Plan-driven
approaches are alive and kicking in agile global software develop-
ment,” in International Symposium on Empirical Software Engineering
and Measurement, ser. ESEM. IEEE/ACM, 2019, pp. 1–11.

[51] P. Clarke, R. V. O’Connor, B. Leavy, and M. Yilmaz, “Exploring
the relationship between software process adaptive capability
and organisational performance,” IEEE Transactions on Software
Engineering, vol. 41, no. 12, pp. 1169–1183, 2015.

[52] P. Clarke, R. V. O’Connor, and B. Leavy, “A complexity theory
viewpoint on the software development process and situational
context,” in Proceedings of the International Conference on Software
and Systems Process, ser. ICSSP. ACM, 2016, pp. 86–90.

[53] M. Ekstedt, P. Johnson, and I. Jacobson, “Where’s the theory for
software engineering?” IEEE Software, vol. 29, no. 05, p. 96, 2012.

[54] R. Kasauli, E. Knauss, J. Nakatumba-Nabende, and B. Kanagwa,
“Agile islands in a waterfall environment: Challenges and strate-
gies in automotive,” in Evaluation and Assessment in Software Engi-
neering, ser. EASE. ACM, 2020, pp. 31–40.

[55] M. Paasivaara, “Adopting safe to scale agile in a globally dis-
tributed organization,” in IEEE 12th International Conference on
Global Software Engineering, ser. ICGSE. IEEE, 2017, pp. 36–40.

[56] C. Larman and B. Vodde, Large-Scale Scrum: More with Less.
Addison-Wesley Professional, 2016.

[57] Z. Wan, X. Xia, D. Lo, and G. C. Murphy, “How does machine
learning change software development practices?” IEEE Transac-
tions on Software Engineering, 2019 (in press).

[58] H. Liu, S. Eksmo, J. Risberg, and R. Hebig, “Emerging and
changing tasks in the development process for machine learning
systems,” in International Conference on Software and Systems Process,
ser. ICSSP. ACM, 2020, pp. 125–134.

[59] P. Tell, J. Klünder, S. Küpper, D. Raffo, S. G. MacDonell, J. Münch,
D. Pfahl, O. Linssen, and M. Kuhrmann, “Towards the statistical
construction of hybrid development methods,” Journal of Software:
Evolution and Process, vol. 33, no. 1, 2021.

[60] S. Amershi, A. Begel, C. Bird, R. DeLine, H. C. Gall, E. Kamar,
N. Nagappan, B. Nushi, and T. Zimmermann, “Software engineer-
ing for machine learning: a case study,” in International Conference
on Software Engineering. IEEE/ACM, May 2019, pp. 291–300.

[61] E. de Souza Nascimento, I. Ahmed, E. Oliveira, M. P. Palheta,
I. Steinmacher, and T. Conte, “Understanding development pro-
cess of machine learning systems: Challenges and solutions,”
in International Symposium on Empirical Software Engineering and
Measurement, ser. ESEM. IEEE, September 2019, pp. 1–6.

[62] G. Giray, B. Tekinerdogan, and E. Tüzün, Internet of Things: Chal-
lenges, Advances, and Applications. CRC Press/Taylor & Francis,
January 2018, ch. IoT System Development Methods, pp. 141–159.

[63] D. X. Houston, “Agility beyond software development,” in Pro-
ceedings of the International Conference on Software and System Pro-
cess, ser. ICSSP. ACM, 2014, pp. 65–69.

[64] J.-P. Steghöfer, E. Knauss, J. Horkoff, and R. Wohlrab, “Challenges
of scaled agile for safety-critical systems,” in International Confer-
ence on Product-Focused Software Process Improvement. Springer,
2019, pp. 350–366.

[65] R. Kasauli, E. Knauss, B. Kanagwa, A. Nilsson, and G. Calikli,
“Safety-critical systems and agile development: a mapping study,”
in 2018 44th Euromicro Conference on Software Engineering and
Advanced Applications (SEAA). IEEE, 2018, pp. 470–477.

[66] R. Hebig and R. Bendraou, “On the need to study the impact of
model driven engineering on software processes,” in International
Conference on Software and System Process, ser. ICSSP. ACM, May
2014, pp. 164–168.

[67] U. Eliasson, R. Heldal, J. Lantz, and C. Berger, “Agile model-
driven engineering in mechatronic systems - an industrial case
study,” in Model-Driven Engineering Languages and Systems, J. Din-
gel, W. Schulte, I. Ramos, S. Abrahão, and E. Insfran, Eds. Cham:
Springer International Publishing, 2014, pp. 433–449.

[68] C. R. Prause and Z. Durdik, “Architectural design and documenta-
tion: Waste in agile development?” in 2012 International Conference
on Software and System Process (ICSSP), 2012, pp. 130–134.

[69] P. Abrahamsson, M. A. Babar, and P. Kruchten, “Agility and
architecture: Can they coexist?” IEEE Software, vol. 27, no. 2, pp.
16–22, 2010.

[70] C. Yang, P. Liang, and P. Avgeriou, “A systematic mapping study
on the combination of software architecture and agile develop-
ment,” Journal of Systems and Software, vol. 111, pp. 157–184, 2016.

[71] M. Kuhrmann and J. Münch, “SPI is dead, isn’t it?: clear the stage
for continuous learning!” in International Conference on Software and
System Processes, ser. ICSSP. IEEE, May 2019, pp. 9–13.

[72] E. Tüzün, c. Üsfekes, Y. Macit, and G. Giray, “Towards unified soft-
ware project monitoring for organizations using hybrid processes
and tools,” in Proceedings of the International Conference on Software
and System Processes, ser. ICSSP. IEEE Press, 2019, pp. 115–119.

[73] E. Knauss, “The missing requirements perspective in large-scale
agile system development,” IEEE Software, vol. 36, no. 3, pp. 9–13,
2019.

[74] R. Hebig, A. I. Schmied, and I. Weisemöller, “Lessons learned from
co-evolution of software process and model-driven engineering,”
in Managing software process evolution. Springer, 2016, pp. 257–280.

[75] R. Hebig and J. Derehag, “The changing balance of technology
and process: A case study on a combined setting of model-driven
development and classical c coding,” Journal of Software: Evolution
and Process, vol. 29, no. 11, 2017.

[76] M. Kuhrmann, T. Ternité, J. Friedrich, A. Rausch, and M. Broy,
“Flexible software process lines in practice,” Journal of Systems and
Software, vol. 121, no. C, pp. 49–71, Nov. 2016.

[77] M. Mortada, H. Michael Ayas, and R. Hebig, “Why do software
teams deviate from scrum? reasons and implications,” in Interna-
tional Conference on Software and System Processes, ser. ICSSP. ACM,
2020, pp. 71–80.

[78] J. Klünder, F. Kortum, T. Ziehm, and K. Schneider, “Helping teams
to help themselves: An industrial case study on interdependencies
during sprints,” in International Conference on Human-Centred Soft-
ware Engineering. Springer, 2018, pp. 31–50.

[79] F. Kortum, J. Klünder, and K. Schneider, “Behavior-driven dynam-
ics in agile development: the effect of fast feedback on teams,” in
International Conference on Software and System Processes, ser. ICSSP.
IEEE, May 2019, pp. 34–43.

[80] J. Klünder, K. Schneider, F. Kortum, J. Straube, L. Handke, and
S. Kauffeld, “Communication in teams-an expression of social con-
flicts,” in Human-Centered and Error-Resilient Systems Development.
Springer, 2016, pp. 111–129.

[81] L. Gren, A. Goldman, and C. Jacobsson, “Group-development
psychology training: The perceived effects on agile software-
development teams,” IEEE Software, vol. 37, no. 3, pp. 63–69, 2020.

[82] J. Noll, M. A. Razzak, J. M. Bass, and S. Beecham, “A study
of the scrum master’s role,” in Product-Focused Software Pro-
cess Improvement, M. Felderer, D. Méndez Fernández, B. Turhan,
M. Kalinowski, F. Sarro, and D. Winkler, Eds. Cham: Springer
International Publishing, 2017, pp. 307–323.

[83] M. Kuhrmann, J. Nakatumba-Nabende, R.-H. Pfeiffer, P. Tell,
J. Klünder, T. Conte, S. G. MacDonell, and R. Hebig, “Walking
through the method zoo: does higher education really meet soft-
ware industry demands?” in International Conference on Software
Engineering, ser. ICSE (SEET). IEEE, May 2019, pp. 1–11.

[84] V. Garousi, G. Giray, E. Tuzun, C. Catal, and M. Felderer, “Closing
the gap between software engineering education and industrial
needs,” IEEE Software, vol. 37, no. 02, pp. 68–77, mar 2020.

[85] P. Clarke and R. V. O’Connor, “The situational factors that affect
the software development process: Towards a comprehensive
reference framework,” Information and Software Technology,
vol. 54, no. 5, pp. 433–447, May 2012. [Online]. Available:
http://dx.doi.org/10.1016/j.infsof.2011.12.003

[86] J. Klünder, D. Karajic, P. Tell, O. Karras, C. Münkel, J. Münch, S. G.
MacDonell, R. Hebig, and M. Kuhrmann, “Determining context
factors for hybrid development methods with trained models,”
in Proceedings of the International Conference on Software and System
Processes, ser. ICSSP. ACM, 2020, pp. 61–70.

[87] R. V. O’Connor, P. Elger, and P. M. Clarke, “Continuous software
engineering: A microservices architecture perspective,” Journal of
Software: Evolution and Process, vol. 29, no. 11, p. e1866, 2017.

[88] O. Armbrust and D. Rombach, “The right process for each context:
Objective evidence needed,” in International Conference on Software
and Systems Process, ser. ICSSP. ACM, 2011, pp. 237–241.

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on December 08,2021 at 12:24:03 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1016/j.infsof.2011.12.003

