
Encapsulating Reactive Behaviour in Goal-Based Plans for
Programming BDI Agents

Extended Abstract

Rafael H. Bordini
School of Technology, PUCRS

Porto Alegre, RS, Brazil
rafael.bordini@pucrs.br

Rem Collier
University College of Dublin

Dublin, Ireland
rem.collier@ucd.ie

Jomi F. Hübner
DAS, Federal University of Santa Catarina

Florianópolis, SC, Brasil
jomi.hubner@ufsc.br

Alessandro Ricci
DISI, University of Bologna

Cesena, Italy
a.ricci@unibo.it

ABSTRACT
Reactive behaviour in Belief Desire Intention (BDI)-based models
and architectures adopted in agent programming is typically spec-
ified in terms of reactive plans not bound to any specific goal. In
this paper, we present and discuss an extension of the plan model
used in BDI programming languages in which goal-based plans
encapsulate both proactive and reactive behaviour. This brings im-
portant benefits both to the practice of agent programming and in
supporting agent reasoning at runtime. The approach is evaluated
through concrete implementations based on two existing agent
programming platforms, namely Jason and ASTRA.

CCS CONCEPTS
•Computingmethodologies→ Intelligent agents; • Software
and its engineering → Context specific languages;

KEYWORDS
Agent-Oriented Programming; Agent Programming Languages;
BDI; AgentSpeak(L); Jason; ASTRA; AgentSpeak(ER)
ACM Reference Format:
Rafael H. Bordini, Rem Collier, Jomi F. Hübner, and Alessandro Ricci. 2020.
Encapsulating Reactive Behaviour in Goal-Based Plans for Programming
BDI Agents. In Proc. of the 19th International Conference on Autonomous
Agents and Multiagent Systems (AAMAS 2020), Auckland, New Zealand, May
9–13, 2020, IFAAMAS, 3 pages.

1 PLAN ENCAPSULATION IN BDI AGENT
PROGRAMMING

Plans have a key role in programming BDI agents [10], regard-
less of the particular implementation or agent programming lan-
guage/platform considered. Plans define the agent know-how, they
express a course of action that can be used to bring about a state-
of-affairs, particularly those that are desirable to the agent, hence
plans have a strong relation to goal-orientation. A plan has either
a goal to achieve or to maintain and so they form an essential part
of agents’ behaviour.
Proc. of the 19th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2020), B. An, N. Yorke-Smith, A. El Fallah Seghrouchni, G. Sukthankar (eds.), May
9–13, 2020, Auckland, New Zealand. © 2020 International Foundation for Autonomous
Agents and Multiagent Systems (www.ifaamas.org). All rights reserved.

Listing 1 Jason implementation of CNP initiator
1 +!cnp(I,Task) <- announce_cfp(I,Task); !bids(I).
2

3 +!bids(I) <- .at("now +4 seconds", { +!contract(I) }).
4

5 +propose(I,_) : all_ans(I) <- !contract(I).
6 +refuse(I) : all_ans(I) <- !contract(I).
7

8 +!announce_cfp(I,Task) <- ...
9 +!contract(I) : not .intend(contract(I)) <- ...

The plan model adopted in all concrete BDI-based computational
platforms — from the very early days (e.g., PRS [7], dMARS [4],
AgentSpeak(L) [9], JAM [6], JACK [13], and SPARK [8]) to more re-
cent programming languages (e.g., CAN [11], Jason [1], ASTRA [2],
and Gwendolen [3]) — have pitfalls that long-term experience has
helped surface. This paper in particular focusses on issues that
concern plan encapsulation. For plan encapsulation here we refer to
how much a developer can include/encapsulate — when defining
a plan — aspects that concerns both the state of affairs for which
the plan has been devised and the strategy to bring about it. In that
concern, the plan model that comes from the original dMARS spec-
ification [4] — adopted by all BDI-based computational platforms —
suffers of two main weaknesses, described in the following.

The first is about the possibility to have plans without explicit
goals. In the basic plan model, a plan can be triggered by a trig-
ger or invocation condition [12] which specifies the circumstances
under which the plan should be considered relevant. The invoca-
tion condition could be both events concerning new goals or belief
changes related to percepts from the environment or data in gen-
eral. The latter case makes it possible to define reactive behaviours
and data/event-driven processing. Listing 1 shows an example in
Jason of an agent playing the role of initiator in a Contract Net
Protocol [5]. The agent program includes a plan used to handle
a new goal to achieve (+!cnp(I,Task) in line 1), plans handling
subgoals (+!bids, +!contract), and plans that define the reactive
behaviour used to handle new proposals (+propose(I,_) and re-
fuses ((+refuse(I,_)). At runtime, for example, when an agent
perceives a new proposal (+propose(I,_)), a new intention is cre-
ated to carry on the execution of the plan. The problem is that

Extended Abstract AAMAS 2020, May 9–13, Auckland, New Zealand

1783

this intention is goal-less, i.e., it does not have an explicit “state of
affairs” associated to it. In plans triggered by invocation conditions
that concern environment/data events, the state of affairs remains
implicit, in the mind of the designer. However, in the practice of
agent programming, even purely reactive behaviours (e.g., a robot
reacting to a low-battery charge event) are always targeted to some
task devised at the design level (e.g., a maintenance task to keep
the battery level not lower than some threshold).

The second issue, which is related to the first one, is about the
impossibility to encapsulate reactive behaviour in the body of a
plan. In the basic plan model, the body of a plan defines a potentially
quite complex course of actions which may consist of both goals
(or subgoals) and primitive actions [12]. In many relevant cases in
practice (such as the CNP example), such a recipe may include the
capability to asynchronously react to events from the environment,
mixing proactive and reactive behaviour, but in the context of the
same intention. The model for plans (body) in BDI, i.e., a sequence
of actions and (sub-)goals, does not make this straightforward. If we
need to react to some event 𝑒 in the context of a plan to achieve some
goal𝐺 , then a different plan specifying 𝑒 as the triggering condition
must be used. The effect is a poor level of encapsulation about the
plan strategy, which must be necessarily specified in terms of a set
of unrelated plans. As in the previous case, the relation between
the plans is in the mind of the designer, but is neither expressed
explicitly in the source code nor is it captured by intentions at
runtime. This characteristic limits the agent reasoning about its
own intentions.

2 AN EXTENSION OF THE PLAN MODEL
To deal with these issues, we propose an extension of the plan
model adopted in BDI agents which:

• enforces goal/task orientation, that is: every plan 𝑝 has an
explicit account for the task 𝑡 to be either achieved or main-
tained. The unique invoking condition is always a goal/task
to be achieved or maintained. This implies that every inten-
tion at runtime — as a plan in execution — is bound to an
explicit goal.

• extends the plan specification to include both subplans and
reactive behaviour, besides a plan body having sequences
of actions and subgoals, so as to get full encapsulation of
proactivity and reactivity in the definition of the strategy of
a plan.

We defined an abstract formal language to capture the main
aspects of the extension, including a new reasoning cycle extending
the traditional one. The abstract language has been used then as a
reference to implement and experiment with the model in concrete
agent programming platforms. In particular, two extensions have
been developed: Jason(ER) and ASTRA(ER), available as an open-
source project.1

To have a taste of the extension, in the following we revisit the
CNP example in Jason(ER) — other examples are available in the
project distribution. Listing 2 shows the CNP program in Jason(ER).
In this version, the plan to achieve the goal of running a CNP
encapsulates a main body (line 5) and three sub-plans (lines 7–15).
The plan to achieve goal bids (lines 7–12) encapsulates as well
1https://github.com/agentspeakers

Listing 2 Jason(ER) implementation of CNP initiator
1 all_ans(I) :- ... // true if all participants answered
2

3 // plan to achieve goal cnp, I identifies a CNP instance
4 +!cnp(I,Task) {
5 <- announce_cfp(I,Task); !bids(I); !contract(I).
6

7 +!bids(I) {
8 <- .wait(4000); .done.
9 // reaction to event of new proposal / refusal
10 +propose(I,_) : all_ans(I) <- .done.
11 +refuse(I) : all_ans(I) <- .done.
12 }
13

14 +!announce_cfp(I,Task) <- ...
15 +!contract(I) <- ...
16 }

0

5

10

15

20

25

0 20 40 60 80 100 120 140 160

C
PU

tim
e
(m
s)

number of concurrent CNP

JasonER
Jason

Figure 1: Jason(ER) performance evaluation.

both proactive and reactive behaviours. The former as a sequence
of actions (the body) and the latter as a set of (encapsulated) reactive
rules. The reaction to answers is defined in the context of the goals
bids and cnp. An agent knows therefore why (for which goal) it is
executing those reactive rules.

First benchmarks show that the implementation of the exten-
sion does not negatively impact on the agent performance. 2 We
evaluated how the approach scales considering a MAS that concur-
rently runs 𝑛 CNPs. It is expected that the time required to finish
𝑛 CNPs increases linearly on 𝑛. The MAS has one agent playing
initiator and eleven playing participant. Only the initiator uses
the new features of Jason(ER) as shown in Listing 2. The result of
the experiment, shown in Figure 1, confirms that Jason(ER) scales
linearly on the number of CNPs, getting even better performances
than the original Jason version. Similar results are obtained with
ASTRA(ER).

3 FUTUREWORK
Future work includes implementing the model in other languages
and further evaluating its performance. More importantly, we aim
to develop more complex systems with the extended languages in
order to fully assess the practical impact of our approach on agent
development.
2Benchmarks (source code) are available at https://github.com/agentspeakers

Extended Abstract AAMAS 2020, May 9–13, Auckland, New Zealand

1784

https://github.com/agentspeakers
https://github.com/agentspeakers

REFERENCES
[1] Rafael Bordini and Jomi Hübner. 2006. BDI Agent Programming in AgentSpeak

Using Jason. In CLIMA VI, Francesca Toni and Paolo Torroni (Eds.). LNAI,
Vol. 3900. Springer, 143–164.

[2] Rem W. Collier, Sean Edward Russell, and David Lillis. 2015. Reflecting on Agent
Programming with AgentSpeak(L). In PRIMA 2015: Principles and Practice of Multi-
Agent Systems - 18th International Conference, Bertinoro, Italy, 2015, Proceedings
(Lecture Notes in Computer Science), Qingliang Chen, Paolo Torroni, Serena Villata,
Jane Yung-jen Hsu, and Andrea Omicini (Eds.), Vol. 9387. Springer, 351–366.

[3] Louise A. Dennis and Berndt Farwer. 2008. Gwendolen: A BDI Language for Ver-
ifiable Agents. In Logic and the Simulation of Interaction and Reasoning, Benedikt
Löwe (Ed.). AISB, Aberdeen. AISB’08 Workshop.

[4] Mark D’Inverno, Michael Luck, Michael Georgeff, David Kinny, and Michael
Wooldridge. 2004. The dMARS Architecture: A Specification of the Distributed
Multi-Agent Reasoning System. Autonomous Agents and Multi-Agent Systems 9,
1-2 (July 2004), 5–53. https://doi.org/10.1023/B:AGNT.0000019688.11109.19

[5] Foundation for Intelligent Physical Agents. 2000. FIPA Contract Net Interaction
Protocol. Geneva, Switzerland. http://www.fipa.org

[6] Marcus J. Huber. 1999. JAM: A BDI-theoretic Mobile Agent Architecture. In
Proceedings of the Third Annual Conference on Autonomous Agents (AGENTS ’99).
ACM, New York, NY, USA, 236–243. https://doi.org/10.1145/301136.301202

[7] Francois F. Ingrand, Michael P. Georgeff, and Anand S. Rao. 1992. An Architecture
for Real-Time Reasoning and System Control. IEEE Expert: Intelligent Systems
and Their Applications 7, 6 (Dec. 1992), 34–44. https://doi.org/10.1109/64.180407

[8] David Morley and Karen Myers. 2004. The SPARK Agent Framework. In Pro-
ceedings of the Third International Joint Conference on Autonomous Agents and
Multiagent Systems - Volume 2 (AAMAS ’04). IEEE Computer Society, Washington,
DC, USA, 714–721. http://dl.acm.org/citation.cfm?id=1018410.1018821

[9] Anand S. Rao. 1996. AgentSpeak(L): BDI Agents Speak Out in a Logical Com-
putable Language. In Agents Breaking Away, 7th European Workshop on Modelling
Autonomous Agents in a Multi-Agent World, Eindhoven, The Netherlands, January
22-25, 1996, Proceedings (Lecture Notes in Computer Science), Walter Van de Velde
and John W. Perram (Eds.), Vol. 1038. Springer, 42–55.

[10] Anand S. Rao andMichael P. Georgeff. 1995. BDI Agents: From Theory to Practice.
In Proceedings of the First International Conference on Multiagent Systems, June
12-14, 1995, San Francisco, California, USA, Victor R. Lesser and Les Gasser (Eds.).
The MIT Press, 312–319.

[11] Sebastian Sardina and Lin Padgham. 2011. A BDI agent programming language
with failure handling, declarative goals, and planning. Autonomous Agents and
Multi-Agent Systems 23, 1 (01 Jul 2011), 18–70.

[12] Sebastian Sardina and Lin Padgham. 2011. A BDI Agent Programming Lan-
guage with Failure Handling, Declarative Goals, and Planning. Autonomous
Agents and Multi-Agent Systems 23, 1 (July 2011), 18–70. https://doi.org/10.1007/
s10458-010-9130-9

[13] Michael Winikoff. 2005. JACKTM Intelligent Agents: An Industrial Strength
Platform. In Multi-Agent Programming: Languages, Platforms and Applications,
Rafael H. Bordini, Mehdi Dastani, Jürgen Dix, and Amal El Fallah-Seghrouchni
(Eds.). Multiagent Systems, Artificial Societies, and Simulated Organizations,
Vol. 15. Springer, 175–193.

Extended Abstract AAMAS 2020, May 9–13, Auckland, New Zealand

1785

https://doi.org/10.1023/B:AGNT.0000019688.11109.19
http://www.fipa.org
https://doi.org/10.1145/301136.301202
https://doi.org/10.1109/64.180407
http://dl.acm.org/citation.cfm?id=1018410.1018821
https://doi.org/10.1007/s10458-010-9130-9
https://doi.org/10.1007/s10458-010-9130-9

	Abstract
	1 Plan Encapsulation in BDI Agent Programming
	2 An Extension of the Plan Model
	3 Future Work
	References

