
Applied Soft Computing Journal 77 (2019) 584–604

Contents lists available at ScienceDirect

Applied Soft Computing Journal

journal homepage: www.elsevier.com/locate/asoc

Inducing Hierarchical Multi-label Classification rules with Genetic
Algorithms
Ricardo Cerri a,∗, Márcio P. Basgalupp b, Rodrigo C. Barros c, André C.P.L.F. de Carvalho d

a Department of Computer Science, Federal University of São Carlos, Brazil
b Instituto de Ciência e Tecnologia, Universidade Federal de São Paulo, Brazil
c School of Technology, Pontifícia Universidade Católica do Rio Grande do Sul, Brazil
d Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo, Brazil

h i g h l i g h t s

• A Genetic Algorithm for Hierarchical and Multi-label Classification is proposed.
• A sequential covering procedure is used to generated a set of classification rules.
• Several variations of the algorithm are proposed and evaluated.
• Performance is evaluated using hierarchical protein function prediction datasets.

a r t i c l e i n f o

Article history:
Received 7 February 2018
Received in revised form 8 January 2019
Accepted 11 January 2019
Available online 1 February 2019

Keywords:
Hierarchical Multi-label Classification
Protein function prediction
Machine learning
Genetic Algorithms
Rule induction

a b s t r a c t

Hierarchical Multi-Label Classification is a challenging classification task where the classes are hierar-
chically structured, with superclass and subclass relationships. It is a very common task, for instance,
in Protein Function Prediction, where a protein can simultaneously perform multiple functions. In these
tasks it is very difficult to achieve a high predictive performance, since hundreds or even thousands of
classeswith imbalanced data distributions have to be considered. In addition, themodels should ideally be
easily interpretable to allow the validation of the knowledge extracted from the data. This work proposes
and investigates the use of Genetic Algorithms to induce rules that are both hierarchical and multi-
label. Several experiments with different fitness functions and genetic operators are preformed to obtain
different Hierarchical Multi-Label Classification rules. The different proposed configurations of Genetic
Algorithms are evaluated together with state-of-the-art methods for HMC rule induction based on Ant
Colony Optimization and Predictive Clustering Trees, using many datasets related to the Protein Function
Prediction task. The experimental results show that it is possible to recommend the best configuration in
terms of predictive performance and model interpretability.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

Most classification tasks consist of assigning a single class to a
given instance. Moreover, those problems consider a flat structure
of classes,with no hierarchical relationship among them.However,
in many real-world applications, there is a hierarchical structure
that should be considered, since the classes involved can be spe-
cialized into subclasses or grouped into superclasses. These tasks
are in turn known in the Machine Learning (ML) literature as Hier-
archical Classification (HC). Depending on the class relationships,
the hierarchical structure can be either in the form of a tree or of a
directed acyclic graph (DAG).

∗ Corresponding author.
E-mail addresses: cerri@ufscar.br (R. Cerri), basgalupp@unifesp.br

(M.P. Basgalupp), rodrigo.barros@pucrs.br (R.C. Barros), andre@icmc.usp.br
(A.C.P.L.F. de Carvalho).

While in trees a node can have only one parent class – thus
there is only one possible path between a class and the tree root
– in a DAG structure a node can have more than one parent class,
generating multiple possible paths between classes and root node.

An HC task can be more complex when an instance can be
simultaneously assigned to two or more hierarchical paths, which
means an instance can be classified as belonging to more than
one class within the same hierarchical level. HC tasks that follow
such a description are known as Hierarchical Multi-Label Classifi-
cation (HMC) problems, which can be formally defined as follows:

Given an input space X and a set of classes C, find a function
(classifier) f capable of classifying each instance xi ∈ X into a set
of classes Ci ∈ C. The classifier f should not violate the constraints
dictated by the class hierarchy while maximizing a quality criterion or
minimizing a loss function q.

Regarding the so-called constraints of the hierarchy, we assume
that all superclasses of a given class should be predicted for the

https://doi.org/10.1016/j.asoc.2019.01.017
1568-4946/© 2019 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.asoc.2019.01.017
http://www.elsevier.com/locate/asoc
http://www.elsevier.com/locate/asoc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.asoc.2019.01.017&domain=pdf
mailto:cerri@ufscar.br
mailto:basgalupp@unifesp.br
mailto:rodrigo.barros@pucrs.br
mailto:andre@icmc.usp.br
https://doi.org/10.1016/j.asoc.2019.01.017

R. Cerri, M.P. Basgalupp, R.C. Barros et al. / Applied Soft Computing Journal 77 (2019) 584–604 585

case in which the class was predicted. The quality criterion to be
optimized, q, can be any given predictive performance measure.
Such a measure can consider, e.g., the distance between predicted
and true classes within the hierarchy (possibly measured as the
number of edges between them). This measure is naturally based
on the premise that closer classes within the hierarchy are more
similar. Hence, incorrect classifications may be weighted propor-
tionally to the number of edges between true andpredicted classes.
The larger the number of edges, the larger the classification error.

Two main approaches, namely local and global, are frequently
used to deal with HMC tasks. While the local approach divides
the original task into many subtasks (each assigned to a different
classifier), the global approach induces a single classifier to deal
with all classes at once. The local approach can be further divided
depending on how local information is used during training. Ac-
cording to [1], three main strategies are used: one local classifier
pernode (LCN), one local classifier perparentnode (LCPN), and one
local classifier per level (LCL). The LCN strategy induces one binary
classifier for each class of the hierarchy [2]. The LCPN strategy
induces amulti-class classifier for each internal class to distinguish
between its subclasses [3]. The LCL strategy induces one multi-
label classifier for each hierarchical level, each classifier responsi-
ble for the prediction in its associated level [4]. There are very few
cases in which a hybrid local+global approach is employed in an
attempt to extract the best of both worlds [5,6].

A typical application of HMC methods is Protein Function Pre-
diction (PFP), because proteins often perform many functions that
are hierarchically organized. Proteins perform almost all functions
related to cell activity, such as biochemical reactions, cell signaling,
structural, andmechanical functions [7]. In the PFP task, both local,
global, and hybrid methods have been applied [5,6,8–12].

Among the HMC methods proposed in the literature, very few
are able to generate interpretable models, i.e., to generate a set of
classification rules. To the best of our knowledge, there are only
two studies in the literature, based on either Decision Trees Induc-
tion [13] or on Ant-Colony Optimization [9]. Thus, there is clearly a
lack of methods focusing both on high predictive performance and
on model interpretability. In this direction, we propose the inves-
tigation of a Genetic Algorithm (GA) to induce HMC rules for PFP.
More specifically, we propose a method called Hierarchical Multi-
label Classification with a Genetic Algorithm (HMC-GA), which
thoroughly extends our previous work [14]. HMC-GA employs a
sequential covering procedure to evolve antecedents of HMC rules.
This work extends HMC-GA implementing novel fitness functions
and genetic operators to evolve rules with relational and proposi-
tional tests. Also, we show results with a different class hierarchy,
structured as a tree. The HMC-GA extensions implemented in this
work are listed next.

• Evolution of three different types of rules:

1. Traditional rules that only evaluate if an attribute value
Ak satisfies a test condition, e.g. Ak ≤ xi,k. These tests
are known as propositional tests;

2. Rules that only compare the values of different at-
tributes, e.g. A1 ≤ A2. These tests are called relational
tests [15];

3. Rules with both propositional and relation tests;

• Experiments with tree different fitness functions:

1. Variance gain;
2. Weighting the variance gain and percentage of covered

instances;
3. Weighting of variance gain and area under the

precision–recall curve;

• Experiments with four variations regarding the crossover
procedure:

Fig. 1. Part of the Funcat hierarchical taxonomy.
Source: Adapted from www.helmholtz-
muenchen.de/en/ibis.

1. Uniform crossover;
2. Uniform crossover with local search;
3. Distance-based uniform crossover;
4. Distance-based uniform crossover with local search;

Based on combinations of all the previously-listed configura-
tions (rules × fitness functions × crossover procedure), we per-
form 36 different experiments in this paper. The details of each
configuration are further presented in Section 3. We also compare
our method with four state-of-the-art literature methods for the
generation of HMC rules, an evolutionary method based on Ant
Colony Optimization (ACO) [9], and three Decision Tree induction
algorithms based on the concept of Predictive Clustering Trees
(PCT) [13]. Our goal here is to recommend the HMC-GA configura-
tion that generates the best rules regarding predictive performance
and interpretability.

In this paper, we focus on the Funcat taxonomy [16]. It is a tree
taxonomy with up to six levels in depth and that consists of 28
main protein functional categories. This taxonomy describes func-
tions of prokaryotic and eukaryotic proteins, like cellular transport,
metabolism, and communication. A small portion of the taxonomy
is illustrated in Fig. 1.

The remainder of this paper is organized as follows. In Sec-
tion 2 we review some recent HMC methods to deal with PFP.
Section 3 details the main aspects of HMC-GA. The methodology
employed for the empirical analysis is discussed in Section 4. The
experimental analysis and our findings are presented in Section 5,
where 36 differentHMC-GA configurations, an ACO-basedmethod,
and three decision tree variations are compared using 10 PFP
datasets structured according to the Funcat taxonomy. Finally, we
summarize the conclusions and suggest topics for future work in
Section 6.

2. Related work

Typically, homology-based methods are used for PFP. These
methods employ alignment tools to compare protein sequences
against a database of proteins with known functions. This section
discusses some recent HMCmethods reported in the literature that
make use of ML for protein and gene function prediction.

Sun et al. [17] formulated the classification task as a path selec-
tion problem,where each path starts on the root and terminates on
a leaf or internal node. They used partial least squares techniques
to solve the label prediction problem as an optimal path prediction

http://www.helmholtz-muenchen.de/en/ibis
http://www.helmholtz-muenchen.de/en/ibis

586 R. Cerri, M.P. Basgalupp, R.C. Barros et al. / Applied Soft Computing Journal 77 (2019) 584–604

problem. Eachmulti-label prediction is then a connected subgraph,
which can be formed by a small number of paths. The proposed
method finds the optimal paths, and the final prediction is given
by the union of these paths.

In Cerri [18] a method named Hierarchical Multi-label Classifi-
cation with Local Multi-Layer Perceptrons (HMC-LMLP) was pro-
posed. The method associates one multi-layer perceptron (MLP)
neural network to each hierarchical level, being each MLP respon-
sible for the predictions in its associated level. The predictions
at one level are used to complement the feature vectors of the
instances used to train the neural network associated to the next
level. Thus, training and testing are performed in a top-down fash-
ion.

The use of incomplete hierarchical labels was proposed by Yu
et al. [12]. It takes the hierarchical and non-hierarchical similari-
ties between protein functions and defines a combined similarity
between the labels. This similarity and the known labels are used
to estimate the missing functions in the hierarchy. Information re-
garding interactions between proteins is also used to predict their
functions. A situation in which labels were missing was simulated,
by randomly masking the leaf functions of a protein.

Bi and Kwok [19] use the Mandatory Leaf Node Prediction
strategy (MLNP) [1]. They use hierarchy information and formu-
late the problem as finding the multiple labels with the largest
posterior probability over all the labels. The authors extended the
nested approximation property [20] to deal with HMC problems
structured as DAGs, which was solved using a greedy algorithm
called MAndatory leaf node prediction on Structures (MAS).

The work of Stojanova et al. [11] considers self-correlation in
the HMC problem, i.e., the statistical relationships between the
same variable on different, but related instances. The method,
called Network Hierarchical Multi-label Classification (NHMC),
uses the PCT framework to build a generalized form of deci-
sion trees. During the training process, NHMC uses the instances’
features and the instances’ self-correlations. The method models
these self-correlations as a network, and then explores these self-
correlations during the learning phase.

Borges and Nievola [21] proposed a competitive neural net-
work formed by an input layer and an output layer. The distances
between the hierarchy nodes and each training instance are cal-
culated. The neurons with the smallest distances are considered
winners, influencing their ancestors. The neural network weights
are adjusted according to the classes associated to the winner
neurons.

The synergy between different LCN-based strategies was in-
vestigated by Cesa-Bianchi and Valentini [22]. The authors inte-
grated Kernel-based data fusion tools and ensemble algorithms
with cost-sensitive methods [10,23]. Synergy was defined as the
prediction accuracy improvement, in any evaluation measure, by
using concurrent learning strategies. Synergy is detected if the
combined action of two strategies results in better classification
rates than the average classification rates of the two strategies used
separately [22].

In the work of Otero et al. [9], a global method using Ant Colony
Optimization (ACO)was proposed. Rules in the format IF . . . THEN
. . . are discovered, employing an ACO algorithm to optimize the
rule antecedents. A sequential covering procedure creates rule an-
tecedents that cover all (ormost of the) training instances. Initially,
an empty set of rules is created, and a new rule is added to the set
while the number of instances not covered by any rule is larger
than a given threshold.

Valentini [2] used an ensemble of LCN-based classifiers, where
each classifier outputs the probability that a given instance belongs
to a given class. A global consensual probability is then estimated in
a combination phase. An extension was proposed in [24] and [10],

in order to modulate the relationship between the prediction of a
class and its class descendants.

Three Predictive Clustering Trees (PCT) methods were inves-
tigated by Vens et al. [13]: Clus-HMC, a global-based method to
induce single decision tree considering all the hierarchical classes,
the local-based Clus-SC, which trains a binary decision tree for
each class, ignoring the relationships between the classes, and
the local-based Clus-HSC, which induces a binary decision tree for
each class, exploring the hierarchical relationships between them.
Schietgat et al. [8] also use an ensemble technique, Clus-HMC-Ens,
to combine the decision trees induced by Clus-HMC.

In Triguero and Vens [25], the authors investigated alternatives
to perform the final labeling in HMC problems. The authors eval-
uated the Clus-HMC-Ens method when using single and multiple
thresholds to transform the real-valued prediction scores into
actual binary labels. To choose thresholds, two approaches were
proposed: to optimize a given evaluation measure or to simulate
training set properties in the test set. As evaluation measures, the
authors used the hierarchical loss function and themicro-averaged
f-measure, concluding that selecting thresholds for each class is
a good alternative, resulting in improved label sets and faster
execution time.

In Cerri et al. 2014 [14], we proposed a Genetic Algorithm to
induce classification rules for protein function prediction using the
Gene Ontology [26] hierarchy. That proposal was inspired by the
work of Otero et al. [9], which was the first bio-inspired global-
based method proposed to induce HMC rules in the literature.
Before that, only Carvalho et al. 2011 [27] had used Genetic Al-
gorithms for Hierarchical Classification, but using a local-based
method, and applied to hierarchical single-label problems. Here in
this paper, we still keep the main parts of the algorithm proposed
byCerri et al. 2014, such as the individual representation, operators
indexation, and how to index numeric and categorical attributes.
However, as pointed out in the Introduction of this paper, wework
now with a different hierarchy structured as a tree and proposed
new fitness functions and genetic operators in order to induce sets
of rules with different characteristics. In total, we produced 36
new variations of our original method and suggests the best one
to be used in the investigated datasets. Since this work is inspired
in the Ant Colony Optimization-based method hmAnt-Miner [9],
we used it as a baseline during our experimental analysis. Thus,
we can compare two different nature-inspired methods proposed
specifically for HMC rule induction. In addition, we compare HMC-
GAwith three deterministic HMCmethods based on decision trees
using the concept of Predictive Clustering Tress [13]. They are
called Clus-HMC, Clus-HSC and Clus-SC, and are considered state-
of-the-art methods for HMC rule induction.

3. Hierarchical multi-label classification with a genetic algo-
rithm

This Section describes Hierarchical Multi-label Classification
with a Genetic algorithm (HMC-GA), a global method to induce
HMC rules. The main HMC-GA pseudocode is a conventional se-
quential instance-covering procedure to evolve the antecedents
of classification rules. It is presented in Algorithm 1 [14]. In this
procedure, the instances covered by a rule are removed from
the training set in order to allow the generation of new rules to
cover the remaining instances. The rule consequent is generated
using a deterministic procedure considering the classes assigned
to instances covered by the rule. We first present an overview of
how HMC-GA works, and then we detail all its components, from
individual representation to fitness evaluation.

R. Cerri, M.P. Basgalupp, R.C. Barros et al. / Applied Soft Computing Journal 77 (2019) 584–604 587

Algorithm 1: A Genetic Algorithm to generate HMC rules.
1 HMC-GA(D, G, p, minCov, maxCov, maxNotCov, cr , mr , t , e, pt)
2 Input: training set D
3 number of generations G
4 population size p
5 minimum number of instances a rule must cover minCov
6 maximum number of instances a rule must cover maxCov
7 maximum number of instances left uncovered maxNotCov
8 crossover rate cr
9 mutation rate mr

10 tournament size t
11 number of individuals selected by elitism e
12 probability of a test (attribute) to be used within a rule pt
13 Output: the set of induced rules (InducedRules)
14 inducedRules← ∅
15 while |D|> maxNotCov do
16 initPopulation← generateInitialPopulation(D, p, pt)
17 fitnessCalculation(initialPopulation,D)
18 currentPopulation← initPopulation
19 bestRule← currentPopulation best rule regarding fitness
20 j← G
21 repeat
22 newPopulation← ∅
23 newPopulation← newPopulation ∪ elitism(currentPopulation, e)
24 parental← tournament(initPopulation, t, e, p)
25 offspring ← crossover(parental, cr)
26 newPopulation← newPopulation ∪ offspring
27 newPopulation← mutation(newPopulation,mr, pt)
28 newPopulation← localSearch(newPopulation,minCov,maxCov)
29 currentPopulation← newPopulation
30 fitnessCalculation(currentPopulation,D)
31 bestRule← recoverBestRule(initPopulation, bestRule)
32 j← j− 1
33 until j > 0 OR ruleConvergence();
34 inducedRules← inducedRules ∪ bestRule
35 remove from D all the instances which were covered by bestRule

36 return inducedRules

3.1. Overview

HMC-GA generates a classification model that comprises a set
of classification rules. These rules are formed by an antecedent
and a consequent. The antecedent is a vector of integer and real
values, in which every four positions correspond to an operation
over an attribute of the dataset. In HMC-GA, each individual is a
rule antecedent. Section 3.2 explains in details how we code those
antecedents.

Regarding the consequent of a rule, it is formed by an aver-
age class label vector, which is obtained from the label-space of
the training instances covered by the rule. The label-space of the
training instances is a matrix where each row is a binary vector
of classes that were assigned to an instance, and each column is a
class of the hierarchy. Thus, each instance is classified following a
binary class-vector, where each position corresponds to a label. If
the position is set to 1, the instance is classified as belonging to the
class, with 0 meaning otherwise.

The average class vector of a given rule r is represented by a
vector vr of size |C |, being C the set of all classes in the hierarchy. To
calculate the ith component of vr , we use Eq. (1). In this equation,
Sr,i is the set of all training instances covered by rule r that are
classified as belonging to class i, and Sr is the set of all training
instances covered by rule r . Therefore, each position vr,i has the
proportion of instances covered by r which are classified in class i.

vr,i =
|Sr,i|
|Sr |

(1)

Each position of the rule consequent is a real value within
the interval [0, 1]. When an instance satisfies a rule antecedent,
the ith component of the consequent of that rule represents the
probability the corresponding instance belongs to class i.

We implement a conventional sequential covering procedure
(Section 3.5), where we generate a set of rules after a complete

run of the genetic algorithm. The average class label vectors (con-
sequents) of the rules are constructed using the labels of the
instances covered by rules during the evolutionary process.

After obtaining a classification model (set of rules), we then
apply the rules to a test set. To classify an unseen instance, we
compare it sequentially with regard to all rules that were induced
in the evolutionary process. We start with the first rule: if the
instance is not covered by that rule, it is then compared with the
second rule, and so on, until a rule that covers the instance is found.
If the instance is not covered by any of the rules in the set, it is
classified following a default rule. This default rule is simply the
per-class average of the training set.

Once a given rule is found, its consequent vector is assigned
to the instance at hand. Recall here that the decision making is
dependent on the order of the rules, and that this order is naturally
defined by the sequential covering procedure. During the evolu-
tionary process, when a rule is found, it is stored within a list, and
the instances covered by this rule are removed from the training
set. The evolutionary process is repeated with the remaining in-
stances, and the second rule found is stored as a novel rule within
the list. We are aware of the ordering dependence for covering
rules in the test set, and that a same test instance can be covered
by more than one rule. Thus, our method does not guarantee that
the best rule for a test instance is chosen. However, it guarantees
that we are searching for the rules from the more general to the
more specific since the first rule is generated considering the entire
training set, which decreases in size as the rules are generated.
We could apply many different heuristics to decide the order in
which rules should be applied to the test set, but we leave a more
complete investigation on the matter for future work.

Each position in the consequent vector of a rule represents
the probability of a given instance to be classified as belonging
to that corresponding class. Thus, a threshold has to be applied
over this vector in order to provide a hard (discrete) classification.
Only after obtaining this hard classification, which corresponds to
a binary vector, we can evaluate the final classification assigned to
the instance. The final classification of an instance as belonging to
a given class is obtained by comparing each position in the class
vector to a decision threshold θ . If the position value is equal to or
larger than θ , the instance is classified as belonging to that class.

From Eq. (1), we can see that it handles the constraints imposed
by the hierarchy of class labels. This happens because whenwe are
building the consequent of a rule, each position of the consequent
vector is filled by averaging the columns of the label-space matrix
regarding the instances covered by the rule (Eq. (1)). Every time
a class is predicted (value = 1), the positions corresponding to
the parent classes also have to be predicted. Thus, positions cor-
responding to parent classes will never have values lower than po-
sitions corresponding to their children. This guarantees that when
applying a threshold, we will always obtain complete hierarchical
paths, respecting the hierarchy constraints.

A few studies try to find the ‘‘optimal’’ threshold value by mod-
eling a threshold function as a linear function [28]. Others try to
tune the threshold value by optimizing a given evaluationmeasure
or searching for the global maximum of the evaluation measure
via optimization procedures [29]. We decided for a threshold-
independent procedure in order to evaluate the final classification,
which is detailed in Section 4.2.

3.2. Representation of individuals

The individuals in HMC-GA are the antecedents of the classi-
fication rules. The antecedent of a rule is represented as a vector
of integer and real values, in which each value is decoded into a
component of the rule antecedent. The possible components are an
operator, an attribute index, and an attribute value. Fig. 2 illustrates
how individuals are represented as chromosomes for HMC-GA.

588 R. Cerri, M.P. Basgalupp, R.C. Barros et al. / Applied Soft Computing Journal 77 (2019) 584–604

Fig. 2. Representation of individuals.
Source: Adapted from [14].

Every four positions of the chromosome vector illustrated in
Fig. 2 represent a test over an attribute of the dataset. Thus, the size
of the antecedent vector is four times the number of attributes and
each test is coded as a 4-tuple {FLAG, OP, ∆1, ∆2}. The FLAG gene
may be set to either 1 or 0, indicating the presence (1) or absence
(0) of the corresponding test in the rule antecedent. The flag gene
allows the rules to have different numbers of tests. The OP gene
is an integer and must encode one of the possible operators, and
genes ∆1 and ∆2 are real number values used as test conditions.

All tests in the rule antecedents are separated by E clauses. A
given attribute Ak is tested against a value ∆ using an operator
OP. Different settings are used for nominal and numeric attributes.
In the datasets we used in this work, all attributes are either
nominal or numeric (there are no ordinal attributes). However, if
we consider a dataset with ordinal attributes, they will be treated
as numeric, and the operators used will be the same we use here
for numeric attributes.

For nominal attributes, operators=, ̸=, and in can be used. The
in operator allows a given nominal attribute to be tested in order
to verify if its value is among a set of values. For each nominal
attribute, all its values are indexedwith integer values to be used in
the representation of individuals. In addition, all possible sets with
two or more values formed by the nominal values of an attribute
are also indexed with integers. This last procedure is necessary to
allow the use of the in operator. When the operators = and ̸= are
used in a test,∆2 is set to 0 and∆1 is set to the index corresponding
to the nominal value used in the test condition. When the operator
in is used, ∆2 is set to 0 and ∆1 is set to the index corresponding to
the set of nominal values used in the test condition.

For numeric attributes, operators≤ and≥ are used. In addition,
it is possible to test a numeric attribute to check if its value belongs
to a given interval (∆1 ≤ Ak ≤ ∆2). In the single test’s scenario,
values ∆1 and ∆2 are chosen according to the test operator. If the
operator≤ is used, ∆1 is set to 0 and ∆2 receives the test value for
the condition. For the operator≥,∆2 is set to 0 and∆1 receives the
test value for the condition. Thus, ∆1 and ∆2 can be seen as lower
and upper bounds for numeric attributes within a test.

The procedure explained so far encodes propositional rules. To
encode relational rules, we perform a modification in the previous
indexation scheme. When two attributes A1 and A2 are compared,
only operator ≤ is used. However, it is indexed with a different
integer value, to differentiate it from the≤ operator used in propo-
sitional rules. Besides, instead of real values, genes ∆1 and ∆2 are
set to integer values representing the indexes of the attributes.
Thus, when comparing attributes Am and An, ∆1 and ∆2 are set,
respectively, to integer values m and n. Recall that only numeric
attributes can be compared.

3.3. Indexing of operators and nominal values

All possible operators and also all possible nominal values of
an attribute are previously indexed with fixed indices. Thus, a test
can be easily executed retrieving the indices and the corresponding
operators and values. Fig. 3 illustrates an example of this indexing
scheme.

After a rule antecedent is built, it must be capable of classifying
a given instance into a set of classes, respecting the constraints of
the hierarchical structure in which the classes are organized. The

following example illustrates the structure of one possible HMC
rule generated by HMC-GA:

IF (A1 OP ∆) AND (A3 OP A5) AND (A5 OP ∆)
THEN
{C1, C1.1, C1.2, C1.3, C1.2.1, C1.2.2, C1.3.1}

3.4. Population initialization

The HMC-GA population is initialized by a seeding procedure,
in which a training instance is randomly selected and its attributes
are used to create an individual. After selecting an instance, each
of its attributes has probability pt of being used in the antecedent
corresponding to the individual being generated. Thus, there is a
probability pt that the FLAG belonging to the 4-tuple correspond-
ing to attribute Ai receives value 1.

After the FLAG of a 4-tuple receives a value (1 for active and 0
for inactive), the positions related to operators and test values are
filled. The operator is randomly selected depending on whether
the attribute in question is numeric/ordinal or nominal, and the
position corresponding to the operator (OP) receives an index, as
shown in Fig. 3.

If the operator is = or ¬, position ∆1 receives the index corre-
sponding to the attribute value within the corresponding instance,
and position∆2 receives 0. If the in operator is chosen, position∆1
receives the index corresponding to one of the sets of values that
contain the attribute within the instance, and position ∆2 receives
0. To show an example of this last procedure, if the attribute has
a nominal value A, and the possible attribute values in the dataset
are A, B and C, position∆1 receives the index corresponding to one
of the possible sets of values that contain A: {A, B}, {A, C} and {A,
B, C}. The set of values are thus randomly chosen. The indexing of
nominal values is performed as shown in Fig. 3.

If the chosen operatorworks on numeric attributes, the filling of
the 4-tuple values corresponding to the attribute is simpler. For the
≥ operator, position ∆1 receives the attribute value, and position
∆2 receives 0. If the≤ operator is chosen, position ∆2 receives the
attribute value, and position ∆1 receives 0. If the chosen operator
corresponds to a test to verify whether the attribute value belongs
to an interval (∆1 ≤ Ai ≤ ∆2), values ∆1 and ∆2 are randomly
chosen to make the attribute value satisfy the test condition.

If relational rules are being generated (comparing two at-
tributes A1 and A2), we always use the ≤ operator but indexing
it with a different value in order to differentiate it from the ≤
operator used in propositional rules. In addition, positions ∆1 and
∆2 now receive the attribute indices. E.g., if instance Ai and Aj
are being compared, positions ∆1 and ∆2 receive, respectively,
integer values i and j. It is important to recall that we compare only
numeric attributes in relational rules.

The seeding procedure is repeated until a population with the
desired size of individuals is generated. The procedure guarantees
that each individual (rule antecedent) covers at least one training
instance. A rule antecedent covers an instance if all its active tests
are satisfied by the corresponding attributes within the instance.
Fig. 4 illustrates the seeding procedure applied to an instance.

3.5. Evolutionary process

The evolutionary process starts storing the best e rules from the
current population. A set of p − e parent rules (being p the popu-
lation size, and e the number of individuals selected by elitism) is
then selected using tournament selection. Next, those parent rules
are submitted to a uniform crossover procedure to generate p − e
child rules. In addition to the conventional uniform crossover, we
also propose a specialized uniform crossover that considers the
distances between average class vectors of the rules.

R. Cerri, M.P. Basgalupp, R.C. Barros et al. / Applied Soft Computing Journal 77 (2019) 584–604 589

Fig. 3. Indexing of operators and nominal values.
Source: Adapted from [14].

Fig. 4. Illustration of the seeding procedure.

The specialized crossover receives as input a list of p− e parent
rules. A rule is then removed from the list. Afterward, we calculate
the Euclidean distance between the average class vector of this rule
and the average class vectors of all the remaining rules in the list.
The lower the distance values of two rules, the closer they are in
the Euclidean space. The Euclidean distance is presented in Eq. (2).
The closest rule is then removed from the list, and the two selected
parent rules are submitted to uniform crossover to generate child
rules. The Euclidean distance calculation is performed to apply the
uniform crossover in antecedents covering close instances in the
search space, i.e., instances that are classified into a similar or equal
set of classes. This procedure of selecting two rules for crossover is

repeated until a completely new generation is obtained.

euclideanDistance(v1, v2) =

√ |C |∑
i=1

wi × (v1,i − v2,i)2 (2)

In Eq. (2), wi corresponds to the weight associated to the ith
class of the hierarchy, and v1,i and v2,i are the values associated to
the ith position in the average class vectors v1 and v2. We associ-
ated weights to all classes because, in the context of hierarchical
classification, similarities among classes located at levels closer
to the root are more important than similarities among classes
located at deeper levels [13].

590 R. Cerri, M.P. Basgalupp, R.C. Barros et al. / Applied Soft Computing Journal 77 (2019) 584–604

The weighting scheme used is the same one used in [13]. Af-
ter trying different schemes, the authors found out that the best
scheme is defined according to Eq. (3). In this scheme, the weight
w0 associated to a class at the first level is defined as 0.75, and the
weight of a class i is recursively defined as the multiplication of w0
and the average weight of all its ancestors’ classes Pi.

wi = w0 ×

Pi∑
j=1

w(pj)/Pi (3)

The reason for choosing uniform crossover is related to the
positional bias present in one- or two-point crossover. Recall that
the creation of new individuals by swapping genes depends on the
position of the genes in the individuals’ parents. In this sense, one-
and two-point crossover have a strong positional bias, because
the probability of two adjacent genes being swapped together is
muchhigher than twodistant genes in the individual. Based on that
fact, Freitas 2002 [30] suggests the use of the uniform crossover,
which presents no positional bias. Since our individual encode the
antecedent of the rules, they are composed of a logical conjunction
of conditions, and from a logical perspective, there is no ordering
in these conditions. Of course that when encoding the rule condi-
tions, the individuals do have a left-to-right ordering, but this is
defined only for implementation purposes. Thus, the position of
the attributes is arbitrary and should be ignored when encoding
the antecedents of the rules. Hence the positional bias is avoided
when using the uniform crossover, since pairs of attributes are
swapped or not regardless of their position within the individual.

After the generation of a new set of child rules, a mutation
operation is applied (Algorithm 1, line 27) to a percentage mr
of individuals. Each one these individuals can suffer mutation
in the FLAG position (to have a test included or removed from
the rule with probability pt), or suffer a generalization/restriction
operation. The generalization/restriction operations modify the ∆

values of the rule’s tests in order tomake the rules more general or
more specific. The ∆ values can be increased (Eq. (4)) or decreased
(Eq. (5)) according to a factor randomly generated within [0, 1].

∆i = ∆i + (factor ×∆i) (4)

∆i = ∆i − (factor ×∆i) (5)

The individuals to undergo mutation are selected according
to a mutation rate mr . Each of the selected individuals has a
50% chance to undergo FLAG mutation or to undergo generaliza-
tion/restriction, according to the operator in the test thatwill suffer
mutation. If FLAGmutation is chosen, all 4-tuples of the individual
are trespassed, and the genes corresponding to the FLAG of each
test are inverted from 0 to 1, or from 1 to 0, following probability
pt .

Note that probability pt is the same probability used in the
seeding procedure for the population initialization. Usually, low
pt values are used in the seeding procedure, because high values
would result in the creation of rules with many active tests, thus
covering very few instances or only those used as seed. This same
logic is adopted for the mutation within the FLAG genes, because
high pt values would activate many tests, resulting in a rule cover-
ing very few or no examples whatsoever.

When the FLAG mutation is not chosen, all active tests are
traversed in order to perform the generalization/restriction oper-
ation. If the test attribute is numeric, a random choice is made
between generalization and restriction. If generalization is chosen,
it is applied according to the operator presented in the test being
generalized, choosing adequate values to be added to or subtracted
from the gene values corresponding to∆1 and∆2. The same occurs
if the restriction operator is chosen.

If the generalization/restrictionmutations are applied to a nom-
inal attribute, their application depends on the operator within the
test. If this operator is =, the test can only be generalized. This
generalization occurs by replacing = by operators ̸= or in. In this
case, one of those two operators is randomly chosen. If the operator
̸= is selected, it simply replaces the = operator in the test. If the
operator in is chosen, an additional procedure is necessary: the
current nominal value in the test condition should be replaced by
a set of values that contain the current value. If more than one set
is possible, one of them is randomly selected.

For the ̸= operator, the test can be restricted if it is replaced
by =. Still, we can replace the ̸= operator by in. In that last case,
the test can be generalized or restricted depending on the values
selected to the test. As an example, suppose that the test condition
is Ai ̸= B, and that the possible values for Ai are A, B, C and D. If
the test condition is replaced by Ai in {A, C}, the test is restricted.
However, if the test condition is replaced by Ai in {A, B, C, D}, the
test is generalized.

If in is the test operator, the test can also be generalized or
restricted, depending on the new values selected for the test. The
current set of values can be replaced by a set with fewer or more
values, and also by a single value. If the current set of values is
replaced by a single value, the in operator is replaced by=.

After the application of the mutation operators and generation
of a new set of individuals, a local search operator is then exe-
cuted (Algorithm 1, line 28). This operator tries to guarantee that
the generated rule antecedents cover between a minimum and
a maximum number of instances, making the rules neither too
specific nor too general. The minimum number (minCov) and the
maximum number (maxCov) covered by a rule are user-specified
parameters. The local search operator is presented in Algorithm 2.

Algorithm 2: HMC-GA local search operator.
1 procedure localSearch(population,minCov,maxCov)
2 Input: population of individuals population
3 minimum number of instances covered by a rule minCov
4 maximum number of instances covered by a rule maxCov
5 Output: modified population newPopulation
6 foreach individual from population do
7 maxTries← 0
8 convergency← 0
9 while convergency = 0 ANDmaxTries < MAX do

10 maxTries← maxTries+ 1
11 if number of covered instances < minCov then
12 case number of active tests > 1
13 individual← removeActiveTest(individual)

14 case number of active tests= 1
15 replace test from individual by a newTest randomly chosen
16 if numeric attribute then
17 newTest ← generalizationNumeric(test)
18 else
19 newTest ← generalizationCategoric(test)

20 individual← updateTest(newTest)

21 else if number of covered instances > maxCov then
22 if number of active tests < number of dataset attributes then
23 individual← addAtiveTest(individual)

24 else
25 convergency← 1

26 newPopulation← population
27 return newPopulation

Some possible situations are worth mentioning regarding Al-
gorithm 2. The first situation relates to the maximum number of
attempts executed for a rule convergence. After a MAX number
of attempts, if both criteria minCov and maxCov are not satisfied,
the final rule antecedent is the one obtained in the last attempt.
This stop criterion is necessary because a rule may never satisfy
the given criteria.

R. Cerri, M.P. Basgalupp, R.C. Barros et al. / Applied Soft Computing Journal 77 (2019) 584–604 591

The second situation is related to the procedure executed when
a rule is too specific (Algorithm 2, line 11). If the number of active
tests in the antecedent of the rule is higher than 1, one test can
be randomly removed in order to make the rule more general.
However, it may occur that a rule has only one active test, and
still be too specific. In that case, the test in question is replaced
by another randomly chosen test, which is generalized depending
on whether the attribute in the test is numeric or nominal.

A third situation is observed when a rule is too general (Algo-
rithm 2, line 21). In this case, a test should be added to the rule
antecedent, in order to make it more specific. However, it may
occur that a rule has all its tests active (uses all dataset attributes)
and still be too general. In that case, no procedure is performed
because such a rule is very rare, and may contribute positively to
the generation of future rules.

At the end of the generation of a new population, the best
rule is stored (Algorithm 1, line 31). For the selection of the best
rule, two factors are considered: the rule fitness, and whether it
covers the minimum number of instances specified by minCov.
Initially,when the first generation of individuals is created, the best
rule is stored according to its fitness. From the second generation
onwards, all rules are ordered according to their fitness values and
compared to the best rule of the previous generation. If a new rule
has its fitness value higher than the fitness value of the best rule
from the previous generation, and also covers a minimum number
of instances minCov, it will become the best current rule. The
evolutionary process (Algorithm 1, from lines 21 to 32) is executed
until a maximum number of generations is reached, or until the
population converges. The population converges when the same
rule remains the best after a specific number of generations.

At the end of the evolutionary process, the best rule is stored in a
set of rules (Algorithm 1, line 34), and the instances covered by this
rule are removed from the training set (Algorithm 1, line 35). The
evolutionary process is then restarted with the creation of a new
set of initial rules. This sequential covering procedure is repeated
until all, ormost (maxNotCov parameter fromAlgorithm1) training
instances are covered. If there are still uncovered instances in the
training set, they are classified using a default rule. The default rule
simply classifies the instances using the average class label vector
considering all classes in the training set.

3.6. Fitness calculation

Once the consequents of the rules are built, they are evaluated
by the fitness function. We used three fitness functions to evaluate
the rules: (i) variance gain, (ii) weighting of variance gain and
percentage of covered instances, and (iii) weighting of variance
gain and area under the precision–recall curve. These three fitness
functions are detailed next.

3.6.1. Variance gain
This fitness function is based on the variance gain

(FitnessvarGain) [9,13] and is presented in Eq. (6).

FitnessvarGain(r, S) = var(S)−
|Sr |
|S|
×var(Sr)−

|S¬r |
|S|
×var(S¬r) (6)

According to Eq. (6), the training set S is divided into two
subsets: the set of instances covered by rule r (Sr), and the set of
instances not covered by rule r (S¬r). The variance gain of rule r
is then calculated with respect to the set S. The calculation also
involves the variance (var) of the set of instances covered and not
covered by rule r . This variance is defined as the mean square
distance between the class vector of each instance, and the average
class label vector of the set of instances being considered (S, Sr or
S¬r). The variance calculation for a set of instances is presented

in Eq. (7). The distance used is the weighted Euclidean distance,
previously presented in Eq. (2).

var(S) =
∑
|S|
k=1 euclideanDistance(vk, v)

2

|S|
(7)

3.6.2. Weighting of variance gain and percentage of covered instances
This second fitness function combines the variance gain with

the percentage of instances covered by the rule. The percentage
of instances covered is given by Eq. (8). Recall that the size of
the training set S decreases as the sequential covering procedure
is executed. Previously-covered instances are removed from the
training set.

percentCover(r) =
|Sr |
|S|

(8)

The fitness functionweighting the variance gain and percentage
of covered instances is given by Eq. (9).

FitnessvarGain,Cover (r, S) = 2×
FitnessvarGain(r, S)× percentCover(r)
FitnessvarGain(r, S)+ percentCover(r)

(9)

3.6.3. Weighting of variance gain and area under the precision–recall
curve

We also calculated a fitness function based on the Area Under
the Precision–Recall Curve (AU(PRC)) and the variance gain. The
AU(PRC) is the evaluation measure used in our experiments and is
detailed in Section 4. Eq. (10) shows this fitness calculation.

FitnessvarGain,AU(PRC)(r, S) = 2×
FitnessvarGain(r, S)× AU(PRC)

FitnessvarGain(r, S)+ AU(PRC)
(10)

3.7. Computational complexity

The complexity analysis for GAs is complex and often not per-
formed at all [31]. Nevertheless, we present here the computa-
tional complexity of the most critical procedures within HMC-GA.
They are the seeding procedure used to initialize the population,
the local search operator, and the fitness calculation.

3.7.1. Population initialization
The population initialization is considered a critical operation

because all attributes of a seed instance must be visited. Still,
for each attribute, four positions are considered in the vector
representing the individual being constructed. Thus, given |A| the
number of attributes, and pop the number of individuals in the
population, the computation complexity of the seeding procedure
is given by O(|A| × 4× pop) = O(|A| × pop).

3.7.2. Local search
The local search procedure is executed while a rule does not

converge. There are two scenarios here for the worst case. In the
first one, all attributes are used in a rule, which makes it too spe-
cific, covering very few instances. In this case, the number of active
terms is equal to |A| (number of attributes). The worst case occurs
when |A|−1 attributes in the rule antecedent should bedeactivated
(FLAG = 0), in order to make the rule cover a desirable number
of instances. Thus, all attributes need to be visited, resulting in
computational complexity of O(|A|). The second scenario occurs
when the rule has only one active attribute, being too general,
and all its attributes must be activated (FLAG = 1) in order to
make the rule cover a desirable number of instances. In this case,
all attributes should also be visited, resulting in a computational
complexity of O(|A|).

592 R. Cerri, M.P. Basgalupp, R.C. Barros et al. / Applied Soft Computing Journal 77 (2019) 584–604

In addition to visiting all attributes of a rule, every time an
attribute is activated or deactivated, the number of covered in-
stances should be computed. For this operation, each active at-
tribute should be compared to the corresponding attribute value
in all instances. Consider the worst-case scenario, in which a rule
has only one active attribute, and needs all its attributes to be
activated in order to cover a desirable number of instances. Thus,
after activation of the second attribute, two attributes of the rule
should be compared to their corresponding attribute values in
the instances. With |X | the total number of instances, |X | × 2
operations are performed. Because each comparison involves a
4− tuple associated to the attribute, a total of |X | × 2 comparisons
is performed. Eq. (11) gives the cost of the comparisons as the
number of active attributes increases. The equation is quadratic in
the number of attributes |A|. Thus, the computational complexity
of the local search is given by O(|X | × |A|2).

Costcomp = 2× 4× |X | + 3× 4× |X | + · · · + |A| × 4× |X |

= |X | × 4×
|A|∑
i=2

i = |X | × 4×
(
|A|(|A| + 1)

2
− 1

)
(11)

3.7.3. Fitness functions
To calculate the fitness functions used in the experiments, the

most critical procedure is the variance calculation of a given rule.
We need to calculate the variance of all training instances, and
also the variance of the sets of covered and uncovered instances
of the rule. The variance of a set of instances first calculates the
average class label vector (prototype) of the instances. Afterward, it
is necessary to calculate the Euclidean distances between the label
vectors of all instances and the prototype.

The average class label vector of a set of instances is given by
the sum of all vj values from the label vectors v of each instance,
divided by the total number of instances in the set. Thus, being |C |
the number of problem classes, the number of necessary opera-
tions to calculate the prototype is given by |X | × |C |. Provided that
Sr and S¬r are the set of covered and uncovered instances of a rule r ,
the number of operations needed to construct the mean class label
vectors of these two groups is given by |Sr | × |C | and |S¬r | × |C |.

After obtaining the average class label vectors, the Euclidean
distances between each instances’ label vectors from each set of
instances (X, SreS¬r) and the corresponding prototype vectors of
these sets are calculated. For such, |C | operations are required.
Thus, the Euclidean distance calculation involving all instances
from all sets of instances requires, respectively, |X | × |C |, |Sr | × |C |
and |S¬r | × |C | operations. Thus, the computational complexities
associated to the calculations of the variances of the sets X , Sr and
S¬r are, respectively,O(|X | × |C |),O(|Sr | × |C |) andO(|S¬r | × |C |).

4. Methodology

This Section presents the genetic algorithm variations, and the
corresponding parameter values, the datasets, and the evaluation
measures used in the experiments. The section also briefly presents
hmAnt-Miner and the decision tree induction algorithms used as
baselines in the experimental evaluations.

4.1. Datasets

Ten protein function prediction datasets are used in the ex-
periments. Their features are related to issues like phenotype and
gene expression levels. The hierarchy follows the Funcat taxon-
omy, and is organized as a tree. The data is freely available at the
KU Leuven Declarative Languages and Artificial Intelligence Group
repository.1

1 https://dtai.cs.kuleuven.be/clus/hmcdatasets/.

Vens et al. [13] divided these datasets in training, validation
and testing subsets. We are using these same partitions. We joined
the training and validation partitions to form a complete train-
ing set, and evaluated the generated rules in the testing set. Ta-
ble 1 [4] presents their main characteristics, regarding the number
of classes and instances. We present a brief description of each
dataset. Further details can be found in Vens et al. [13] and in the
corresponding references.

• 1 - Seq: features representing statistics obtaineddirectly from
the sequences, such as amino acid rates, sequence length
and molecular weight. Most of the values are real numbers
obtained using the ProtParam software [32] or taken from the
MIPS repository [33];
• 2 - Pheno: features related to phenotypical data, representing

knock-out mutants missing, regarding their growth or lack of
growth. The data were collected from databases that include
MIPS [33] and TRIPLES [34]. The dataset is sparse, and has
discrete feature values;
• 3 to 10: microarray features used to test the expression levels

of genes across genomes. They have real value attributes [13].

4.2. Evaluation measures

As discussed in Section 3, for each class, HMC-GA outputs real
values in the interval [0,1]. Thus, a threshold value was used to
obtain the final predictions. To classify an instance into a given
class, if the output value corresponding to the class is equal to or
larger than the threshold, the instance is assigned to the class.

The choice of an ‘‘optimal’’ value for the threshold is a difficult
task, since low values lead to many predictions for each instance,
resulting in high recall and low precision. Large values lead to
very few predictions, resulting in high precision and low recall
values. We dealt with this problem using precision–recall curves
(PR-curves) [43]. A PR-curve is produced applying threshold values
in the interval [0, 1] to the outputs of the classifiers. This results in
different precision and recall values (points within the PR space),
one for each threshold used. The union of these points forms a PR-
curve, and the area under the curve can be calculated. The areas
under the PR-curves can be used to compare different methods.

To calculate the area under the PR-curve, an interpolation of the
precision–recall points (PR-points) [43], and posterior connection,
is required. Connecting the points without interpolation would
artificially increase the area below the curve. To calculate the PR
points (Prec, Rec), we used Eqs. (12) and (13). These equations
are the micro-average of precision and recall. The index i, in the
equations, ranges from 1 to |C |. The number of true positives, false
positives, and false negatives, are represented, respectively, by TP,
FP, and FN.

Prec =
∑

i TPi∑
i TPi +

∑
i FPi

(12)

Rec =
∑

i TPi∑
i TPi +

∑
i FNi

(13)

With the precision and recall points,we calculate the area under
the average PR-curve (AU(PRC)) [13]. Its value is in the interval
[0, 1], where the higher, the better.

The statistical significance of the results was assessed using the
non-parametric Friedman and Nemenyi statistical tests, suitable
when comparing many classifiers using several datasets [44]. The
confidence level of 95% was adopted. We used exactly the same
partition provided byVens et al. 2008 [13], 2/3 of each datasetwere
used to train the classifiers and 1/3 for testing.

https://dtai.cs.kuleuven.be/clus/hmcdatasets/

R. Cerri, M.P. Basgalupp, R.C. Barros et al. / Applied Soft Computing Journal 77 (2019) 584–604 593

Table 1
Summary of datasets: Number of attributes (|A|), number of classes (|C |), number of classes per level (Classes per level), total number of
instances (Total) and number of multi-label instances (Multi).
Dataset |A| |C | Classes per level Training Valid Test

Total Multi Total Multi Total Multi

1 - Seq [35] 478 499 18/80/178/142/77/4 1701 1344 879 679 1339 1079
2 - Pheno [35] 69 455 18/74/165/129/65/4 656 537 353 283 582 480
3 - Cellcycle [36] 77 499 18/80/178/142/77/4 1628 1323 848 673 1281 1059
4 - Church [37] 27 499 18/80/178/142/77/4 1630 1322 844 670 1281 1057
5 - Derisi [38] 63 499 18/80/178/142/77/4 1608 1309 842 671 1275 1055
6 - Eisen [39] 79 461 18/76/165/131/67/4 1058 900 529 441 837 719
7 - Expr [35] 551 499 18/80/178/142/77/4 1639 1328 849 674 1291 1064
8 - Gasch1 [40] 173 499 18/80/178/142/77/4 1634 1325 846 672 1284 1059
9 - Gasch2 [41] 52 499 18/80/178/142/77/4 1639 1328 849 674 1291 1064
10 - Spo [42] 80 499 18/80/178/142/77/4 1600 1301 837 666 1266 1047

4.3. Genetic algorithm variations

This section lists the variations performed in the proposed
HMC-GA. The variations resulted in 36 different configurations.
Thus, we ended up with 36 experiments for each dataset.

4.3.1. Variation in the fitness function
We considered the three previously presented fitness function

variations in our experiments. For simplificationpurposes,we refer
to them as F1, F2 and F3.

• F1 — Variance Gain;
• F2 — Ponderation between variance gain and percentage of

covered instances;
• F3 — Ponderation between variance gain and AU(PRC).

The ponderation in the fitness functionwas the harmonicmean
between the terms involved, similar to the traditional F1 measure.

4.3.2. Variation in the crossover procedure
We also considered four variations in the HMC-GA evolutionary

process. These variations were implemented through modifica-
tions in the crossover operator, and also through the use of a local
search operator. We refer to these variations as C1, C2, C3 and C4.

• C1 — Uniform crossover without local search;
• C2 — Uniform crossover with local search;
• C3— Distance-basedUniformcrossoverwithout local search;
• C4 — Distance-based Uniform crossover with local search.

4.3.3. Variation in the constructed rules
Finally, we considered the induction of three different types of

rules, which we refer as R1, R2 and R3.

• R1— Only ruleswith propositional tests. These rules evaluate
if an attribute value Ak satisfies a test condition, e.g. Ak ≤ xi,k;
• R2 — Only rules with relational tests. These rules have tests

only comparing the values of different attributes, e.g. A1 ≤ A2;
• R3 — Rules with both propositional and relation tests, ran-

domly mixed.

4.4. Genetic algorithm parameter values

Table 2 presents the parameter values used in the experiments
with HMC-GA. The pt parameter refers to the probability of using
an attribute when creating the antecedents of the initial popu-
lation. A lower probability generates smaller antecedents, with
higher chances of covering instances. This same probability is
also used when performing the mutation in the FLAGS of the
antecedents. During this mutation, the use of a high probability
value would activate too many tests in the antecedent, resulting
in a rule covering very few or none instances.

Still regarding the pt parameter value, Table 2 shows that it is
given by the expression |A| × pt = 5, in which A is the set of
attributes in the dataset. Thus, the choice of the pt probability is
performed in order to obtain antecedents with an average of five
attributes.

The maxNotCov parameter refers to the maximum number of
instances that can be left uncovered by any rule. If, at the end
of the evolutionary process, the number of remaining uncovered
instances in the training set is lower or equal to maxNotCov, the
sequential covering process is stopped. The uncovered instances
are classified in the default rule.

TheminCov parameter defines the lower bound for the number
of covered instances for each rule. It is used to avoid the creation
of too specific rules. This parameter, together with the maxCov
parameter, is also used in the local search procedure. The objective
is to construct neither too specific nor too general rules.

The G parameter refers to themaximumnumber of generations
evolved to obtain a classification rule. After thismaximumnumber,
the best rule is saved, and its covered instances are removed from
the training set. The evolutionary procedure is then restarted with
new initial rules.

The parameter values presented in Table 2 were based on the
work proposed by Carvalho et al. [27], which developed a Local
Classifier per Node-basedmethod using genetic algorithms. To our
knowledge, it is the only method which uses genetic algorithms
for hierarchical classification. However, the method was proposed
only for single-label hierarchies.

4.5. The baseline hmAnt-Miner method

The hmAnt-Miner method [9] is a global-based method that
uses Ant Colony Optimization (ACO) to evolve antecedents of HMC
rules. Rules in the format IF . . . THEN . . . are discovered, with the
ACO algorithm used to optimize the rule antecedents. A sequential
covering procedure creates rule antecedents that cover all (ormost
of the) training instances. Initially, an empty set of rules is created,
and a new rule is added to the set while the number of instances
not covered by any rule is larger than a given threshold.

Similar to HMC-GA, the consequent of a rule is generated by
a deterministic procedure, based on the set of instances covered
by the rule. The heuristic used to evaluate the rules is also the
variance gain, based on the Euclidean distance between the rule
consequents.

Table 3 presents the parameter values used by hmAnt-Miner in
the experiments. These values are the same used in Otero et al. [9].

4.6. The baseline PCT-based methods

The Predictive Clustering Trees (PCTs) [45] framework con-
structs decision trees as a cluster hierarchy. It begins with a root
node containing all the training instances, and then recursively

594 R. Cerri, M.P. Basgalupp, R.C. Barros et al. / Applied Soft Computing Journal 77 (2019) 584–604

Table 2
HMC-GA parameter values.
Parameter Description Value

p Population size 50
e Number of individuals selected by elitism 1
mr Mutation rate 40%
cr Crossover rate 90%
pt Probability of using a test in a rule |A|×pt = 5
G Number of generations 50
t Tournament size 2
maxNotCov Maximum number of uncovered instances 10
minCov Minimum number of covered instances per rule 5
maxCov Maximum number of covered instances per rule 300

Table 3
hmAnt-Miner parameter values.
Parameter Description Value

maxUncoveredInstances Maximum number of uncovered instances 10
maxNumberIterations Maximum number of iterations 1500
ruleConvergence Number of iterations used to test the rule convergence 10
minInstancesPerRule Minimum number of covered instances per rule 10
colonySize Number of ants per iteration 30

partitions it in small clusters as the decision tree is traversed to-
wards the leaves. The framework can be applied both to clustering
and classification problems, and the decision trees are induced
using top-down strategies similar to others used in the literature,
such as C4.5.

We used three PCT-based methods in our experiments, pre-
sented by Vens et al. [13]: Clus-HMC, a global-based method to in-
duce a single decision tree considering all the hierarchical classes,
the local-based Clus-SC,which trains a binary decision tree for each
class, ignoring the relationships between the classes, and the local-
based Clus-HSC,which induces a binary decision tree for each class,
exploring the hierarchical relationships between them.

Similar to HMC-GA and hmAnt-Miner, the PCT-based methods
also use the variance gain to decide which attribute gives the best
split in the data. The variance of a set of instances is given by
the mean square Euclidean distance between each instances’ class
label vectors vi and the mean class label vector v of the instances
in the set.

Table 4 presents the parameter values used by the PCT-based
methods in the experiments. These values are the same used in
Vens et al. [13]. For the F Test parameter, all values in the table
were used in the validation dataset in order to choose the best one.
The chosen one was then used to induce a decision tree using the
training and validation datasets together.

As explained in Sections 4.5 and 4.6, all baseline methods in the
literature adopt the Euclidean distance within their implementa-
tion. The hmAnt-Miner uses the Euclidean distance when calcu-
lating its fitness function. It also uses Variation Gain, calculating
the Euclidean distances between binary vectors representing the
classes in the label-space. The same strategy is also adopted by the
three Predictive Clustering Trees (PCT) baseline methods, which
use the Variation Gain to decide which attribute gives the best
split in the data. They used the Euclidean distance also considering
the binary class-label vectors. This is why we opted to use the
Euclidean distance within our Genetic Algorithm. We consider it
a good choice to use the Euclidean distance in our method in order
to have a fair comparison regarding Variation Gain. Of coursemany
other distances could be used, but thiswould requiremodifications
in the baseline methods. We believe this is out of the scope of this
contribution, but we sure consider it for future works. In addition,
in the work of Aleksovski et al. [46], the authors performed a study
comparing Euclidean distance, Jaccard distance, SimGIC distance
and ImageCLEF distance for HMC problems using the PCT-based
methods. They concluded there were no statistically significant
differences among the different distance measures.

4.7. Statistical analysis

To evaluate the statistical significance of the experimental re-
sults, we present the results of statistical tests by following the
approach proposed by Demšar [44]. In brief, this approach seeks to
compare multiple algorithms on multiple datasets, and it is based
on the use of the Friedman test with a corresponding post-hoc test.
The Friedman test is a non-parametric counterpart of ANOVA, as
follows. Let Rj

i be the rank of the jth of k algorithms on the ith
of N datasets. The Friedman test compares the average ranks of
the algorithms, Rj =

1
N

∑
i R

j
i. The Friedman statistic (Eq. (14)) is

distributed according to χ2
F with k − 1 degrees of freedom, when

N and k are large enough.

χ2
F =

12N
k(k+ 1)

⎡⎣∑
j

R2
j −

k(k+ 1)2

4

⎤⎦ (14)

Iman and Davenport [47] showed that Friedman’s χ2
F is un-

desirably conservative and derived an adjusted statistic, given
by Eq. (15), which is distributed according to the F-distribution
with k− 1 and (k− 1)(N − 1) degrees of freedom.

Ff =
(N − 1)× χ2

F

N × (k− 1)− χ2
F

(15)

If the null hypothesis of similar performances is rejected, we
proceedwith the Nemenyi post-hoc test for pairwise comparisons.
The performance of two classifiers is significantly different if their
corresponding average ranks differ by at least a critical difference,
given by Eq. (16), where critical values qα are based on the Studen-
tized range statistic divided by

√
2.

CD = qα

√
k(k+ 1)

6N
(16)

5. Experiments and discussion

This Section presents and analyzes the main experimental re-
sults. In total, 36 experiments were performed. Table 5 lists all
combinations adopted for each experiment.

The radar plots from Figs. 5 to 9 show the comparative results
of all the 36 experiments in the ten datasets investigated. For each
experiment, we executed HMC-GA ten times, each time randomly
generating initial rules. Thus, the values shown are the average
AU(PRC) values over all executions. Recall that the showed results

R. Cerri, M.P. Basgalupp, R.C. Barros et al. / Applied Soft Computing Journal 77 (2019) 584–604 595

Table 4
PCT-based methods parameter values.
Parameter Description Value

WType Weight of a class, being w0 times the
average of the parent’s class weights

Average

MinimalWeight Minimal number of instances in each
cluster

5

FTest Stopping criterion: A node will only be
split if a statistical F-test indicates a
significant reduction of variance inside
the subsets

0.001, 0.005, 0.01, 0.05, 0.1, 0.125

Table 5
List with all combinations performed for each experiment.
Exp. 1 (E1) - F1 x C1 x R1 Exp. 2 (E2) - F1 x C1 x R2 Exp. 3 (E3) - F1 x C1 x R3
Exp. 4 (E4) - F1 x C2 x R1 Exp. 5 (E5) - F1 x C2 x R2 Exp. 6 (E6) - F1 x C2 x R3
Exp. 7 (E7) - F1 x C3 x R1 Exp. 8 (E8) - F1 x C3 x R2 Exp. 9 (E9) - F1 x C3 x R3
Exp. 10 (E10) - F1 x C4 x R1 Exp. 11 (E11) - F1 x C4 x R2 Exp. 12 (E12) - F1 x C4 x R3
Exp. 13 (E13) - F2 x C1 x R1 Exp. 14 (E14) - F2 x C1 x R2 Exp. 15 (E15) - F2 x C1 x R3
Exp. 16 (E16) - F2 x C2 x R1 Exp. 17 (E17) - F2 x C2 x R2 Exp. 18 (E18) - F2 x C2 x R3
Exp. 19 (E19) - F2 x C3 x R1 Exp. 20 (E20) - F2 x C3 x R2 Exp. 21 (E21) - F2 x C3 x R3
Exp. 22 (E22) - F2 x C4 x R1 Exp. 23 (E23) - F2 x C4 x R2 Exp. 24 (E24) - F2 x C4 x R3
Exp. 25 (E25) - F3 x C1 x R1 Exp. 26 (E26) - F3 x C1 x R2 Exp. 27 (E27) - F3 x C1 x R3
Exp. 28 (E28) - F3 x C2 x R1 Exp. 29 (E29) - F3 x C2 x R2 Exp. 30 (E30) - F3 x C2 x R3
Exp. 31 (E31) - F3 x C3 x R1 Exp. 32 (E32) - F3 x C3 x R2 Exp. 33 (E33) - F3 x C3 x R3
Exp. 34 (E34) - F3 x C4 x R1 Exp. 35 (E35) - F3 x C4 x R2 Exp. 36 (E36) - F3 x C4 x R3

were obtained in the test partition. To induce the rules, we joined
the training and validation partitions, forming a unique training
set.

Looking at the radar plots, it is possible to identify some pat-
terns within the experiments. The bottom part of each chart con-
centrates all experiments where the fitness function used was
the ponderation between variance gain and percentage of covered
instances (F2). We can see that, in general, this fitness function led
to the best AU(PRC) results.

The radar plots also give insights regarding the experimental
configurations that led to the worst results regarding the AU(PRC)
values. The charts show that, in general, poor results were ob-
tained by experiments E4, E5 and E6. These three experiments
have fixed configuration values for the fitness function, using the
Variance Gain (F1), and for the crossover operation, using a uni-
form crossover with local search (C2). The experiments E10, E11,
and E12 presented, in general, AU(PRC) values among the worst
obtained. They all also used Variance Gain (F1) as fitness function
and distance-based uniform crossover with local search (C4). Thus,
the experiments suggest that our local search combined with only
variance gain as fitness function is not a good experimental con-
figuration. In all the above configurations, the three types of rules
(R1, R2, and R3) were generated and seemed not to influence the
results.

The experimental configurations E28, E29, and E30 also pre-
sented, in general, poor results. Their fitness function was the
ponderation between variance gain and AU(PRC) (F3), and they
used the uniform crossoverwith local search (C2). The same fitness
function (F3) was used in the experiments E34, E35 and E36,
combinedwith distance-based uniform crossoverwith local search
(C4). Thus, again the results suggest that local search combined
with variance gain is not a good experimental configuration. Ad-
ditionally, the variation in the types of rules generated (R1, R2, and
R3), considering the above configurations, seemed not to directly
influence the results.

Given the difficulty in analyzing many experimental results
in different datasets individually, we also analyzed the average
performances of the experiments considering all datasets. For such,
Figs. 10–12 present boxplots considering our proposed variations
and also the baselinemethods. The hmAnt-Minermethod is shown

in the graphs under the name ACO. As we did for HMC-GA, we
also executed hmAnt-Miner ten times, and averaged the obtained
AU(PRC) values, the number and the size of the rules. The PCT-
based methods Clus-HMC, Clus-HSC and Clus-SC are also shown
in the graphs, respectively as HMC, HSC and SC. Because they are
deterministicmethods, only one execution is necessary.Wedidnot
show the methods Clus-HSC and Clus-SC in the graphs regarding
rules and tests because these methods produced a huge number
of rules, varying from nearly 2000 and 10000 rules. Thus, as they
clearly do not generate interpretable models, we left them out
of this analysis. We sorted the boxplots according to the ranking
obtained by the Friedman test.

The results of Fig. 10 confirm what is observed in the graphs
from Figs. 5 to 9. Considering the genetic algorithm variations, the
experiments E15 (F2× C1× R3), E13 (F2× C1× R1), and E19 (F2
× C3 × R1) are among the top best average results. This shows
that our fitness function using ponderation between variance gain
and percentage of covered instances can be a good choice. Besides,
better results were obtained without the use of the local search
operator and using propositional tests in the rules (combined or
not with relational tests). The number of instances covered by a
rule also influences its performance, since rules covering a huge
number of instances are too general, while rules covering a very
small number of instances are too specific. Thus, we considered
this aspect in the fitness function, which seemed to improve the
quality of the rules in terms of interpretability and performance.
It is important to recall that our fitness function equally weights
variance gain and percentage of covered instances.

Among the top best AU(PRC) values, we can also find the HMC-
GA configurations from the experiments E1 (F1 × C1 × R1), E3
(F1 × C1 × R3), and E7 (F1 × C3 × R1). According to these
results, our local search (configurations C1 and C3) should not
be used. Again, rules containing propositional tests led to better
results. Our hypothesis is that relational tests largely increase the
search space when comparing different attributes among them-
selves. While this potentially increases the possibility of finding
good solutions, this also can make the classification problemmore
difficult, since good solutions are more difficult to find in larger
search spaces [14].

596 R. Cerri, M.P. Basgalupp, R.C. Barros et al. / Applied Soft Computing Journal 77 (2019) 584–604

Fig. 5. Results for the Cellcycle and Church datasets.

Fig. 6. Results for the Derisi and Eisen datasets.

Fig. 7. Results for the Gasch1 and Gasch2 datasets.

HMC-GA with the configuration of Experiment 7 (E7) is closely
followed by hmAnt-Miner in terms of AU(PRC). Recall that hmAnt-
Miner also uses only variance gain to evaluate its induced rules and
also induces rules with only propositional tests.

We also have to consider that the variance gain used in the
fitness functions has a characteristic that may harm the perfor-
mances of the methods in some situations. According to Eq. (6),
maximizing the variance gain of a rule corresponds to minimizing
the difference between the variances of Sr and S¬r . However, in

the case where a very homogeneous set of training instances
(instances classified in the same, or in a very similar, set of classes)
is left to be covered, the fitness value can be reduced to 0. This
happens when a rule covering all instances is induced. Thus, a rule
covering all remaining instances belonging to a same/similar set of
classes will have its fitness function set to 0. This occurs because
|S¬r |
|S| ×var(S¬r) will be 0, and the values of var(S) and |Sr |

|S| ×var(Sr)
will have the same value.

R. Cerri, M.P. Basgalupp, R.C. Barros et al. / Applied Soft Computing Journal 77 (2019) 584–604 597

Fig. 8. Results for the Pheno and Spo datasets.

Fig. 9. Results for the Expr and Seq datasets.

Fig. 10. AU(PRC) results for all datasets and experiments.

Still considering relational tests, the representation of individ-
uals is another characteristic that may also have harmed the HMC-
GA performance when using relational tests. Recall that each 4-
tuple in the antecedent of a rule is associated with an attribute.
Thus, when an attribute Ai, associated to a given 4-tuple, is used in
a relational test, it cannot be used in a propositional test anymore,
since position i was already set as used.

Wealso analyzed our results considering the number of induced
rules. Fig. 11 shows, for each HMC-GA variant, the average number
of rules generated. We also show the average number of rules
generated by the hmAnt-Miner (ACO) method, and by the method
Clus-HMC (HMC). We did not show the methods Clus-HSC and
Clus-SC in the graphs because they produced a huge number of
rules, varying from nearly 2000 and 10 000 rules. Thus, as they
clearly do not generate interpretable models, we left them out this

analysis. We sort the methods according to the ranking obtained
by the Friedman test.

According to the results from Fig. 11, the HMC-GA configura-
tions that induced the smallest number of rules were those from
the experiments E19, E15 and E13. These are among the configu-
rations that obtained the best AU(PRC) values, as shown in Fig. 10.
Thus, the results show that these configurations are able to gen-
erate the best rules in terms of performance and interpretability.
In comparisonwith configuration E19, Clus-HMC induced the 16th
smallest set of rules, and hmAnt-Miner induced the 20th smallest
set of rules.

The configurations that induced the largest number of rules
were the experiments E34, E36, E28, E30, E29, and E35. These
configurations also obtained some of the worst average AU(PRC)
values observed in Fig. 10. Especially, looking at experiments E34,

598 R. Cerri, M.P. Basgalupp, R.C. Barros et al. / Applied Soft Computing Journal 77 (2019) 584–604

Fig. 11. Average number of rules for all datasets and experiments.

Fig. 12. Average number of tests per rule for all datasets and experiments.

E35 and E36, it is interesting to observe that all of themuse a fitness
function that does not consider the percentage of covered in-
stances, which can directly impact the number of rules generated.
The fitness function used considered the ponderation between
variance gain and AU(PRC) (F3). Besides, these experiments used
the local search operator, which we have already observed, did
not have a good influence on the method’s performances. Thus, as
these configurations generated a high number of rules, the type of
rules generated (R1, R2, and R3) seemed not to have a great impact
on the final result.

Continuing the analyses regarding the rules induced, we also
analyzed the average size of these rules. Fig. 12 shows, for each
HMC-GA experiment, the average number of tests per rule.We also
show the average number of tests per rule generated by the hmAnt-
Miner (ACO) and Clus-HMC (HMC) methods. Again, we sort the
methods according to the ranking obtained by the Friedman test.
Given that the number of rules generated by Clus-HSC and Clus-SC
is extremely high, we did not compute their average number of
tests. This is because even if they induce small rules, a model with
a huge number of small rules is for sure less interpretable than a
model with only a small number of small rules.

According to the results from Fig. 12, the smallest average
number of tests per rule was obtained the HMC-GA configuration
from Experiment 19 (E19). It generated an average of 4.27 tests
per rule and was closely followed by the top ranking HMC-GA
configurations in terms of AU(PRC) values and number of rules. It
generated fewer tests per rule than hmAnt-Miner and Clus-HMC.

Considering all characteristics investigated in this study to ob-
tain a good set of rules, i.e., good AU(PRC) values, and interpretabil-
ity (small number of rules with a small number of tests each one),
we can say that Experiment E19 seems to be the best configuration.
It obtained one of the top AU(PRC) values while generating the
smallest sets of rules with the smallest average number of tests
per rule.

In order to analyze what are the best individual configurations
(fitness function, crossover operator, and type of induced rules),
we observed the number of times these individual configurations
appeared among the top 3, 5, and 7 best experimental results
in terms of AU(PRC) values, the average number of rules, and

Fig. 13. Top individual configurations in terms of AU(PRC) values.

the average number of tests per rule. These results are shown in
Figs. 13–15, respectively.

Considering the AU(PRC) values (Fig. 13), we can see that fitness
function F2, crossover C1, and rule set R1 appeared two, three,
and two times, respectively, considering the top 3 best experi-
mental results. If we consider the top 5 best experimental results,
configurations F2, C1 and R1 still appeared most of the times.
Configuration C1, though, is closely followed by configuration C3
(three times against two times). The same pattern is observed if
we analyze the top 7 experimental results (crossover C1 appears
four times, against three times of crossover C3).

Looking at Experiments E19 (F2 × C3 × R1) and E13 (F2 ×
C1 × R1), which were considered, according to our analyses, the
best experimental configurations in terms of performance and
interpretability, it is possible to see that they contain the individual
configurations that most appeared in the top best AU(PRC) values.
This enforces our previous observations, suggesting that (i)weight-
ing the variance gain and the number of covered instances, (ii)
performing our crossover without local search, and (iii) inducing
rules with propositional tests, is the best configuration among
those investigated.

Considering the average number of rules induced (Fig. 14), the
fitness function F2was the only one appearing in the top three and

R. Cerri, M.P. Basgalupp, R.C. Barros et al. / Applied Soft Computing Journal 77 (2019) 584–604 599

Fig. 14. Top individual configurations in terms of the average number of rules.

Fig. 15. Top individual configurations in terms of average number of tests per rule.

top five best experimental results. Considering the top seven best
results, F2 was used in six of them. Thus, F2 is the best fitness func-
tion considering the number of rules generated. Considering the
crossover operator, therewas a balanced distribution of operations
C1 and C3 among the top three, five and seven best results. Rules
considering only relational tests (R2) did not appear among the
top three best experimental results. Thus, the types of rule R1 and
R3 are more recommended, since they have propositional tests.
However, combined with configurations F2 and C1/C3, the types
of rules generated apparently did not have a strong impact on the
results.

Considering the averagenumber of tests per rule (Fig. 15), a sim-
ilar scenario to the one illustrated in Fig. 14 is observed. The fitness
function F2 is the only configuration appearing in the top three,
five and seven best results, and there is a balanced distribution
considering crossover operators and types of rules. Again crossover
C1 and C3 and rules R1 and R3 are the only ones appearing in the
top three best experimental results.

Considering the overall best experiments, the results observed
in all graphs from Figs. 13–15 support the fact that the best fitness
function investigated considers variance gain and percentage of
covered instances. The F2 fitness function leads to better results
if combined with uniform crossover, considering distance or not,
and without our local search operator. The best types of rules are
those considering propositional tests in their antecedents.

5.1. Statistical analysis

This section presents the results of the statistical tests applied.
We used the Friedman and Nemenyi tests with a confidence level
of 95%. To evaluate the statistical significance of the results, we
calculated the average Friedman rank for the 40 methods (ACO,

Clus variations, and experiments E1 to E36) regarding AU(PRC),
number of rules, and number of tests.

Considering AU(PRC), the average rank suggests that Clus-HMC
is the best-ranked method. E15, the best evolutionary approach,
figures as the second best method. The calculation of Iman’s F
statistic resulted in Ff = 31.68. The critical value of F (k − 1, (k −
1)(n − 1)) = F (39, 351) for α = 0.05 is 1.43. Since Ff >

F0.05(39, 351) (31.68 > 1.43), the null hypothesis is rejected
(p−value = 2.2 ∗ 10−16). We then proceed with a post-hoc Ne-
menyi test to find which method provides better results in a pair-
wise fashion. Fig. 16 shows the critical diagram for comparing the
methods in terms of AU(PRC). CD stands for the critical difference
(CD = 20.505 at α = 0.05), and methods connected by a line do
not present statistically significant differences. Although none of
the top-rankedmethods outperformeach otherwith statistical sig-
nificance, it is possible to see that Clus-HMC, E15, E1, E13 and E19,
for example, outperformmore methods than the others (including
ACO). The baselines HSC and SC are significantly outperformed
by HMC, ACO and several of the evolutionary methods. Although
Clus-HMC is best ranked then E15, it is important to note that
this difference (5.1) is not statistically significant according to the
Nemenyi’s test, since 5.1≪ 20.505.

In terms of the number of rules, the average Friedman rank
suggests that E19 is the best choice. Again, the calculation of Iman’s
F statistic resulted in Ff > F0.05(39, 351) (90.025 > 1.43),
rejecting the null-hypothesis (p−value = 2.20 ∗ 10−16). Fig. 17
shows the critical diagram representing the results obtained by
the Nemenyi’s pairwise comparisons. Once again, there is one
method (E19) that outperforms more methods (17) than others.
ACO, for example, does not outperform anymethodwith statistical
significance, since it is connected to all methods in its right side of
the diagram. Considering Clus-HMC, it statistically outperformed
only six methods against 17 from the E19 variation.

Finally, the average Friedman rank suggests that E19 is also the
best option regarding the number of tests per rule. Since Ff >

F0.05(37, 333) (15.272 > 1.45), we reject the null-hypothesis
(p−value = 2.20 ∗ 10−16) and proceed with a post-hoc Nemenyi
test. According to Fig. 18, we can argue again that there is amethod
(E19) that outperforms more methods than the others investi-
gated. Although there is no statistical difference between E19, ACO
and Clus-HMC, E19 can be considered the best one, since (i) it
outperforms 15 other methods against 12 from ACO and 2 from
Clus-HMC; and (ii) E19 also outperforms ACO regarding AU(PRC)
and number of rules, and Clus-HMC regarding number of rules.

The results of the statistical tests enforce our previous obser-
vation, stating that the configuration of Experiment 19 (E19) is the
best option among those investigated. According to the results, E19
is the best configuration in terms of interpretability, generating
the smallest number of rules, and the smallest number of tests per
rule. Also, E19 keeps good performance in terms of AU(PRC), being
among the top five best configurations.

5.2. Analysis for specific threshold values

In this section we present an analysis of our results using
specific threshold values. Since the outputs of all methods have
a probabilistic interpretation, we choose the values 0.2 and 0.5
as threshold values for illustration purposes. Thus, for 0.5, if the
output of the methods for a given class is above or equal 0.5, we
consider it as a positive prediction for the given class, and as a
negative prediction otherwise. The same holds for the 0.2 value.
We perform these evaluations to illustrate how all methods can be
used as proper classifiers for a given task. With different threshold
values, different results are obtained. Thus, suitable thresholds can
be chosen depending on the desired outcome. For example, a spe-
cialist in a given domain could prefermodelswith high precision at

600 R. Cerri, M.P. Basgalupp, R.C. Barros et al. / Applied Soft Computing Journal 77 (2019) 584–604

Fig. 16. Critical diagram considering the AU(PRC) values.

Fig. 17. Critical diagram considering the number of rules generated.

the cost of low recall or vice versa, or prefer models with maximal
interpretability.

Figs. 19–21 present box-plots for Precision, Recall and F1-
measure values obtained for all methods using a threshold value of

0.5. As can be seen, our previous recommended variation (Exper-
iment E19) obtained one of the top three highest precision values
(Fig. 19), while Clus-HMC remains the best classifier. However, this
high precision comes with the cost of a low recall value (Fig. 20).

R. Cerri, M.P. Basgalupp, R.C. Barros et al. / Applied Soft Computing Journal 77 (2019) 584–604 601

Fig. 18. Critical diagram considering the number of tests per rule.

The same behavior can be observed for the PCT-variations Clus-
HMC, Clus-HSC and Clus-SC, i.e., higher precision values come at a
cost of lower recall values, and vice versa.

The higher precision value obtained by variation E19 is ex-
pected since E19 is also among the top three variations regarding
the smallest number of generated rules and the smallest number
of tests per rule. Thus, it is expected that a more interpretable set
of rules covers a smaller number of instances, being more precise,
but at a cost of obtaining a smaller recall. If we look at the best
recall values obtained by the GA variations (Fig. 20), we see that
Experiments E34 and E28 are the top ones. These variations are
also among the top three in the highest number of generated rules,
thus being less interpretable. This is also expected since many
rules cover a higher number of instances, but at the cost of a low
precision (Fig. 19).

Thus, if a specialist is looking for an interpretable and precise
model, we still can recommend the configuration of Experiment
E19. Given this threshold value of 0.5, if one is looking for a con-
figuration which best balances precision and recall, E34 is recom-
mended (Fig. 21). However, this comes with the cost of generating
a higher number of rules, thus reducing interpretability.

To illustrate how choosing a different threshold value can
drastically change the results, Figs. 22–24 present box-plots for
Precision, Recall and F1-measure values obtained for all methods
using a threshold value of 0.2. As can be seen, the situation is
now different, since, with this threshold, Clus-HMC has now the
worst precision value (Fig. 22) and the highest recall value (Fig. 23).
Regarding the GA variations, Experiment E19 still remains among
the top three highest precision values, while Experiments E28
and E34 still obtained the best recall values. However, E19 now
obtained a better balance between precision and recall than Exper-
iments E28 and E34 (Fig. 24). Thus, if an expert is interested in the
most interpretable model with a good balance between precision
and recall, the configuration used in Experiment E19 can be still
recommended. Of course, the user can be interested in the best
possible balancing between precision and recall. In this case, the

configuration of the Experiment E24 is recommended, but coming
with the cost of losing interpretability.

As can be observed, there is a considerable variation in the
results when changing threshold values from 0.5 to 0.2. Thus,
thresholds can be chosen by a specialist depending on the context,
focusing, for example, on high interpretability, high precision, high
recall, or the best combination of precision and recall. Thus, if
using the methods as proper classifiers for a given task, specific
thresholds can be evaluated and chosen. When comparing models
overall in many datasets, a threshold-independent evaluation is
also adequate.

6. Conclusions and future works

This paper presented HMC-GA, a genetic algorithm for classifi-
cation rule induction in hierarchical multi-label scenarios. Several
experimentswith different variations of HMC-GAwere performed,
considering combinations of different fitness functions, crossover
operators, and types of rules generated. In total, 36 different ex-
periments were performed with the genetic algorithm. HMC-GA
was also compared with hmAnt-Miner, a natural computing-based
methodwhich generates HMC rules using an ant-colony optimiza-
tion strategy. HMC-GAwas also compared with three decision tree
induction algorithms based on predictive clustering trees. They are
state-of-the-art methods for HMC rule induction.

The experiments were carried out with ten freely available
datasets organized according to the Funcat tree taxonomy. The
datasets are related to protein function prediction, having features
related to issues like phenotype and gene expression levels.

After analyzing the results, we concluded that the best con-
figuration, among those investigated, is the configuration used in
Experiment E19 (E19). E19 provides the most interpretable model,
with the smallest number of rules and the smallest number of
tests per rule, and still keeps its performance among the top best
configurations. The configuration used in E19 combines (i) fitness
function as ponderation between variance gain and percentage

602 R. Cerri, M.P. Basgalupp, R.C. Barros et al. / Applied Soft Computing Journal 77 (2019) 584–604

Fig. 19. Average precision values for all datasets and experiments for a threshold value of 0.5.

Fig. 20. Average recall values for all datasets and experiments for a threshold value of 0.5.

Fig. 21. Average F1 - measure values for all datasets and experiments for a threshold value of 0.5.

Fig. 22. Average precision values for all datasets and experiments for a threshold value of 0.2.

Fig. 23. Average recall values for all datasets and experiments for a threshold value of 0.2.

R. Cerri, M.P. Basgalupp, R.C. Barros et al. / Applied Soft Computing Journal 77 (2019) 584–604 603

Fig. 24. Average F1 - measure values for all datasets and experiments for a threshold value of 0.2.

of covered instances (F2), (ii) distance-based uniform crossover
without local search (C3), and (iii) only rules with propositional
tests (R1).

As future work, we want to investigate the different HMC-GA
configurations also on Gene Ontology structured datasets, which
are organized in a much more challenging DAG structure. We also
plan to explore multi-objective evolutionary optimization to im-
prove ourmethod, sincemany different objectives to be optimized
are conflicting. Finally, we would like to investigate the perfor-
mance of HMC-GA in other hierarchical and multi-label classifica-
tion application domains, such as text and image classification.

Acknowledgments

The authors would like to thank Brazilian research agencies
FAPESP, CNPq and CAPES for financial support, specially Coor-
denação de Aperfeiçoamento de Pessoal de Nível Superior-Brasil
(CAPES) - Finance Code 001, and grants #2015/14300-1 and
#2016/50457-5 - São Paulo Research Foundation (FAPESP), Brazil.
The authors would also like to thank Intel Corporation.

References

[1] C. Silla, A. Freitas, A survey of hierarchical classification across different
application domains, Data Min. Knowl. Discov. 22 (2010) 31–72.

[2] G. Valentini, True path rule hierarchical ensembles, in: International Work-
shop on Multiple Classifier Systems, 2009, pp. 232–241.

[3] S. Kiritchenko, S. Matwin, A.F. Famili, Hierarchical text categorization as a tool
of associating genes with gene ontology codes, in: European Workshop on
Data Mining and Text Mining in Bioinformatics, 2004, pp. 30–34.

[4] R. Cerri, R. Barros, A.C.P.L.F. Carvalho, Hierarchical multi-label classification
using local neural networks, J. Comput. System Sci. 80 (1) (2013) 39–56.

[5] J. Wehrmann, R.C. Barros, S.N.d. Dôres, R. Cerri, Hierarchical multi-label clas-
sification with chained neural networks, in: Proceedings of the Symposium
on Applied Computing (ACM SAC 2017), ACM, 2017, pp. 790–795.

[6] J. Wehrmann, R. Cerri, R.C. Barros, Hierarchical multi-label classification net-
works, in: International Conference on Machine Learning (ICML 2018), 2018,
pp. 5225–5234.

[7] E.P. Costa, A.C. Lorena, A.C.P.L.F. Carvalho, A.A. Freitas, Top-down hierarchical
ensembles of classifiers for predicting g-protein-coupled-receptor functions,
in: Brazilian Symposium on Bioinformatics, in: LNBI, vol. 5167, Springer-
Verlag, 2008, pp. 35–46.

[8] L. Schietgat, C. Vens, J. Struyf, H. Blockeel, D. Kocev, S. Dzeroski, Predicting
gene function using hierarchical multi-label decision tree ensembles, BMC
Bioinformatics 11 (2010) 2.

[9] F. Otero, A. Freitas, C. Johnson, A hierarchical multi-label classification ant
colony algorithm for protein function prediction, Memet. Comput. 2 (2010)
165–181.

[10] G. Valentini, True path rule hierarchical ensembles for genome-wide gene
function prediction, IEEE/ACM Trans. Comput. Biol. Bioinform. 8 (3) (2011)
832–847.

[11] D. Stojanova, M. Ceci, D. Malerba, S. Dzeroski, Using PPI network auto-
correlation in hierarchical multi-label classification trees for gene function
prediction, BMC Bioinformatics 14 (1) (2013) 285.

[12] G. Yu, H. Zhu, C. Domeniconi, Predicting protein functions using incomplete
hierarchical labels, BMC Bioinformatics 16 (1) (2015).

[13] C. Vens, J. Struyf, L. Schietgat, S. Džeroski, H. Blockeel, Decision trees for
hierarchical multi-label classification, Mach. Learn. 73 (2008) 185–214.

[14] R. Cerri, R.C. Barros, A.A. Freitas, A.C. de Carvalho, Evolving relational hi-
erarchical classification rules for predicting gene ontology-based protein
functions, in: Proceedings of the Companion Publication of the 2014 Annual
Conference on Genetic and Evolutionary Computation, in: GECCO Comp ’14,
ACM, New York, NY, USA, 2014, pp. 1279–1286.

[15] S. Dzeroski, N. Lavrac (Eds.), Relational Data Mining, Springer, 2001.
[16] A. Ruepp, A. Zollner, D. Maier, K. Albermann, J. Hani, M. Mokrejs, I. Tetko,

U. Güldener, G. Mannhaupt, M. Münsterkötter, H.W. Mewes, The funcat, a
functional annotation scheme for systematic classification of proteins from
whole genomes, Nucleic Acids Res. 32 (18) (2004) 5539–5545.

[17] Z. Sun, Y. Zhao, D. Cao, H. Hao, Hierarchical multilabel classification with
optimal path prediction, Neural Process. Lett. (2016) 1–15.

[18] R. Cerri, R.C. Barros, A.C.P.L.F. de Carvalho, Y. Jin, Reduction strategies for
hierarchical multi-label classification in protein function prediction, BMC
Bioinformatics 17 (1) (2016) 373.

[19] W. Bi, J. Kwok, Mandatory leaf node prediction in hierarchical multilabel
classification, IEEE Trans. Neural Netw. Learn. Syst. 25 (12) (2014) 2275–2287.

[20] R. Baraniuk, V. Cevher, M. Duarte, C. Hegde, Model-based compressive sens-
ing, IEEE Trans. Inform. Theory 56 (4) (2010) 1982–2001.

[21] H. Borges, J. Nievola, Multi-label hierarchical classification using a compet-
itive neural network for protein function prediction, in: International Joint
Conference on Neural Networks, 2012, pp. 1–8.

[22] N. Cesa-Bianchi, M. Re, G. Valentini, Synergy of multi-label hierarchical en-
sembles, data fusion, and cost-sensitive methods for gene functional infer-
ence, Mach. Learn. (2011) 1–33.

[23] N. Cesa-Bianchi, G. Valentini, Hierarchical cost-sensitive algorithms for
genome-wide gene function prediction, J. Mach. Learn. Res. 8 (2010) 14–29.

[24] G. Valentini, M. Re, Weighted true path rule: A multilabel hierarchical algo-
rithm for gene function prediction, in: Workshop on Learning from Multi-
Label Data, held in ECML/PKDD, 2009, pp. 132–145.

[25] I. Triguero, C. Vens, Labelling strategies for hierarchical multi-label classifica-
tion techniques, Pattern Recognit. 56 (C) (2016) 170–183.

[26] M. Ashburner, et al., Gene ontology: Tool for the unification of biology. The
gene ontology consortium, Nature Genet. 25 (2000) 25–29.

[27] R. Carvalho, G. Brunoro, G. Pappa, HCGA: A genetic algorithm for hierarchical
classification, in: IEEE Congress on Evolutionary Computation, 2011, pp. 933–
940.

[28] M.-L. Zhang, Z.-H. Zhou, Multilabel neural networks with applications to
functional genomics and text categorization, IEEE Trans. Knowl. Data Eng. 18
(2006) 1338–1351.

[29] I. Pillai, G. Fumera, F. Roli, Threshold optimisation for multi-label classifiers,
Pattern Recognit. 46 (7) (2013) 2055–2065.

[30] A.A. Freitas, Data Mining and Knowledge Discovery with Evolutionary Algo-
rithms, Springer-Verlag, Berlin, Heidelberg, 2002.

[31] J. He, X. Yao, Towards an analytic framework for analysing the computation
time of evolutionary algorithms, Artificial Intelligence 145 (1) (2003) 59–97.

[32] M. Wilkins, E. Gasteiger, A. Bairoch, J. Sanchez, K. Williams, R. Appel, D.
Hochstrasser, Protein identification and analysis tools in the expasy server,
Methods Mol. Biol. (Clifton, N.J.) 112 (1999) 531–552, cited By (since 1996)
95.

[33] H.W. Mewes, et al., MIPS: A database for genomes and protein sequences,
Nucleic Acids Res. 30 (2002) 31–34.

[34] A. Kumar, K.-H. Cheung, P. Ross-Macdonald, P.S.R. Coelho, P.Miller,M. Snyder,
TRIPLES: A database of gene function in Saccharomyces cerevisiae, Nucl. Acids
Res. 28 (1) (2000) 81–84.

[35] A. Clare, Machine Learning and Data Mining for Yeast Functional Genomics,
Ph.D. thesis, University of Wales, 2003.

[36] P.T. Spellman, G. Sherlock, M.Q. Zhang, V.R. Iyer, K. Anders, M.B. Eisen, P.O.
Brown, D. Botstein, B. Futcher, Comprehensive identification of cell cycle-
regulated genes of the yeast Saccharomyces cerevisiae by microarray hy-
bridization, Mol. Biol. Cell 9 (12) (1998) 3273–3297.

[37] F.P. Roth, J.D. Hughes, P.W. Estep, G.M. Church, Finding DNA regulatorymotifs
within unaligned noncoding sequences clustered by whole-genome mRNA
quantitation, Nature Biotechnol. 16 (10) (1998) 939–945, http://dx.doi.org/
10.1038/nbt1098-939.

http://refhub.elsevier.com/S1568-4946(19)30021-3/sb1
http://refhub.elsevier.com/S1568-4946(19)30021-3/sb1
http://refhub.elsevier.com/S1568-4946(19)30021-3/sb1
http://refhub.elsevier.com/S1568-4946(19)30021-3/sb4
http://refhub.elsevier.com/S1568-4946(19)30021-3/sb4
http://refhub.elsevier.com/S1568-4946(19)30021-3/sb4
http://refhub.elsevier.com/S1568-4946(19)30021-3/sb5
http://refhub.elsevier.com/S1568-4946(19)30021-3/sb5
http://refhub.elsevier.com/S1568-4946(19)30021-3/sb5
http://refhub.elsevier.com/S1568-4946(19)30021-3/sb5
http://refhub.elsevier.com/S1568-4946(19)30021-3/sb5
http://refhub.elsevier.com/S1568-4946(19)30021-3/sb7
http://refhub.elsevier.com/S1568-4946(19)30021-3/sb7
http://refhub.elsevier.com/S1568-4946(19)30021-3/sb7
http://refhub.elsevier.com/S1568-4946(19)30021-3/sb7
http://refhub.elsevier.com/S1568-4946(19)30021-3/sb7
http://refhub.elsevier.com/S1568-4946(19)30021-3/sb7
http://refhub.elsevier.com/S1568-4946(19)30021-3/sb7
http://refhub.elsevier.com/S1568-4946(19)30021-3/sb8
http://refhub.elsevier.com/S1568-4946(19)30021-3/sb8
http://refhub.elsevier.com/S1568-4946(19)30021-3/sb8
http://refhub.elsevier.com/S1568-4946(19)30021-3/sb8
http://refhub.elsevier.com/S1568-4946(19)30021-3/sb8
http://refhub.elsevier.com/S1568-4946(19)30021-3/sb9
http://refhub.elsevier.com/S1568-4946(19)30021-3/sb9
http://refhub.elsevier.com/S1568-4946(19)30021-3/sb9
http://refhub.elsevier.com/S1568-4946(19)30021-3/sb9
http://refhub.elsevier.com/S1568-4946(19)30021-3/sb9
http://refhub.elsevier.com/S1568-4946(19)30021-3/sb10
http://refhub.elsevier.com/S1568-4946(19)30021-3/sb10
http://refhub.elsevier.com/S1568-4946(19)30021-3/sb10
http://refhub.elsevier.com/S1568-4946(19)30021-3/sb10
http://refhub.elsevier.com/S1568-4946(19)30021-3/sb10
http://refhub.elsevier.com/S1568-4946(19)30021-3/sb11
http://refhub.elsevier.com/S1568-4946(19)30021-3/sb11
http://refhub.elsevier.com/S1568-4946(19)30021-3/sb11
http://refhub.elsevier.com/S1568-4946(19)30021-3/sb11
http://refhub.elsevier.com/S1568-4946(19)30021-3/sb11
http://refhub.elsevier.com/S1568-4946(19)30021-3/sb12
http://refhub.elsevier.com/S1568-4946(19)30021-3/sb12
http://refhub.elsevier.com/S1568-4946(19)30021-3/sb12
http://refhub.elsevier.com/S1568-4946(19)30021-3/sb13
http://refhub.elsevier.com/S1568-4946(19)30021-3/sb13
http://refhub.elsevier.com/S1568-4946(19)30021-3/sb13
http://refhub.elsevier.com/S1568-4946(19)30021-3/sb14
http://refhub.elsevier.com/S1568-4946(19)30021-3/sb14
http://refhub.elsevier.com/S1568-4946(19)30021-3/sb14
http://refhub.elsevier.com/S1568-4946(19)30021-3/sb14
http://refhub.elsevier.com/S1568-4946(19)30021-3/sb14
http://refhub.elsevier.com/S1568-4946(19)30021-3/sb14
http://refhub.elsevier.com/S1568-4946(19)30021-3/sb14
http://refhub.elsevier.com/S1568-4946(19)30021-3/sb14
http://refhub.elsevier.com/S1568-4946(19)30021-3/sb14
http://refhub.elsevier.com/S1568-4946(19)30021-3/sb15
http://refhub.elsevier.com/S1568-4946(19)30021-3/sb16
http://refhub.elsevier.com/S1568-4946(19)30021-3/sb16
http://refhub.elsevier.com/S1568-4946(19)30021-3/sb16
http://refhub.elsevier.com/S1568-4946(19)30021-3/sb16
http://refhub.elsevier.com/S1568-4946(19)30021-3/sb16
http://refhub.elsevier.com/S1568-4946(19)30021-3/sb16
http://refhub.elsevier.com/S1568-4946(19)30021-3/sb16
http://refhub.elsevier.com/S1568-4946(19)30021-3/sb17
http://refhub.elsevier.com/S1568-4946(19)30021-3/sb17
http://refhub.elsevier.com/S1568-4946(19)30021-3/sb17
http://refhub.elsevier.com/S1568-4946(19)30021-3/sb18
http://refhub.elsevier.com/S1568-4946(19)30021-3/sb18
http://refhub.elsevier.com/S1568-4946(19)30021-3/sb18
http://refhub.elsevier.com/S1568-4946(19)30021-3/sb18
http://refhub.elsevier.com/S1568-4946(19)30021-3/sb18
http://refhub.elsevier.com/S1568-4946(19)30021-3/sb19
http://refhub.elsevier.com/S1568-4946(19)30021-3/sb19
http://refhub.elsevier.com/S1568-4946(19)30021-3/sb19
http://refhub.elsevier.com/S1568-4946(19)30021-3/sb20
http://refhub.elsevier.com/S1568-4946(19)30021-3/sb20
http://refhub.elsevier.com/S1568-4946(19)30021-3/sb20
http://refhub.elsevier.com/S1568-4946(19)30021-3/sb22
http://refhub.elsevier.com/S1568-4946(19)30021-3/sb22
http://refhub.elsevier.com/S1568-4946(19)30021-3/sb22
http://refhub.elsevier.com/S1568-4946(19)30021-3/sb22
http://refhub.elsevier.com/S1568-4946(19)30021-3/sb22
http://refhub.elsevier.com/S1568-4946(19)30021-3/sb23
http://refhub.elsevier.com/S1568-4946(19)30021-3/sb23
http://refhub.elsevier.com/S1568-4946(19)30021-3/sb23
http://refhub.elsevier.com/S1568-4946(19)30021-3/sb25
http://refhub.elsevier.com/S1568-4946(19)30021-3/sb25
http://refhub.elsevier.com/S1568-4946(19)30021-3/sb25
http://refhub.elsevier.com/S1568-4946(19)30021-3/sb26
http://refhub.elsevier.com/S1568-4946(19)30021-3/sb26
http://refhub.elsevier.com/S1568-4946(19)30021-3/sb26
http://refhub.elsevier.com/S1568-4946(19)30021-3/sb27
http://refhub.elsevier.com/S1568-4946(19)30021-3/sb27
http://refhub.elsevier.com/S1568-4946(19)30021-3/sb27
http://refhub.elsevier.com/S1568-4946(19)30021-3/sb27
http://refhub.elsevier.com/S1568-4946(19)30021-3/sb27
http://refhub.elsevier.com/S1568-4946(19)30021-3/sb28
http://refhub.elsevier.com/S1568-4946(19)30021-3/sb28
http://refhub.elsevier.com/S1568-4946(19)30021-3/sb28
http://refhub.elsevier.com/S1568-4946(19)30021-3/sb28
http://refhub.elsevier.com/S1568-4946(19)30021-3/sb28
http://refhub.elsevier.com/S1568-4946(19)30021-3/sb29
http://refhub.elsevier.com/S1568-4946(19)30021-3/sb29
http://refhub.elsevier.com/S1568-4946(19)30021-3/sb29
http://refhub.elsevier.com/S1568-4946(19)30021-3/sb30
http://refhub.elsevier.com/S1568-4946(19)30021-3/sb30
http://refhub.elsevier.com/S1568-4946(19)30021-3/sb30
http://refhub.elsevier.com/S1568-4946(19)30021-3/sb31
http://refhub.elsevier.com/S1568-4946(19)30021-3/sb31
http://refhub.elsevier.com/S1568-4946(19)30021-3/sb31
http://refhub.elsevier.com/S1568-4946(19)30021-3/sb32
http://refhub.elsevier.com/S1568-4946(19)30021-3/sb32
http://refhub.elsevier.com/S1568-4946(19)30021-3/sb32
http://refhub.elsevier.com/S1568-4946(19)30021-3/sb32
http://refhub.elsevier.com/S1568-4946(19)30021-3/sb32
http://refhub.elsevier.com/S1568-4946(19)30021-3/sb32
http://refhub.elsevier.com/S1568-4946(19)30021-3/sb32
http://refhub.elsevier.com/S1568-4946(19)30021-3/sb33
http://refhub.elsevier.com/S1568-4946(19)30021-3/sb33
http://refhub.elsevier.com/S1568-4946(19)30021-3/sb33
http://refhub.elsevier.com/S1568-4946(19)30021-3/sb34
http://refhub.elsevier.com/S1568-4946(19)30021-3/sb34
http://refhub.elsevier.com/S1568-4946(19)30021-3/sb34
http://refhub.elsevier.com/S1568-4946(19)30021-3/sb34
http://refhub.elsevier.com/S1568-4946(19)30021-3/sb34
http://refhub.elsevier.com/S1568-4946(19)30021-3/sb35
http://refhub.elsevier.com/S1568-4946(19)30021-3/sb35
http://refhub.elsevier.com/S1568-4946(19)30021-3/sb35
http://refhub.elsevier.com/S1568-4946(19)30021-3/sb36
http://refhub.elsevier.com/S1568-4946(19)30021-3/sb36
http://refhub.elsevier.com/S1568-4946(19)30021-3/sb36
http://refhub.elsevier.com/S1568-4946(19)30021-3/sb36
http://refhub.elsevier.com/S1568-4946(19)30021-3/sb36
http://refhub.elsevier.com/S1568-4946(19)30021-3/sb36
http://refhub.elsevier.com/S1568-4946(19)30021-3/sb36
http://dx.doi.org/10.1038/nbt1098-939
http://dx.doi.org/10.1038/nbt1098-939
http://dx.doi.org/10.1038/nbt1098-939

604 R. Cerri, M.P. Basgalupp, R.C. Barros et al. / Applied Soft Computing Journal 77 (2019) 584–604

[38] J.L. DeRisi, V.R. Iyer, P.O. Brown, Exploring the metabolic and genetic control
of gene expression on a genomic scale, Science 278 (5338) (1997) 680–686,
http://dx.doi.org/10.1126/science.278.5338.680.

[39] M.B. Eisen, P.T. Spellman, P.O. Brown, D. Botstein, Cluster analysis and display
of genome-wide expression patterns, Proc. Natl. Acad. Sci. USA 95 (25) (1998)
14863–14868.

[40] A.P. Gasch, P.T. Spellman, C.M. Kao, O. Carmel-Harel, M.B. Eisen, G. Storz, D.
Botstein, P.O. Brown, Genomic expression programs in the response of yeast
cells to environmental changes, Mol. Biol. Cell 11 (12) (2000) 4241–4257.

[41] A.P. Gasch,M.Huang, S.Metzner, D. Botstein, S.J. Elledge, P.O. Brown, Genomic
expression responses to DNA-damaging agents and the regulatory role of the
yeast ATR homolog Mec1p, Mol. Biol. Cell 12 (2001) 2987–3003.

[42] S. Chu, J. Derisi, M. Eisen, J. Mulholl, D. Botstein, P.O. Brown, I. Herskowitz, The
transcriptional program of sporulation in budding yeast, Science 282 (1998)
699–705.

[43] J. Davis, M. Goadrich, The relationship between Precision-Recall and ROC
curves, in: International Conference onMachine Learning, 2006, pp. 233–240.

[44] J. Demšar, Statistical comparisons of classifiers over multiple data sets, J.
Mach. Learn. Res. 7 (2006) 1–30.

[45] H. Blockeel, L. De Raedt, J. Ramon, Top-down induction of clustering trees, in:
International Conference on Machine Learning, 1998, pp. 55–63.

[46] D. Aleksovski, D. Kocev, S. Dzeroski, Evaluation of distance measures for
hierarchicalmultilabel classification in functional genomics, in:Workshop on
Learning from Multi-Label Data of ECML/PKDD, 2009, pp. 5–16.

[47] R. Iman, J. Davenport, Approximations of the critical region of the friedman
statistic, Comm. Statist. (1980) 571–595.

http://dx.doi.org/10.1126/science.278.5338.680
http://refhub.elsevier.com/S1568-4946(19)30021-3/sb39
http://refhub.elsevier.com/S1568-4946(19)30021-3/sb39
http://refhub.elsevier.com/S1568-4946(19)30021-3/sb39
http://refhub.elsevier.com/S1568-4946(19)30021-3/sb39
http://refhub.elsevier.com/S1568-4946(19)30021-3/sb39
http://refhub.elsevier.com/S1568-4946(19)30021-3/sb40
http://refhub.elsevier.com/S1568-4946(19)30021-3/sb40
http://refhub.elsevier.com/S1568-4946(19)30021-3/sb40
http://refhub.elsevier.com/S1568-4946(19)30021-3/sb40
http://refhub.elsevier.com/S1568-4946(19)30021-3/sb40
http://refhub.elsevier.com/S1568-4946(19)30021-3/sb41
http://refhub.elsevier.com/S1568-4946(19)30021-3/sb41
http://refhub.elsevier.com/S1568-4946(19)30021-3/sb41
http://refhub.elsevier.com/S1568-4946(19)30021-3/sb41
http://refhub.elsevier.com/S1568-4946(19)30021-3/sb41
http://refhub.elsevier.com/S1568-4946(19)30021-3/sb42
http://refhub.elsevier.com/S1568-4946(19)30021-3/sb42
http://refhub.elsevier.com/S1568-4946(19)30021-3/sb42
http://refhub.elsevier.com/S1568-4946(19)30021-3/sb42
http://refhub.elsevier.com/S1568-4946(19)30021-3/sb42
http://refhub.elsevier.com/S1568-4946(19)30021-3/sb44
http://refhub.elsevier.com/S1568-4946(19)30021-3/sb44
http://refhub.elsevier.com/S1568-4946(19)30021-3/sb44
http://refhub.elsevier.com/S1568-4946(19)30021-3/sb47
http://refhub.elsevier.com/S1568-4946(19)30021-3/sb47
http://refhub.elsevier.com/S1568-4946(19)30021-3/sb47

	Inducing Hierarchical Multi-label Classification rules with Genetic Algorithms
	Introduction
	Related work
	Hierarchical multi-label classification with a genetic algorithm
	Overview
	Representation of individuals
	Indexing of operators and nominal values
	Population initialization
	Evolutionary process
	Fitness calculation
	Variance gain
	Weighting of variance gain and percentage of covered instances
	Weighting of variance gain and area under the precision–recall curve

	Computational complexity
	Population initialization
	Local search
	Fitness functions

	Methodology
	Datasets
	Evaluation measures
	Genetic algorithm variations
	Variation in the fitness function
	Variation in the crossover procedure
	Variation in the constructed rules

	Genetic algorithm parameter values
	The baseline hmAnt-Miner method
	The baseline PCT-based methods
	Statistical analysis

	Experiments and discussion
	Statistical analysis
	Analysis for specific threshold values

	Conclusions and future works
	Acknowledgments
	References

