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A B S T R A C T

Recent advances in deep learning methods have redefined the state-of-the-art for many medical imaging applications, surpassing previous approaches and sometimes
even competing with human judgment in several tasks. Those models, however, when trained to reduce the empirical risk on a single domain, fail to generalize when
applied to other domains, a very common scenario in medical imaging due to the variability of images and anatomical structures, even across the same imaging
modality. In this work, we extend the method of unsupervised domain adaptation using self-ensembling for the semantic segmentation task and explore multiple facets
of the method on a small and realistic publicly-available magnetic resonance (MRI) dataset. Through an extensive evaluation, we show that self-ensembling can indeed
improve the generalization of the models even when using a small amount of unlabeled data.
1. Introduction

In the past few years, the research community has witnessed the fast
developmental pace of deep learning (LeCun et al., 2015) approaches for
unstructured data analysis, arguably establishing an important scientific
milestone. Deep neural networks constitute a paradigm shift from
traditional machine learning approaches for unstructured data. Whereas
the latter rely on hand-crafted feature engineering for improving learning
over images, text, audio, and similarly unstructured inputs, deep neural
networks are capable of automatically learning robust hierarchical fea-
tures, in what is known as representation learning. Deep learning ap-
proaches have achieved human-level performance on many tasks and,
indeed, sometimes even surpassing it in applications such as natural
image classification (He et al., 2016), or arrhythmia detection (Rajpurkar
et al., 2017).

Due to its popularity and compelling results in many domains, deep
learning attracted a lot of attention from the medical imaging commu-
nity. A recent survey by Litjens et al. (2017) analyzed more than 300
medical imaging studies, and found that deep neural networks have
become pervasive throughout the field of medical imaging, with a sig-
nificant increase in the number of publications between 2015 and 2016.
The survey also identified that the most addressed task is image seg-
mentation, likely due to the importance of quantification of anatomical
structures and pathologies (Gros et al., 2018) for disease diagnosis and
prognosis, as opposed to less informative tasks such as classification of
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pathologies or detection of structures, which can be posed as a segmen-
tation tasks as well, but not the opposite.

Deep neural networks are thus becoming the norm in medical imag-
ing, though there are still several unsolved challenges that remain to be
addressed. For instance, one of the most well-known problems is the high
sample complexity, or how much data deep learning requires to accu-
rately learn and perform well on unseen images, which is related to the
concepts of model complexity and generalization, active areas of research
in learning theory (Neyshabur et al., 2017).

The large amount of required data to train deep neural networks can
be partially mitigated with techniques such as transfer learning (Yosinski
et al., 2014; Zamir et al., 2018). However, transfer learning is problem-
atic in medical imaging because a large dataset is still required so the
models can benefit from the inductive transfer process. Unlike the case of
natural images, where annotations can be easily provided by non-experts,
medical images require careful and time-consuming analysis from
trained experts such as radiologists.

Yet another challenge when deploying deep learning models to
medical imaging analysis – and perhaps one of the most difficult to solve
– is the so-called data distribution shift, wherein different imaging sce-
narios (e.g. parameter choices, different protocols) can result in vastly
different data distributions, despite imaging a common object. Therefore,
models trained under the empirical risk minimization (ERM) principle,
might fail to generalize to other domains due to its strong assumptions.
ERM is the statistical learning principle behind many machine learning
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Fig. 2. MRI axial-slice pixel intensity distribution from four different centers
(UCL, Montreal, Zurich, Vanderbilt) that collaborated to the SCGM Segmenta-
tion Challenge (Prados et al., 2017). Normalized between 0 and 1 per center.
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methods, and it offers good learning guarantees and bounds if its as-
sumptions hold, such as the fact that the training and test datasets derive
from similar domains. However, in practice, this assumption is often
violated.

When a deep learning model that assumes independent and
identically-distributed (iid) data is trained with images from one domain
and is subsequently deployed on images from a different domain (e.g.
distinct imaging center), that follow a distinct data distribution, its per-
formance often degrades by a large margin. An example of domain shift
can be seen in magnetic resonance imaging (MRI) in different centers,
where machine vendor, software versions, radio-frequency coils, and
sequence parameters (e.g., slice positioning, image resolution) often
vary, producing images that come from different distributions. Fig. 1 il-
lustrates those inter-center differences in data distribution, based on data
from the Gray Matter (GM) segmentation challenge (Prados et al., 2017).
Fig. 2 illustrates the associated voxel intensity distribution for the same
dataset.

Although this distribution shift is common in medical imaging, the
problem is surprisingly ignored during the design of many different
challenges in the field. It is common to have the same domain data (same
machine, protocol, etc.) on both training and test sets. However, this
homogeneous data split often does not represent the reality and in many
cases will produce over-optimistic evaluation results. In practice, it is rare
to have labeled data available from a new center before training a model,
hence it is common to use a pre-trained model from a different domain on
completely different data. Therefore, it is paramount to have a proper
evaluation avoid contaminating the test set with data from the same
domain that is present in the training set. Incurring the risk of the
detrimental effects of inadequate evaluations (Zech et al., 2018). The
name given to learn a classifier model or any other predictor with a shift
between the training and the target/test distributions is known as
“domain adaptation” (DA). In this work we expand upon a
previously-developed method (French et al., 2017) for DA based on the
Mean Teacher (Tarvainen and Valpola, 2017) approach, to segmentation
tasks, the most addressed task in medical imaging.

We provide the following contributions: (i) we extend the unsuper-
vised DA method using self-ensembling for the semantic segmentation
task; to the best of our knowledge, this is the first time this method is used
Fig. 1. Samples of axial MRI from four different centers (UCL, Montreal, Zurich, Va
2017). Top row: original MRI images. Bottom row: crop of the spinal cord (green
in color.
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for semantic segmentation in medical imaging; (ii) we explore some
model components such as different consistency losses, and evaluate the
performance of our method on a series of experiments using a realistic
small MRI dataset; (iii) we perform an ablation experiment to provide
strong evidence that unlabeled data is responsible for the observed per-
formance improvement, ruling out the effects of the exponential moving
average; (iv) we provide visualizations to derive insight into the model
dynamics of the unsupervised DA task.

This paper is organized as follows. In Section 2 we present related
work, in Section 3 we give a brief treatment to the unsupervised DA task
and its connection to semi-supervised learning. In Section 4 we describe
our method in terms of model architecture and corresponding design
decisions. In Section 5 we describe the dataset used in our experiments
and how we performed the data split for the DA scenario. In Section 6 we
provide the experiment results, followed by an ablation study in Section
7. In Section 8 we provide visual insights from the adaptation dynamics
nderbilt) that participated in the SCGM Segmentation Challenge (Prados et al.,
rectangle). Reproduced from (Perone and Cohen- Adad, 2018b). Best viewed
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of the model for multiple domains. Finally, in Section 9 we discuss our
findings and limitations of our work. In the spirit of open science and
reproducibility, we also provide more information regarding data and
source-code availability in Section 10.

2. Related work

Deep learning methods for medical imaging has become a popular
research focus in recent years (Litjens et al., 2017). Before the develop-
ment of deep learning models, initial work was focused mostly on
patch-based (Coup�e et al., 2011) segmentation. With the growing interest
in deep learning for computer vision, the first attempts using Convolu-
tional Neural Networks (CNNs) for image segmentation processed image
patches through a sliding window, to yield segmented patches, which
were then stitched together to yield the final segmented image (Lai,
2015). The main drawbacks of this approach are computational cost (i.e.,
several forward passes are required to produce the segmented images)
and inconsistency in predictions, the latter of which can be fixed or
partially mitigated by overlapping sliding windows, depending on the
network architecture.

Though patch-wise methods continue to be actively researched (Hou
et al., 2016) and have led to several advances in segmentation (Lai,
2015), presently, the most common deep architecture for segmentation is
or is based on the so-called Fully Convolutional Network (FCN) (Long
et al., 2015). This architecture is solely based on convolutional layers
with the final result not depending on the use of fully-connected layers.
FCNs can provide a fully-segmented image within a single forward step,
and with variable output size depending on the size of the input tensor.
One of the most well-known FCNs for medical imaging is the U-net
(Ronneberger et al., 2015), which combines convolutional, down-
sampling, and upsampling operations with skip non-residual connec-
tions. In this work we used the U-Net architecture, although the proposed
framework is decoupled from the choice of network architecture, as
further discussed in Section 4.3.

Deep Domain Adaptation (DDA), which is a field unrelated in essence
to medical imaging, has been widely studied in the recent years (Wang&
Deng, 2018). We can divide the literature on DDA as follows: (i) methods
based on building domain-invariant feature spaces through
auto-encoders (Ghifary et al., 2016), adversarial training (Ganin et al.,
2016), GANs (Hoffman et al., 2017; Sankaranarayanan et al., 2018), or
disentanglement strategies (Liu et al., 2018; Cao et al., 2018); (ii)
methods based on the analysis of higher-order statistics (Li et al., 2016;
Sun and Saenko, 2016); (iii) methods based on explicit discrepancy be-
tween source and target domains (Tzeng et al., 2014); and (iv)
self-ensembling methods based on implicit discrepancy (French et al.,
2017; Tarvainen and Valpola, 2017).

In (Hoffman et al., 2017), the authors trained GANs with
cycle-consistent loss functions (Zhu et al., 2017) to remap the distribu-
tion from the source to the target dataset, thereby creating target domain
specific features for completing the task. In (Sankaranarayanan et al.,
2018), GANs were employed as a means of learning aligned embeddings
for both domains. Similarly, disentangled representations for each
domain have been proposed (Liu et al., 2018; Cao et al., 2018) with the
goal of generating a feature space capable of separating
domain-dependent and domain-invariant information.

In (Li et al., 2016), the authors proposed to change parameters of the
neural network layers for adapting domains by directly computing or
optimizing higher-order statistics. More specifically, they proposed an
alternative for batch normalization called Adaptive Batch Normalization
(AdaBN) that computes different statistics for the source and target do-
mains, hence creating domain-invariant features that are normalized
according to the respective domain. In a similar fashion, Deep CORAL
(Sun and Saenko, 2016) provides a loss function for minimizing the co-
variances between target and source domain features.

Discrepancy-based methods pose a different approach to DDA. By
directly minimizing the discrepancy between activations from the source
3

and target domain, the network learns to generate reasonable predictions
while incorporating information from the target domain. The seminal
work of Tzeng et al. (2014) directly minimizes the discrepancy between a
specific layer with labeled samples from the source set and unlabeled
samples from the target set.

Implicit discrepancy-based methods such as self-ensembling (French
et al., 2017) have become widely used for unsupervised domain adap-
tation. Self-ensembling is based on the Mean Teacher network (Tarvai-
nen and Valpola, 2017), which was first introduced for semi-supervised
learning tasks. Due to the similarity between unsupervised domain
adaptation and semi-supervised learning, there are very few adjustments
that need to be made to employ the method for the purposes of DDA.
Mean Teacher optimizes a task loss and a consistency loss, the latter
minimizing the discrepancy between predictions on the source and target
dataset. We further detail how Mean Teacher works in Section 4.1.

There are a few studies that report results of using different data
domains for medical imaging by making use of the unsupervised domain
adaptation literature. The work (AlBadawy et al., 2018) discusses the
impact of deep learning models across different institutions, showing a
statistically significant performance decrease in cross-institutional
train-and-test protocols. A few studies have applied domain adaptation
to medical imaging directly by using adversarial training (Kamnitsas
et al., 2017; Chen et al., 2018; Zhang et al., 2018; Lafarge et al., 2017;
Javanmardi and Tasdizen, 2018; Dou et al., 2018), with some studies
using generative models to augment training (Mahmood et al., 2018;
Madani et al., 2018). Nevertheless, to the best of our knowledge, this
present work is the first to address the problem of domain shift in medical
image segmentation by extending the unsupervised DA self-ensembling
method to semantic segmentation tasks.

3. Semi-supervised learning and unsupervised domain
adaptation

A common approach for improving training when few labeled ex-
amples are available is semi-supervised learning, which is defined as
follows: given a labeled dataset with distribution PðXlÞ and unlabeled
data with distribution PðXuÞ, learn from both labeled and unlabeled data
in order to improve a supervised learning task (say, classification) or an
unsupervised learning task (say, clustering).

Semi-supervised learning methods tend to perform well when unla-
beled data actually come from the same distribution as the labeled data.
This allows the learning algorithm to leverage its knowledge using unla-
beled data, which usually represents the majority of samples. As prom-
ising as semi-supervised learning is, the assumption that the distribution
of unlabeled data PðXuÞ is similar to PðXlÞ often fails in real-world appli-
cations. We refer the reader to a thorough evaluation of semi-supervised
learning methods and their limitations in (Odena et al., 2018).

It often happens that models are applied in situations that are largely
different from those in which they were originally trained. Examples
include different weather conditions for outdoor activity recognition, or
different cities for training driverless vehicles. Those changes in scenario
shift the data distribution PðXÞ, reducing the quality of the predictions in
cases where the model was not properly adapted to the desired condition.

The difference between the distributions from the examples used in
training and test sets is called domain shift. Consider a source dataset with
input distribution PðXsÞ and label distribution PðY jXsÞ, as well as a target
dataset with input distribution PðXtÞ and labels PðYjXtÞ, PðXsÞ 6¼ PðXtÞ.
Domain adaptation can be addressed via a supervised approach where
labeled data from the target domain is available, or via unsupervised
learning where only unlabeled data is available for the target domain.

When a method addresses the problem of domain adaptation using
unlabeled data for the target domain, which is the most common and
useful scenario, the task at hand is called unsupervised domain adaptation.
Unsupervised domain adaptation methods assume that distributions
PðXsÞ, PðYjXsÞ and PðXtÞ are available, while PðYjXtÞ is not. In other
words, only the source dataset provides labeled examples. Hence, the
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task is to leverage knowledge from the target domain using the unlabeled
data available in PðXtÞ.

4. Method

This section details the base domain adaptation methods that we used
for the medical image application. We further discuss the changes that
are needed to enable unsupervised domain adaptation for segmentation
tasks, as opposed to the typical classification scenario.
4.1. Self-ensembling and mean teacher

Self-ensembling was originally conceived as a viable strategy for
generating predictions on unlabeled data (Laine and Aila, 2016). The
original paper proposes two different models for self-ensembling. The
first model, called Π, employs a consistency loss between predictions on
the same input. Each input from a batch is passed twice through a neural
network, each time with distinct augmentation parameters, to yield two
different predictions. A squared difference between those predictions is
minimized along with the cross-entropy for the labeled examples. The

second model, called temporal ensembling, works under the assumption
that as the training progresses, averaging the predictions over time on
unlabeled samples may contribute to a better approximation of the true
labels. This pseudo-label is then considered as a target during training.
The squared difference between the averaged predictions and the current
one is minimized along with the cross-entropy for labeled examples. The
network performs the exponential moving average (EMA) to update the
generated targets at every epoch:

f 0ðxÞt ¼ αf 0ðxÞt�1 þ ð1� αÞf ðxÞt (1)

Where t is the step, x is the data, f ð�Þ is the network and α is a momentum
term that controls how far the ensemble reaches training history data.

Self-ensembling was extended to directly combine model weights
instead of predictions. This adaptation is called the Mean Teacher (Tar-
vainen and Valpola, 2017) model. Considering Eq. (1) for updating the
target pseudo-labels, Mean Teacher updates the model weights at each
step, thus generating a slightly improved model compared to the model
without the EMA, a framework which is linked to the Polyak-Ruppert
Averaging (Polyak and Juditsky, 1992; Ruppert, 1988). In this sce-
nario, the EMA model was named teacher, and the standard model,
student. The update function is as follows:

θ0t ¼ αθ0t�1 þ ð1� αÞθt (2)

where θ are the model parameters, t is the step and α is the hyper-
parameter regulating the importance of the current model's weights with
respect to previous models. The best results are achieved when α is
increased later on during training, as the student is close to convergence,
causing the teacher model to benefit from having a larger memory of its
past weights.

Each training step involves a loss component for both labeled and
unlabeled data. All samples from a batch are evaluated by both the stu-
dent and teacher models, with their respective predictions compared via
the consistency loss. The labeled data, however, is also compared to its
ground truth, as traditionally performed in segmentation tasks, in what
we call the task loss:

JðθÞ ¼ JtaskðθÞ þ γJconsistencyðθÞ þ λRðθÞ (3)

where γ and λ are the Lagrange multipliers that represent, respectively,
the consistency and regularization weights. The γ hyperparameter was
empirically found to improve results when it varied through time, given
that in the earlier training steps the network continues to generate poor
results. The consistency weight follows a sigmoid ramp-up saturating at a
given user-defined value.
4

Mean Teacher follows the dynamics of model distillation (Hinton
et al., 2015). In this scenario, a trained model is used for predicting in-
stances and its output is used as labels for another, smaller model. This is
considered a good practice as soft labels tend to better represent the
characteristics of the classes (e.g., the representation distance between a
Siberian Husky and an Alaskan Malamute should arguably be smaller
than the distance between a Siberian Husky and a Persian Cat). Unlike
traditional distillation formulations, the Mean Teacher framework also
uses the teacher model to generate labels for unlabeled data and repre-
sents a model of the same size that is simultaneously updated during
training.

The Mean Teacher framework was also extended for unsupervised
domain adaptation in (French et al., 2017). Among the proposed
changes, the authors modified the data batches such that each batch
consists of images from both the source and target domains. At each step,
the student model evaluates images from the source domain and com-
putes derivatives via a task loss based on the ground truth. The target
domain images, which are unlabeled, are used to compute the consis-
tency loss by comparing predictions from both student and teacher
models. It differs from its original formulation in that the teacher model
only has access to unlabeled examples (in this case, examples from the
target domain). Each loss function is thus responsible for improving
learning at a single domain. The task loss is evaluated by comparing the
predictions against the ground truth for the labeled examples (source
domain). For the consistency loss, MSE is often used to evaluate the
predictions from both student and teacher models for the unlabeled ex-
amples (target domain).

4.2. Adapting mean teacher for segmentation tasks

Both the original and adapted Mean Teacher versions for unsuper-
vised domain adaptation rely on the cross-entropy classification cost.
Given that we are not dealing with classification but with a segmentation
task, we need to minimize a different loss function that takes into
consideration the particularities of that task. Originally proposed in
(Milletari et al., 2016), the Dice loss generates reliable segmentation
predictions due to its low sensitivity to class imbalance:

JtaskðθÞ ¼ � 2*
PN

i pigiPN
i pi þ

PN
i gi

(4)

where pi and gi are flattened predictions and ground truth values for an
instance, respectively. Dice was kept as the task loss for both baseline and
adaptation experiments. Note that the dice loss is computed for the entire
batch at once, unlike the typical strategy of averaging when using cross-
entropy, for instance.

A second problem when training the student and teacher models for
segmentation tasks is the inconsistency introduced between training
samples of the student and teacher models when a spatial transformation
(e.g., translation, rotation, or any similar spatial transformation for the
purpose of data augmentation) is applied with different parameters to
both inputs of the teacher and student models.

To solve that problem we used the same approach employed by
(Perone and Cohen-Adad, 2018a) as shown in Fig. 4. The spatial trans-
formation gðx;ϕÞ, where x is the input data and ϕ are the transformation
parameters (i.e., rotation angle), is applied to the student model before
feeding data into the model. For the teacher model, the same trans-
formation gðx;ϕÞ is applied to the predictions of the teacher model,
causing both predictions to be aligned for the consistency loss. This
framework is possible because backpropagation only occurs for the stu-
dent model and therefore there is no need for differentiation on the
delayed augmentation of the teacher model. The proposed method is
illustrated in Fig. 4. Examples of images after data augmentation and
their respective compensated ground truth are shown in Fig. 3.

We decided to only conduct data augmentation at the slice-level, not
taking into consideration column-wise cord deformations. This makes



Fig. 3. Random and data-augmented MRI axial-slice samples from the SCGM Segmentation Challenge (Prados et al., 2017). We show how the ground-truth (shown in
green) has to be rotated with the same parameters as the slice in order to match the desired region.
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implementation easier and also more generalizable for datasets that do
not have access to full-volume data, with the cost of maybe not producing
realistic results. Another advantage is the possibility to generate
augmented data during training without much computational cost. The
actual augmentation protocol we follow is an elastic transformation, a
random affine transform, and a random tensor channel shift that adds or
subtract a value which is sampled from a uniform distribution into the
entire channel (voxel-wise).

4.3. Model architecture

Since the U-net (Ronneberger et al., 2015) is widely applied in
medical imaging field for diverse tasks, in order to provide results that
can generalize to a wide spectrum of applications, for all experiments we
employed the U-net (Ronneberger et al., 2015) model architecture with
15 layers, group normalization (Wu and He, 2018), and dropout. The
rationale behind group normalization and not batch normalization is
discussed later.

To provide a fair comparison, we followed the recommendations from
(Oliver et al., 2018) and kept the same model for the baseline and for our
method. While the Mean Teacher model also acts as a regularizer, we
kept the same regularization weights for all comparisons. Regularization
weights can be fine-tuned, however, possibly improving even further the
results of Mean Teacher.

4.4. Baseline employed

Our baseline is exactly the same U-Net architecture that was
employed for the teacher and student models in our method. The training
hyper-parameters are also the same as used on our method, in order to
make a fair comparison among the baseline and our proposal, following
the same methodology used in (Oliver et al., 2018). The only difference
between the baseline and our method is that whereas in the baseline we
train the model in a standard supervised learning fashion with no addi-
tional unlabeled data, in our method we follow the framework protocol
described in Section 4.

We conducted an extensive hyperparameter search to find a proper
baseline model, yielding a mini-batch size of 12 and a dropout rate of 0.5.
For training, we used the Adam optimizer (Kingma and Ba, 2015) with L2
penalty factor of λ ¼ 6� 10�4, β1 ¼ 0:99, and β2 ¼ 0:999. For learning
rate, we used a sigmoid learning rate ramp-up strategy until epoch 50
followed by a cosine ramp-down until epoch 350. Eq. (5) shows the
sigmoid ramp-up strategy:

RupðmÞ ¼ αe�5ð1�mÞ2 (5)

where α is the highest learning rate and m represents the ratio between
current epoch and the total ramp-up epochs. Eq. (6) presents the cosine
ramp-down strategy:

RdownðrÞ ¼ α
cosðπrÞ þ 1

2
(6)
5

where α is the highest learning rate and r is the ratio between the number
of epochs after the ramp-up procedure and the total number of epochs
expected for training.

For a fair comparison, and to be able to assess the specific benefits of
domain adaptation, no hyperparameter from the baseline model was
changed in the adaptation scenario. The only change concerned the
hyperparameters, which only affect the domain adaptation training
procedure.
4.5. Consistency loss

The consistency loss is one of the most important aspects of Mean
Teacher. If the difference between predictions from teacher and student
is not representative enough for distilling the knowledge on the student
model, the method will not properly work or training may even diverge.
In the original implementation of the Mean Teacher method, the mean
squared error (MSE) was proposed:

JMSEðθÞ ¼
PN

i ðpi � giÞ2
N

(7)

where pi and gi are flattened predictions from student and teacher,
respectively.

As an alternative, the cross-entropy is more commonly used for
classification tasks. The cross-entropy is defined as:

JCEðθÞ ¼ �
XN

i

pi log gi (8)

where pi and gi are predictions from student and teacher, respectively.
However, cross-entropy is also known to be sensitive to class imbalance.

Our preliminary experiments led to use MSE with different weights
per class to address the problem of class imbalance. However, this
approach relies on thresholding predictions from the teacher to define
binary expected voxel values for the student. Defining both the correct
weights and the threshold value is a difficult task that did not seem to
improve overall results.

The same problem happens with more complex losses, e.g., the Focal
Loss (Lin et al., 2018), due to additional hyperparameters (in this case, γ
and β).

We have thus explored other losses: the Dice loss, presented in Section
4, and the Tversky loss (Salehi et al., 2017). The Tversky loss is a vari-
ation of the dice loss that aims at mitigating the problem of class
imbalance, which is common in medical image segmentation tasks. It is
defined as:

JtverskyðθÞ ¼ �
PN

i p0ig0iPN
i p0ig0i þ α

PN
i p0ig1i þ β

PN
i p1ig0i

(9)

where p0i and g0i represent the predicted probabilities and expected
ground-truth of a voxel that belongs to the correct tissue, whereas p1i and
g1i respectively represent the predicted probabilities and expected
ground-truth (0 or 1) of a voxel that belongs to any other tissue. The α



C.S. Perone et al. NeuroImage 194 (2019) 1–11
and β hyperparameters address the problem of class imbalance. The
Tversky loss, however, is hampered by the difficulty of determining more
hyperparameters alongside the consistency weight value (same issue as
noted above with the weighted MSE).

We have also noticed that both Dice and Tversky coefficients are
problematic when used as consistency losses. Albeit properly represent-
ing the nature of the task, their formulation is based on multiplication
and it is assumed that the ground-truth is binary, i.e. gi 2 f0; 1g. How-
ever, given that we use the teacher soft outputs (i.e., not binary), both
Dice and Tversky losses do not obey the proper score orientation: SðG;yÞ
> SðG�;yÞ, where S is the scoring function and y is the ground truth. This
relationship should hold only if G is a better probabilistic forecast, which
is not the case for Tversky and Dice when using soft targets.

For example, if pi ¼ 0:9 and gi ¼ 1:0, the numerator yields 0.9.
However, when pi ¼ 0:9 and gi ¼ 0:9, the score should increase (because
the predicted and ground-truth are the same), but instead the numerator
decreases to 0.81 and the output score also decreases.

One way to overcome this issue is to threshold the teacher's pre-
dictions such that the loss functions can work as expected. However,
identifying suitable threshold values is not trivial since they drastically
impact how the network adapts, and reduces the benefits of using a
distillation-based (Hinton et al., 2015) approach. An alternative to
thresholding is to modify the formulations of the loss functions such that
they can properly handle non-binary labels. A detailed analysis of such
modifications falls outside the scope of this paper so we left it for future
work.

4.6. Batch normalization and group normalization for domain adaptation

Batch Normalization (Ioffe and Szegedy, 2015) (BN) is a method used
to improve the training of deep neural networks through the stabilization
of the distribution of layer inputs. Nowadays, Batch Normalization is
pervasive in most deep learning architectures, enabling the use of large
learning rates and helping with convergence.

Initially thought to help with the internal covariate shift (ICS) prob-
lem (Ioffe and Szegedy, 2015), Batch Normalization was recently found
(Santurkar et al., 2018) to smooth the optimization landscape of the
network due to the improvement of the Lipschitzness, or β-smoothness
(Santurkar et al., 2018) of both loss and gradients.

Batch Normalization works differently for training and inference.
During training, the normalization happens using the batch statistics,
while on inference it uses the population statistics, usually estimated
with moving averages on each batch during the training procedure. This
strategy, however, is problematic for domain adaptation via Mean
Teacher, given that there are multiple distributions being fed during
training, causing the Batch Normalization statistics to be computed with
both source and target data.

One possible approach to overcome that issue is to use different batch
statistics for the source and the target domains as done in AdaBN (Li
et al., 2016). Implementing this approach within the training procedure
is easily achieved using modern frameworks because it only requires to
forward the batch to each domain separately (French et al., 2017).
However, in the implementation of French et al., both source and target
domain data were used to compute the running average at inference. One
should ideally perform running averages and population statistics on
both domains separately, though at the expense of increased complexity
on training, especially when running on a multi-GPU scenario with small
batch sizes, a very common scenario in segmentation tasks where syn-
chronization is also required. Another alternative to Batch Normalization
limitations is to use Weight Normalization (Salimans and Kingma, 2016)
instead. In Weight Normalization, the weight vectors have their norm
controlled in order to improve convergence. Although not using mini-
batch statistics — which is our main concern on BN — research showed
that it fails to compete with BN in many tasks (Wu and He, 2018).

Besides the mentioned issues, Batch Normalization also suffers from
sub-optimal results when using small batch sizes (Wu and He, 2018),
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which are very common in segmentation tasks due to memory re-
quirements. For those reasons, we chose Group Normalization (Wu and
He, 2018), an alternative to Batch Normalization where channels are
divided into groups and where mean and variance are computed within
each group regardless of batch sizes. Group Normalization works
consistently better than Batch Normalization with small batch sizes
(typically ¡15) and does not require storing running averages for the
population statistics, simplifying the training and inference procedures
and providing better results for our scenario that involves domain
adaptation and segmentation tasks.

4.7. Hyperparameters for unsupervised domain adaptation

A problem shared by many techniques for unsupervised domain
adaptation is how to set proper hyperparameters such as the learning rate
or the consistency weight. In unsupervised settings, there are no labeled
data from the target domain so the estimation of hyperparameters from
the source distribution alone can be completely different from those from
the target distribution.

An alternative method to solve this issue is to use reverse cross-vali-
dation (Zhong et al., 2010), which was also used in (Ganin et al., 2016).
The variant of this method, as used in (Ganin et al., 2016) works as
following: given the labeled source sample S and the unlabeled target
sample T, each set is split into training sets and validation sets (SV and TV

respectively) (Ganin et al., 2016).
The labeled set S' and the unlabeled target set T ' are then used to learn

a classifier η. Using the same algorithm, a reverse classifier ηr is learnt
using the self-labeled set fðx; ηðxÞÞgx2T ' and the unlabeled part of S' as
target sample. The reverse classifier ηr is then evaluated on the validation
set SV of source sample (Ganin et al., 2016).

However, once again, this approach comes at the expense of
increasing the complexity of the validation process. Nevertheless, we
found that the estimation of hyperparameters for Mean Teacher on the
source domain yielded robust results, therefore we adopted them in our
experiments. We are aware that such a simple strategy is a limitation of
our evaluation procedure since we could probably achieve better results
for our proposed method by incorporating a more sophisticated hyper-
parameter estimation procedure.

5. Materials

The Spinal Cord GrayMatter Challenge (Prados et al., 2017) dataset is
a multi-center, multi-vendor, and publicly-available MRI data collection
that is comprised of 80 healthy subjects with 20 subjects from each
center.

The demographics of the dataset range from a mean age of 28.3 up to
44.3 years old. Three different MRI systems were employed (Philips
Achieva, Siemens Trio, Siemens Skyra) with distinct acquisition param-
eters. The voxel size resolution of the dataset ranges from 0:25� 0:25�
2:5 mm up to 0:5� 0:5� 5:0 mm and the number of axial slices ranged
from 3 to 28. The dataset is split between training (40) and test (40) sets,
and the test set labels are hidden (not publicly available). For each
labeled slice in the dataset, 4 gold-standard segmentation masks were
manually created by 4 independent experts (one per participating cen-
ter). For more detailed information regarding the dataset (e.g., the MRI
parameters), please see (Prados et al., 2017). We considered each sli-
ce/rater pair an independent sample, thus using 4 times the number of
slices for training and testing than the total number of samples.

Since the Spinal Cord Gray Matter Challenge dataset contains data
from all 4 centers both in the training and test sets, we used a non-
standard split in order to evaluate our technique within the domain
adaptation scenario, where the domain present in the test set is not
contaminated by the training data domain. Therefore, we used centers 1
and 2 as the training set, center 3 as the validation set, and center 4 as the
test set.

We used the unlabeled data from center 4 test set (which does not



Fig. 5. Overview of the data splitting method for training machine learning
models. Each colored square represents a single subject of the dataset (con-
taining multiple axial slices).
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contain publicly-available labels) as the unlabeled data for the target
domain, and we used the training data from center 4 (with labels) as the
test set to evaluate the final performance of our model. We also slice all
3D samples into 2D axial slices and resampled each slice to 0:25� 0:25
mm. An overview of the dataset is presented in Fig. 5.

6. Experiments

We have designed several experiments to understand the behavior of
different aspects of domain adaptation on the medical imaging domain.
We have also performed ablation studies and evaluated multiple metrics
for each center.

6.1. Adapting to different centers

We trained the network with both centers 1 and 2 in a supervised
fashion. We then adapted the network to centers 3 and 4 separately. With
this setup, we were able to address three related research questions on
adaptation and semi-supervised learning:

1. How do predictions change at inference time when images from do-
mains different than the source domain are presented?

2. How does the network change its predictions to the novel domain
after performing domain adaptation?

3. How well does an adapted network generalize when presented with
images that were not used during training, neither as a supervised
signal nor as an unsupervised adaptation component?

Results of this first experiment are presented in Table 1, where all
metrics were computed on axial slices on a 2D fashion and in the
resampled target space.

Regarding Question 1. Both centers 1 and 2 are included in the
training set and we would like to assess whether additional unsupervised
Fig. 4. Overview of the proposed method. The green panel represents the traditional
the gðx;ϕÞ transformation and fed into the student model. (2) The teacher model par
weights. (3) The traditional segmentation loss, where the supervision signal is provi
target domain is transformed with gðx;ϕ'Þ before the student model forward pass
transformed with gðx;ϕ'Þ (same transformation as in Step 4). (6) The consistency lo
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data from different domains (centers 3 or 4) improve generalization on
the centers 1 and 2. For both adapted centers 3 and 4, results for all
metrics (except for recall) outperform the baseline, suggesting a positive
change in prediction performance for the source domain after domain
adaptation on unseen domains leveraging unlabeled data.
supervision framework. (1) The source domain input slice data is augmented by
ameters is updated with an exponential moving average (EMA) from the student
ded with the source domain labels. (4) The input unlabeled slice data from the
(note the different parametrization ϕ'). (5) The teacher model prediction is

ss, which enforces consistency between student and teacher predictions.



Table 1
Evaluation results in different centers. The evaluation and adaptation columns represent, respectively, the centers where testing and adaptation data were collected.
Results are averages and standard deviations over 10 runs (with independent initialization of random weights). Values highlighted represent the best results at each
center. All experiments were trained in both centers 1 and 2 simultaneously. The baseline rows are just the standard supervised learning procedure with centers 1 and 2
as training data and no additional information. Dice represents the Sørensen–Dice coefficient and mIoU represents the mean Intersection over Union— or Jaccard Index.

Evaluation Adaptation Dice mIoU Recall Precision Specificity Hausdorff

Center 1 Baseline 47.25 � 0.10 31.46 � 0.08 94.90� 0.29 32.18 � 0.09 99.66 � 0.0 2.88 � 0.01
Center 3 47.71 � 0.16 31.84 � 0.14 94.18 � 0.16 32.69 � 0.15 99.67 � 0.0 2.85� 0.01
Center 4 48.42� 0.92 32.47 � 0.80 94.51 � 0.57 33.33� 0.93 99.68 � 0.02 2.86 � 0.02

Center 2 Baseline 50.69 � 0.09 34.44 � 0.08 94.79� 0.24 35.32 � 0.10 99.61 � 0.00 2.89 � 0.01
Center 3 51.05 � 0.25 34.76 � 0.23 93.78 � 0.42 35.83 � 0.31 99.62 � 0.01 2.87� 0.01
Center 4 51.29� 0.67 34.98 � 0.61 93.87 � 0.91 36.06� 0.82 99.63 � 0.02 2.87 � 0.02

Center 3 Baseline 82.81 � 0.33 71.05 � 0.36 90.61� 0.63 77.09 � 0.34 99.86 � 0.0 2.14 � 0.02
Center 3 84.72� 0.18 73.67 � 0.28 87.43 � 1.90 83.17� 1.62 99.91 � 0.01 2.01 � 0.03
Center 4 84.45 � 0.14 73.30 � 0.19 87.13 � 1.77 82.92 � 1.76 99.91� 0.01 2.02 � 0.03

Center 4 Baseline 69.41 � 0.27 53.89 � 0.31 97.22� 0.11 54.95 � 0.35 99.70 � 0.00 2.50 � 0.01
Center 3 73.27 � 1.29 58.50 � 1.57 94.92 � 1.48 60.93 � 2.51 99.77 � 0.03 2.36 � 0.06
Center 4 74.67� 1.03 60.22 � 1.24 93.33 � 1.96 63.62 � 2.42 99.80 � 0.02 2.29 � 0.05
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To answer Question 2, one can analyze the rows where both evalua-
tion and adaptation centers are the same (3 or 4). Both rows present the
highest values for almost all metrics (again, excepted for recall). This
suggests that domain adaptation is working properly for that scenario.

Regarding Question 3, by looking at evaluation on center 3 and
adaptation using center 4 (and vice-versa), we observe gains over the
baseline once again for most metrics, suggesting that domain adaptation
improves generalization for unseen centers.

6.2. Varying the consistency loss

We executed multiple runs of the Mean Teacher algorithm by varying
the consistency loss to determine which one works best. We focused just
on losses that do not contain additional hyperparameters. The Tversky
Loss (Salehi et al., 2017), for instance, is quite similar to the Dice loss but
with two additional hyperparameters (α and β).

Our choices of losses were thus limited to cross-entropy, mean
squared error (MSE), and Dice, as previously described in Section 4. We
believe, however, that a thorough analysis of distinct loss functions is of
great importance for domain adaptation and should be explored in future
work.

6.3. Behavior of dice loss and thresholding

A well-known fact regarding the Dice loss is that it usually produces
predictions concentrated around the upper and lower bounds of the
probability distribution, with very low entropy. As in (Perone and
Cohen-Adad, 2018b), we used a high threshold value (0.99) for the Dice
predictions to produce a balanced model. We have found, however, that
the domain adaptation method also regularizes the network predictions,
shifting the Dice probability distribution outside of the probability
Table 2
Results on evaluating on center 3. The training set includes centers 1 and 2 simulta
represent the best validation results for each metric. The remaining values represent
Sørensen–Dice coefficient, and MSE is the mean-squared error.

Loss Weight Dice mIoU Recal

CE 5 0.00 (85.50) 0.00 (74.91) 0.00
10 0.00 (80.73) 0.00 (69.54) 0.00
15 6.43 (37.03) 4.89 (26.06) 5.38
20 2.30 (67.61) 1.86 (52.55) 2.09

Dice 5 76.76 (80.74) 62.76 (68.16) 97.88
10 4.77 (10.55) 2.45 (5.64) 96.25
15 2.30 (7.74) 1.16 (4.12) 99.95
20 1.79 (4.43) 0.90 (2.27) 99.99

MSE 5 83.7 (83.88) 72.2 (72.46) 91.24
10 84.38 (84.38) 73.19 (73.19) 90.15
15 84.59 (84.59) 73.49 (73.50) 89.19
20 84.5 (84.50) 73.36 (73.37) 90.36
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bounds. For that reason, we have decreased the Dice prediction threshold
to 0.9 (instead of 0.99), which produced a more balanced model in terms
of precision and recall.
6.4. Training stability

For unsupervised domain adaptation, it is important to have a stable
training procedure. Since, in the most difficult scenarios, there are no
annotations for validating the adaptation, an unstable training may
produce sub-optimal adaptation results.

To evaluate the training stability, we tried distinct consistency
weights for each possible consistency loss and we evaluated the differ-
ence between the best values that were found and the final results after
350 epochs. Table 2 summarizes results of this analysis. We also con-
ducted experiments with an alternative formulation for dice loss where
the denominator is the sum of the squared terms. We found that it heavily
alleviated the problem of low-stability, but had poor results in terms of
the dice score for every center, specially for Center 3.

We can observe that cross-entropy consistently fails, even with
different weights, potentially due to the class imbalance of this particular
task. Though it also achieves high dice values in its best scenario during
training. Thus cross-entropy becomes a possible alternative to MSE when
a few annotated images are available for validation in the target domain.
Fig. 6 shows how the training diverges for cross-entropy after several
iterations.

One way to alleviate this issue is to conduct an early stopping in the
training. However, as we must assume that there are no labeled examples
from the target center, the early stopping must be conducted with data
from source centers. We investigated whether the epoch when drop in
scores happen in the target center matches the one in source centers. We
found that the drop somewhat appears at the same moment, but the
neously, with unsupervised adaptation for center 3. Values within parentheses
the final result after 350 epochs. CE is the cross-entropy loss, Dice represents the

l Precision Specificity Hausdorff

(95.01) 0.00 (98.90) 100.0 (100.00) 0.00 (0.00)
(83.21) 0.00 (98.78) 100.0 (100.00) 0.00 (0.00)
(77.05) 17.34 (65.85) 100.0 (100.00) 0.28 (0.00)
(65.00) 7.94 (96.57) 100.0 (100.00) 0.12 (0.03)
(99.66) 63.72 (72.50) 99.71 (99.81) 2.36 (2.16)
(99.99) 2.45 (5.85) 79.59 (99.75) 8.80 (2.57)
(100.00) 1.16 (4.62) 55.07 (99.80) 11.75 (2.50)
(100.00) 0.90 (2.30) 42.02 (99.84) 12.68 (2.43)
(98.19) 78.1 (78.57) 99.87 (99.93) 2.1 (2.00)
(99.07) 80.12 (80.12) 99.88 (99.94) 2.05 (1.89)
(98.52) 81.28 (81.28) 99.89 (99.89) 2.03 (2.03)
(94.63) 80.16 (80.16) 99.88 (99.98) 2.05 (1.46)



Fig. 6. Per-epoch validation results for the teacher model at center 3 with cross-
entropy as the consistency loss. Training was conducted in both centers 1 and 2
simultaneously, and adapted to center 3 with consistency weight γ ¼ 5.
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target center dropped a bit earlier, see Fig. 7. This means that the early
stopping should be conservative, choosing a model of several stages prior
to when the drop in scores effectively occurred. We leave more of this
discussion for future work.

We can observe that both Dice and cross entropy have trouble sta-
bilizing the training after achieving high results. However, MSE tends to
be more invariant to consistency weight, thus being a robust approach
when no annotated data is available at the target center. As in (French
et al., 2017), we also tried confidence thresholding, although we did not
observe improvements.

7. Ablation studies

This section describes the ablation analyses, the purpose of which was
to better understand the behavior of different components in the domain
adaptation scenario.
Fig. 7. Per-epoch dice score for the teacher model at center 3 with cross-entropy
as the consistency loss. This is an evidence that early stopping can be conducted,
although carefully, using data from the source centers. Training was conducted
in both centers 1 and 2 simultaneously, and adapted to center 3 with consistency
weight γ ¼ 5.
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7.1. Exponential moving average (EMA)

The improvement seen in Table 1 could also be explained by intro-
ducing the exponential moving average (EMA) during the training pro-
cedure, since it averages and smoothes the SGD trajectories.

To demonstrate that the improvement is specific to using unlabeled
data and does not only come from the exponential average component,
we performed an ablation experiment that leaves the EMA active but sets
the consistency weight to zero. This experiment allowed us to evaluate
the impact of the exponential average in the absence of the unlabeled
data used to enforce consistency.

We reproduced the same experimental setup from Table 1 but with
the consistency weight set to zero. Results are presented in Table 3 and
show that the EMA model (teacher) is very similar to the baseline model.
For every metric in the baseline we conducted a paired t-test, finding
statistically significant results (p < 0:03) for dice, intersection over
union, precision, and specificity metrics. Although statistically signifi-
cant, there is only a small improvement, which could arguably be due to a
poorly chosen α. However, note that Mean Teacher, which heavily relies
on the EMA model, was nevertheless able to outperform a purely-
supervised method by a great margin as seen in Table 1.

8. Domain shift visualization

Next, we investigated how domain adaptation affects the prediction
space of segmentation at distinct centers. By using t-SNE (Maaten and
Hinton, 2008), a non-linear dimensionality reduction technique, we were
able to assess changes on the predictive perception of the network
regarding unsupervised data. All data presented in the following figures
were not used for training.

We created two baselines for this experiment. The first model was
trained in a supervised fashion following the same hyperparameters
presented in Section 4.4. The second was an adaptation scenario where
both centers 1 and 2 were used as supervised centers and 3 as adaptation
target. The vectors projected with t-SNE represents the features from the
network prior to the final sigmoid activation.

Both t-SNE executions had a learning rate set to 10, perplexity to 30,
and were executed for about 1000 iterations.1 We notice that more it-
erations than 1000 preserved the groups’ structure but further com-
pressed them. This made visualizing the centers harder, so 1000 was a
good trade-off between identifying emerging groups and interpretability.

Results from the supervised experiment are shown in Fig. 8a. Note
that there is a clear separation between data from centers used during
training (1 and 2) and unseen centers (3 and 4). This shows that the
network predictions greatly differ according to the center to which the
sample belongs to.

When adapting the network with unlabeled samples from a different
domain, predictions become more diffuse, at least for centers presented
during training. Results from the unsupervised adaptation experiment
are shown in Fig. 8b. In that scenario, centers with labeled data (centers 1
and 2) form clusters with domains seen only in an unsupervised manner
(3) or not presented to the network at all (4). A possible explanation for
the change in clusters is that the model learns to map the manifold as it
best suits for the task, instead of creating clusters of predictions based on
whether the domain was seen or unseen during training.

9. Conclusion and limitations

Variability and scarcity of annotations in the medical imaging context
is still challenging for machine learning. The large set of parameters that
can be used to acquire image modalities and the lack of standardized
protocols or industry standards are pervasive across the entire field.
1 We used the TensorBoard embedding projector, available at https://gith
ub.com/tensorflow/tensorboard.

https://github.com/tensorflow/tensorboard
https://github.com/tensorflow/tensorboard


Table 3
Results of the ablation experiment where the baseline model was trained and compared against its exponential moving average (EMA) model without using Mean
Teacher training scheme with unlabeled data. All experiments were trained in both center 1 and 2 simultaneously. Center 3 is the validation set and Center 4 is the test
set. We also show the two-tailed p-value for each metric between the baseline and EMA models.

Evaluation Version Dice mIoU Recall Precision Specificity Hausdorff

Center 3 Baseline 82.94 � 0.35 71.20 � 0.41 90.48 � 0.45 77.39 � 0.39 99.86 � 0.00 2.13 � 0.01
EMA 82.97 � 0.34 71.24 � 0.40 90.51 � 0.43 77.42 � 0.40 99.86 � 0.00 2.13 � 0.01
p-value 0.0024 0.0013 0.0429 0.0102 0.0201 0.5677

Center 4 Baseline 69.57 � 0.22 54.08 � 0.26 97.11 � 0.12 55.20 � 0.30 99.71 � 0.00 2.50 � 0.01
EMA 69.59 � 0.22 54.10 � 0.26 97.09 � 0.12 55.23 � 0.31 99.71 � 0.00 2.50 � 0.01
p-value 0.0743 0.0706 0.0773 0.0552 0.0627 0.3222

Fig. 8. Execution of t-SNE algorithm for two different scenarios. Colors represent data from different centers. a) A visualization of the t-SNE 2D non-linear embedding
projection for the supervised learning scenario. The colors represent data from different centers. b) A visualization of the t-SNE 2D non-linear embedding projection for
the domain adaptation scenario. The colors represent data from different centers.

2 https://github.com/neuropoly/domainadaptation.
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In this work, we have shown that unsupervised domain adaptation,
without depending on annotations, is an effective way to increase the
performance of machine learning models for medical imaging across
multiple centers.

Through the evaluation of multiple metrics in a large set of experi-
ments, we have shown how self-ensembling methods can improve
generalization on unseen domains through the leverage of unlabeled data
from multiple domains. We also performed an ablation study that
demonstrated strong evidence that the improvements come by the
introduction of the unlabeled data and not only due to the exponential
moving average.

We assessed how cross-entropy (when used as a consistency loss
function) fails at maintaining training stability when the number of
epochs progresses. We have discussed how this can lead to potential
problems in more challenging scenarios for multiple centers. We also
discussed issues related to the Dice loss when used as consistency loss.

We acknowledged the following limitations in our study. Firstly, we
did not evaluate adversarial training methods for domain adaptation.
Even considering the Mean Teacher as the current state-of-the-art
method on many datasets, we believe that further analyses on the same
realistic small data regime could significantly increase the importance of
our contributions, and thus we leave that aspect for future work.

Secondly, the single-task evaluation of the gray matter segmentation
could be extended to other tasks in other domains. Increasing the number
of centers alongside the number of tasks would be relevant for confirming
results obtained in the present study.

Further work on the field could lead to methods capable of measuring
the risk of adaptation to particular centers or domains. This would be an
important step towards understanding the limitations of the domain
adaptation methods.

We believe that the problems that arise from the variability of medical
10
imaging modalities require rethinking some of the strong assumptions
made in machine learning models and training procedures. An important
step in that direction is to reassess the importance of proper multi-
domain evaluation in studies and medical imaging challenges, which
rarely provide a test set from different domains (such as different centers,
machines, etc) that contain the variability found in real-world scenarios.

10. Source-code and dataset availability

In the spirit of Open Science and reproducibility, the source-code used
to perform the experiments presented in this study is publicly available.2

The dataset used for this work is also available on the Spinal Cord
Gray Matter Segmentation Challenge website.3

Acknowledgments

We are very thankful to Ryan Topfer for the sensible review and time
dedicated to improve this article. Funded by the Canada Research Chair
in Quantitative Magnetic Resonance Imaging [950-230815], the Cana-
dian Institute of Health Research [CIHR FDN-143263], the Canada
Foundation for Innovation [32454, 34824], the Fonds de Recherche du
Qu�ebec - Sant�e [28826], the Fonds de Recherche du Qu�ebec - Nature et
Technologies [2015-PR-182754], the Natural Sciences and Engineering
Research Council of Canada [435897-2013], the Canada First Research
Excellence Fund (IVADO and TransMedTech) and the Quebec Bio-
Imaging Network [5886]. This study was financed in part by the Coor-
denaç~ao de Aperfeiçoamento de Pessoal de Nivel Superior – Brasil
(CAPES) – Finance Code 001.
3 http://cmictig.cs.ucl.ac.uk/niftyweb/program.php?p¼CHALLENGE.

https://github.com/neuropoly/domainadaptation
http://cmictig.cs.ucl.ac.uk/niftyweb/program.php?p=CHALLENGE
http://cmictig.cs.ucl.ac.uk/niftyweb/program.php?p=CHALLENGE


C.S. Perone et al. NeuroImage 194 (2019) 1–11
References

AlBadawy, E.A., Saha, A., Mazurowski, M.A., 2018. Deep learning for segmentation of
brain tumors: impact of crossinstitutional training and testing. Med. Phys. 45 (3),
1150–1158.

Cao, J., Katzir, O., Jiang, P., Lischinski, D., Cohen-Or, D., Tu, C., Li, Y., 2018. Dida:
Disentangled Synthesis for Domain Adaptation arXiv preprint arXiv:1805.08019.

Chen, C., Dou, Q., Chen, H., Heng, P.-A., 2018. Semantic-Aware Generative Adversarial
Nets for Unsupervised Domain Adaptation in Chest X-Ray Segmentation arXiv
preprint arXiv:1806.00600.

Coup�e, P., Manj�on, J.V., Fonov, V., Pruessner, J., Robles, M., Collins, D.L., 2011. Patch-
based segmentation using expert priors: application to hippocampus and ventricle
segmentation. Neuroimage 54 (2), 940–954.

Dou, Q., Ouyang, C., Chen, C., Chen, H., Heng, P.-A., 2018. Unsupervised Cross-Modality
Domain Adaptation of Convnets for Biomedical Image Segmentations with
Adversarial Loss (Tech. Rep.).

French, G., Mackiewicz, M., Fisher, M., 2017. Self-ensembling for Visual Domain
Adaptation arXiv preprint arXiv:1706.05208.

Ganin, Y., Ustinova, E., Ajakan, H., Germain, P., Larochelle, H., Laviolette, F., et al., 2016.
Domain-adversarial training of neural networks. J. Mach. Learn. Res. 17 (1),
2096–2030.

Ghifary, M., Kleijn, W.B., Zhang, M., Balduzzi, D., Li, W., 2016. Deep reconstruction-
classification networks for unsupervised domain adaptation. In: European Conference
on Computer Vision, pp. 597–613.

Gros, C., De Leener, B., Badji, A., Maranzano, J., Eden, D., Dupont, S.M., et al., 2018, may.
Automatic Segmentation of the Spinal Cord and Intramedullary Multiple Sclerosis
Lesions with Convolutional Neural Networks arXiv preprint arXiv:1805.06349.

He, K., Zhang, X., Ren, S., Sun, J., 2016. Delving deep into rectifiers: surpassing human-
level performance on imagenet classification. In: Proceedings of the IEEE
International Conference on Computer Vision, 11–18-Dece, pp. 1026–1034. https://
doi.org/10.1109/ICCV.2015.123.

Hinton, G., Vinyals, O., Dean, J., 2015. Distilling the Knowledge in a Neural Network
arXiv preprint arXiv:1503.02531.

Hoffman, J., Tzeng, E., Park, T., Zhu, J.-Y., Isola, P., Saenko, K., et al., 2017. Cycada:
Cycle-Consistent Adversarial Domain Adaptation arXiv preprint arXiv:1711.03213.

Hou, L., Samaras, D., Kurc, T.M., Gao, Y., Davis, J.E., Saltz, J.H., 2016. Patch-based
convolutional neural network for whole slide tissue image classification. In:
Proceedings of the Ieee Conference on Computer Vision and Pattern Recognition,
pp. 2424–2433.

Ioffe, S., Szegedy, C., 2015. Batch normalization: accelerating deep network training by
reducing internal covariate shift. In: Proceedings of the 32nd International
Conference on International Conference on Machine Learning, vol. 37, pp. 448–456.
https://doi.org/10.1007/s13398-014-0173-7.2.

Javanmardi, M., Tasdizen, T., 2018. Domain Adaptation for Biomedical Image
Segmentation Using Adversarial Training. Isbi), pp. 554–558.

Kamnitsas, K., Baumgartner, C., Ledig, C., Newcombe, V., Simpson, J., Kane, A., et al.,
2017. Unsupervised domain adaptation in brain lesion segmentation with adversarial
networks. In: International Conference on Information Processing in Medical
Imaging, pp. 597–609.

Kingma, D.P., Ba, J.L., 2015. Adam: a method for stochastic optimization. In:
International Conference on Learning Representations 2015, pp. 1–15. http://doi.ac
m.org.ezproxy.lib.ucf.edu/10.1145/1830483.1830503.

Lafarge, M.W., Pluim, J.P., Eppenhof, K.A., Moeskops, P., Veta, M., 2017. Domain-
adversarial neural networks to address the appearance variability of histopathology
images. In: Lecture Notes in Computer Science (Including Subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics), pp. 83–91. https://
doi.org/10.1007/978-3-319-67558-9_10, 10553 LNCS.

Lai, M., 2015. Deep Learning for Medical Image Segmentation arXiv preprint arXiv:
1505.02000.

Laine, S., Aila, T., 2016. Temporal Ensembling for Semisupervised Learning arXiv
preprint arXiv:1610.02242.

LeCun, Y., Bengio, Y., Hinton, G., Y, L., Y, B., G, H., 2015. Deep learning. Nature 521
(7553), 436–444. https://doi.org/10.1038/nature14539.

Li, Y., Wang, N., Shi, J., Liu, J., Hou, X., 2016. Revisiting Batch Normalization for
Practical Domain Adaptation arXiv preprint arXiv:1603.04779.

Lin, T., Goyal, P., Girshick, R., He, K., Doll�ar, P., 2017. Focal loss for dense object
detection. IEEE International Conference on Computer Vision (ICCV), Venice
2999–3007. https://doi.org/10.1109/ICCV.2017.324.

Litjens, G., Kooi, T., Bejnordi, B.E., Setio, A.A.A., Ciompi, F., Ghafoorian, M., et al., 2017.
A survey on deep learning in medical image analysis. Med. Image Anal. 42, 60–88.
https://doi.org/10.1016/j.media.2017.07.005.

Liu, Y.-C., Yeh, Y.-Y., Fu, T.-C., Wang, S.-D., Chiu, W.-C., Wang, Y.-C.F., 2018. Detach and
adapt: learning cross-domain disentangled deep representation. In: Proceedings -
31th IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2018.

Long, J., Shelhamer, E., Darrell, T., 2015. Fully convolutional networks for semantic
segmentation. In: Proceedings of the Ieee Conference on Computer Vision and Pattern
Recognition, pp. 3431–3440.

Maaten, L. v. d., Hinton, G., 2008. Visualizing data using t-sne. J. Mach. Learn. Res. 9
(Nov), 2579–2605.
11
Madani, A., Moradi, M., Karargyris, A., Syeda-Mahmood, T., 2018. Semi-supervised
learning with generative adversarial networks for chest x-ray classification with
ability of data domain adaptation. In: IEEE 15th Symposium on Biomedical
Imaging(Isbi), pp. 1038–1042. https://doi.org/10.1109/ISBI.2018.8363749.

Mahmood, F., Chen, R., Durr, N.J., 2018. Unsupervised reverse domain adaptation for
synthetic medical images via adversarial training. IEEE Trans. Med. Imaging PP (c), 1.
https://doi.org/10.1109/TMI.2018.2842767.

Milletari, F., Navab, N., Ahmadi, S.-A., 2016. V-net: fully convolutional neural networks
for volumetric medical image segmentation. In: 3d Vision (3dv), 2016 Fourth
International Conference on, pp. 565–571.

Neyshabur, B., Bhojanapalli, S., McAllester, D., Srebro, N., 2017. Exploring generalization
in deep learning. In: Advances in Neural Information Processing Systems,
pp. 5947–5956.

Odena, A., Oliver, A., Raffel, C., Cubuk, E.D., Goodfellow, I., 2018. Realistic Evaluation of
Semi-supervised Learning Algorithms.

Oliver, A.G.B., Odena, A.G.B., Raffel, C.G.B., Cubuk, E.G.B., Goodfellow, I.J.G.B., 2018.
Realistic evaluation of semi-supervised learning algortihms. In: International
conference on Learning Representations, pp. 1–15.

Perone, C.S., Cohen-Adad, J., 2018a. Deep semi-supervised segmentation with weight-
averaged consistency targets. DLMIA MICCAI, pp. 1–8. https://doi.org/10.1007/978-
3-030-00889-5 sep.

Perone, C.S., Cohen-Adad, J., 2018b. Spinal cord gray matter segmentation using deep
dilated convolutions. Nat. Sci. Rep. 8 (1) https://doi.org/10.1038/s41598-018-
24304-3.

Polyak, B.T., Juditsky, A.B., 1992. Acceleration of stochastic approximation by averaging.
SIAM J. Contr. Optim. 30 (4), 838–855.

Prados, F., Ashburner, J., Blaiotta, C., Brosch, T., Carballido-Gamio, J., Cardoso, M.J.,
et al., 2017. Spinal cord grey matter segmentation challenge. Neuroimage 152,
312–329. https://doi.org/10.1016/j.neuroimage.2017.03.010.

Rajpurkar, P., Hannun, A.Y., Haghpanahi, M., Bourn, C., Ng, A.Y., 2017. Cardiologist-
Level Arrhythmia Detection with Convolutional Neural Networks (arXiv preprint).

Ronneberger, O., Fischer, P., Brox, T., 2015. U-net: Convolutional Networks for
Biomedical Image Segmentation, pp. 1–8. https://doi.org/10.1007/978-3-319-
24574- 4_28 arXiv preprint arXiv:1505.04597.

Ruppert, D., 1988. E_cient Estimations from a Slowly Convergent Robbins-Monro Process
(Tech. Rep.). Cornell University Operations Research and Industrial Engineering.

Salehi, S.S.M., Erdogmus, D., Gholipour, A., 2017. Tversky loss function for image
segmentation using 3d fully convolutional deep networks. In: International Workshop
on Machine Learning in Medical Imaging, pp. 379–387.

Salimans, T., Kingma, D.P., 2016. Weight normalization: a simple reparameterization to
accelerate training of deep neural networks. In: Advances in Neural Information
Processing Systems, pp. 901–909.

Sankaranarayanan, S., Balaji, Y., Castillo, C.D., Chellappa, R., 2018. Generate to adapt:
aligning domains using generative adversarial networks. In: Proceedings - 31th IEEE
Conference on Computer Vision and Pattern Recognition. https://doi.org/10.1109/
CVPR.2017.316. CVPR 2018.

Santurkar, S., Tsipras, D., Ilyas, A., Madry, A., 2018. How Does Batch Normalization Help
Optimization? (No, it Is Not about Internal Covariate Shift) arXiv preprint arXiv:
1805.11604.

Sun, B., Saenko, K., 2016. Deep coral: correlation alignment for deep domain adaptation.
In: European Conference on Computer Vision, pp. 443–450.

Tarvainen, A., Valpola, H., 2017. Mean teachers are better role models: weight-averaged
consistency targets improve semi-supervised deep learning results. In: Advances in
Neural Information Processing Systems, pp. 1195–1204.

Tzeng, E., Ho_man, J., Zhang, N., Saenko, K., Darrell, T., 2014. Deep Domain Confusion:
Maximizing for Domain Invariance arXiv preprint arXiv:1412.3474.

Wang, M., Deng, W., 2018. Deep Visual Domain Adaptation: A Survey. Neurocomputing.
Wu, Y., He, K., 2018. Group Normalization arXiv preprint arXiv:1803.08494.
Yosinski, J., Clune, J., Bengio, Y., Lipson, H., 2014. How transferable are features in deep

neural networks? Adv. Neural Inf. Process. Syst. 27, 1–9 (Proceedings of NIPS), 27.
Zamir, A.R., Sax, A., Shen, W., Guibas, L.J., Malik, J., Savarese, S., 2018. Taskonomy:

disentangling task transfer learning. In: The Ieee Conference on Computer Vision and
Pattern Recognition (Cvpr).

Zech, J.R., Badgeley, M.A., Liu, M., Costa, A.B., Titano, J.J., Oermann, E.K., 2018.
Confounding Variables Can Degrade Generalization Performance of Radiological
Deep Learning Models arXiv preprint arXiv:1807.00431.

Zhang, Y., Miao, S., Mansi, T., Liao, R., 2018. Task Driven Generative Modeling for
Unsupervised Domain Adaptation: Application to X-Ray Image Segmentation, vol. 2,
pp. 1–9. https://doi.org/10.1007/978-3-030-00934-2_67 arXiv preprint arXiv:
1806.07201.

Zhong, E., Fan, W., Yang, Q., Verscheure, O., Ren, J., 2010. Cross validation framework to
choose amongst models and datasets for transfer learning. In: Lecture Notes in
Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics), vol. 6323. LNAI, pp. 547–562. https://doi.org/
10.1007/978-3-642-15939-8.

Zhu, J.-Y., Park, T., Isola, P., Efros, A.A., 2017. Unpaired Imagetoimage Translation Using
Cycle-Consistent Adversarial Networks (arXiv preprint).

http://refhub.elsevier.com/S1053-8119(19)30203-4/sref1
http://refhub.elsevier.com/S1053-8119(19)30203-4/sref1
http://refhub.elsevier.com/S1053-8119(19)30203-4/sref1
http://refhub.elsevier.com/S1053-8119(19)30203-4/sref1
http://refhub.elsevier.com/S1053-8119(19)30203-4/sref2
http://refhub.elsevier.com/S1053-8119(19)30203-4/sref2
http://refhub.elsevier.com/S1053-8119(19)30203-4/sref3
http://refhub.elsevier.com/S1053-8119(19)30203-4/sref3
http://refhub.elsevier.com/S1053-8119(19)30203-4/sref3
http://refhub.elsevier.com/S1053-8119(19)30203-4/sref4
http://refhub.elsevier.com/S1053-8119(19)30203-4/sref4
http://refhub.elsevier.com/S1053-8119(19)30203-4/sref4
http://refhub.elsevier.com/S1053-8119(19)30203-4/sref4
http://refhub.elsevier.com/S1053-8119(19)30203-4/sref4
http://refhub.elsevier.com/S1053-8119(19)30203-4/sref4
http://refhub.elsevier.com/S1053-8119(19)30203-4/sref5
http://refhub.elsevier.com/S1053-8119(19)30203-4/sref5
http://refhub.elsevier.com/S1053-8119(19)30203-4/sref5
http://refhub.elsevier.com/S1053-8119(19)30203-4/sref6
http://refhub.elsevier.com/S1053-8119(19)30203-4/sref6
http://refhub.elsevier.com/S1053-8119(19)30203-4/sref7
http://refhub.elsevier.com/S1053-8119(19)30203-4/sref7
http://refhub.elsevier.com/S1053-8119(19)30203-4/sref7
http://refhub.elsevier.com/S1053-8119(19)30203-4/sref7
http://refhub.elsevier.com/S1053-8119(19)30203-4/sref8
http://refhub.elsevier.com/S1053-8119(19)30203-4/sref8
http://refhub.elsevier.com/S1053-8119(19)30203-4/sref8
http://refhub.elsevier.com/S1053-8119(19)30203-4/sref8
http://refhub.elsevier.com/S1053-8119(19)30203-4/sref9
http://refhub.elsevier.com/S1053-8119(19)30203-4/sref9
http://refhub.elsevier.com/S1053-8119(19)30203-4/sref9
https://doi.org/10.1109/ICCV.2015.123
https://doi.org/10.1109/ICCV.2015.123
http://refhub.elsevier.com/S1053-8119(19)30203-4/sref11
http://refhub.elsevier.com/S1053-8119(19)30203-4/sref11
http://refhub.elsevier.com/S1053-8119(19)30203-4/sref12
http://refhub.elsevier.com/S1053-8119(19)30203-4/sref12
http://refhub.elsevier.com/S1053-8119(19)30203-4/sref13
http://refhub.elsevier.com/S1053-8119(19)30203-4/sref13
http://refhub.elsevier.com/S1053-8119(19)30203-4/sref13
http://refhub.elsevier.com/S1053-8119(19)30203-4/sref13
http://refhub.elsevier.com/S1053-8119(19)30203-4/sref13
https://doi.org/10.1007/s13398-014-0173-7.2
http://refhub.elsevier.com/S1053-8119(19)30203-4/sref15
http://refhub.elsevier.com/S1053-8119(19)30203-4/sref15
http://refhub.elsevier.com/S1053-8119(19)30203-4/sref15
http://refhub.elsevier.com/S1053-8119(19)30203-4/sref16
http://refhub.elsevier.com/S1053-8119(19)30203-4/sref16
http://refhub.elsevier.com/S1053-8119(19)30203-4/sref16
http://refhub.elsevier.com/S1053-8119(19)30203-4/sref16
http://refhub.elsevier.com/S1053-8119(19)30203-4/sref16
http://doi.acm.org.ezproxy.lib.ucf.edu/10.1145/1830483.1830503
http://doi.acm.org.ezproxy.lib.ucf.edu/10.1145/1830483.1830503
https://doi.org/10.1007/978-3-319-67558-9_10
https://doi.org/10.1007/978-3-319-67558-9_10
http://refhub.elsevier.com/S1053-8119(19)30203-4/sref19
http://refhub.elsevier.com/S1053-8119(19)30203-4/sref19
http://refhub.elsevier.com/S1053-8119(19)30203-4/sref20
http://refhub.elsevier.com/S1053-8119(19)30203-4/sref20
https://doi.org/10.1038/nature14539
http://refhub.elsevier.com/S1053-8119(19)30203-4/sref22
http://refhub.elsevier.com/S1053-8119(19)30203-4/sref22
https://doi.org/10.1109/ICCV.2017.324
https://doi.org/10.1016/j.media.2017.07.005
http://refhub.elsevier.com/S1053-8119(19)30203-4/sref25
http://refhub.elsevier.com/S1053-8119(19)30203-4/sref25
http://refhub.elsevier.com/S1053-8119(19)30203-4/sref25
http://refhub.elsevier.com/S1053-8119(19)30203-4/sref26
http://refhub.elsevier.com/S1053-8119(19)30203-4/sref26
http://refhub.elsevier.com/S1053-8119(19)30203-4/sref26
http://refhub.elsevier.com/S1053-8119(19)30203-4/sref26
http://refhub.elsevier.com/S1053-8119(19)30203-4/sref27
http://refhub.elsevier.com/S1053-8119(19)30203-4/sref27
http://refhub.elsevier.com/S1053-8119(19)30203-4/sref27
https://doi.org/10.1109/ISBI.2018.8363749
https://doi.org/10.1109/TMI.2018.2842767
http://refhub.elsevier.com/S1053-8119(19)30203-4/sref30
http://refhub.elsevier.com/S1053-8119(19)30203-4/sref30
http://refhub.elsevier.com/S1053-8119(19)30203-4/sref30
http://refhub.elsevier.com/S1053-8119(19)30203-4/sref30
http://refhub.elsevier.com/S1053-8119(19)30203-4/sref31
http://refhub.elsevier.com/S1053-8119(19)30203-4/sref31
http://refhub.elsevier.com/S1053-8119(19)30203-4/sref31
http://refhub.elsevier.com/S1053-8119(19)30203-4/sref31
http://refhub.elsevier.com/S1053-8119(19)30203-4/sref32
http://refhub.elsevier.com/S1053-8119(19)30203-4/sref32
http://refhub.elsevier.com/S1053-8119(19)30203-4/sref33
http://refhub.elsevier.com/S1053-8119(19)30203-4/sref33
http://refhub.elsevier.com/S1053-8119(19)30203-4/sref33
http://refhub.elsevier.com/S1053-8119(19)30203-4/sref33
https://doi.org/10.1007/978-3-030-00889-5
https://doi.org/10.1007/978-3-030-00889-5
https://doi.org/10.1038/s41598-018-24304-3
https://doi.org/10.1038/s41598-018-24304-3
http://refhub.elsevier.com/S1053-8119(19)30203-4/sref36
http://refhub.elsevier.com/S1053-8119(19)30203-4/sref36
http://refhub.elsevier.com/S1053-8119(19)30203-4/sref36
https://doi.org/10.1016/j.neuroimage.2017.03.010
http://refhub.elsevier.com/S1053-8119(19)30203-4/sref38
http://refhub.elsevier.com/S1053-8119(19)30203-4/sref38
https://doi.org/10.1007/978-3-319-24574- 4_28
https://doi.org/10.1007/978-3-319-24574- 4_28
http://refhub.elsevier.com/S1053-8119(19)30203-4/sref40
http://refhub.elsevier.com/S1053-8119(19)30203-4/sref40
http://refhub.elsevier.com/S1053-8119(19)30203-4/sref41
http://refhub.elsevier.com/S1053-8119(19)30203-4/sref41
http://refhub.elsevier.com/S1053-8119(19)30203-4/sref41
http://refhub.elsevier.com/S1053-8119(19)30203-4/sref41
http://refhub.elsevier.com/S1053-8119(19)30203-4/sref42
http://refhub.elsevier.com/S1053-8119(19)30203-4/sref42
http://refhub.elsevier.com/S1053-8119(19)30203-4/sref42
http://refhub.elsevier.com/S1053-8119(19)30203-4/sref42
https://doi.org/10.1109/CVPR.2017.316
https://doi.org/10.1109/CVPR.2017.316
http://refhub.elsevier.com/S1053-8119(19)30203-4/sref44
http://refhub.elsevier.com/S1053-8119(19)30203-4/sref44
http://refhub.elsevier.com/S1053-8119(19)30203-4/sref44
http://refhub.elsevier.com/S1053-8119(19)30203-4/sref45
http://refhub.elsevier.com/S1053-8119(19)30203-4/sref45
http://refhub.elsevier.com/S1053-8119(19)30203-4/sref45
http://refhub.elsevier.com/S1053-8119(19)30203-4/sref46
http://refhub.elsevier.com/S1053-8119(19)30203-4/sref46
http://refhub.elsevier.com/S1053-8119(19)30203-4/sref46
http://refhub.elsevier.com/S1053-8119(19)30203-4/sref46
http://refhub.elsevier.com/S1053-8119(19)30203-4/sref47
http://refhub.elsevier.com/S1053-8119(19)30203-4/sref47
http://refhub.elsevier.com/S1053-8119(19)30203-4/sref48
http://refhub.elsevier.com/S1053-8119(19)30203-4/sref49
http://refhub.elsevier.com/S1053-8119(19)30203-4/sref50
http://refhub.elsevier.com/S1053-8119(19)30203-4/sref50
http://refhub.elsevier.com/S1053-8119(19)30203-4/sref50
http://refhub.elsevier.com/S1053-8119(19)30203-4/sref51
http://refhub.elsevier.com/S1053-8119(19)30203-4/sref51
http://refhub.elsevier.com/S1053-8119(19)30203-4/sref51
http://refhub.elsevier.com/S1053-8119(19)30203-4/sref52
http://refhub.elsevier.com/S1053-8119(19)30203-4/sref52
http://refhub.elsevier.com/S1053-8119(19)30203-4/sref52
https://doi.org/10.1007/978-3-030-00934-2_67
https://doi.org/10.1007/978-3-642-15939-8
https://doi.org/10.1007/978-3-642-15939-8
http://refhub.elsevier.com/S1053-8119(19)30203-4/sref55
http://refhub.elsevier.com/S1053-8119(19)30203-4/sref55

	Unsupervised domain adaptation for medical imaging segmentation with self-ensembling
	1. Introduction
	2. Related work
	3. Semi-supervised learning and unsupervised domain adaptation
	4. Method
	4.1. Self-ensembling and mean teacher
	4.2. Adapting mean teacher for segmentation tasks
	4.3. Model architecture
	4.4. Baseline employed
	4.5. Consistency loss
	4.6. Batch normalization and group normalization for domain adaptation
	4.7. Hyperparameters for unsupervised domain adaptation

	5. Materials
	6. Experiments
	6.1. Adapting to different centers
	6.2. Varying the consistency loss
	6.3. Behavior of dice loss and thresholding
	6.4. Training stability

	7. Ablation studies
	7.1. Exponential moving average (EMA)

	8. Domain shift visualization
	9. Conclusion and limitations
	10. Source-code and dataset availability
	Acknowledgments
	References


