
Vol.:(0123456789)1 3

Evolutionary Intelligence (2021) 14:1895–1914
https://doi.org/10.1007/s12065-020-00463-z

RESEARCH PAPER

An extensive experimental evaluation of automated machine learning
methods for recommending classification algorithms

M. P. Basgalupp1 · R. C. Barros2 · A. G. C. de Sá3 · G. L. Pappa3 · R. G. Mantovani4 · A. C. P. L. F. de Carvalho5 ·
A. A. Freitas6

Received: 9 April 2020 / Accepted: 1 July 2020 / Published online: 19 August 2020
© Springer-Verlag GmbH Germany, part of Springer Nature 2020

Abstract
This paper presents an experimental comparison among four automated machine learning (AutoML) methods for recommend-
ing the best classification algorithm for a given input dataset. Three of these methods are based on evolutionary algorithms
(EAs), and the other is Auto-WEKA, a well-known AutoML method based on the combined algorithm selection and hyper-
parameter optimisation (CASH) approach. The EA-based methods build classification algorithms from a single machine
learning paradigm: either decision-tree induction, rule induction, or Bayesian network classification. Auto-WEKA combines
algorithm selection and hyper-parameter optimisation to recommend classification algorithms from multiple paradigms.
We performed controlled experiments where these four AutoML methods were given the same runtime limit for different
values of this limit. In general, the difference in predictive accuracy of the three best AutoML methods was not statistically
significant. However, the EA evolving decision-tree induction algorithms has the advantage of producing algorithms that
generate interpretable classification models and that are more scalable to large datasets, by comparison with many algorithms
from other learning paradigms that can be recommended by Auto-WEKA. We also observed that Auto-WEKA has shown
meta-overfitting, a form of overfitting at the meta-learning level, rather than at the base-learning level.

Keywords Evolutionary algorithms · Algorithm recommendation · Automated machine learning · Classification · Meta-
learning

1 Introduction

Classification is one of the main machine learning tasks and,
hence, there is a large variety of classification algorithms
available [1, 2]. However, in most real-world applications,

the choice of classification algorithm for a new dataset or
application domain is still mainly an ad-hoc decision.

In this context, the use of meta-learning for algorithm rec-
ommendation is a very important research area with seminal
work dating back more than 20 years, which includes the

 * M. P. Basgalupp
 basgalupp@unifesp.br

 R. C. Barros
 rodrigo.barros@pucrs.br

 A. G. C. de Sá
 alexgcsa@dcc.ufmg.br

 G. L. Pappa
 glpappa@dcc.ufmg.br

 R. G. Mantovani
 rafaelmantovani@utfpr.edu.br

 A. C. P. L. F. de Carvalho
 andre@icmc.usp.br

 A. A. Freitas
 A.A.Freitas@kent.ac.uk

1 Universidade Federal de Sao Paulo, Sao Jose dos Campos,
SP, Brazil

2 Pontifícia Universidade Católica do Rio Grande do Sul,
Porto Alegre, RS, Brazil

3 Universidade Federal de Minas Gerais (UFMG),
Belo Horizonte, MG, Brazil

4 Universidade Tecnológica Federal do Paraná (UTFPR),
Apucarana, PR, Brazil

5 Universidade de São Paulo (USP), São Carlos, SP, Brazil
6 University of Kent, Canterbury, UK

http://orcid.org/0000-0002-2005-1249
http://crossmark.crossref.org/dialog/?doi=10.1007/s12065-020-00463-z&domain=pdf

1896 Evolutionary Intelligence (2021) 14:1895–1914

1 3

StatLog [3] and METAL [4] projects. Meta-learning can be
defined as learning how to learn, which involves learning,
from previous experience, what is the best machine learning
algorithm (and its best hyper-parameter setting) for a given
dataset [5, 6]. Meta-learning systems for algorithm recom-
mendation can be divided into two broad groups, namely:
(a) systems that perform algorithm selection based on meta-
features [5], which is the most investigated type; and (b) sys-
tems that search for the best possible classification algorithm
in a given algorithm space [7].

Meta-feature-based meta-learning for algorithm selection
and recommendation consists of two basic steps [5]. First, the
creation of a meta-training set where each meta-instance rep-
resents a dataset, meta-features represent dataset properties,
and each meta-class represents a (base level) learning algo-
rithm. Second, the induction of a meta-classification model
by a (meta) classification algorithm over the meta-training
set, thus allowing the recommendation of algorithm(s) for
a novel dataset (not included in the meta-training set). A
key issue is the design of a good set of meta-features, with
enough predictive power to support an accurate recommen-
dation of the best learning algorithm. Extensive research in
this topic has produced a large variety of meta-features [5, 8,
9], but the issue of finding a set of meta-features with very
good predictive power is still an open and difficult problem.

A limitation of meta-feature-based meta-learning research
is that usually a small number of candidate classification
algorithms are considered as meta-classes. This is because
in general, the larger the number of candidate classification
algorithms used as meta-classes, the more difficult it would
be for the meta-classification algorithm to accurately predict
all meta-classes. In addition, it is difficult to produce large
meta-datasets for meta-learning, since in order to compute
the meta-class of each meta-instance we need to run all can-
didate classification algorithms on all datasets (one for each
meta-instance).

These difficulties have motivated research on the sec-
ond type of meta-learning for algorithm recommendation,
meta-learning systems using search or optimisation meth-
ods to indicate the best classification algorithm for a given
target dataset, in a given algorithm space [7, 10–15]. This
work focuses mainly on this type of meta-learning systems,
which is a type of Automated Machine Learning (AutoML)
[16], since such systems effectively automate the process
of selecting the best algorithm and its hyper-parameters for
the input dataset.

This AutoML approach bypasses the need for designing
meta-features and it can, in principle, consider a substantially
larger number of candidate classification algorithms and
hyper-parameters than meta-feature-based meta-learning sys-
tems. Note that although this approach does not explicitly use
a learning algorithm at the meta-level, some methods follow-
ing this AutoML approach (like some methods evaluated in

this work) perform a form of meta-learning because the search
is performed in the space of candidate learning algorithms and
is guided by an evaluation function based on the accuracy of
learning algorithms at the base level. Therefore, the search
method at the meta-level is implicitly learning from the results
of base-level learning algorithms. Note, however, that this
kind of meta-learning of course does not occur in the case
of simple and popular methods for algorithm selection and
parameter configuration, like random search and grid search,
which do not perform any learning by themselves.

In this context, the main contribution of this paper is to
present an extensive empirical comparison of the predictive
performance of four sophisticated AutoML methods for the
recommendation of classification algorithms. One of these
methods, Auto-WEKA [7, 13], performs algorithm selec-
tion and hyper-parameter configuration by considering all
candidate classification algorithms available in the well-
known WEKA data mining tool, which includes algorithms
based on several different types of knowledge (or model)
representations—e.g., decision trees, if-then classification
rules, Bayesian network classifiers, neural networks, support
vector machines, etc. The other three methods are based on
evolutionary algorithms (EAs). Unlike Auto-WEKA, each
of the three EAs focuses on a search space containing clas-
sification algorithms based on a single type of knowledge
representation. More precisely, the EAs evolve rule induc-
tion algorithms [10], decision-tree induction algorithms
[14], and Bayesian network classification algorithms [17].
Hence, the EAs produce a narrower diversity of classifi-
cation algorithms in terms of knowledge representation.
However, within its specialized knowledge representation,
an EA can have more flexibility (or autonomy) to construct
new classification algorithms, rather than just optimising the
configuration of hyper-parameters for an existing classifica-
tion algorithm, as discussed later.

There are also other recently proposed EAs for related
AutoML tasks. In particular, the EAs proposed in [18–20]
try to optimize an entire machine learning pipeline for a
given dataset, including the choice of data preprocessing
methods (like feature scaling operators and feature selec-
tion methods) and classification algorithm. By contrast, we
focus on using EAs that recommend only classification algo-
rithms. In addition, in [21] an EA is proposed to automati-
cally evolve another type of EA (genetic programming) for
classification. By contrast, the EAs used here automatically
evolve more conventional (non-evolutionary) types of clas-
sification algorithms, as mentioned earlier.

Controlled experiments were performed, where the four
previous AutoML methods (the three EAs and Auto-WEKA)
had the same runtime limit for different values of this limit.
In general, the difference in predictive accuracy of the three
best AutoML methods was not statistically significant, but
Auto-WEKA showed meta-overfitting, a form of overfitting

1897Evolutionary Intelligence (2021) 14:1895–1914

1 3

at the meta-learning level, due to evaluating many differ-
ent (base-level) classification algorithms during its search
for the best algorithm. This is in contrast to the standard
overfitting at the base level, due to the evaluating many dif-
ferent models built by the same classification algorithm. In
addition, the EA evolving decision-tree induction algorithms
have the advantage of producing algorithms that generate
interpretable classification models and that are more scal-
able to large datasets, by comparison with many algorithms
from other learning paradigms that can be recommended
by Auto-WEKA. Furthermore, an analysis of the different
types of classification algorithms recommended by Auto-
WEKA shows that overall decision-tree and ensemble algo-
rithms were the most frequently recommended types of
algorithms, whilst rule induction algorithms were the least
recommended type.

The remainder of this paper is organised as follows. Sec-
tion 2 reviews the background on AutoML methods for
classification-algorithm recommendation, focusing on the
four previously mentioned AutoML methods. Section 3
describes the methodology adopted in this study for execut-
ing the experimental analyses, whose extensive results are
presented in Sect. 4. Finally, the main conclusions and future
work suggestions are presented in Sect. 5.

2 AutoML methods
for classification‑algorithm
recommendation

This section reviews the main concepts underlying several
AutoML methods for automatic recommendation of the best
classification algorithm for a given input dataset. It mainly
covers the four AutoML methods evaluated in this work,
Auto-WEKA and three EAs, as mentioned earlier. Its last
subsection briefly reviews related work on other evolution-
ary AutoML methods.

2.1 Auto‑WEKA and the CASH problem

Initial work on meta-learning focused on selecting the best
classification algorithm(s) for a given dataset, explicitly or

implicitly assuming a default configuration (hyper-parameter
settings) for the candidate algorithms. However, given that
the success of a classification algorithm strongly depends on
its hyper-parameter settings, more recent work has focused
on the so called Combined Algorithm Selection and Hyper-
parameter (CASH) optimisation problem [7]. In this section,
we review the AutoML methods evaluated in this work that
address the CASH problem by considering, as candidate
algorithms to be recommended, classification algorithms
from multiple knowledge (model) representations, like
decision trees, IF-THEN classification rules, probabilistic
graphical models, neural networks, ensembles, etc.

In this context, an advanced and well-known system
designed for the CASH problem is Auto-WEKA [7, 13],
whose search-space includes all classification algorithms
available in Weka [22] with their corresponding candidate
hyper-parameter settings.

In order to search the space of candidate algorithms and
their hyper-parameter settings, Auto-WEKA uses a stochas-
tic search method, named Sequential Model-Based Optimi-
sation (SMBO), and a loss function to measure classification
error. The goal is to find the classification algorithm and
its corresponding hyper-parameter settings that minimise
the value of the loss function for the target dataset. SMBO
essentially works as follows. First, the CASH problem is
formulated as a hierarchical hyper-parameter search-space
where there is a new root-level hyper-parameter that selects
between algorithms. Hence, a candidate solution is an algo-
rithm selected at the root level and its hyper-parameters
selected at lower levels. As shown in Algorithm 1, SMBO
initially builds a model (ML , line 1) representing the depend-
ency of the loss function on the candidate hyper-parameter
settings. Next, it iteratively uses the model to generate a
promising candidate hyper-parameter setting (� , line 3),
evaluates the setting (lines 4–5), and updates the model
according to the evaluation (line 6). SMBO is flexible
enough to be able to be used with different algorithms for
building the dependency model, with random forests being
used in [7, 13].

1898 Evolutionary Intelligence (2021) 14:1895–1914

1 3

The approach used by Auto-WEKA was also extended
to produce another system for solving the CASH prob-
lem, namely Auto-sklearn [23], which uses the scikit-learn
machine learning library [24] rather than Weka. Auto-
sklearn extends Auto-WEKA’s approach in two ways. First,
it uses an ensemble of the classification models generated
by the SMBO search method, instead of just one model like
in Auto-WEKA. Second, it uses meta-features-based meta-
learning to find good classification algorithm configurations
(see [23, 25] for details of these two extensions). In addition,
meta-features-based meta-learning has been recently used to
initialise the SMBO’s search for the optimal solution to the
CASH problem [26]. It should be noted that the aforemen-
tioned systems, although very advanced, are limited to find
a combination of algorithm and hyper-parameter settings
among existing combinations in the base machine learning
toolkit being used (Weka or scikit-learn). They do not have
enough autonomy for constructing a new classification algo-
rithm, which can be done in some cases by the EA-based
meta-learning methods discussed in the next section.

2.2 EA‑based AutoML methods

Each of the Evolutionary Algorithm-based (EA-based)
AutoML methods evaluated in this work explores a search
space with classification algorithms from a different knowl-
edge (model) representation, namely: rule induction [10],
decision-tree induction [27], or Bayesian network classifiers
[17].

EAs are search methods based on the natural selection
principle [28]. They have been extensively used for evolving
classification models in machine learning [27, 29]. In this
work, however, the EAs evolve full classification algorithms
rather than classification models. In EA terminology, the
EAs used in this work are hyper-heuristic search methods,
which perform a search in the space of candidate classifica-
tion algorithms [12]; whilst EAs that perform a search in
the space of classification models are conventional meta-
heuristic search methods.

The three EAs receive as input a high-level pseudo-code
with the main algorithmic components to be used to cre-
ate classification algorithms from a target algorithm type.
For instance, if the target is rule induction algorithms, the
components include a rule search method, a rule evalua-
tion criterion, etc. Each component can be instantiated in
different ways, e.g., confidence or information gain can be
used to instantiate the rule evaluation component. Given an

input dataset, an EA searches for the best combination of
algorithmic components based on an evaluation function
(called fitness function in EAs). Thus, the EA’s output is a
classification algorithm of the target type.

Note that the EAs can sometimes generate a new clas-
sification algorithm which works in a way different from all
current (manually-designed) classification algorithms. This
is because the EAs can combine the prespecified algorithmic
components in novel ways, not explored by human algorithm
designers yet.

As an example of algorithm construction, let us con-
sider the EA for evolving decision-tree algorithms. That
EA’s algorithmic components include, among other types
of components, 15 different split criteria and 5 tree-pruning
methods. A manually-designed decision-tree algorithm like
J48 (WEKA’s version of C4.5) or CART offers just a subset
of these split criteria and pruning methods. Hence, when
Auto-WEKA configures a decision-tree algorithm, it first
chooses exactly which algorithm will be configured, say J48
or CART, and then it considers only the split criteria and tree
pruning methods/hyper-parameters available in WEKA for
the chosen algorithm. It cannot combine, e.g., the informa-
tion gain ratio used by J48 with the cost-complexity pruning
used by CART. By contrast, the EA can construct a new
decision-tree induction algorithm with any combination
of split criteria and tree pruning method/hyper-parameters
(as well as any combination of other specific components),
regardless of whether or not the chosen combination of com-
ponents occurs in a current manually-designed decision-tree
algorithm.

Algorithm 2 shows the high-level pseudo-code of the
three EAs for recommending classification algorithms used
in this work. First, they generate a population of candidate
solutions (classification algorithms), or individuals, based
on the target pseudo-code and sets of components given as
input. For a fixed number of iterations (generations) g, the
classification algorithms represented by the individuals in
the initial population P are built and run on the input data-
set. The input dataset is divided into meta-training, meta-
validation, and meta-test sets. In order to measure the fitness
(quality) of an individual, its corresponding classification
algorithm is executed over the meta-training set to build a
classification model. Afterwards, a given predictive perfor-
mance measure is used to evaluate the model performance
on the meta-validation set, and this measure is used as the
fitness of the individual.

1899Evolutionary Intelligence (2021) 14:1895–1914

1 3

To avoid overfitting, at each s generations, the examples
belonging to the meta-training and meta-validation sets are
resampled, and the best individual found in that sample is
saved in BestSet. During the EA run, individuals at different
generations may be evaluated with different data. Based on
the individuals’ fitness values, the best candidate classifica-
tion algorithms are selected to undergo EA operations such
as crossover and mutation, according to user-defined prob-
abilities. At the end of an EA run, the best algorithm output
by the EA is chosen as follows. Considering the individuals
saved in BestSet, a new cross-validation procedure is per-
formed on the training set. All individuals are then executed
using the same cross-validation folds, and the best classifica-
tion algorithm is output. That algorithm is finally evaluated
on the meta-test set, which was not seen during the EA run,
to compute the final measure of predictive accuracy for the
evolved classification algorithm.

All three EAs discussed in this paper follow Algorithm 2,
but they vary on how they represent individuals, the types of
components used to build classification algorithms (depend-
ing on the type of target classification algorithm), and the
performance measure used to select the best individuals.
All algorithms require user-defined hyper-parameters which
include, besides the number of iterations (generations), the
number of individuals, the rates of crossover and mutation
(operators used to produce new individuals from existing
ones), the rate of elitism (i.e. the percentage of individuals
from the current generation that are passed unaltered to the
next generation), and the number of individuals selected to
undergo tournament selection.

2.2.1 Evolving rule induction algorithms
with grammar‑based genetic programming

The first EA proposed for generating a full classification
algorithm customised to a given input dataset evolves rule
induction algorithms (which output IF-THEN classification

rules), using a Grammar-based Genetic Programming (GGP)
algorithm [10], named GGP-RI (GGP for Rule Induction).
GGPs differ from standard EAs as they receive as input a
grammar, and all candidate solutions generated must obey
the grammar production rules.

The grammar has production rules specifying how the
following components of induction algorithms can be instan-
tiated and combined together into valid algorithms: the deci-
sion to generate an unordered rule set or an ordered rule list,
different methods to initialize, search, evaluate and prune
rules, as well as different loop structures and conditional
statements to control the iterative processes of constructing
a rule and adding/removing rules to/from a set/list. Each
individual is represented by a tree generated by applying
the production rules. Each tree is mapped to a rule induction
algorithm. The GGP grammar has 26 non-terminals and 83
production rules, and, varying the order in which the pro-
duction rules are applied, the GGP’s search-space has over
2 billion different rule induction algorithms. GGP’s fitness
function is the F-Measure (the harmonic mean of precision
and recall) of a candidate rule induction algorithm in the
meta-validation set (as explained earlier).

2.2.2 Evolving decision‑tree induction algorithms
with a hyper‑heuristic evolutionary algorithm

A hyper-heuristic EA that generates decision-tree induction
algorithms, called HEAD-DT (Hyper-heuristic Evolution-
ary Algorithm for Automatically Designing Decision-Tree
algorithms), is described in [30, 31]. Unlike GGP, HEAD-
DT is based on a genetic algorithm with linear encoding.
An individual (candidate decision-tree induction algorithm)
consists of a set of many options to instantiate the following
components of decision-tree induction algorithms: the data
split procedure used at each node of the tree (i.e., whether
performing a binary or multi-way split and which feature
evaluation function should be used), the tree expansion

1900 Evolutionary Intelligence (2021) 14:1895–1914

1 3

stopping criteria, approaches to cope with missing values
(in both the training and testing phases), and the tree prun-
ing procedure. For each algorithmic component, an indi-
vidual specifies both categorical options (e.g., the choice of
feature evaluation function, out of 16 predefined functions)
and the numerical value of hyper-parameters associated with
the chosen options (e.g., a hyper-parameter that controls the
degree of pruning for a given pruning method). HEAD-DT’s
fitness function is the F-Measure of a candidate decision-
tree induction algorithm in the meta-validation set, and its
search space contains 21,319,200 different decision-tree
algorithms. It was applied with success in different applica-
tion domains, such as gene expression classification [31] and
rational drug design [32].

2.2.3 Evolving Bayesian network classification algorithms
with a hyper‑heuristic evolutionary algorithm

The EA for generating Bayesian Network Classification
(BNC) algorithms is named HHEA-BNC (Hyper-Heuristic
Evolutionary Algorithm for creating a BNC algorithm) [17,
33]. BNC algorithms usually have two phases [34, 35]: (i)
network-structure learning; and (ii) parameter learning. In
the first phase, the algorithm learns which nodes (features)
in the network should be connected to each other. The
parameter learning phase, in turn, learns the Conditional
Probability Tables (CPTs) for each node of the network
(the BNC model). However, learning the parameters of a
BNC model is a relatively straightforward procedure when
the network structure has been determined. For this rea-
son, HHEA-BNC focuses on the structure learning phase.
HHEA-BNC encodes candidate BNC algorithms using a
dynamic array-like representation, where each position in
the array represents a different algorithm component to be
instantiated. In order to select and instantiate the compo-
nents of the BNC algorithm, HHEA-BNC uses a top-down
approach, where the first instantiated component of the
BNC algorithm being created is the search method, with
a choice among 12 different methods. The search method
defines the type of algorithm being generated (naïve Bayes,
score-based, constraint-based or hybrid) and, consequently,
the type of BNC model being created (i.e. tree, graph, or no
edges between features, in the case of naïve Bayes). Based
on this first choice, different BNC algorithms can be gener-
ated, including components like scoring metrics, statistical
independence tests, maximal number of parents per node,
etc. The smallest individual has three components, while
the largest has 11. The search-space of HHEA-BNC has
60,510,000 different candidate BNC algorithms. HHEA-
BNC’s fitness function is the F-measure of a candidate BNC
algorithm in the meta-validation set.

2.2.4 Related work on EA‑based AutoML methods

We also have identified three evolutionary AutoML meth-
ods that try to optimize the entire classification pipeline: (i)
Tree-based Pipeline Optimization Tool (TPOT) [20, 36];
(ii) Genetic Programming for Machine Learning (GP-ML)
[19]; and (iii) REsilient ClassifIcation Pipeline Evolution
(RECIPE) [18]. A pipeline is defined as a machine learning
workflow that solves the classification task. To solve this type
of task, a pipeline may contain data preprocessing methods
(e.g., feature normalization or feature selection), must have a
classification algorithm (e.g., naïve Bayes or a support vector
machine) and may have a post-processing approach (e.g., vot-
ing or stacking). Therefore, these methods take into account
various aspects of machine learning instead of focusing only
on the classification algorithm. This means that these meth-
ods could select and configure a range of different classifica-
tion-related methods during the evolutionary search, as they
are not centered on just one type of classification algorithm.
This basic principle is also followed by Auto-WEKA and
Auto-sklearn, which are well-known non-EA-based AutoML
methods. The aforementioned EA-based AutoML methods
are discussed in somewhat more detail next.

TPOT is a genetic programming-based method that
searches for the most suitable classification pipeline to the
input dataset. It encompasses (part of) the available methods
in the scikit-learn library in its search space, and allows dif-
ferent ways of combining the data preprocessing methods
(in sequence or in parallel) and the classification algorithms
(supporting ensemble approaches or not). Although TPOT
has been designed for general classification, it alternatively
has a specific version for bioinformatics studies, named
TPOT-MDR [37]. TPOT-MDR includes two new data pre-
processing operators that are used in genetic analyses of
human diseases: the Multifactor Dimensionality Reduction
(MDR) and the Expert Knowledge Filter (EKF). Besides,
both versions perform multi-objective search using Pareto
selection (based on the well-known NSGA-II algorithm)
[38] with two objectives: maximizing the predictive accu-
racy measure of the pipeline and minimizing the pipeline’s
overall complexity (which is represented by the number of
pipeline operators).

The main issue when using TPOT is that it can generate
classification pipelines that are invalid or arbitrary during
its evolutionary process, i.e., pipelines that do not solve the
classification task itself. This happens because TPOT does
not impose any constraints when combining the ML compo-
nents to create the pipelines. For instance, TPOT can create
a pipeline without a classification algorithm [20]. This, of
course, makes the evolutionary process to waste resources as
various individuals would not solve the classification task.

1901Evolutionary Intelligence (2021) 14:1895–1914

1 3

This can be considered a significant drawback of TPOT in
the context of the classification task.

GP-ML overcomes this limitation by using a strongly
typed genetic programming (STGP) method. A STGP
method restricts the scikit-learn pipelines in such a way

that makes them valid from the machine learning point of
view. In addition, GP-ML applies an asynchronous evolu-
tionary algorithm [39] instead of a generational one. [39]
observed that asynchronous evolution is biased towards the
evaluation of faster pipelines in some parts of the search

Table 1 Summary of the
20 datasets used in both the
first and the second sets of
experiments

Type Dataset # inst # num # nom % miss class bal # classes

Ageing CE-T3 478 0 764 0 0.66 2
DM-T3 119 0 586 0 0.49 2
MM-T3 89 0 887 0 0.41 2
SC-T3 248 0 698 0 0.19 2
DNA-T3 139 3 333 9 0.31 2
DNA-T11 135 2 103 26 0.32 2

PS PS-T3 4303 2 443 0 0.06 2
Microarray Chen-2002 179 85 0 0 0.72 2

Chowdary-2006 104 182 0 0 0.68 2
Nutt-2003-v2 28 1070 0 0 1.00 2
Singh-2002 102 339 0 0 0.96 2
West-2001 49 1198 0 0 0.96 2

Text dbworld-bodies 64 0 4702 0 0.83 2
dbworld-bodies-s 64 0 3721 0 0.83 2
oh0.wc 1003 3182 0 0 0.26 10
oh5.wc 918 3012 0 0 0.40 10
oh10.wc 1050 3238 0 0 0.32 10
oh15.wc 913 3100 0 0 0.34 10
re0.wc 1504 2886 0 0 0.02 13
re1.wc 1657 3758 0 0 0.03 25

Table 2 Summary of the 20
datasets used only in the second
set of experiments

Dataset # inst # num # nom % miss class bal # classes

Abalone 4177 7 1 0.00 < 0.01 28
Car 1728 0 6 0.00 0.05 4
Convex 58,000 784 0 0.00 1.00 2
Germancredit 1000 7 13 0.00 0.43 2
krvskp 3196 0 36 0.00 0.91 2
Madelon 2600 500 0 0.00 1.00 2
Mnist 62,000 784 0 0.00 0.80 10
Mnistrotationbackimagenew 62,000 784 0 0.00 0.81 10
Secom 1567 590 0 4.54 0.07 2
Semeion 1593 256 0 0.00 0.96 10
Shuttle 58,,000 9 0 0.00 < 0.01 7
Waveform 5000 40 0 0.00 0.98 3
Winequalitywhite 4898 11 0 0.00 0.00 11
Yeast 1484 8 0 0.00 0.01 10
Sick 3772 7 22 5.54 0.07 2
Splice 3190 0 61 0.00 0.46 3
Kropt 28,056 0 6 0.00 0.01 18
Quake 2178 3 0 0.00 0.80 2
pc4 1458 37 0 0.00 0.14 2
MagicTelescope 19,020 10 0 0.00 0.54 2

1902 Evolutionary Intelligence (2021) 14:1895–1914

1 3

space. However, [19] consider this bias an advantage to the
AutoML task, because a faster pipeline is usually prefer-
able to a slower one, when both present similar predictive
accuracy values.

RECIPE follows the same basic principle of GP-ML, i.e.,
it only allows the generation of valid pipelines during the
evolutionary process. In order to implement this principle,
RECIPE defines a grammar which encompasses the classifi-
cation knowledge in scikit-learn. Therefore, RECIPE makes
use of a grammar-based genetic programming (GGP) [40]
to perform the search for the most suitable classification
pipeline. The grammar prevents the generation of invalid/
arbitrary pipelines, and could also speed up the search.

3 Experimental methodology

The experiments are divided into two parts. The first part
compares the results obtained by the EAs with the results
obtained by Auto-WEKA [7], whose search space includes
all 33 classification algorithms available in WEKA. These
experiments used 20 datasets.

The second part of the experiments compares one of the
EAs (HEAD-DT, the EA evolving decision-tree algorithms)
against Auto-WEKA, on an extended set of 40 datasets. The
main reason for using a smaller number of datasets in the
first type of experiment was the very long computation time
associated with comparing four methods. HEAD-DT was
chosen because, among the two most successful EAs overall
(HEAD-DT and HHEA-BNC, as discussed later), HEAD-
DT has the advantage of producing decision tree algorithms
which are more scalable to larger datasets than the Bayesian
network classification algorithms produced by HHEA-BNC.
The datasets used in both types of experiments are described
next.

3.1 Datasets

The first part of the experiments focus on 20 challenging
datasets, characterised in general (with one exception) by
a small number of instances and a large number of attrib-
utes. Table 1 summarises their main characteristics, includ-
ing number of instances, number of numerical and nominal
attributes, percentage of missing values, class balance ratio
(class bal.) and number of classes. Class bal. is the ratio
of the minority class frequency over the majority class fre-
quency—values closer to 0 (1) indicate datasets with more
(less) class distribution imbalance. The first 12 datasets in
this table are bioinformatics datasets, whilst the last 8 ones
are text mining datasets. The first six datasets involve data
from the biology of ageing. Datasets CE-T3, SC-T3, DM-T3,
and MM-T3 are described in [41]; whilst datasets DNA-T3
and DNA-T11 are described in [42]. Dataset PS-T3 involves

post-synaptic proteins [43]. The 5 microarray datasets are
publicly-available microarray gene expression datasets,
described in [44]. Finally, the 8 text mining datasets were
obtained from OpenML [45].

Table 2 summarises the main characteristics for 20 addi-
tional datasets which were used only in the final experi-
ments, comparing HEAD-DT and Auto-WEKA. The first
15 datasets used in this Table were used in [7], whilst the
other 5 datasets where used in [25].

3.2 Evaluation methodology

The 10-fold cross-validation technique (10-cv) [1] was used
in the experiments. Since Auto-WEKA and the Evolution-
ary Algorithms (EAs) are non-deterministic, their results are
an average over 5 executions, generating, for each method,
1000 algorithms. All results presented in Sect. 4 refer to the
predictive accuracy of the recommended algorithms in the
test sets.

Two predictive accuracy measures are used. First, the
Geometric Mean (GMean) of sensitivity (Sens) and speci-
ficity (Spec) [46], defined as GMean =

√

Sens × Spec . Sens
is the proportion of positive instances that were correctly
predicted as positive. Spec is the proportion of negative
instances that were correctly predicted as negative. These
measures were calculated considering each class in turn as
the positive class, and then computing the weighted aver-
age of these measures, by weighing the classes according

Table 3 Parameter values for the evolutionary algorithms

Parameter description Value

Number of individuals 100
Number of generations before changing the validation set 5
Tournament selection size 2
Elitism rate 5%
Crossover rate 95%
Mutation rate 5%

Table 4 Hyper-parameter values for all versions of Auto-WEKA

Parameter description Value(s)

Instance generator 10-fold cross-validation, seed = 1,...,5
Evaluation measure Error rate (classification)
Optimisation method SMAC, with executable =

smac-v2.06.01-development-619/smac
Initial Incumbent = Random
Execution Mode = SMAC
InitialN = 1

MemLimit 15 GB
TimeLimit From 1000 to 10,000 s

1903Evolutionary Intelligence (2021) 14:1895–1914

1 3

to their relative frequency. The GMean measure was also
used to evaluate some datasets in [41]. The second predictive
accuracy measure used is the simple classification accuracy
measure used by Auto-WEKA to choose the best algorithm
for each dataset.

Statistical significance analysis was applied to the experi-
mental results. In the first set of experiments (comparing
four methods), we have adopted Demšar’s [47] recommen-
dation to use the Friedman test with the adjusted statistic FF
[48] to compare multiple algorithms over multiple datasets,
followed by the Nemenyi post-hoc test for pairwise compari-
sons. In the final experiment comparing only two methods
we have used the Wilcoxon test [49]. The main advantage of
all these statistical tests is that they are non-parametric, so
that they do not make the assumption that the data follows
the normal distribution (nor assume any other probability
distribution, for that matter). All statistical tests were used
with the conventional significance level of 0.05.

3.3 Settings for the evolutionary algorithms (EAs)
and for Auto‑WEKA

In order to perform a fair comparison, all EAs were con-
figured with the same hyper-parameters values, listed in
Table 3.

Table 4 shows the hyper-parameter settings for Auto-
WEKA based on the options provided by its Experiment
Builder [7]. Note that the 10-cv mentioned in Table 4 is
another cross-validation procedure used by Auto-WEKA,
but this time over the training set (generated by the outer-
most 10-cv) to evaluate its candidate solutions regarding
their predictive accuracy.

None of the 4 meta-learning methods had their hyper-
parameter values optimised to individual datasets. A more
robust hyper-parameter optimisation procedure would be
too time-consuming, given the very large number of experi-
ments carried out in this work.

3.4 Computational environment and runtime limits

The experiments were executed in a Dual Intel 2.10 GHz
Xeon E5-2683 v4 Hexadeca-Core with 128 GB RAM. In
order to perform controlled experiments comparing differ-
ent meta-learning methods with the same computational
budget, recall that two types of experiments are performed,
as reported in Sect. 4. The first type of experiment compares
the results obtained by the three EAs (each evolving classifi-
cation algorithms based on a single type of knowledge repre-
sentation) with the results obtained by Auto-WEKA, which
can recommend classification algorithms based on multiple
knowledge representations. The second type of experiments
compares the best EA (HEAD-DT, evolving decision-tree

algorithms) against Auto-WEKA in an extended set of
datasets.

In both types of experiments, to have a fair comparison
among all meta-learning methods, each of them is allocated
the same runtime limit. Experiments were performed with
ten increasing values of the runtime limit for each meta-
learning method, namely 1000 s (seconds), 2000 s,..., up to
10,000 s. These runtime limits refer to the time taken by a
single run of each method on each dataset, on a single cross-
validation fold. Due to space restrictions, the next section
will report only the results for the smallest and the largest
runtime limits, i.e., 1000 s and 10,000 s. The results for the
other runtime limits can be seen in [50].

In addition to the parameters that are common to all
three EAs, which were set as described in Table 3, there is a
parameter that is used by GGP-RI and HHEA-BNC, but not
by HEAD-DT. This parameter is a timeout to evaluate each
individual (candidate algorithm) of the EA. For GGP-RI, the
value of this parameter starts with 10 s (seconds) when the
runtime limit for the entire run of GGP-RI is 1000 s. Then
the individual evaluation timeout increases by 10 s for each
increase of 1000 s in GGP-RI’s runtime, up to 100 s, when
the GGP-RI’s runtime limit is 10,000 s. For HHEA-BNC,
the value of this parameter starts with 50 s (seconds) when
the runtime limit for the entire run of HHEA-BNC is 1000 s.
Then the individual evaluation timeout increases by 50 s for
each increase of 1000 s in HHEA-BNC’s runtime, up to
500 s, when the HHEA-BNC’s runtime limit is 10,000 s.
HEAD-DT does not need this parameter because the deci-
sion tree induction algorithms produced by this EA are rela-
tively fast. The values of this parameter for HHEA-BNC are
larger than the values for GGP-RI because the Bayesian net-
work classification algorithms generated by the former tend
to be considerably slower than the rule induction algorithms
generated by the latter EA.

4 Experimental results

This section presents the results of the following two types
of experiments:

1. Experiments comparing four AutoML methods: the
three EAs (HEAD-DT, GGP-RI, HHEA-BNC) and
Auto-WEKA.

2. Experiments comparing one of the EAs (HEAD-DT,
evolving decision tree algorithms) with Auto-WEKA,
on an extended set of datasets.

As mentioned earlier, due to the very large number of
experiments, the first type of experiments use the 20 data-
sets shown in Table 1; whilst the second type of experi-
ments uses an extended set of 40 datasets (the 20 datasets in

1904 Evolutionary Intelligence (2021) 14:1895–1914

1 3

Table 5 GMean results for the
four AutoML methods (time
limit: 1000 s)

Dataset HEAD-DT HHEA-BNC GGP-RI Auto-WEKA

CE 0.564 0.576 0.501 0.604
DM 0.559 0.596 0.523 0.557
MM 0.596 0.637 0.524 0.572
SC 0.535 0.497 0.392 0.471
DNA3 0.704 0.741 0.582 0.700
DNA11 0.568 0.544 0.498 0.506
PS 0.888 0.827 0.445 0.830
Chen-2002 0.891 0.852 0.658 0.922
Chowdary-2006 0.956 0.966 0.830 0.988
Nutt-2003-v2 0.790 0.746 0.631 0.861
Singh-2002 0.772 0.771 0.613 0.867
West-2001 0.913 0.886 0.617 0.888
dbworld-bodies 0.725 0.753 0.582 0.765
dbworld-bodies-stemmed 0.815 0.770 0.652 0.825
oh0.wc 0.895 0.940 0.398 0.863
oh5.wc 0.911 0.913 0.361 0.878
oh10.wc 0.867 0.876 0.370 0.831
oh15.wc 0.847 0.909 0.382 0.864
re0.wc 0.831 0.841 0.489 0.849
re1.wc 0.886 0.832 0.407 0.851
Average 0.776 0.774 0.523 0.775
Average rank 2.000 2.000 4.000 2.000

Table 6 GMean results for the
four AutoML methods (time
limit: 10,000 s)

Dataset HEAD-DT HHEA-BNC GGP-RI Auto-WEKA

CE 0.581 0.578 0.502 0.605
DM 0.517 0.629 0.544 0.544
MM 0.590 0.598 0.550 0.563
SC 0.559 0.528 0.389 0.454
DNA3 0.705 0.730 0.583 0.712
DNA11 0.578 0.497 0.506 0.524
PS 0.897 0.824 0.448 0.838
Chen-2002 0.892 0.862 0.659 0.925
Chowdary-2006 0.956 0.958 0.833 0.991
Nutt-2003-v2 0.790 0.809 0.611 0.887
Singh-2002 0.772 0.777 0.638 0.877
West-2001 0.913 0.879 0.624 0.878
dbworld-bodies 0.725 0.784 0.585 0.816
dbworld-bodies-stemmed 0.815 0.805 0.649 0.892
oh0.wc 0.893 0.918 0.398 0.884
oh5.wc 0.914 0.896 0.364 0.880
oh10.wc 0.864 0.847 0.369 0.835
oh15.wc 0.859 0.900 0.381 0.867
re0.wc 0.831 0.827 0.489 0.841
re1.wc 0.894 0.883 0.407 0.859
Average 0.777 0.777 0.526 0.783
Average rank 2.050 2.100 3.850 2.000

1905Evolutionary Intelligence (2021) 14:1895–1914

1 3

Table 7 Accuracy results for
the four AutoML methods (time
limit: 1000 s)

Dataset HEAD-DT HHEA-BNC GGP-RI Auto-WEKA

CE 0.613 0.615 0.478 0.649
DM 0.637 0.708 0.598 0.672
MM 0.720 0.748 0.641 0.722
SC 0.826 0.802 0.764 0.828
DNA3 0.846 0.841 0.760 0.856
DNA11 0.752 0.743 0.682 0.708
PS 0.982 0.978 0.933 0.975
Chen-2002 0.896 0.867 0.663 0.926
Chowdary-2006 0.959 0.971 0.832 0.991
Nutt-2003-v2 0.760 0.730 0.537 0.840
Singh-2002 0.772 0.771 0.539 0.867
West-2001 0.910 0.888 0.511 0.880
dbworld-bodies 0.721 0.764 0.523 0.764
dbworld-bodies-stemmed 0.806 0.783 0.610 0.825
oh0.wc 0.825 0.896 0.070 0.778
oh5.wc 0.846 0.848 0.048 0.789
oh10.wc 0.777 0.790 0.053 0.721
oh15.wc 0.746 0.844 0.061 0.774
re0.wc 0.755 0.760 0.240 0.783
re1.wc 0.807 0.742 0.084 0.755
Average 0.798 0.805 0.481 0.805
Average rank 2.150 2.025 4.000 1.825

Table 8 Accuracy results for
the four AutoML methods (time
limit: 10,000 s)

Dataset HEAD-DT HHEA-BNC GGP-RI Auto-WEKA

CE 0.623 0.614 0.482 0.649
DM 0.604 0.713 0.615 0.665
MM 0.702 0.730 0.658 0.706
SC 0.818 0.806 0.764 0.826
DNA3 0.847 0.838 0.758 0.855
DNA11 0.747 0.730 0.685 0.701
PS 0.984 0.977 0.933 0.975
Chen-2002 0.896 0.868 0.666 0.927
Chowdary-2006 0.959 0.965 0.837 0.993
Nutt-2003-v2 0.760 0.790 0.517 0.873
Singh-2002 0.772 0.777 0.574 0.877
West-2001 0.910 0.883 0.538 0.868
dbworld-bodies 0.721 0.792 0.530 0.812
dbworld-bodies-stemmed 0.806 0.814 0.605 0.891
oh0.wc 0.824 0.868 0.071 0.809
oh5.wc 0.850 0.829 0.051 0.793
oh10.wc 0.773 0.754 0.056 0.727
oh15.wc 0.764 0.832 0.060 0.778
re0.wc 0.752 0.746 0.240 0.774
re1.wc 0.820 0.802 0.084 0.767
Average 0.797 0.806 0.486 0.813
Average rank 2.150 2.050 3.950 1.850

1906 Evolutionary Intelligence (2021) 14:1895–1914

1 3

Table 1 plus the 20 datasets in Table 2). We report results
for the values of accuracy and Gmean (the geometric mean
of sensitivity and specificity) for each dataset; and the aver-
age values of accuracy and GMean, as well as the average
rank of each method based on these measures, over the
corresponding datasets. The lower the rank, the better the
method. A method that outperforms every other method in
every dataset has an average rank of 1.0 (first position). The
complete tables with per-dataset results can be found in the
Supplementary Results file. Recall that, although we per-
formed experiments with the runtime limit for meta-learning
methods varying from 1000 to 10,000 s, in increments of
1000 s, in general only the results for 1000 s and 10,000 s
are reported in this section, due to space restrictions. The
results for the 10 different runtime limits can be found in the
Supplementary Results file.

4.1 Results comparing four AutoML methods

This section compares four types of AutoML methods, the
three EAs and Auto-WEKA, in controlled experiments
where all the four methods use the same runtime limit,
as mentioned earlier. Values in bold indicate the best per-
forming method according to the corresponding evaluation
measure.

Tables 5 and 6 show the GMean results for each method,
for the runtime limits of 1000 s and 10,000 s, respectively.
Recall that these runtime limits refer to a single run of a
meta-learning method, for each fold of the cross-validation
procedure. The last row of these tables show the average
rank based on GMean over all 20 datasets. Tables 7 and 8
show the accuracy results for each method, for the runtime
limits of 1000 s and 10,000 s, respectively.

In Table 5, with GMean results for the smallest runtime
limit of 1000 s, the best average ranks were jointly obtained
by three methods, HEAD-DT, HHEA-BNC and Auto-
WEKA; whilst HEAD-DT obtained a slightly better aver-
age GMean value. In Table 6, with results for the longest
runtime limit of 10,000 s, Auto-WEKA obtained a slightly
better result (regarding both the average rank and the average
GMean value) than HEAD-DT and HHEA-BNC. In both
tables, GGP-RI was clearly the worst performing method.
This result seem partly due to the fact that GGP-RI had poor
results in many datasets with a large number of numerical
attributes. Comparing the average GMean values of each
method across both tables, one can observe that the three
EAs have only slightly improved their GMean values from
1000 to 10,000 s—an improvement of just 0.001 for HEAD-
DT and 0.003 for the other two EAs. By contrast, Auto-
WEKA obtained a somewhat greater GMean improvement

(a) (b)

(c) (d)

Fig. 1 Critical diagrams showing average GMean/Accuracy ranks and Nemenyi’s critical difference (CD) for the four AutoML methods

(a) (b)

Fig. 2 Evolution of average ranks for all AutoML methods across the 10 runtime limits

1907Evolutionary Intelligence (2021) 14:1895–1914

1 3

of 0.008, when the runtime limit increased from 1000 to
10,000 s.

Hence, Auto-WEKA has benefited from the increase in
runtime limit more than the EAs. This seems due to the
fact that Auto-WEKA is searching in a much more diverse
space of classification algorithms, in terms of knowledge
representations. Recall that each EA’s search space includes
algorithms from a single knowledge representation (deci-
sion trees, if-then classification rules or Bayesian network
classifiers), whilst Auto-WEKA’s search space includes 33
classification algorithms from multiple types of knowledge
representation. Hence, it seems natural that Auto-WEKA

requires more time to find the best type of algorithm to be
recommended.

When analyzing the results for the accuracy measure, the
scenario changes a little. It is possible to see, in both Table 7
and Table 8, for the runtime limits of 1000 s and 10,000 s,
respectively, there is a clearer difference in relative ranks
of the three best methods. More precisely, when predictive
accuracy is evaluated by the accuracy measure, Auto-WEKA
is the best method, followed by HHEA-BNC and HEAD-DT
in second in third places, respectively, in terms of average
rank. In terms of average accuracy, HHEA-BNC and Auto-
WEKA obtain the joint best result in Table 7 (1000 s), but
Auto-WEKA is again the clear winner in Table 8 (10,000 s).

Fig. 3 Number of times each
type of classification algorithm
is selected by Auto-WEKA

(a)

(b)

1908 Evolutionary Intelligence (2021) 14:1895–1914

1 3

Again, Auto-WEKA was the method that most benefited
from the increase in the runtime limit, with a small improve-
ment of average accuracy, namely 0.008. Again, GGP-RI
was clearly the worst performing method.

To explain these results, recall that Auto-WEKA explic-
itly optimizes the accuracy measure when searching for the
best algorithm configuration, whereas the EAs are optimiz-
ing the F-Measure. Hence, it is natural that Auto-WEKA
obtains the best predictive performance when the results are
evaluated by the Accuracy measure.

Figure 1 shows the critical diagrams comparing the four
AutoML methods in terms of their average rank based on
both GMean (in the top two diagrams) and accuracy (in the
bottom two diagrams). For both measures, and for both the
runtime limits of 1000 s and 10,000 s, we can see that there
is no statistically-significant difference among all methods,
with the exception of GGP-RI, which is significantly outper-
formed by the other three methods.

As mentioned earlier, the analysis of the results so far
focused only on the runtime limits of 1000 s and 10,000 s
due to space restrictions, but we performed experiments with
10 different limits (from 1000 up to 10,000 s). Figure 2a
shows the evolution of the GMean average ranks for the four
meta-learning methods across the 10 runtime limits. This
figure shows that HHEA-BNC tends to achieve overall the
best (lowest) average rank until the runtime limit of 7000 s,
whilst for longer runtime limits Auto-WEKA and HEAD-DT
tend to share the best rank, with Auto-WEKA slightly better
at the last runtime limit.

Figure 2b shows the same evolution, but this time regard-
ing average accuracy ranks. In this case, Auto-WEKA
remains the best method across all runtime limits, and for
nearly all runtime limits, the second place is obtained by
HHEA-BNC. Note that GGP-RI remained consistently the
worst method across all 10 runtime limits, for both GMean
and accuracy results.

Figure 3a, b show the broad types of algorithms recom-
mended by Auto-WEKA per dataset, for the runtime limits
of 1000 s and 10,000 s, respectively. Since Auto-WEKA
considers a large number of algorithms, instead of refer-
ring to specific algorithms, the graphs show the frequency
of recommendations for five broad types of algorithms,
namely: the three types of algorithms that are considered
by the three EAs (decision trees, if-then classification rules,
and Bayesian network classifiers), ensemble methods and
all the others. Note that the variability of the selected types
of algorithms is high, highlighting the difficulty of selecting
the best algorithm for each dataset.

For the runtime limit of 1000 s (Fig. 3a), ensembles had
the highest prevalence across the datasets; they were selected
by Auto-WEKA in 33.9% of the cases, closely followed by
decision-tree algorithms, selected in 31.4% of the cases. For
the runtime limit of 10,000 s (Fig. 3b), these two types of

classification algorithms swapped places in the ranking by
prevalence, i.e., decision-tree algorithms were selected by
Auto-WEKA in 34.7% of the cases, whilst ensembles were
selected in 27.3% of the cases. Bayesian classification algo-
rithms also did relatively well, partly because they had a
high prevalence among the text mining datasets. For both
runtime limits, Bayesian classification algorithms were the
third most selected type of classification algorithm: they
were selected in 16.7% of the cases in Fig. 3a and in 24.2%
of the cases in Fig. 3b. For both runtime limits, rule induc-
tion algorithms had small frequencies of selection, only
7.9% in Fig. 3a and 6.7% in Fig. 3b. This is consistent with
the fact that, out of the 3 EAs for AutoML evaluated in this
work, GGP-RI (which evolved rule induction algorithms)
obtained clearly the worst result.

4.2 More extensive experiments comparing
HEAD‑DT and Auto‑WEKA

In this section we compare HEAD-DT and Auto-WEKA in
an extended set of 40 datasets. This includes the 20 data-
sets used in the previous section plus 20 other datasets, as
discussed in Sect. 3.1. As mentioned earlier, the motivation
for using this larger set of datasets only to compare the two
methods in this section, rather than to compare more meth-
ods in the previous section, is the much larger amount of
time associated with the experiments using all the 40 data-
sets. This section uses the same experimental methodology
used in the previous section, using 10-fold cross-validation
and comparing the two methods with the same runtime limit,
varying this limit from 1000 to 10,000 s, in increments of
1000 s. Again, due to space restrictions, we report results
only for the smallest and longest runtime limits, namely
1000 s and 10,000 s; but the results for the 10 different runt-
ime limits can be found in the Supplementary Results file.

Table 9 and Table 10 show the accuracy and GMean val-
ues, respectively, obtained by HEAD-DT and Auto-WEKA
with the runtime limits of 1000 s and 10,000 s. In terms of
accuracy, Auto-WEKA has somewhat outperformed HEAD-
DT overall, whilst the opposite was observed for the GMean
measure. This result is consistent with the fact that Auto-
WEKA’s search tries to optimize the accuracy measure
(unlike HEAD-DT), as discussed earlier. However, the result
of a Wilcoxon significance test, at the conventional signifi-
cance level of 0.05, indicates that there is no statistically
significant difference of predictive performance between
HEAD-DT and Auto-WEKA (for both accuracy and GMean
measures), for each of the 10 runtime limits.

Figure 4a shows the evolution of the average GMean val-
ues (across all datasets) for Auto-WEKA and HEAD-DT
across the 10 runtime limits. This figure shows that HEAD-
DT obtains a better (higher) GMean value for all runtime
limits. Figure 4b shows the same type of evolution for the

1909Evolutionary Intelligence (2021) 14:1895–1914

1 3

accuracy measure. In this case, HEAD-DT obtains the best
average accuracy for the smallest runtime limit, but Auto-
WEKA obtains higher accuracy for all other runtime limits.
It should be noted, however, that in both graphs the differ-
ences of predictive performance between HEAD-DT and

Auto-WEKA are small, less than 1% in general, across the
different runtime limits.

Finally, the presence of signs of overfitting for HEAD-DT
and Auto-WEKA was also investigated. This investigation
compared HEAD-DT’s GMean values on the validation set
(a holdout part of the training set) and Auto-WEKA-Trees’

Table 9 Accuracy results for
HEAD-DT and Auto-WEKA
(time limits: 1000 s and
10,000 s)

1000 s 10,000 s

HEAD-DT Auto-WEKA HEAD-DT Auto-WEKA

CE 0.613 0.649 0.623 0.649
DM 0.637 0.672 0.604 0.665
MM 0.720 0.722 0.702 0.706
SC 0.826 0.828 0.818 0.826
DNA3 0.846 0.856 0.847 0.855
DNA11 0.752 0.708 0.747 0.701
PS 0.982 0.975 0.984 0.975
Chen-2002 0.896 0.926 0.896 0.927
Chowdary-2006 0.959 0.991 0.959 0.993
Nutt-2003-v2 0.760 0.840 0.760 0.873
Singh-2002 0.772 0.867 0.772 0.877
West-2001 0.910 0.880 0.910 0.868
dbworld-bodies 0.721 0.764 0.721 0.812
dbworld-bodies-stemmed 0.806 0.825 0.806 0.891
oh0.wc 0.825 0.778 0.824 0.809
oh5.wc 0.846 0.789 0.850 0.793
oh10.wc 0.777 0.721 0.773 0.727
oh15.wc 0.746 0.774 0.764 0.778
re0.wc 0.755 0.783 0.752 0.774
re1.wc 0.807 0.755 0.820 0.767
Abalone 0.265 0.263 0.269 0.263
Car 0.984 0.994 0.983 0.997
Convex 0.712 0.531 0.714 0.531
Germancredit 0.750 0.738 0.750 0.739
Krvskp 0.995 0.962 0.995 0.962
Madelon 0.781 0.735 0.768 0.784
Mnist 0.886 0.929 0.887 0.934
Mnistrotationbackimagenew 0.343 0.214 0.343 0.225
Secom 0.932 0.932 0.931 0.933
Semeion 0.763 0.894 0.758 0.907
Shuttle 1.000 0.999 1.000 0.999
Waveform 0.760 0.868 0.763 0.868
Winequalitywhite 0.622 0.676 0.627 0.672
Yeast 0.584 0.602 0.582 0.607
Sick 0.989 0.978 0.989 0.980
Splice 0.990 0.949 0.988 0.955
Kropt 0.796 0.680 0.801 0.761
Quake 0.535 0.553 0.529 0.546
pc4 0.889 0.891 0.886 0.896
MagicTelescope 0.852 0.831 0.853 0.840
Average 0.785 0.783 0.784 0.792
wins 18 21 17 23

1910 Evolutionary Intelligence (2021) 14:1895–1914

1 3

GMean values for the internal 10-CV procedure (on the
training set) with their corresponding GMean values on the
test set. A GMean value on the test set much smaller than the
corresponding GMean value on the validation set or internal
10-CV procedure (depending on the method) was considered
a sign of overfitting. This kind of overfitting can be called

meta-overfitting, since it occurs at the meta-learning level,
rather than the conventional overfitting at the base-learning
level (involving the difference between GMean values on the
training and validation sets).

Note that the meta-overfitting is measured in somewhat
different ways in HEAD-DT and Auto- WEKA due to the

Table 10 GMean results for
HEAD-DT and Auto-WEKA
(time limits: 1000 s and
10,000 s)

1000 s 10,000 s

HEAD-DT Auto-WEKA HEAD-DT Auto-WEKA

CE 0.564 0.604 0.581 0.605
DM 0.559 0.557 0.517 0.544
MM 0.596 0.572 0.590 0.563
SC 0.535 0.471 0.559 0.454
DNA3 0.704 0.700 0.705 0.712
DNA11 0.568 0.506 0.578 0.524
PS 0.888 0.830 0.897 0.838
Chen-2002 0.891 0.922 0.892 0.925
Chowdary-2006 0.956 0.988 0.956 0.991
Nutt-2003-v2 0.790 0.861 0.790 0.887
Singh-2002 0.772 0.867 0.772 0.877
West-2001 0.913 0.888 0.913 0.878
dbworld-bodies 0.725 0.765 0.725 0.816
dbworld-bodies-stemmed 0.815 0.825 0.815 0.892
oh0.wc 0.895 0.863 0.893 0.884
oh5.wc 0.911 0.878 0.914 0.880
oh10.wc 0.867 0.831 0.864 0.835
oh15.wc 0.847 0.864 0.859 0.867
re0.wc 0.831 0.849 0.831 0.841
re1.wc 0.886 0.851 0.894 0.859
Abalone 0.486 0.483 0.489 0.483
Car 0.987 0.996 0.987 0.998
Convex 0.712 0.531 0.714 0.531
Germancredit 0.655 0.630 0.657 0.638
Krvskp 0.995 0.961 0.995 0.962
Madelon 0.781 0.735 0.768 0.784
Mnist 0.935 0.960 0.936 0.963
Mnistrotationbackimagenew 0.564 0.441 0.564 0.452
Secom 0.254 0.274 0.256 0.268
Semeion 0.862 0.940 0.859 0.947
Shuttle 1.000 0.997 1.000 0.997
Waveform 0.818 0.900 0.820 0.900
Winequalitywhite 0.712 0.738 0.716 0.728
Yeast 0.708 0.721 0.706 0.724
Sick 0.940 0.888 0.943 0.894
Splice 0.993 0.961 0.991 0.965
Kropt 0.881 0.808 0.884 0.858
Quake 0.516 0.498 0.506 0.496
pc4 0.689 0.550 0.694 0.579
MagicTelescope 0.821 0.793 0.823 0.802
Average 0.770 0.757 0.771 0.766
wins 24 16 21 19

1911Evolutionary Intelligence (2021) 14:1895–1914

1 3

different approaches to evaluate candidate solutions during
their searches. That is, HEAD-DT performs a single parti-
tion of the training set into two subsets, one for building the
model, the other (validation set) for evaluating the model;
whilst Auto-WEKA uses internal cross-validation on the
training set. Despite this difference, the principle used for
measuring meta-overfitting is the same in both types of
methods: the degree of meta-overfitting is measured by com-
paring predictive performance on the test set (not accessed
during the entire execution of HEAD-DT or Auto-WEKA)
with the predictive performance on the part of the training
set used as a hold-out set to evaluate the model built from
the remaining part of the training set.

For the runtime limit of 1000 s (10,000 s), the average
GMean value (over all 40 datasets) of HEAD-DT on the
validation set is 0.756 (0.758), whilst its average GMean on
the test set is 0.770 (0.771). In addition, for the runtime limit
of 1000 s (10,000 s), the average accuracy value of HEAD-
DT on the validation set is 0.766 (0.767), whilst its average
accuracy on the test set is 0.785 and 0.784. Hence, HEAD-
DT shows no sign of meta-overfitting, since its GMean and
accuracy values on the test set are slightly larger than on the
validation set. This small increase in the GMean and accu-
racy values on the test set, for both runtime limits, can be
explained mainly by two factors. First, since the algorithms
were evolved by HEAD-DT using the F-measure of preci-
sion and recall in the fitness function, they were not opti-
mizing GMean or accuracy. Second, the classifier used to
classify the test set is in principle a higher-quality classifier
than the one used to classify the validation set, because the
former was induced from all training instances, whilst the
latter was induced from a subset of the training set (exclud-
ing the validation set).

Turning to Auto-WEKA, for the runtime limit of 1000 s
(10,000 s), the average GMean value (over all 40 datasets)
for the internal 10-CV of Auto-WEKA is 0.896 (0.899),
whilst its GMean on the test set is 0.757 (0.766). In addition,

for the runtime limit of 1000 s (10,000 s), the average
accuracy value for the internal 10-CV of Auto-WEKA is
0.912 (0.915), whilst its accuracy on the test set is 0.783
(0.792). Hence, for both the GMean and accuracy meas-
ures, Auto-WEKA clearly shows a substantial degree of
meta-overfitting.

5 Conclusions

AutoML is currently a very popular issue, having attracted
a great deal of attention, with the proposal of new tools,
mainly based on optimization [16, 51–58]. Based on the rel-
evance of AutoML, this work has evaluated four methods for
recommending a classification algorithm for a target dataset:
three Evolutionary Algorithms (EAs) and Auto-WEKA [7],
in two sets of experiments. In the first set of experiments,
we have compared the four AutoML methods with the same
runtime limit on 20 datasets. Auto-WEKA can recommend
classification algorithms of various types (paradigms),
whilst each of the three EAs is restricted to recommend a
different type of classification algorithm: decision tree, rule
induction or Bayesian network classification algorithms, in
the case of HEAD-DT, GGP-RI and HHEA-BNC, respec-
tively. In these experiments, there was no statistically signifi-
cant difference of predictive accuracy between the three best
methods, namely two EAs (HEAD-DT and HHEA-BNC)
and Auto-WEKA. However, these three methods obtained
significantly better predictive accuracy than the other EA
(GGP-RI). These results were broadly consistent across the
10 different runtime limits used in the experiments. In the
second set of experiments, where a larger set of 40 datasets
was used to compare the predictive accuracy of HEAD-DT
and Auto-WEKA only, again there was no statistically sig-
nificant difference between the predictive performance of
these two methods.

(a) (b)

Fig. 4 Evolution of average predictive values for HEAD-DT and Auto-WEKA across the 10 runtime limits

1912 Evolutionary Intelligence (2021) 14:1895–1914

1 3

However, the focus of HEAD-DT on only on decision-
tree algorithms has two advantages from the perspective of
other algorithm-evaluation criteria. First, in applications
where it is important that the classification model be inter-
preted by users (e.g. in medical applications), decision-tree
algorithms have the advantage of generating interpretable
classification models. By contrast, since Auto-WEKA can
select any algorithm out of many types of classification algo-
rithm, it can recommend classification algorithms producing
black-box (non-interpretable) models. Indeed, in our experi-
ments, Auto-WEKA often recommended ensembles, which
are not easily interpretable. Second, decision-tree algorithms
also have the advantage of being in general more scalable to
large datasets than several other types of classification algo-
rithms in Auto-WEKA’s search space, like neural networks,
support vector machines and some ensemble methods.

Overall, when the runtime limit is increased from 1000 to
10,000 s, Auto-WEKA benefits more from the extra search
time than HEAD-DT. This seems due to the fact that Auto-
WEKA has to explore a much more diverse space of classi-
fication algorithms, so it probably requires more time to find
the best type of classification algorithm to be recommended
for a given input dataset.

In addition, we observed that Auto-WEKA exhibited
meta-overfitting, where the GMean values on the training set
were substantially lower than the GMean values on the test
set, for the best algorithm found by Auto-WEKA. As noted
earlier, this meta-overfitting is a form of overfitting at the
meta-learning level, due to evaluating many different (base-
level) classification algorithms during Auto-WEKA’s search
for the best algorithm. This is in contrast to the standard
overfitting at the base level, due to evaluating many different
models built by the same classification algorithm.

5.1 Future work

It would be interesting to enhance the search process of
the EAs by first performing a global search to optimise the
candidate algorithms’ (procedural) components, followed
by a second (global or local) search to optimise the con-
tinuous parameters of the best algorithm generated by the
first search. Another future research direction is to extend
the EAs to produce an ensemble of evolved classification
algorithms in a post-processing phase, after the EAs have
completed their search.

Besides, since Auto-WEKA showed a clear sign of meta-
overfitting, another research direction consists of developing
new meta-overfitting-avoidance methods that could poten-
tially improve the predictive performance of Auto-WEKA.
Finally, it would be interesting to compare the three EAs
and Auto-WEKA to other AutoML methods, such as Auto-
sklearn and those described in Sect. 2.2.4. This would give
us a more detailed assessment about which AutoML method

recommends the best classification algorithm, taking into
account different datasets.

Acknowledgements The authors would like to thank FAPESP (grants
no. 2013/07375-0, 2015/13245-7 and 2016/02870-0), FAPEMIG (grant
no. CEX-PPM-00098-17), MPMG (project Analytical Capabilities),
CNPq (grant no. 310833/2019-1), CAPES, MCTIC/RNP (grant no.
51119) and H2020 (grant no. 777154) for their partial financial support.

References

 1. Witten IH, Frank E, Hall MA, Pal CJ (2016) Data mining: practi-
cal machine learning tools and techniques, 4th edn. Morgan Kauf-
mann Publishers Inc., San Francisco

 2. Zaki MJ, Meira W Jr (2020) Data mining and analysis: funda-
mental concepts and algorithms, 2nd edn. Cambridge University
Press, Cambridge

 3. Michie D, Spiegelhalter DJ, Taylor CC, Campbell J (eds) (1994)
Machine learning, neural and statistical classification. Ellis Hor-
wood, Upper Saddle River

 4. METAL: meta-learning assistant for providing user support in
machine learning and data mining (2002). http://www.metal -kdd.
org

 5. Brazdil P, Giraud-Carrier C, Soares C, Vilalta R (2008) Met-
alearning: applications to data mining, 1st edn. Springer, Berlin

 6. Vanschoren J (2018) Meta-learning: a survey. arXiv :1810.03548
 7. Thornton C, Hutter F, Hoos HH, Leyton-Brown K (2013)

Auto-weka: combined selection and hyperparameter optimiza-
tion of classification algorithms. In: Proceedings of the 19th
ACM SIGKDD international conference on knowledge discov-
ery and data mining, KDD ’13. ACM, pp 847–855. https ://doi.
org/10.1145/24875 75.24876 29

 8. Ho T, Basu M (2002) Complexity measures of supervised
classification problems. IEEE Trans Pattern Anal Mach Intell
24(3):289–300

 9. Ho TK, Basu M, Law MHC (2006) Measures of geometri-
cal complexity in classification problems. In: Basu M, Ho TK
(eds) Data complexity in pattern recognition. Springer, London,
pp 1–23. https ://doi.org/10.1007/978-1-84628 -172-3_1. ISBN
978-1-84628-172-3

 10. Pappa GL, Freitas A (2009) Automating the design of data min-
ing algorithms: an evolutionary computation approach, 1st edn.
Springer, Berlin

 11. Leite R, Brazdil P, Vanschoren J (2012) Selecting classification
algorithms with active testing. Springer, Berlin, pp 117–131. https
://doi.org/10.1007/978-3-642-31537 -4_10

 12. Pappa GL, Ochoa G, Hyde MR, Freitas AA, Woodward J, Swan
J (2014) Contrasting meta-learning and hyper-heuristic research:
the role of evolutionary algorithms. Genet Program Evol Mach
15(1):3–35. https ://doi.org/10.1007/s1071 0-013-9186-9

 13. Kotthoff L, Thornton C, Hoos HH, Hutter F, Leyton-Brown K
(2017) Auto-weka 2.0: automatic model selection and hyperpa-
rameter optimization in weka. J Mach Learn Res 18(25):1–5

 14. Barros RC, de Carvalho AC, Freitas AA (2015) Automatic design
of decision-tree induction algorithms. No. 978-3-319-14231-9 in
SpringerBriefs in computer science. Springer

 15. van Rijn JN, Abdulrahman SM, Brazdil P, Vanschoren J (2015)
Fast algorithm selection using learning curves. In: Advances in
intelligent data analysis XIV—14th international symposium, IDA
2015, Saint Etienne, France, October 22–24, pp 298–309

 16. Hutter F, Kotthoff L, Vanschoren J (eds) (2019) Automated
machine learning: methods, systems, challenges. Springer, New
York, NY, USA. http://autom l.org/book

http://www.metal-kdd.org
http://www.metal-kdd.org
http://arxiv.org/abs/1810.03548
https://doi.org/10.1145/2487575.2487629
https://doi.org/10.1145/2487575.2487629
https://doi.org/10.1007/978-1-84628-172-3_1
https://doi.org/10.1007/978-3-642-31537-4_10
https://doi.org/10.1007/978-3-642-31537-4_10
https://doi.org/10.1007/s10710-013-9186-9
http://automl.org/book

1913Evolutionary Intelligence (2021) 14:1895–1914

1 3

 17. de Sá AGC, Pappa GL (2014) A hyper-heuristic evolutionary
algorithm for learning Bayesian network classifiers. In: Proceed-
ings of the Ibero-American conference on artificial intelligence.
Springer, pp 430–442

 18. de Sá AGC, Pinto WJGS, Oliveira LOVB, Pappa GL (2017) REC-
IPE: A grammar-based framework for automatically evolving clas-
sification pipelines. In: Proceedings of the European conference
on genetic programming (EuroGP). Springer, pp 246–261

 19. Křen T, Pilát M, Neruda R (2017) Automatic creation of machine
learning workflows with strongly typed genetic programming. Int
J Artif Intell Tools 26(05):1760020

 20. Guo XE, Gibson LJ (1999) Behavior of intact and damaged hon-
eycombs: a finite element study. Int J Mech Sci 41(1):85–105

 21. Nyathi T, Pillay N (2017) Automated design of genetic pro-
gramming classification algorithms using a genetic algorithm.
In: EvoApplications (2), Lecture notes in computer science, vol
10200, pp 224–239

 22. Hall M, Frank E, Holmes G, Pfahringer B, Reutemann P, Witten
IH (2009) The weka data mining software: an update. SIGKDD
Explor Newsl 11(1):10–18

 23. Feurer M, Klein A, Eggensperger K, Springenberg J, Blum M,
Hutter F (2015) Methods for improving Bayesian optimization
for automl. In: ICML 2015 AutoML Workshop

 24. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Gri-
sel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V, Vanderp-
las J, Passos A, Cournapeau D, Brucher M, Perrot M, Duchesnay
E (2011) SciKit-learn: machine learning in python. J Mach Learn
Res 12:2825–2830

 25. Feurer M, Klein A, Eggensperger K, Springenberg J, Blum M,
Hutter F (2015) Efficient and robust automated machine learning.
In: Advances in neural information processing systems 28. Curran
Associates, Inc., pp 2944–2952. http://paper s.nips.cc/paper /5872-
effic ient-and-robus t-autom ated-machi ne-learn ing.pdf

 26. Feurer M, Springenberg JT, Hutter F (2015) Initializing Bayesian
hyperparameter optimization via meta-learning. In: Proceedings
of the twenty-ninth AAAI conference on artificial intelligence, pp
1128–1135. http://www.aaai.org/ocs/index .php/AAAI/AAAI1 5/
paper /view/10029

 27. Barros RC, Basgalupp MP, de Carvalho ACPLF, Freitas AA
(2012) A survey of evolutionary algorithms for decision-tree
induction. IEEE Trans Syst Man Cybern Part C Appl Rev
42(3):291–312

 28. Eiben AE, Smith J (2015) From evolutionary computation to the
evolution of things. Nature 521(7553):476–482

 29. Freitas AA (2008) Soft computing for knowledge discovery and
data mining, chap. A review of evolutionary algorithms for data
mining. Springer, New York, pp 79–111

 30. Barros RC, Basgalupp MP, de Carvalho ACPLF, Freitas AA
(2013) Automatic design of decision-tree algorithms with evo-
lutionary algorithms. Evol Comput 21(4):659–684. https ://doi.
org/10.1162/EVCO_a_00101

 31. Barros RC, Basgalupp MP, Freitas AA, de Carvalho ACPLF
(2014) Evolutionary design of decision-tree algorithms tailored
to microarray gene expression data sets. IEEE Trans Evol Comput
18(6):873–892. https ://doi.org/10.1109/TEVC.2013.22918 13

 32. Barros RC, Winck AT, Machado KS, Basgalupp MP, de Car-
valho ACPLF, Ruiz DD, de Souza ON (2012) Automatic design
of decision-tree induction algorithms tailored to flexible-receptor
docking data. BMC Bioinform 13:310

 33. de Sá AGC, Pappa GL (2013) Towards a method for automati-
cally evolving Bayesian network classifiers. In: Proceedings of
the annual conference companion on genetic and evolutionary
computation. ACM, pp 1505–1512. https ://doi.org/10.1145/24645
76.24827 29

 34. Cheng J, Greiner R (1999) Comparing Bayesian network classi-
fiers. In: Proceedings of the fifteenth conference on uncertainty

in artificial intelligence. Morgan Kaufmann, pp 101–108. http://
dl.acm.org/citat ion.cfm?id=20737 96.20738 08

 35. Daly R, Shen Q, Aitken S (2011) Learning Bayesian networks:
approaches and issues. Knowl Eng Rev 26(2):99–157. https ://doi.
org/10.1017/S0269 88891 00002 51

 36. Olson RS, Bartley N, Urbanowicz RJ, Moore JH (2016) Evalua-
tion of a tree-based pipeline optimization tool for automating data
science. In: Proceedings of the genetic and evolutionary computa-
tion conference (GECCO). ACM, pp 485–492

 37. Sohn A, Olson RS, Moore JH (2017) Toward the automated analy-
sis of complex diseases in genome-wide association studies using
genetic programming. In: Proceedings of the genetic and evolu-
tionary computation conference (GECCO). ACM, pp 489–496

 38. Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elit-
ist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evol
Comput 6(2):182–197

 39. Scott EO, De Jong KA (2016) Evaluation-time bias in quasi-gen-
erational and steady-state asynchronous evolutionary algorithms.
In: Proceedings of the genetic and evolutionary computation con-
ference (GECCO). ACM, pp 845–852

 40. Mckay R, Hoai N, Whigham P, Shan Y, O Neill M (2010) Gram-
mar-based genetic programming a survey. Genet Program Evol
Mach 11(3):365–396

 41. Wan C, Freitas A, de Magalhaes J (2015) Predicting the pro-
longevity or anti-longevity effect of model organism genes with
new hierarchical feature selection methods. Trans Comput Biol
Bioinform IEEE/ACM 12(2):262–275. https ://doi.org/10.1109/
TCBB.2014.23552 18

 42. Freitas AA, Vasieva O, Magalhães JPd (2011) A data mining
approach for classifying dna repair genes into ageing-related
or non-ageing-related. BMC Genomics 12(1):1–11. https ://doi.
org/10.1186/1471-2164-12-27

 43. Pappa GL, Baines AJ, Freitas AA (2005) Predicting post-synaptic
activity in proteins with data mining. Bioinformatics 21(2):19–25

 44. de Souto M, Costa I, de Araujo D, Ludermir T, Schliep A (2008)
Clustering cancer gene expression data: a comparative study.
BMC Bioinform 9(1):497

 45. Vanschoren J, van Rijn JN, Bischl B, Torgo L (2014) Openml:
networked science in machine learning. SIGKDD Explor Newsl
15(2):49–60. https ://doi.org/10.1145/26411 90.26411 98

 46. Japkowicz N, Shah M (2011) Evaluating learning algorithms: a
classification perspective. Cambridge University Press, New York

 47. Demšar J (2006) Statistical comparisons of classifiers over mul-
tiple data sets. J Mach Learn Res 7:1–30

 48. Iman R, Davenport J (1980) Approximations of the critical region
of the Friedman statistic. Commun Stat 9:571–595

 49. Wilcoxon F, Katti SK, Wilcox RA (1970) Critical values and prob-
ability levels for the Wilcoxon rank sum test and the wilcoxon
signed rank test. Sel Tables Math Stat 1:171–259

 50. Basgalupp MP, Barros RC, de Sá AGC, Pappa GL, Mantovani RG,
de Carvalho ACPLF, Freitas AA (2020) Supplementary material
for: an extensive experimental evaluation of automated machine
learning methods for recommending classification algorithms.
arXiv

 51. Elsken T, Metzen JH, Hutter F (2019) Neural architecture search:
a survey. J Mach Learn Res 20(55):1–21

 52. Mohr F, Wever M, Hüllermeier E (2018) ML-Plan: auto-
mated machine learning via hierarchical planning. Mach Learn
107:1495–1515

 53. das Dôres SCN, Soares C, Ruiz D (2018) Bandit-based automated
machine learning. In: Proceedings of the Brazilian conference on
intelligent systems, BRACIS’18. IEEE, New York, NY, USA, pp
121–126

 54. Li L, Jamieson K, DeSalvo G, Rostamizadeh A, Talwalkar A
(2018) Hyperband: a novel bandit-based approach to hyperpa-
rameter optimization. J Mach Learn Res 18(185):1–52

http://papers.nips.cc/paper/5872-efficient-and-robust-automated-machine-learning.pdf
http://papers.nips.cc/paper/5872-efficient-and-robust-automated-machine-learning.pdf
http://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/10029
http://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/10029
https://doi.org/10.1162/EVCO_a_00101
https://doi.org/10.1162/EVCO_a_00101
https://doi.org/10.1109/TEVC.2013.2291813
https://doi.org/10.1145/2464576.2482729
https://doi.org/10.1145/2464576.2482729
http://dl.acm.org/citation.cfm?id=2073796.2073808
http://dl.acm.org/citation.cfm?id=2073796.2073808
https://doi.org/10.1017/S0269888910000251
https://doi.org/10.1017/S0269888910000251
https://doi.org/10.1109/TCBB.2014.2355218
https://doi.org/10.1109/TCBB.2014.2355218
https://doi.org/10.1186/1471-2164-12-27
https://doi.org/10.1186/1471-2164-12-27
https://doi.org/10.1145/2641190.2641198

1914 Evolutionary Intelligence (2021) 14:1895–1914

1 3

 55. Larcher CHN, Barbosa HJC (2019) Auto-cve: a coevolutionary
approach to evolve ensembles in automated machine learning. In:
Proceedings of the genetic and evolutionary computation confer-
ence, GECCO’19. ACM, New York, NY, USA, pp 392–400

 56. Guo XE, Gibson LJ (1999) Behavior of intact and damaged hon-
eycombs: a finite element study. Int J Mech Sci 41(1):85–105

 57. Jin H, Song Q, Hu X (2019) Auto-Keras: an efficient neural archi-
tecture search system. In: Proceedings of the ACM SIGKDD
international conference on knowledge discovery and data min-
ing, KDD’19. ACM, New York, NY, USA, pp 1946–1956

 58. Fusi N, Sheth R, Elibol HM (2018) Probabilistic matrix factori-
zation for automated machine learning. In: Proceedings of the
international conference on neural information processing sys-
tems, NIPS’18. Curran Associates Inc., Red Hook, NY, USA, pp
3348–3357

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

	An extensive experimental evaluation of automated machine learning methods for recommending classification algorithms
	Abstract
	1 Introduction
	2 AutoML methods for classification-algorithm recommendation
	2.1 Auto-WEKA and the CASH problem
	2.2 EA-based AutoML methods
	2.2.1 Evolving rule induction algorithms with grammar-based genetic programming
	2.2.2 Evolving decision-tree induction algorithms with a hyper-heuristic evolutionary algorithm
	2.2.3 Evolving Bayesian network classification algorithms with a hyper-heuristic evolutionary algorithm
	2.2.4 Related work on EA-based AutoML methods

	3 Experimental methodology
	3.1 Datasets
	3.2 Evaluation methodology
	3.3 Settings for the evolutionary algorithms (EAs) and for Auto-WEKA
	3.4 Computational environment and runtime limits

	4 Experimental results
	4.1 Results comparing four AutoML methods
	4.2 More extensive experiments comparing HEAD-DT and Auto-WEKA

	5 Conclusions
	5.1 Future work

	Acknowledgements
	References

