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Abstract
This paper presents an experimental comparison among four automated machine learning (AutoML) methods for recommend-
ing the best classification algorithm for a given input dataset. Three of these methods are based on evolutionary algorithms 
(EAs), and the other is Auto-WEKA, a well-known AutoML method based on the combined algorithm selection and hyper-
parameter optimisation (CASH) approach. The EA-based methods build classification algorithms from a single machine 
learning paradigm: either decision-tree induction, rule induction, or Bayesian network classification. Auto-WEKA combines 
algorithm selection and hyper-parameter optimisation to recommend classification algorithms from multiple paradigms. 
We performed controlled experiments where these four AutoML methods were given the same runtime limit for different 
values of this limit. In general, the difference in predictive accuracy of the three best AutoML methods was not statistically 
significant. However, the EA evolving decision-tree induction algorithms has the advantage of producing algorithms that 
generate interpretable classification models and that are more scalable to large datasets, by comparison with many algorithms 
from other learning paradigms that can be recommended by Auto-WEKA. We also observed that Auto-WEKA has shown 
meta-overfitting, a form of overfitting at the meta-learning level, rather than at the base-learning level.

Keywords Evolutionary algorithms · Algorithm recommendation · Automated machine learning · Classification · Meta-
learning

1 Introduction

Classification is one of the main machine learning tasks and, 
hence, there is a large variety of classification algorithms 
available [1, 2]. However, in most real-world applications, 

the choice of classification algorithm for a new dataset or 
application domain is still mainly an ad-hoc decision.

In this context, the use of meta-learning for algorithm rec-
ommendation is a very important research area with seminal 
work dating back more than 20 years, which includes the 
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StatLog [3] and METAL [4] projects. Meta-learning can be 
defined as learning how to learn, which involves learning, 
from previous experience, what is the best machine learning 
algorithm (and its best hyper-parameter setting) for a given 
dataset [5, 6]. Meta-learning systems for algorithm recom-
mendation can be divided into two broad groups, namely: 
(a) systems that perform algorithm selection based on meta-
features [5], which is the most investigated type; and (b) sys-
tems that search for the best possible classification algorithm 
in a given algorithm space [7].

Meta-feature-based meta-learning for algorithm selection 
and recommendation consists of two basic steps [5]. First, the 
creation of a meta-training set where each meta-instance rep-
resents a dataset, meta-features represent dataset properties, 
and each meta-class represents a (base level) learning algo-
rithm. Second, the induction of a meta-classification model 
by a (meta) classification algorithm over the meta-training 
set, thus allowing the recommendation of algorithm(s) for 
a novel dataset (not included in the meta-training set). A 
key issue is the design of a good set of meta-features, with 
enough predictive power to support an accurate recommen-
dation of the best learning algorithm. Extensive research in 
this topic has produced a large variety of meta-features [5, 8, 
9], but the issue of finding a set of meta-features with very 
good predictive power is still an open and difficult problem.

A limitation of meta-feature-based meta-learning research 
is that usually a small number of candidate classification 
algorithms are considered as meta-classes. This is because 
in general, the larger the number of candidate classification 
algorithms used as meta-classes, the more difficult it would 
be for the meta-classification algorithm to accurately predict 
all meta-classes. In addition, it is difficult to produce large 
meta-datasets for meta-learning, since in order to compute 
the meta-class of each meta-instance we need to run all can-
didate classification algorithms on all datasets (one for each 
meta-instance).

These difficulties have motivated research on the sec-
ond type of meta-learning for algorithm recommendation, 
meta-learning systems using search or optimisation meth-
ods to indicate the best classification algorithm for a given 
target dataset, in a given algorithm space [7, 10–15]. This 
work focuses mainly on this type of meta-learning systems, 
which is a type of Automated Machine Learning (AutoML) 
[16], since such systems effectively automate the process 
of selecting the best algorithm and its hyper-parameters for 
the input dataset.

This AutoML approach bypasses the need for designing 
meta-features and it can, in principle, consider a substantially 
larger number of candidate classification algorithms and 
hyper-parameters than meta-feature-based meta-learning sys-
tems. Note that although this approach does not explicitly use 
a learning algorithm at the meta-level, some methods follow-
ing this AutoML approach (like some methods evaluated in 

this work) perform a form of meta-learning because the search 
is performed in the space of candidate learning algorithms and 
is guided by an evaluation function based on the accuracy of 
learning algorithms at the base level. Therefore, the search 
method at the meta-level is implicitly learning from the results 
of base-level learning algorithms. Note, however, that this 
kind of meta-learning of course does not occur in the case 
of simple and popular methods for algorithm selection and 
parameter configuration, like random search and grid search, 
which do not perform any learning by themselves.

In this context, the main contribution of this paper is to 
present an extensive empirical comparison of the predictive 
performance of four sophisticated AutoML methods for the 
recommendation of classification algorithms. One of these 
methods, Auto-WEKA [7, 13], performs algorithm selec-
tion and hyper-parameter configuration by considering all 
candidate classification algorithms available in the well-
known WEKA data mining tool, which includes algorithms 
based on several different types of knowledge (or model) 
representations—e.g., decision trees, if-then classification 
rules, Bayesian network classifiers, neural networks, support 
vector machines, etc. The other three methods are based on 
evolutionary algorithms (EAs). Unlike Auto-WEKA, each 
of the three EAs focuses on a search space containing clas-
sification algorithms based on a single type of knowledge 
representation. More precisely, the EAs evolve rule induc-
tion algorithms [10], decision-tree induction algorithms 
[14], and Bayesian network classification algorithms [17]. 
Hence, the EAs produce a narrower diversity of classifi-
cation algorithms in terms of knowledge representation. 
However, within its specialized knowledge representation, 
an EA can have more flexibility (or autonomy) to construct 
new classification algorithms, rather than just optimising the 
configuration of hyper-parameters for an existing classifica-
tion algorithm, as discussed later.

There are also other recently proposed EAs for related 
AutoML tasks. In particular, the EAs proposed in [18–20] 
try to optimize an entire machine learning pipeline for a 
given dataset, including the choice of data preprocessing 
methods (like feature scaling operators and feature selec-
tion methods) and classification algorithm. By contrast, we 
focus on using EAs that recommend only classification algo-
rithms. In addition, in [21] an EA is proposed to automati-
cally evolve another type of EA (genetic programming) for 
classification. By contrast, the EAs used here automatically 
evolve more conventional (non-evolutionary) types of clas-
sification algorithms, as mentioned earlier.

Controlled experiments were performed, where the four 
previous AutoML methods (the three EAs and Auto-WEKA) 
had the same runtime limit for different values of this limit. 
In general, the difference in predictive accuracy of the three 
best AutoML methods was not statistically significant, but 
Auto-WEKA showed meta-overfitting, a form of overfitting 
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at the meta-learning level, due to evaluating many differ-
ent (base-level) classification algorithms during its search 
for the best algorithm. This is in contrast to the standard 
overfitting at the base level, due to the evaluating many dif-
ferent models built by the same classification algorithm. In 
addition, the EA evolving decision-tree induction algorithms 
have the advantage of producing algorithms that generate 
interpretable classification models and that are more scal-
able to large datasets, by comparison with many algorithms 
from other learning paradigms that can be recommended 
by Auto-WEKA. Furthermore, an analysis of the different 
types of classification algorithms recommended by Auto-
WEKA shows that overall decision-tree and ensemble algo-
rithms were the most frequently recommended types of 
algorithms, whilst rule induction algorithms were the least 
recommended type.

The remainder of this paper is organised as follows. Sec-
tion 2 reviews the background on AutoML methods for 
classification-algorithm recommendation, focusing on the 
four previously mentioned AutoML methods. Section 3 
describes the methodology adopted in this study for execut-
ing the experimental analyses, whose extensive results are 
presented in Sect. 4. Finally, the main conclusions and future 
work suggestions are presented in Sect. 5.

2  AutoML methods 
for classification‑algorithm 
recommendation

This section reviews the main concepts underlying several 
AutoML methods for automatic recommendation of the best 
classification algorithm for a given input dataset. It mainly 
covers the four AutoML methods evaluated in this work, 
Auto-WEKA and three EAs, as mentioned earlier. Its last 
subsection briefly reviews related work on other evolution-
ary AutoML methods.

2.1  Auto‑WEKA and the CASH problem

Initial work on meta-learning focused on selecting the best 
classification algorithm(s) for a given dataset, explicitly or 

implicitly assuming a default configuration (hyper-parameter 
settings) for the candidate algorithms. However, given that 
the success of a classification algorithm strongly depends on 
its hyper-parameter settings, more recent work has focused 
on the so called Combined Algorithm Selection and Hyper-
parameter (CASH) optimisation problem [7]. In this section, 
we review the AutoML methods evaluated in this work that 
address the CASH problem by considering, as candidate 
algorithms to be recommended, classification algorithms 
from multiple knowledge (model) representations, like 
decision trees, IF-THEN classification rules, probabilistic 
graphical models, neural networks, ensembles, etc.

In this context, an advanced and well-known system 
designed for the CASH problem is Auto-WEKA [7, 13], 
whose search-space includes all classification algorithms 
available in Weka [22] with their corresponding candidate 
hyper-parameter settings.

In order to search the space of candidate algorithms and 
their hyper-parameter settings, Auto-WEKA uses a stochas-
tic search method, named Sequential Model-Based Optimi-
sation (SMBO), and a loss function to measure classification 
error. The goal is to find the classification algorithm and 
its corresponding hyper-parameter settings that minimise 
the value of the loss function for the target dataset. SMBO 
essentially works as follows. First, the CASH problem is 
formulated as a hierarchical hyper-parameter search-space 
where there is a new root-level hyper-parameter that selects 
between algorithms. Hence, a candidate solution is an algo-
rithm selected at the root level and its hyper-parameters 
selected at lower levels. As shown in Algorithm 1, SMBO 
initially builds a model ( ML , line 1) representing the depend-
ency of the loss function on the candidate hyper-parameter 
settings. Next, it iteratively uses the model to generate a 
promising candidate hyper-parameter setting ( � , line 3), 
evaluates the setting (lines 4–5), and updates the model 
according to the evaluation (line 6). SMBO is flexible 
enough to be able to be used with different algorithms for 
building the dependency model, with random forests being 
used in [7, 13].
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The approach used by Auto-WEKA was also extended 
to produce another system for solving the CASH prob-
lem, namely Auto-sklearn [23], which uses the scikit-learn 
machine learning library [24] rather than Weka. Auto-
sklearn extends Auto-WEKA’s approach in two ways. First, 
it uses an ensemble of the classification models generated 
by the SMBO search method, instead of just one model like 
in Auto-WEKA. Second, it uses meta-features-based meta-
learning to find good classification algorithm configurations 
(see [23, 25] for details of these two extensions). In addition, 
meta-features-based meta-learning has been recently used to 
initialise the SMBO’s search for the optimal solution to the 
CASH problem [26]. It should be noted that the aforemen-
tioned systems, although very advanced, are limited to find 
a combination of algorithm and hyper-parameter settings 
among existing combinations in the base machine learning 
toolkit being used (Weka or scikit-learn). They do not have 
enough autonomy for constructing a new classification algo-
rithm, which can be done in some cases by the EA-based 
meta-learning methods discussed in the next section.

2.2  EA‑based AutoML methods

Each of the Evolutionary Algorithm-based (EA-based) 
AutoML methods evaluated in this work explores a search 
space with classification algorithms from a different knowl-
edge (model) representation, namely: rule induction [10], 
decision-tree induction [27], or Bayesian network classifiers 
[17].

EAs are search methods based on the natural selection 
principle [28]. They have been extensively used for evolving 
classification models in machine learning [27, 29]. In this 
work, however, the EAs evolve full classification algorithms 
rather than classification models. In EA terminology, the 
EAs used in this work are hyper-heuristic search methods, 
which perform a search in the space of candidate classifica-
tion algorithms [12]; whilst EAs that perform a search in 
the space of classification models are conventional meta-
heuristic search methods.

The three EAs receive as input a high-level pseudo-code 
with the main algorithmic components to be used to cre-
ate classification algorithms from a target algorithm type. 
For instance, if the target is rule induction algorithms, the 
components include a rule search method, a rule evalua-
tion criterion, etc. Each component can be instantiated in 
different ways, e.g., confidence or information gain can be 
used to instantiate the rule evaluation component. Given an 

input dataset, an EA searches for the best combination of 
algorithmic components based on an evaluation function 
(called fitness function in EAs). Thus, the EA’s output is a 
classification algorithm of the target type.

Note that the EAs can sometimes generate a new clas-
sification algorithm which works in a way different from all 
current (manually-designed) classification algorithms. This 
is because the EAs can combine the prespecified algorithmic 
components in novel ways, not explored by human algorithm 
designers yet.

As an example of algorithm construction, let us con-
sider the EA for evolving decision-tree algorithms. That 
EA’s algorithmic components include, among other types 
of components, 15 different split criteria and 5 tree-pruning 
methods. A manually-designed decision-tree algorithm like 
J48 (WEKA’s version of C4.5) or CART offers just a subset 
of these split criteria and pruning methods. Hence, when 
Auto-WEKA configures a decision-tree algorithm, it first 
chooses exactly which algorithm will be configured, say J48 
or CART, and then it considers only the split criteria and tree 
pruning methods/hyper-parameters available in WEKA for 
the chosen algorithm. It cannot combine, e.g., the informa-
tion gain ratio used by J48 with the cost-complexity pruning 
used by CART. By contrast, the EA can construct a new 
decision-tree induction algorithm with any combination 
of split criteria and tree pruning method/hyper-parameters 
(as well as any combination of other specific components), 
regardless of whether or not the chosen combination of com-
ponents occurs in a current manually-designed decision-tree 
algorithm.

Algorithm 2 shows the high-level pseudo-code of the 
three EAs for recommending classification algorithms used 
in this work. First, they generate a population of candidate 
solutions (classification algorithms), or individuals, based 
on the target pseudo-code and sets of components given as 
input. For a fixed number of iterations (generations) g, the 
classification algorithms represented by the individuals in 
the initial population P are built and run on the input data-
set. The input dataset is divided into meta-training, meta-
validation, and meta-test sets. In order to measure the fitness 
(quality) of an individual, its corresponding classification 
algorithm is executed over the meta-training set to build a 
classification model. Afterwards, a given predictive perfor-
mance measure is used to evaluate the model performance 
on the meta-validation set, and this measure is used as the 
fitness of the individual.



1899Evolutionary Intelligence (2021) 14:1895–1914 

1 3

To avoid overfitting, at each s generations, the examples 
belonging to the meta-training and meta-validation sets are 
resampled, and the best individual found in that sample is 
saved in BestSet. During the EA run, individuals at different 
generations may be evaluated with different data. Based on 
the individuals’ fitness values, the best candidate classifica-
tion algorithms are selected to undergo EA operations such 
as crossover and mutation, according to user-defined prob-
abilities. At the end of an EA run, the best algorithm output 
by the EA is chosen as follows. Considering the individuals 
saved in BestSet, a new cross-validation procedure is per-
formed on the training set. All individuals are then executed 
using the same cross-validation folds, and the best classifica-
tion algorithm is output. That algorithm is finally evaluated 
on the meta-test set, which was not seen during the EA run, 
to compute the final measure of predictive accuracy for the 
evolved classification algorithm.

All three EAs discussed in this paper follow Algorithm 2, 
but they vary on how they represent individuals, the types of 
components used to build classification algorithms (depend-
ing on the type of target classification algorithm), and the 
performance measure used to select the best individuals. 
All algorithms require user-defined hyper-parameters which 
include, besides the number of iterations (generations), the 
number of individuals, the rates of crossover and mutation 
(operators used to produce new individuals from existing 
ones), the rate of elitism (i.e. the percentage of individuals 
from the current generation that are passed unaltered to the 
next generation), and the number of individuals selected to 
undergo tournament selection.

2.2.1  Evolving rule induction algorithms 
with grammar‑based genetic programming

The first EA proposed for generating a full classification 
algorithm customised to a given input dataset evolves rule 
induction algorithms (which output IF-THEN classification 

rules), using a Grammar-based Genetic Programming (GGP) 
algorithm [10], named GGP-RI (GGP for Rule Induction). 
GGPs differ from standard EAs as they receive as input a 
grammar, and all candidate solutions generated must obey 
the grammar production rules.

The grammar has production rules specifying how the 
following components of induction algorithms can be instan-
tiated and combined together into valid algorithms: the deci-
sion to generate an unordered rule set or an ordered rule list, 
different methods to initialize, search, evaluate and prune 
rules, as well as different loop structures and conditional 
statements to control the iterative processes of constructing 
a rule and adding/removing rules to/from a set/list. Each 
individual is represented by a tree generated by applying 
the production rules. Each tree is mapped to a rule induction 
algorithm. The GGP grammar has 26 non-terminals and 83 
production rules, and, varying the order in which the pro-
duction rules are applied, the GGP’s search-space has over 
2 billion different rule induction algorithms. GGP’s fitness 
function is the F-Measure (the harmonic mean of precision 
and recall) of a candidate rule induction algorithm in the 
meta-validation set (as explained earlier).

2.2.2  Evolving decision‑tree induction algorithms 
with a hyper‑heuristic evolutionary algorithm

A hyper-heuristic EA that generates decision-tree induction 
algorithms, called HEAD-DT (Hyper-heuristic Evolution-
ary Algorithm for Automatically Designing Decision-Tree 
algorithms), is described in [30, 31]. Unlike GGP, HEAD-
DT is based on a genetic algorithm with linear encoding. 
An individual (candidate decision-tree induction algorithm) 
consists of a set of many options to instantiate the following 
components of decision-tree induction algorithms: the data 
split procedure used at each node of the tree (i.e., whether 
performing a binary or multi-way split and which feature 
evaluation function should be used), the tree expansion 
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stopping criteria, approaches to cope with missing values 
(in both the training and testing phases), and the tree prun-
ing procedure. For each algorithmic component, an indi-
vidual specifies both categorical options (e.g., the choice of 
feature evaluation function, out of 16 predefined functions) 
and the numerical value of hyper-parameters associated with 
the chosen options (e.g., a hyper-parameter that controls the 
degree of pruning for a given pruning method). HEAD-DT’s 
fitness function is the F-Measure of a candidate decision-
tree induction algorithm in the meta-validation set, and its 
search space contains 21,319,200 different decision-tree 
algorithms. It was applied with success in different applica-
tion domains, such as gene expression classification [31] and 
rational drug design [32].

2.2.3  Evolving Bayesian network classification algorithms 
with a hyper‑heuristic evolutionary algorithm

The EA for generating Bayesian Network Classification 
(BNC) algorithms is named HHEA-BNC (Hyper-Heuristic 
Evolutionary Algorithm for creating a BNC algorithm) [17, 
33]. BNC algorithms usually have two phases [34, 35]: (i) 
network-structure learning; and (ii) parameter learning. In 
the first phase, the algorithm learns which nodes (features) 
in the network should be connected to each other. The 
parameter learning phase, in turn, learns the Conditional 
Probability Tables (CPTs) for each node of the network 
(the BNC model). However, learning the parameters of a 
BNC model is a relatively straightforward procedure when 
the network structure has been determined. For this rea-
son, HHEA-BNC focuses on the structure learning phase. 
HHEA-BNC encodes candidate BNC algorithms using a 
dynamic array-like representation, where each position in 
the array represents a different algorithm component to be 
instantiated. In order to select and instantiate the compo-
nents of the BNC algorithm, HHEA-BNC uses a top-down 
approach, where the first instantiated component of the 
BNC algorithm being created is the search method, with 
a choice among 12 different methods. The search method 
defines the type of algorithm being generated (naïve Bayes, 
score-based, constraint-based or hybrid) and, consequently, 
the type of BNC model being created (i.e. tree, graph, or no 
edges between features, in the case of naïve Bayes). Based 
on this first choice, different BNC algorithms can be gener-
ated, including components like scoring metrics, statistical 
independence tests, maximal number of parents per node, 
etc. The smallest individual has three components, while 
the largest has 11. The search-space of HHEA-BNC has 
60,510,000 different candidate BNC algorithms. HHEA-
BNC’s fitness function is the F-measure of a candidate BNC 
algorithm in the meta-validation set.

2.2.4  Related work on EA‑based AutoML methods

We also have identified three evolutionary AutoML meth-
ods that try to optimize the entire classification pipeline: (i) 
Tree-based Pipeline Optimization Tool (TPOT) [20, 36]; 
(ii) Genetic Programming for Machine Learning (GP-ML) 
[19]; and (iii) REsilient ClassifIcation Pipeline Evolution 
(RECIPE) [18]. A pipeline is defined as a machine learning 
workflow that solves the classification task. To solve this type 
of task, a pipeline may contain data preprocessing methods 
(e.g., feature normalization or feature selection), must have a 
classification algorithm (e.g., naïve Bayes or a support vector 
machine) and may have a post-processing approach (e.g., vot-
ing or stacking). Therefore, these methods take into account 
various aspects of machine learning instead of focusing only 
on the classification algorithm. This means that these meth-
ods could select and configure a range of different classifica-
tion-related methods during the evolutionary search, as they 
are not centered on just one type of classification algorithm. 
This basic principle is also followed by Auto-WEKA and 
Auto-sklearn, which are well-known non-EA-based AutoML 
methods. The aforementioned EA-based AutoML methods 
are discussed in somewhat more detail next.

TPOT is a genetic programming-based method that 
searches for the most suitable classification pipeline to the 
input dataset. It encompasses (part of) the available methods 
in the scikit-learn library in its search space, and allows dif-
ferent ways of combining the data preprocessing methods 
(in sequence or in parallel) and the classification algorithms 
(supporting ensemble approaches or not). Although TPOT 
has been designed for general classification, it alternatively 
has a specific version for bioinformatics studies, named 
TPOT-MDR [37]. TPOT-MDR includes two new data pre-
processing operators that are used in genetic analyses of 
human diseases: the Multifactor Dimensionality Reduction 
(MDR) and the Expert Knowledge Filter (EKF). Besides, 
both versions perform multi-objective search using Pareto 
selection (based on the well-known NSGA-II algorithm) 
[38] with two objectives: maximizing the predictive accu-
racy measure of the pipeline and minimizing the pipeline’s 
overall complexity (which is represented by the number of 
pipeline operators).

The main issue when using TPOT is that it can generate 
classification pipelines that are invalid or arbitrary during 
its evolutionary process, i.e., pipelines that do not solve the 
classification task itself. This happens because TPOT does 
not impose any constraints when combining the ML compo-
nents to create the pipelines. For instance, TPOT can create 
a pipeline without a classification algorithm [20]. This, of 
course, makes the evolutionary process to waste resources as 
various individuals would not solve the classification task. 
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This can be considered a significant drawback of TPOT in 
the context of the classification task.

GP-ML overcomes this limitation by using a strongly 
typed genetic programming (STGP) method. A STGP 
method restricts the scikit-learn pipelines in such a way 

that makes them valid from the machine learning point of 
view. In addition, GP-ML applies an asynchronous evolu-
tionary algorithm [39] instead of a generational one. [39] 
observed that asynchronous evolution is biased towards the 
evaluation of faster pipelines in some parts of the search 

Table 1  Summary of the 
20 datasets used in both the 
first and the second sets of 
experiments

Type Dataset # inst # num # nom % miss class bal # classes

Ageing CE-T3 478 0 764 0 0.66 2
DM-T3 119 0 586 0 0.49 2
MM-T3 89 0 887 0 0.41 2
SC-T3 248 0 698 0 0.19 2
DNA-T3 139 3 333 9 0.31 2
DNA-T11 135 2 103 26 0.32 2

PS PS-T3 4303 2 443 0 0.06 2
Microarray Chen-2002 179 85 0 0 0.72 2

Chowdary-2006 104 182 0 0 0.68 2
Nutt-2003-v2 28 1070 0 0 1.00 2
Singh-2002 102 339 0 0 0.96 2
West-2001 49 1198 0 0 0.96 2

Text dbworld-bodies 64 0 4702 0 0.83 2
dbworld-bodies-s 64 0 3721 0 0.83 2
oh0.wc 1003 3182 0 0 0.26 10
oh5.wc 918 3012 0 0 0.40 10
oh10.wc 1050 3238 0 0 0.32 10
oh15.wc 913 3100 0 0 0.34 10
re0.wc 1504 2886 0 0 0.02 13
re1.wc 1657 3758 0 0 0.03 25

Table 2  Summary of the 20 
datasets used only in the second 
set of experiments

Dataset # inst # num # nom % miss class bal # classes

Abalone 4177 7 1 0.00 < 0.01 28
Car 1728 0 6 0.00 0.05 4
Convex 58,000 784 0 0.00 1.00 2
Germancredit 1000 7 13 0.00 0.43 2
krvskp 3196 0 36 0.00 0.91 2
Madelon 2600 500 0 0.00 1.00 2
Mnist 62,000 784 0 0.00 0.80 10
Mnistrotationbackimagenew 62,000 784 0 0.00 0.81 10
Secom 1567 590 0 4.54 0.07 2
Semeion 1593 256 0 0.00 0.96 10
Shuttle 58,,000 9 0 0.00 < 0.01 7
Waveform 5000 40 0 0.00 0.98 3
Winequalitywhite 4898 11 0 0.00 0.00 11
Yeast 1484 8 0 0.00 0.01 10
Sick 3772 7 22 5.54 0.07 2
Splice 3190 0 61 0.00 0.46 3
Kropt 28,056 0 6 0.00 0.01 18
Quake 2178 3 0 0.00 0.80 2
pc4 1458 37 0 0.00 0.14 2
MagicTelescope 19,020 10 0 0.00 0.54 2
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space. However, [19] consider this bias an advantage to the 
AutoML task, because a faster pipeline is usually prefer-
able to a slower one, when both present similar predictive 
accuracy values.

RECIPE follows the same basic principle of GP-ML, i.e., 
it only allows the generation of valid pipelines during the 
evolutionary process. In order to implement this principle, 
RECIPE defines a grammar which encompasses the classifi-
cation knowledge in scikit-learn. Therefore, RECIPE makes 
use of a grammar-based genetic programming (GGP) [40] 
to perform the search for the most suitable classification 
pipeline. The grammar prevents the generation of invalid/
arbitrary pipelines, and could also speed up the search.

3  Experimental methodology

The experiments are divided into two parts. The first part 
compares the results obtained by the EAs with the results 
obtained by Auto-WEKA [7], whose search space includes 
all 33 classification algorithms available in WEKA. These 
experiments used 20 datasets.

The second part of the experiments compares one of the 
EAs (HEAD-DT, the EA evolving decision-tree algorithms) 
against Auto-WEKA, on an extended set of 40 datasets. The 
main reason for using a smaller number of datasets in the 
first type of experiment was the very long computation time 
associated with comparing four methods. HEAD-DT was 
chosen because, among the two most successful EAs overall 
(HEAD-DT and HHEA-BNC, as discussed later), HEAD-
DT has the advantage of producing decision tree algorithms 
which are more scalable to larger datasets than the Bayesian 
network classification algorithms produced by HHEA-BNC. 
The datasets used in both types of experiments are described 
next.

3.1  Datasets

The first part of the experiments focus on 20 challenging 
datasets, characterised in general (with one exception) by 
a small number of instances and a large number of attrib-
utes. Table 1 summarises their main characteristics, includ-
ing number of instances, number of numerical and nominal 
attributes, percentage of missing values, class balance ratio 
(class bal.) and number of classes. Class bal. is the ratio 
of the minority class frequency over the majority class fre-
quency—values closer to 0 (1) indicate datasets with more 
(less) class distribution imbalance. The first 12 datasets in 
this table are bioinformatics datasets, whilst the last 8 ones 
are text mining datasets. The first six datasets involve data 
from the biology of ageing. Datasets CE-T3, SC-T3, DM-T3, 
and MM-T3 are described in [41]; whilst datasets DNA-T3 
and DNA-T11 are described in [42]. Dataset PS-T3 involves 

post-synaptic proteins [43]. The 5 microarray datasets are 
publicly-available microarray gene expression datasets, 
described in [44]. Finally, the 8 text mining datasets were 
obtained from OpenML [45].

Table 2 summarises the main characteristics for 20 addi-
tional datasets which were used only in the final experi-
ments, comparing HEAD-DT and Auto-WEKA. The first 
15 datasets used in this Table were used in [7], whilst the 
other 5 datasets where used in [25].

3.2  Evaluation methodology

The 10-fold cross-validation technique (10-cv) [1] was used 
in the experiments. Since Auto-WEKA and the Evolution-
ary Algorithms (EAs) are non-deterministic, their results are 
an average over 5 executions, generating, for each method, 
1000 algorithms. All results presented in Sect. 4 refer to the 
predictive accuracy of the recommended algorithms in the 
test sets.

Two predictive accuracy measures are used. First, the 
Geometric Mean (GMean) of sensitivity (Sens) and speci-
ficity (Spec) [46], defined as GMean = 

√

Sens × Spec . Sens 
is the proportion of positive instances that were correctly 
predicted as positive. Spec is the proportion of negative 
instances that were correctly predicted as negative. These 
measures were calculated considering each class in turn as 
the positive class, and then computing the weighted aver-
age of these measures, by weighing the classes according 

Table 3  Parameter values for the evolutionary algorithms

Parameter description Value

Number of individuals 100
Number of generations before changing the validation set 5
Tournament selection size 2
Elitism rate 5%
Crossover rate 95%
Mutation rate 5%

Table 4  Hyper-parameter values for all versions of Auto-WEKA

Parameter description Value(s)

Instance generator 10-fold cross-validation, seed = 1,...,5
Evaluation measure Error rate (classification)
Optimisation method SMAC, with executable =

smac-v2.06.01-development-619/smac
Initial Incumbent = Random
Execution Mode = SMAC
InitialN = 1

MemLimit 15 GB
TimeLimit From 1000 to 10,000 s
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to their relative frequency. The GMean measure was also 
used to evaluate some datasets in [41]. The second predictive 
accuracy measure used is the simple classification accuracy 
measure used by Auto-WEKA to choose the best algorithm 
for each dataset.

Statistical significance analysis was applied to the experi-
mental results. In the first set of experiments (comparing 
four methods), we have adopted Demšar’s [47] recommen-
dation to use the Friedman test with the adjusted statistic FF 
[48] to compare multiple algorithms over multiple datasets, 
followed by the Nemenyi post-hoc test for pairwise compari-
sons. In the final experiment comparing only two methods 
we have used the Wilcoxon test [49]. The main advantage of 
all these statistical tests is that they are non-parametric, so 
that they do not make the assumption that the data follows 
the normal distribution (nor assume any other probability 
distribution, for that matter). All statistical tests were used 
with the conventional significance level of 0.05.

3.3  Settings for the evolutionary algorithms (EAs) 
and for Auto‑WEKA

In order to perform a fair comparison, all EAs were con-
figured with the same hyper-parameters values, listed in 
Table 3.

Table 4 shows the hyper-parameter settings for Auto-
WEKA based on the options provided by its Experiment 
Builder [7]. Note that the 10-cv mentioned in Table 4 is 
another cross-validation procedure used by Auto-WEKA, 
but this time over the training set (generated by the outer-
most 10-cv) to evaluate its candidate solutions regarding 
their predictive accuracy.

None of the 4 meta-learning methods had their hyper-
parameter values optimised to individual datasets. A more 
robust hyper-parameter optimisation procedure would be 
too time-consuming, given the very large number of experi-
ments carried out in this work.

3.4  Computational environment and runtime limits

The experiments were executed in a Dual Intel 2.10 GHz 
Xeon E5-2683 v4 Hexadeca-Core with 128 GB RAM. In 
order to perform controlled experiments comparing differ-
ent meta-learning methods with the same computational 
budget, recall that two types of experiments are performed, 
as reported in Sect. 4. The first type of experiment compares 
the results obtained by the three EAs (each evolving classifi-
cation algorithms based on a single type of knowledge repre-
sentation) with the results obtained by Auto-WEKA, which 
can recommend classification algorithms based on multiple 
knowledge representations. The second type of experiments 
compares the best EA (HEAD-DT, evolving decision-tree 

algorithms) against Auto-WEKA in an extended set of 
datasets.

In both types of experiments, to have a fair comparison 
among all meta-learning methods, each of them is allocated 
the same runtime limit. Experiments were performed with 
ten increasing values of the runtime limit for each meta-
learning method, namely 1000 s (seconds), 2000 s,..., up to 
10,000 s. These runtime limits refer to the time taken by a 
single run of each method on each dataset, on a single cross-
validation fold. Due to space restrictions, the next section 
will report only the results for the smallest and the largest 
runtime limits, i.e., 1000 s and 10,000 s. The results for the 
other runtime limits can be seen in [50].

In addition to the parameters that are common to all 
three EAs, which were set as described in Table 3, there is a 
parameter that is used by GGP-RI and HHEA-BNC, but not 
by HEAD-DT. This parameter is a timeout to evaluate each 
individual (candidate algorithm) of the EA. For GGP-RI, the 
value of this parameter starts with 10 s (seconds) when the 
runtime limit for the entire run of GGP-RI is 1000 s. Then 
the individual evaluation timeout increases by 10 s for each 
increase of 1000 s in GGP-RI’s runtime, up to 100 s, when 
the GGP-RI’s runtime limit is 10,000 s. For HHEA-BNC, 
the value of this parameter starts with 50 s (seconds) when 
the runtime limit for the entire run of HHEA-BNC is 1000 s. 
Then the individual evaluation timeout increases by 50 s for 
each increase of 1000 s in HHEA-BNC’s runtime, up to 
500 s, when the HHEA-BNC’s runtime limit is 10,000 s. 
HEAD-DT does not need this parameter because the deci-
sion tree induction algorithms produced by this EA are rela-
tively fast. The values of this parameter for HHEA-BNC are 
larger than the values for GGP-RI because the Bayesian net-
work classification algorithms generated by the former tend 
to be considerably slower than the rule induction algorithms 
generated by the latter EA.

4  Experimental results

This section presents the results of the following two types 
of experiments: 

1. Experiments comparing four AutoML methods: the 
three EAs (HEAD-DT, GGP-RI, HHEA-BNC) and 
Auto-WEKA.

2. Experiments comparing one of the EAs (HEAD-DT, 
evolving decision tree algorithms) with Auto-WEKA, 
on an extended set of datasets.

As mentioned earlier, due to the very large number of 
experiments, the first type of experiments use the 20 data-
sets shown in Table 1; whilst the second type of experi-
ments uses an extended set of 40 datasets (the 20 datasets in 
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Table 5  GMean results for the 
four AutoML methods (time 
limit: 1000 s)

Dataset HEAD-DT HHEA-BNC GGP-RI Auto-WEKA

CE 0.564 0.576 0.501 0.604
DM 0.559 0.596 0.523 0.557
MM 0.596 0.637 0.524 0.572
SC 0.535 0.497 0.392 0.471
DNA3 0.704 0.741 0.582 0.700
DNA11 0.568 0.544 0.498 0.506
PS 0.888 0.827 0.445 0.830
Chen-2002 0.891 0.852 0.658 0.922
Chowdary-2006 0.956 0.966 0.830 0.988
Nutt-2003-v2 0.790 0.746 0.631 0.861
Singh-2002 0.772 0.771 0.613 0.867
West-2001 0.913 0.886 0.617 0.888
dbworld-bodies 0.725 0.753 0.582 0.765
dbworld-bodies-stemmed 0.815 0.770 0.652 0.825
oh0.wc 0.895 0.940 0.398 0.863
oh5.wc 0.911 0.913 0.361 0.878
oh10.wc 0.867 0.876 0.370 0.831
oh15.wc 0.847 0.909 0.382 0.864
re0.wc 0.831 0.841 0.489 0.849
re1.wc 0.886 0.832 0.407 0.851
Average 0.776 0.774 0.523 0.775
Average rank 2.000 2.000 4.000 2.000

Table 6  GMean results for the 
four AutoML methods (time 
limit: 10,000 s)

Dataset HEAD-DT HHEA-BNC GGP-RI Auto-WEKA

CE 0.581 0.578 0.502 0.605
DM 0.517 0.629 0.544 0.544
MM 0.590 0.598 0.550 0.563
SC 0.559 0.528 0.389 0.454
DNA3 0.705 0.730 0.583 0.712
DNA11 0.578 0.497 0.506 0.524
PS 0.897 0.824 0.448 0.838
Chen-2002 0.892 0.862 0.659 0.925
Chowdary-2006 0.956 0.958 0.833 0.991
Nutt-2003-v2 0.790 0.809 0.611 0.887
Singh-2002 0.772 0.777 0.638 0.877
West-2001 0.913 0.879 0.624 0.878
dbworld-bodies 0.725 0.784 0.585 0.816
dbworld-bodies-stemmed 0.815 0.805 0.649 0.892
oh0.wc 0.893 0.918 0.398 0.884
oh5.wc 0.914 0.896 0.364 0.880
oh10.wc 0.864 0.847 0.369 0.835
oh15.wc 0.859 0.900 0.381 0.867
re0.wc 0.831 0.827 0.489 0.841
re1.wc 0.894 0.883 0.407 0.859
Average 0.777 0.777 0.526 0.783
Average rank 2.050 2.100 3.850 2.000
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Table 7  Accuracy results for 
the four AutoML methods (time 
limit: 1000 s)

Dataset HEAD-DT HHEA-BNC GGP-RI Auto-WEKA

CE 0.613 0.615 0.478 0.649
DM 0.637 0.708 0.598 0.672
MM 0.720 0.748 0.641 0.722
SC 0.826 0.802 0.764 0.828
DNA3 0.846 0.841 0.760 0.856
DNA11 0.752 0.743 0.682 0.708
PS 0.982 0.978 0.933 0.975
Chen-2002 0.896 0.867 0.663 0.926
Chowdary-2006 0.959 0.971 0.832 0.991
Nutt-2003-v2 0.760 0.730 0.537 0.840
Singh-2002 0.772 0.771 0.539 0.867
West-2001 0.910 0.888 0.511 0.880
dbworld-bodies 0.721 0.764 0.523 0.764
dbworld-bodies-stemmed 0.806 0.783 0.610 0.825
oh0.wc 0.825 0.896 0.070 0.778
oh5.wc 0.846 0.848 0.048 0.789
oh10.wc 0.777 0.790 0.053 0.721
oh15.wc 0.746 0.844 0.061 0.774
re0.wc 0.755 0.760 0.240 0.783
re1.wc 0.807 0.742 0.084 0.755
Average 0.798 0.805 0.481 0.805
Average rank 2.150 2.025 4.000 1.825

Table 8  Accuracy results for 
the four AutoML methods (time 
limit: 10,000 s)

Dataset HEAD-DT HHEA-BNC GGP-RI Auto-WEKA

CE 0.623 0.614 0.482 0.649
DM 0.604 0.713 0.615 0.665
MM 0.702 0.730 0.658 0.706
SC 0.818 0.806 0.764 0.826
DNA3 0.847 0.838 0.758 0.855
DNA11 0.747 0.730 0.685 0.701
PS 0.984 0.977 0.933 0.975
Chen-2002 0.896 0.868 0.666 0.927
Chowdary-2006 0.959 0.965 0.837 0.993
Nutt-2003-v2 0.760 0.790 0.517 0.873
Singh-2002 0.772 0.777 0.574 0.877
West-2001 0.910 0.883 0.538 0.868
dbworld-bodies 0.721 0.792 0.530 0.812
dbworld-bodies-stemmed 0.806 0.814 0.605 0.891
oh0.wc 0.824 0.868 0.071 0.809
oh5.wc 0.850 0.829 0.051 0.793
oh10.wc 0.773 0.754 0.056 0.727
oh15.wc 0.764 0.832 0.060 0.778
re0.wc 0.752 0.746 0.240 0.774
re1.wc 0.820 0.802 0.084 0.767
Average 0.797 0.806 0.486 0.813
Average rank 2.150 2.050 3.950 1.850
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Table 1 plus the 20 datasets in Table 2). We report results 
for the values of accuracy and Gmean (the geometric mean 
of sensitivity and specificity) for each dataset; and the aver-
age values of accuracy and GMean, as well as the average 
rank of each method based on these measures, over the 
corresponding datasets. The lower the rank, the better the 
method. A method that outperforms every other method in 
every dataset has an average rank of 1.0 (first position). The 
complete tables with per-dataset results can be found in the 
Supplementary Results file. Recall that, although we per-
formed experiments with the runtime limit for meta-learning 
methods varying from 1000 to 10,000 s, in increments of 
1000 s, in general only the results for 1000 s and 10,000 s 
are reported in this section, due to space restrictions. The 
results for the 10 different runtime limits can be found in the 
Supplementary Results file.

4.1  Results comparing four AutoML methods

This section compares four types of AutoML methods, the 
three EAs and Auto-WEKA, in controlled experiments 
where all the four methods use the same runtime limit, 
as mentioned earlier. Values in bold indicate the best per-
forming method according to the corresponding evaluation 
measure.

Tables 5 and 6 show the GMean results for each method, 
for the runtime limits of 1000 s and 10,000 s, respectively. 
Recall that these runtime limits refer to a single run of a 
meta-learning method, for each fold of the cross-validation 
procedure. The last row of these tables show the average 
rank based on GMean over all 20 datasets. Tables 7 and 8 
show the accuracy results for each method, for the runtime 
limits of 1000 s and 10,000 s, respectively.

In Table 5, with GMean results for the smallest runtime 
limit of 1000 s, the best average ranks were jointly obtained 
by three methods, HEAD-DT, HHEA-BNC and Auto-
WEKA; whilst HEAD-DT obtained a slightly better aver-
age GMean value. In Table 6, with results for the longest 
runtime limit of 10,000 s, Auto-WEKA obtained a slightly 
better result (regarding both the average rank and the average 
GMean value) than HEAD-DT and HHEA-BNC. In both 
tables, GGP-RI was clearly the worst performing method. 
This result seem partly due to the fact that GGP-RI had poor 
results in many datasets with a large number of numerical 
attributes. Comparing the average GMean values of each 
method across both tables, one can observe that the three 
EAs have only slightly improved their GMean values from 
1000 to 10,000 s—an improvement of just 0.001 for HEAD-
DT and 0.003 for the other two EAs. By contrast, Auto-
WEKA obtained a somewhat greater GMean improvement 

(a) (b)

(c) (d)

Fig. 1  Critical diagrams showing average GMean/Accuracy ranks and Nemenyi’s critical difference (CD) for the four AutoML methods

(a) (b)

Fig. 2  Evolution of average ranks for all AutoML methods across the 10 runtime limits
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of 0.008, when the runtime limit increased from 1000 to 
10,000 s.

Hence, Auto-WEKA has benefited from the increase in 
runtime limit more than the EAs. This seems due to the 
fact that Auto-WEKA is searching in a much more diverse 
space of classification algorithms, in terms of knowledge 
representations. Recall that each EA’s search space includes 
algorithms from a single knowledge representation (deci-
sion trees, if-then classification rules or Bayesian network 
classifiers), whilst Auto-WEKA’s search space includes 33 
classification algorithms from multiple types of knowledge 
representation. Hence, it seems natural that Auto-WEKA 

requires more time to find the best type of algorithm to be 
recommended.

When analyzing the results for the accuracy measure, the 
scenario changes a little. It is possible to see, in both Table 7 
and Table 8, for the runtime limits of 1000 s and 10,000 s, 
respectively, there is a clearer difference in relative ranks 
of the three best methods. More precisely, when predictive 
accuracy is evaluated by the accuracy measure, Auto-WEKA 
is the best method, followed by HHEA-BNC and HEAD-DT 
in second in third places, respectively, in terms of average 
rank. In terms of average accuracy, HHEA-BNC and Auto-
WEKA obtain the joint best result in Table 7 (1000 s), but 
Auto-WEKA is again the clear winner in Table 8 (10,000 s). 

Fig. 3  Number of times each 
type of classification algorithm 
is selected by Auto-WEKA

(a)

(b)
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Again, Auto-WEKA was the method that most benefited 
from the increase in the runtime limit, with a small improve-
ment of average accuracy, namely 0.008. Again, GGP-RI 
was clearly the worst performing method.

To explain these results, recall that Auto-WEKA explic-
itly optimizes the accuracy measure when searching for the 
best algorithm configuration, whereas the EAs are optimiz-
ing the F-Measure. Hence, it is natural that Auto-WEKA 
obtains the best predictive performance when the results are 
evaluated by the Accuracy measure.

Figure 1 shows the critical diagrams comparing the four 
AutoML methods in terms of their average rank based on 
both GMean (in the top two diagrams) and accuracy (in the 
bottom two diagrams). For both measures, and for both the 
runtime limits of 1000 s and 10,000 s, we can see that there 
is no statistically-significant difference among all methods, 
with the exception of GGP-RI, which is significantly outper-
formed by the other three methods.

As mentioned earlier, the analysis of the results so far 
focused only on the runtime limits of 1000 s and 10,000 s 
due to space restrictions, but we performed experiments with 
10 different limits (from 1000 up to 10,000 s). Figure 2a 
shows the evolution of the GMean average ranks for the four 
meta-learning methods across the 10 runtime limits. This 
figure shows that HHEA-BNC tends to achieve overall the 
best (lowest) average rank until the runtime limit of 7000 s, 
whilst for longer runtime limits Auto-WEKA and HEAD-DT 
tend to share the best rank, with Auto-WEKA slightly better 
at the last runtime limit.

Figure 2b shows the same evolution, but this time regard-
ing average accuracy ranks. In this case, Auto-WEKA 
remains the best method across all runtime limits, and for 
nearly all runtime limits, the second place is obtained by 
HHEA-BNC. Note that GGP-RI remained consistently the 
worst method across all 10 runtime limits, for both GMean 
and accuracy results.

Figure 3a, b show the broad types of algorithms recom-
mended by Auto-WEKA per dataset, for the runtime limits 
of 1000 s and 10,000 s, respectively. Since Auto-WEKA 
considers a large number of algorithms, instead of refer-
ring to specific algorithms, the graphs show the frequency 
of recommendations for five broad types of algorithms, 
namely: the three types of algorithms that are considered 
by the three EAs (decision trees, if-then classification rules, 
and Bayesian network classifiers), ensemble methods and 
all the others. Note that the variability of the selected types 
of algorithms is high, highlighting the difficulty of selecting 
the best algorithm for each dataset.

For the runtime limit of 1000 s (Fig. 3a), ensembles had 
the highest prevalence across the datasets; they were selected 
by Auto-WEKA in 33.9% of the cases, closely followed by 
decision-tree algorithms, selected in 31.4% of the cases. For 
the runtime limit of 10,000 s (Fig. 3b), these two types of 

classification algorithms swapped places in the ranking by 
prevalence, i.e., decision-tree algorithms were selected by 
Auto-WEKA in 34.7% of the cases, whilst ensembles were 
selected in 27.3% of the cases. Bayesian classification algo-
rithms also did relatively well, partly because they had a 
high prevalence among the text mining datasets. For both 
runtime limits, Bayesian classification algorithms were the 
third most selected type of classification algorithm: they 
were selected in 16.7% of the cases in Fig. 3a and in 24.2% 
of the cases in Fig. 3b. For both runtime limits, rule induc-
tion algorithms had small frequencies of selection, only 
7.9% in Fig. 3a and 6.7% in Fig. 3b. This is consistent with 
the fact that, out of the 3 EAs for AutoML evaluated in this 
work, GGP-RI (which evolved rule induction algorithms) 
obtained clearly the worst result.

4.2  More extensive experiments comparing 
HEAD‑DT and Auto‑WEKA

In this section we compare HEAD-DT and Auto-WEKA in 
an extended set of 40 datasets. This includes the 20 data-
sets used in the previous section plus 20 other datasets, as 
discussed in Sect. 3.1. As mentioned earlier, the motivation 
for using this larger set of datasets only to compare the two 
methods in this section, rather than to compare more meth-
ods in the previous section, is the much larger amount of 
time associated with the experiments using all the 40 data-
sets. This section uses the same experimental methodology 
used in the previous section, using 10-fold cross-validation 
and comparing the two methods with the same runtime limit, 
varying this limit from 1000 to 10,000 s, in increments of 
1000 s. Again, due to space restrictions, we report results 
only for the smallest and longest runtime limits, namely 
1000 s and 10,000 s; but the results for the 10 different runt-
ime limits can be found in the Supplementary Results file.

Table 9 and Table 10 show the accuracy and GMean val-
ues, respectively, obtained by HEAD-DT and Auto-WEKA 
with the runtime limits of 1000 s and 10,000 s. In terms of 
accuracy, Auto-WEKA has somewhat outperformed HEAD-
DT overall, whilst the opposite was observed for the GMean 
measure. This result is consistent with the fact that Auto-
WEKA’s search tries to optimize the accuracy measure 
(unlike HEAD-DT), as discussed earlier. However, the result 
of a Wilcoxon significance test, at the conventional signifi-
cance level of 0.05, indicates that there is no statistically 
significant difference of predictive performance between 
HEAD-DT and Auto-WEKA (for both accuracy and GMean 
measures), for each of the 10 runtime limits.

Figure 4a shows the evolution of the average GMean val-
ues (across all datasets) for Auto-WEKA and HEAD-DT 
across the 10 runtime limits. This figure shows that HEAD-
DT obtains a better (higher) GMean value for all runtime 
limits. Figure 4b shows the same type of evolution for the 
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accuracy measure. In this case, HEAD-DT obtains the best 
average accuracy for the smallest runtime limit, but Auto-
WEKA obtains higher accuracy for all other runtime limits. 
It should be noted, however, that in both graphs the differ-
ences of predictive performance between HEAD-DT and 

Auto-WEKA are small, less than 1% in general, across the 
different runtime limits.

Finally, the presence of signs of overfitting for HEAD-DT 
and Auto-WEKA was also investigated. This investigation 
compared HEAD-DT’s GMean values on the validation set 
(a holdout part of the training set) and Auto-WEKA-Trees’ 

Table 9  Accuracy results for 
HEAD-DT and Auto-WEKA 
(time limits: 1000 s and 
10,000 s)

1000 s 10,000 s

HEAD-DT Auto-WEKA HEAD-DT Auto-WEKA

CE 0.613 0.649 0.623 0.649
DM 0.637 0.672 0.604 0.665
MM 0.720 0.722 0.702 0.706
SC 0.826 0.828 0.818 0.826
DNA3 0.846 0.856 0.847 0.855
DNA11 0.752 0.708 0.747 0.701
PS 0.982 0.975 0.984 0.975
Chen-2002 0.896 0.926 0.896 0.927
Chowdary-2006 0.959 0.991 0.959 0.993
Nutt-2003-v2 0.760 0.840 0.760 0.873
Singh-2002 0.772 0.867 0.772 0.877
West-2001 0.910 0.880 0.910 0.868
dbworld-bodies 0.721 0.764 0.721 0.812
dbworld-bodies-stemmed 0.806 0.825 0.806 0.891
oh0.wc 0.825 0.778 0.824 0.809
oh5.wc 0.846 0.789 0.850 0.793
oh10.wc 0.777 0.721 0.773 0.727
oh15.wc 0.746 0.774 0.764 0.778
re0.wc 0.755 0.783 0.752 0.774
re1.wc 0.807 0.755 0.820 0.767
Abalone 0.265 0.263 0.269 0.263
Car 0.984 0.994 0.983 0.997
Convex 0.712 0.531 0.714 0.531
Germancredit 0.750 0.738 0.750 0.739
Krvskp 0.995 0.962 0.995 0.962
Madelon 0.781 0.735 0.768 0.784
Mnist 0.886 0.929 0.887 0.934
Mnistrotationbackimagenew 0.343 0.214 0.343 0.225
Secom 0.932 0.932 0.931 0.933
Semeion 0.763 0.894 0.758 0.907
Shuttle 1.000 0.999 1.000 0.999
Waveform 0.760 0.868 0.763 0.868
Winequalitywhite 0.622 0.676 0.627 0.672
Yeast 0.584 0.602 0.582 0.607
Sick 0.989 0.978 0.989 0.980
Splice 0.990 0.949 0.988 0.955
Kropt 0.796 0.680 0.801 0.761
Quake 0.535 0.553 0.529 0.546
pc4 0.889 0.891 0.886 0.896
MagicTelescope 0.852 0.831 0.853 0.840
Average 0.785 0.783 0.784 0.792
# wins 18 21 17 23



1910 Evolutionary Intelligence (2021) 14:1895–1914

1 3

GMean values for the internal 10-CV procedure (on the 
training set) with their corresponding GMean values on the 
test set. A GMean value on the test set much smaller than the 
corresponding GMean value on the validation set or internal 
10-CV procedure (depending on the method) was considered 
a sign of overfitting. This kind of overfitting can be called 

meta-overfitting, since it occurs at the meta-learning level, 
rather than the conventional overfitting at the base-learning 
level (involving the difference between GMean values on the 
training and validation sets).

Note that the meta-overfitting is measured in somewhat 
different ways in HEAD-DT and Auto- WEKA due to the 

Table 10  GMean results for 
HEAD-DT and Auto-WEKA 
(time limits: 1000 s and 
10,000 s)

1000 s 10,000 s

HEAD-DT Auto-WEKA HEAD-DT Auto-WEKA

CE 0.564 0.604 0.581 0.605
DM 0.559 0.557 0.517 0.544
MM 0.596 0.572 0.590 0.563
SC 0.535 0.471 0.559 0.454
DNA3 0.704 0.700 0.705 0.712
DNA11 0.568 0.506 0.578 0.524
PS 0.888 0.830 0.897 0.838
Chen-2002 0.891 0.922 0.892 0.925
Chowdary-2006 0.956 0.988 0.956 0.991
Nutt-2003-v2 0.790 0.861 0.790 0.887
Singh-2002 0.772 0.867 0.772 0.877
West-2001 0.913 0.888 0.913 0.878
dbworld-bodies 0.725 0.765 0.725 0.816
dbworld-bodies-stemmed 0.815 0.825 0.815 0.892
oh0.wc 0.895 0.863 0.893 0.884
oh5.wc 0.911 0.878 0.914 0.880
oh10.wc 0.867 0.831 0.864 0.835
oh15.wc 0.847 0.864 0.859 0.867
re0.wc 0.831 0.849 0.831 0.841
re1.wc 0.886 0.851 0.894 0.859
Abalone 0.486 0.483 0.489 0.483
Car 0.987 0.996 0.987 0.998
Convex 0.712 0.531 0.714 0.531
Germancredit 0.655 0.630 0.657 0.638
Krvskp 0.995 0.961 0.995 0.962
Madelon 0.781 0.735 0.768 0.784
Mnist 0.935 0.960 0.936 0.963
Mnistrotationbackimagenew 0.564 0.441 0.564 0.452
Secom 0.254 0.274 0.256 0.268
Semeion 0.862 0.940 0.859 0.947
Shuttle 1.000 0.997 1.000 0.997
Waveform 0.818 0.900 0.820 0.900
Winequalitywhite 0.712 0.738 0.716 0.728
Yeast 0.708 0.721 0.706 0.724
Sick 0.940 0.888 0.943 0.894
Splice 0.993 0.961 0.991 0.965
Kropt 0.881 0.808 0.884 0.858
Quake 0.516 0.498 0.506 0.496
pc4 0.689 0.550 0.694 0.579
MagicTelescope 0.821 0.793 0.823 0.802
Average 0.770 0.757 0.771 0.766
# wins 24 16 21 19
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different approaches to evaluate candidate solutions during 
their searches. That is, HEAD-DT performs a single parti-
tion of the training set into two subsets, one for building the 
model, the other (validation set) for evaluating the model; 
whilst Auto-WEKA uses internal cross-validation on the 
training set. Despite this difference, the principle used for 
measuring meta-overfitting is the same in both types of 
methods: the degree of meta-overfitting is measured by com-
paring predictive performance on the test set (not accessed 
during the entire execution of HEAD-DT or Auto-WEKA) 
with the predictive performance on the part of the training 
set used as a hold-out set to evaluate the model built from 
the remaining part of the training set.

For the runtime limit of 1000 s (10,000 s), the average 
GMean value (over all 40 datasets) of HEAD-DT on the 
validation set is 0.756 (0.758), whilst its average GMean on 
the test set is 0.770 (0.771). In addition, for the runtime limit 
of 1000 s (10,000 s), the average accuracy value of HEAD-
DT on the validation set is 0.766 (0.767), whilst its average 
accuracy on the test set is 0.785 and 0.784. Hence, HEAD-
DT shows no sign of meta-overfitting, since its GMean and 
accuracy values on the test set are slightly larger than on the 
validation set. This small increase in the GMean and accu-
racy values on the test set, for both runtime limits, can be 
explained mainly by two factors. First, since the algorithms 
were evolved by HEAD-DT using the F-measure of preci-
sion and recall in the fitness function, they were not opti-
mizing GMean or accuracy. Second, the classifier used to 
classify the test set is in principle a higher-quality classifier 
than the one used to classify the validation set, because the 
former was induced from all training instances, whilst the 
latter was induced from a subset of the training set (exclud-
ing the validation set).

Turning to Auto-WEKA, for the runtime limit of 1000 s 
(10,000 s), the average GMean value (over all 40 datasets) 
for the internal 10-CV of Auto-WEKA is 0.896 (0.899), 
whilst its GMean on the test set is 0.757 (0.766). In addition, 

for the runtime limit of 1000  s (10,000  s), the average 
accuracy value for the internal 10-CV of Auto-WEKA is 
0.912 (0.915), whilst its accuracy on the test set is 0.783 
(0.792). Hence, for both the GMean and accuracy meas-
ures, Auto-WEKA clearly shows a substantial degree of 
meta-overfitting.

5  Conclusions

AutoML is currently a very popular issue, having attracted 
a great deal of attention, with the proposal of new tools, 
mainly based on optimization [16, 51–58]. Based on the rel-
evance of AutoML, this work has evaluated four methods for 
recommending a classification algorithm for a target dataset: 
three Evolutionary Algorithms (EAs) and Auto-WEKA [7], 
in two sets of experiments. In the first set of experiments, 
we have compared the four AutoML methods with the same 
runtime limit on 20 datasets. Auto-WEKA can recommend 
classification algorithms of various types (paradigms), 
whilst each of the three EAs is restricted to recommend a 
different type of classification algorithm: decision tree, rule 
induction or Bayesian network classification algorithms, in 
the case of HEAD-DT, GGP-RI and HHEA-BNC, respec-
tively. In these experiments, there was no statistically signifi-
cant difference of predictive accuracy between the three best 
methods, namely two EAs (HEAD-DT and HHEA-BNC) 
and Auto-WEKA. However, these three methods obtained 
significantly better predictive accuracy than the other EA 
(GGP-RI). These results were broadly consistent across the 
10 different runtime limits used in the experiments. In the 
second set of experiments, where a larger set of 40 datasets 
was used to compare the predictive accuracy of HEAD-DT 
and Auto-WEKA only, again there was no statistically sig-
nificant difference between the predictive performance of 
these two methods.

(a) (b)

Fig. 4  Evolution of average predictive values for HEAD-DT and Auto-WEKA across the 10 runtime limits
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However, the focus of HEAD-DT on only on decision-
tree algorithms has two advantages from the perspective of 
other algorithm-evaluation criteria. First, in applications 
where it is important that the classification model be inter-
preted by users (e.g. in medical applications), decision-tree 
algorithms have the advantage of generating interpretable 
classification models. By contrast, since Auto-WEKA can 
select any algorithm out of many types of classification algo-
rithm, it can recommend classification algorithms producing 
black-box (non-interpretable) models. Indeed, in our experi-
ments, Auto-WEKA often recommended ensembles, which 
are not easily interpretable. Second, decision-tree algorithms 
also have the advantage of being in general more scalable to 
large datasets than several other types of classification algo-
rithms in Auto-WEKA’s search space, like neural networks, 
support vector machines and some ensemble methods.

Overall, when the runtime limit is increased from 1000 to 
10,000 s, Auto-WEKA benefits more from the extra search 
time than HEAD-DT. This seems due to the fact that Auto-
WEKA has to explore a much more diverse space of classi-
fication algorithms, so it probably requires more time to find 
the best type of classification algorithm to be recommended 
for a given input dataset.

In addition, we observed that Auto-WEKA exhibited 
meta-overfitting, where the GMean values on the training set 
were substantially lower than the GMean values on the test 
set, for the best algorithm found by Auto-WEKA. As noted 
earlier, this meta-overfitting is a form of overfitting at the 
meta-learning level, due to evaluating many different (base-
level) classification algorithms during Auto-WEKA’s search 
for the best algorithm. This is in contrast to the standard 
overfitting at the base level, due to evaluating many different 
models built by the same classification algorithm.

5.1  Future work

It would be interesting to enhance the search process of 
the EAs by first performing a global search to optimise the 
candidate algorithms’ (procedural) components, followed 
by a second (global or local) search to optimise the con-
tinuous parameters of the best algorithm generated by the 
first search. Another future research direction is to extend 
the EAs to produce an ensemble of evolved classification 
algorithms in a post-processing phase, after the EAs have 
completed their search.

Besides, since Auto-WEKA showed a clear sign of meta-
overfitting, another research direction consists of developing 
new meta-overfitting-avoidance methods that could poten-
tially improve the predictive performance of Auto-WEKA. 
Finally, it would be interesting to compare the three EAs 
and Auto-WEKA to other AutoML methods, such as Auto-
sklearn and those described in Sect. 2.2.4. This would give 
us a more detailed assessment about which AutoML method 

recommends the best classification algorithm, taking into 
account different datasets.
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