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Abstract

In this paper, we introduce a novel approach for training
image-text alignment models, namely ADAPT. Image-text
alignment methods are often used for cross-modal retrieval,
i.e., to retrieve an image given a query text, or captions that
successfully label an image. ADAPT is designed to adjust
an intermediate representation of instances from a modality
a using an embedding vector of an instance from modality b.
Such an adaptation is designed to filter and enhance impor-
tant information across internal features, allowing for guided
vector representations – which resembles the working of at-
tention modules, though far more computationally efficient.
Experimental results on two large-scale Image-Text align-
ment datasets show that ADAPT-models outperform all the
baseline approaches by large margins. Particularly, for Im-
age Retrieval, ADAPT, with a single model, outperforms the
state-of-the-art approach by a relative improvement of R@1
≈ 24% and for Image Annotation, R@1 ≈ 8% on Flickr30k
dataset. On MS COCO it provides an improvement of R@1
≈ 12% for Image Retrieval, and ≈ 7% R@1 for Image An-
notation. Code is available at https://github.com/jwehrmann/
retrieval.pytorch.

Introduction

Neural networks can been seen as fully-differentiable end-
to-end computational graphs, allowing for data-driven train-
ing of complete models. This particular feature enabled
the possibility of learning multimodal representations and
models, that have been used in many tasks, such as Im-
age Captioning (Vinyals et al. 2015), VQA (Anderson
et al. 2017), Text-to-Image Generation (Goodfellow et
al. 2014; Zhang et al. 2017), Visually-grounded Transla-
tion (Elliott et al. 2016), and Image Search via textual
queries (Kiros, Salakhutdinov, and Zemel 2014; Faghri et
al. 2017; Wehrmann and Barros 2018; Lee et al. 2018).

Even though multimodal model is a broad term that com-
prises roughly any model trained over more than a single
modality (e.g., images, videos, text, audio), in this work
we focus only on the Images-Text Alignment problem –
which is also referred in the literature as Multimodal Re-
trieval, Cross-modal Retrieval and Bidirectional Alignment.
Image-Text alignment models are mainly used for two main
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tasks: (i) Image Retrieval by using a textual query; and (ii)
Image Annotation, which consists in finding proper textual
descriptions for a given image. A typical framework for
training Image-Text Alignment models is the use of neural
networks to extract high-level features of both images and
captions. Those features are then projected onto the same
shared space, the so-called multimodal embedding space –
or visual-semantic embedding space (Kiros, Salakhutdinov,
and Zemel 2014; Faghri et al. 2017; Vendrov et al. 2016). A
pairwise loss function is used to approximate similar pairs,
while making uncorrelated ones to be far from each other
in that space. Recent work have demonstrated that the use
of more integrated representations can be helpful as the
model would be able to learn fine-grained correlations. For
instance, work in (Lee et al. 2018) used visual features to
compute textual ones and vice-versa with the aid of stacked
attention layers, which helped to achieve better predictive
results. Nevertheless, such an upgrade comes with a cost: it
is much slower during both training and test times due to the
need of computing distinct features for each image-text pair.

This work introduces ADAPT, a method to improve the
embedded representation of instances from modality a based
on the global information of the modality b. ADAPT is
designed to modify intermediate features (word-level or
region-wise projections) by using parameters predicted by
the vector representation of the other modality. Such a fea-
ture adaptation procedure works as a filtering strategy. For
instance, we can use visual-based features in order to filter
the most important hidden-state dimensions of captions to
build a better textual embedding. We show that such an ap-
proach, despite being quite faster during both training and
test times, is able to outperform attention-based ones, spe-
cially in the Image Retrieval task.

We also provide a comprehensive study on the impact of
each component within ADAPT. This allows us to present
the importance of each architectural decision, as well as bet-
ter understand the achieved results. Such a study have shown
that it is possible to make our models even lighter and faster
while sill outperforming SCAN (same R@1 but 25× faster).
Finally, we introduce a strategy to visualize model predic-
tions, and better understand its behavior.
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Adaptive Cross-modal Embeddings

In this work we propose ADAPT: Adaptive Cross-Modal
Embeddings to improve image-text alignment. There are
two main tasks that involves image-text alignment: (i) Im-
age Retrieval by using a caption as a textual query (text-to-
image retrieval); and (ii) Image Annotation (image-to-text
retrieval), that consists in retrieving the most correlated cap-
tions for a given image. Those models also can be used to
estimate a correlation between an image and a textual de-
scription.

There are three main approaches for learning image-
text alignment models in regards to the modality entan-
glement level: (i) training a so-called visual-semantic em-
bedding space (Kiros, Salakhutdinov, and Zemel 2014;
Faghri et al. 2017; Wehrmann and Barros 2018; Gu et al.
2017), in which both images and texts are represented by
vectors that are learned independently from each other;
(ii) attention-based strategies (Nam, Ha, and Kim 2016;
Lee et al. 2018) in which high-level features from a given
modality affect the encoding of the other modality, e.g.,
image features are used to compute text representations;
and (iii) approaches that handle fully-entangled representa-
tions (De Vries et al. 2017), as they combine both modalities
in a neural network, so the network itself learns the similar-
ity function (Ma et al. 2015).

One can note that as the feature entanglement level in-
creases, the computation required for computing similari-
ties between all the image-text pairs increases accordingly.
Hence, methods purely based on independently-computed
vectors are often much faster than the other ones. Such ef-
ficiency often comes with a cost of predictive performance,
given that it becomes harder for the model to learn simi-
larities and differences across images and texts using only
global generic information.

ADAPT is somewhat similar to the attention-based ap-
proaches, though presenting itself as a much more efficient
choice. In summary, ADAPT is a lighter strategy for using
high-level information from a base modality a instance to
generate a filtered version of the intermediate features (i.e.,
time-steps or spatial embeddings) of a target modality b. For
instance, ADAPT can use textual information to filter and
approximate spatial-level features (e.g., image regions found
by an object detector), generating a guided image embed-
ding vector. Therefore, the final image representation vector
would be generated based on the textual query at hand. Intu-
itively, a single image could be represented by many distinct
vectors, all generated using the different query instances as
guide.

The generic visual-semantic framework to train image-
text alignment models consists in approximating correlated
vectors in a shared multimodal space, while making uncor-
related ones far from each other. Our approach uses this con-
cept, though ultimately the final vectors that represent image
and text instances are embeddings generated by ADAPT.

ADAPT comprises three three main steps: (i) projection
of scale (γ) and shift (β) vectors; (ii) filtering and adaptation
of the other modality inner representations using γ and β;
and (iii) a fovea module on the filtered feature map, that al-
lows for the model to focus on important image/text details.

A generic formulation of ADAPT is given as follows. As-
sume, feature matrices A and B, from modalities a and b,
respectively. Those matrices are either spatial image regions
or textual representations. In addition, consider that we will
use a vector a generated from A, to adapt the representa-
tion of B, and get the adapted vector b. Therefore, Ana×fa

is a feature matrix that contains na (time-steps or regions)
and fa-dimensional feature vectors, and Bnb×fb is a feature
matrix from the other modality. We project each vector com-
prised in A and B into the d-dimensional latent space using
functions

A = ψ(A), B = φ(B) (1)
generating a two new matrices Ana×d and Bnb×d. Both
functions can be linear projections, or multi-layered non-
linear neural networks. Vector a is obtained with a global
pooling, a = POOLING(A), which summarizes A into a sin-
gle vector a ∈ R

d. a is then used to project ga(a) = γa and
ba(a) = βa,

γa = g(a, θg), βa = b(a, θb) (2)
whose function is to adapt, i.e, filter and shift all the vectors
in B (features from the b modality), by

Bi = Bi � γa + βa (3)
where � depicts a point-wise vector multiplication, which
generates the adapted B matrix. That matrix is then pro-
cessed by the fovea module, that consists in applying a per-
dimension λ-smoothed SOFTMAX across all the nb features
in B, producing a channel-wise attention-like mask M,

Mij =

(
eBij∑nb

i=1 e
Bij

λ

)
(4)

Finally, we obtain the filtered vector representation of B,
namely b, by applying the fovea mask M over B, followed
by a global average pooling,

b =
1

nb

nb∑
i=1

(
B �M)

i
(5)

where b is the adapted version of the B features, using the
projections of γa and βa from the mapping over a. POOLING
is an average-pooling layer unless stated otherwise. It acts
over the variable-sized (temporal or spatial) dimension, i.e.,
on the first matrix dimension. In this work, we mainly use
γa = g(a, θg) and βa = b(a, θb) as linear projections, i.e.
aθT , since it performed best on validation data. Neverthe-
less, one could explore them as non-linear projections and
try to reduce the computation required in this step. More-
over, functions ψ and φ are typically linear projections, fol-
lowed by a normalization layer NORM, that can be Batch
Normalization (Ioffe and Szegedy 2015), L2 Normalization,
Instance Normalization (Ulyanov, Vedaldi, and Lempitsky
2016) and the like. We observed that Batch Norm performed
best, and therefore, we use it as default strategy.

Relation to Conditional BatchNorm (De Vries et al.
2017). The first part of ADAPT resembles Conditional
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Figure 1: Overall architecture of ADAPT-T2I.

BatchNorm (De Vries et al. 2017) when using BatchNorm
as NORM(·) function within φ and ψ. One of the key differ-
ences is that we apply the normalization directly on high-
level features of the extracted image regions, rather than in
the early stages of the spatial visual processing. It would be
computationally prohibitive to employ that approach for the
entire network given that we need to compute image embed-
ding vectors for each image-text pair. For instance, it would
require 5× 106 forward passes in a Deep ConvNet for eval-
uating the 1K MS COCO Validation Set. On the other hand,
in ADAPT we can pre-compute all the high-level features,
and only compute the forward pass of the adaptation pro-
cedure, which roughly comprehends the asymptotic cost of
a convolutional layer – being actually much lighter in prac-
tical terms. Apart from that, consider that the complete in-
carnation of ADAPT also employs the fovea module. That
module proved to be one of the key components behind the
performance of ADAPT, being even more important than
the normalization strategy.

Relation to Dynamic Convolution (Wu et al. 2019). The
adaptation procedure is also somehow related to Dynamic
Convolutions, though in our case, the operation we perform
is not a complete convolution, given that we process the in-
put only with d weights and given by values of γa ∈ R

d

(kernel weights) and βa ∈ R
d (kernel biases) – which would

be equivalent to a single convolutional filter of size 1, with-
out summing the results across the channel dimension. We
could have projected γ and β to be matrices in order to pa-
rameterize a complete convolutional layer, though, in that
case, the computational cost would be prohibitive.

Text-to-Image Adaptation

For Text-to-Image embedding adaptation, namely ADAPT-
T2I (Figure 1), we use the averaged d-sized representation
extracted from the text encoder c as a base vector to project
γc = g(c) and βc = b(c) to process the intermediate vi-
sual features V . Recall that c ∈ R

d is the global embedding
vector for the caption features, which is projected onto two

separate spaces in form of vectors γc and βc. The formula-
tion of the visual features adaptation V based on a caption is
as follows.

Vi =
(
ψ(Vi)� γc + βc

)
(6)

v = POOLING
(

SOFTMAX(V λ)� V
)

(7)

The resulting vector v ∈ R
d is further normalized to have

unit euclidean norm, so the inner product between v and c
results in the cosine similarity.

Image-to-Text Adaptation

Image-to-Text Adaptation models (ADAPT-I2T) are simi-
lar to the Text-to-Image ones. For the ADAPT-I2T, we use
visual features in order to adapt and filter caption features so
as to generate a final textual vector representation c. In this
case, we apply a global average pooling on the first dimen-
sion of the image visual matrix V , and the resulting vector
v ∈ R

d is used as input to compute both γv and βv , that
are finally applied over each time-step representation, as fol-
lows.

Ci =
(
φ(Ci)� γv + βv

)
(8)

c = POOLING
(

SOFTMAX(Cλ)� C
)

(9)

Recall that the SOFTMAX operator generates per-
dimension masks that weights each visual region in
ADAPT-T2I, and each time step in ADAPT-I2T. In addi-
tion, POOLING operates only to reduce temporal and spatial
dimensions to a fixed-sized vector.

Text Encoder

For encoding image captions we make use of the widely
adopted GRU networks (Cho et al. 2014), which are natu-
rally suited to process temporal data. We encode the tempo-
ral data in a bidirectional manner, i.e., text is processed in
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Table 1: Cross-modal results on Flickr30k test set. Underlined values outperform best published results. Bold values highlight
current state-of-the-art results.

Image Annotation Image Retrieval Total
Method R@1 R@5 R@10 R@1 R@5 R@10

∑
DVSA (Karpathy and Fei-Fei 2015) 15.2 37.7 50.5 22.2 48.2 61.4 235.2
SM-LSTM (Huang, Wang, and Wang 2017) 30.2 60.4 72.3 42.5 71.9 81.5 358.8
VSE++ (Faghri et al. 2017) 52.9 - 87.2 39.6 - 79.5 -
DAN (Nam, Ha, and Kim 2016) 55.0 81.8 89.0 39.4 69.2 79.1 413.5
DPC (Zheng et al. 2017) 55.6 81.9 89.5 39.1 69.2 80.9 416.2
SCO (Huang, Wu, and Wang 2017) 55.5 82.0 89.3 41.1 70.5 80.1 418.5
SCAN-t2i-avg (Lee et al. 2018) 61.8 87.5 93.7 45.8 74.4 83.0 446.2
SCAN-i2t-avg (Lee et al. 2018) 67.9 89.0 94.4 43.9 74.2 82.8 452.2
SCAN-ens 67.4 90.3 95.8 48.6 77.7 85.2 465.0

ADAPT-I2T 70.2 90.8 95.8 55.5 82.7 89.8 484.8
ADAPT-T2I 73.6 93.7 96.7 57.0 83.6 90.3 494.8
ADAPT-ENS(T2I+I2T) 76.6 95.4 97.6 60.7 86.6 92.0 508.9

both forward (
−−−→
GRU(·)) and backward (

←−−−
GRU(·)) ways, that

produce two t× d vectors, where d is the number of hidden
units, so we can use them as a direct projection for the shared
cross-modal embedding space. Backward and forward rep-
resentations are element-wise averaged, so each time-step d-
dimensional embedding contains context information from
both the beginning and the ending of the sentences.

Image Encoder

The image encoder, inspired by (Lee et al. 2018), encapsu-
lates three main steps: (i) a forward pass of an object detec-
tor network (Faster R-CNN (Ren et al. 2015)) trained on the
Visual Genome dataset (Krishna et al. 2017) for extracting
the k most important regions within the image; (ii) reduc-
tion of the negative values through a Leaky ReLU activation
function; and a (iii) global average pooling for generating a
global representation of the original image.

Note that the used features were extracted from variable-
sized images, where the smallest dimension is limited to a
maximum of 500 pixels, and the largest dimension is lim-
ited to 800 pixels. This is considered quite a high resolu-
tion, and makes our fovea module even more relevant, once
it can leverage features from details of the original image.
Namely, images are processed by a ResNet152 (He et al.
2016) + Faster R-CNN (Ren et al. 2015) network fine-tuned
on the Visual Genome dataset (Krishna et al. 2017), which
outputs k regions found by the Region Proposal Network,
generating a k × 2048 feature matrix. Region features are
then projected onto the semantic space by applying an one-
dimensional convolutional layer, with a filter-size of f = 1,
over the regions with d filters (parameters shared across re-
gions), which outputs the V ∈ R

k×d matrix. Following re-
lated work, we use a fixed value of k = 36.

Loss Function

Recent work (Faghri et al. 2017) have shown that hard-
contrastive mining plays an important role for training
image-text models. However, we have observed that us-
ing only hard-contrastive pairs for the entire training often

causes unstable gradients during the early stages of the pro-
cess. To counteract this issue, we make use of the loss intro-
duced in (Wehrmann et al. 2019), which gives more impor-
tance for the hard-contrastive instances accordingly to the
number of gradient descent steps performed. Such a loss
function is as follows,

J = τ(ε) · Jm + (1 − τ(ε)) · Js (10)
τ = (1− ηε) (11)

where ε is the number of the current gradient descent step
being performed, τ is the trade-off weight computed based
on ε, and η defines the exponential growth rate of τ , reg-
ulating the importance of Js and Jm. Those functions are
defined by:

Js(a,b) =
∑
b′

[α− s(a,b) + s(a,b′)] (12)

+
∑
a′

[α− s(b,a) + s(b,a′))] (13)

Jm(a,b) = max
b′

[α− s(a,b) + s(a,b′)]+ (14)

+max
a′

[α− s(b,a) + s(b,a′)]+ (15)

where b is image a’s description vector representation. b′
and a′ denote the contrastive examples for the image and de-
scription queries, respectively. s(a,b) is the computed sim-
ilarity between a and b. To compute s(a,b) we first scale a
and b to have unit norm, so the inner product of both results
become the cosine similarity. Note that we use a and b given
that when training ADAPT-I2T a = v and b = c, while for
ADAPT-T2I a = v and b = c.

Experimental Setup

Datasets

We train and evaluate our models in two large-scale mul-
timodal datasets, namely MS COCO (Lin et al. 2014) and
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Table 2: Cross-modal results on MS COCO 1k test set. Underlined values outperform best published results. Bold values
highlight current state-of-the-art results.

Image Annotation Image Retrieval Total
Method R@1 R@5 R@10 R@1 R@5 R@10

∑
CHAIN (Wehrmann and Barros 2018) 61.2 89.3 95.8 46.6 81.9 90.9 465.7
VSE++ (Faghri et al. 2017) 64.6 - 95.7 52.0 - 92.0 -
DPC (Zheng et al. 2017) 65.6 89.8 95.5 47.1 79.9 90.0 467.9
GXN (Gu et al. 2017) 68.5 - 97.9 56.6 - 94.5 -
SCO (Huang, Wu, and Wang 2017) 69.9 92.9 97.5 56.7 87.5 94.8 499.3
SCAN-t2i-avg (Lee et al. 2018) 70.9 94.5 97.8 56.4 87.0 93.9 500.5
SCAN-i2t-lse (Lee et al. 2018) 69.2 93.2 97.5 54.4 86.0 93.6 493.9
SCAN-ens 72.7 94.8 98.4 58.8 88.4 94.8 507.9

ADAPT-I2T 74.5 94.2 97.9 62.0 90.4 95.5 514.5
ADAPT-T2I 75.3 95.1 98.4 63.3 90.0 95.5 517.6
ADAPT-ENS(T2I+I2T) 76.5 95.6 98.9 62.2 90.5 96.0 519.8

Flickr30k (Plummer et al. 2015). COCO is widely used
for training and evaluating systems for image-caption align-
ment, and it has become the standard benchmark to evalu-
ate the predictive performance of state-of-the-art methods.
It comprises 113,287 images for training, 5,000 images for
validation, and 5,000 images for testing. Flickr30k compre-
hends roughly 28,000 images for training and 1,000 for both
validation and testing. We used the same splits as those used
by state-of-the-art approaches.

For evaluating the results, we use the same measures as
those in (Kiros, Salakhutdinov, and Zemel 2014; Vendrov et
al. 2016; Faghri et al. 2017): R@K (reads “Recall at K”),
which is the percentage of queries in which the ground-truth
is one of the first K retrieved results. The higher its value,
the better.

Experimental Analysis

In this section we evaluate the performance of our mod-
els by comparing them to published state-of-the-art ap-
proaches. We first report results on the Flickr30k Test Set.
Table 1 shows that our methods, namely ADAPT-T2Iand
ADAPT-I2T, outperform all the baseline (including ensem-
ble models) approaches by large margins in all metrics.
Most notably, a single ADAPT-T2I model is able to outper-
form the current state-of-the-art approach, namely SCAN-
i2t-avg, in absolute R@1 5.7% in image annotation, and
R@1 11.2% image retrieval. Comparing the ensemble meth-
ods, we achieve top performance with R@1 76.6%, sur-
passing the strongest image annotation method by abso-
lute 9.2%, and by 12.1% R@1 image retrieval, which rep-
resents a relative improvement of ≈ 25%. It is clear that
ADAPT helps in both tasks, though benefits more the im-
age retrieval task. Results also highlight that using text in-
formation to improve visual information seems to be more
effective than the use of visual information to adapt text em-
beddings. Moreover, ADAPT is also faster than its strongest
competitor, as detailed in the ablation study.

Table 2 shows results for the MS COCO Test set.
ADAPT-based models present once again the best overall

results. As before, we observe a major increase in Image Re-
trieval performance (≈ 8% in R@1 terms). Finally, note that
our single models are even capable of surpassing model en-
sembling. Current experiment provides additional evidence
that ADAPT seems to provide more improvement to the Im-
age Retrieval Task, in which our approach leads to ≈ 12%
relative improvement when using a single model (ADAPT-
T2I).

Effects of the fovea module. The first component we an-
alyze is the fovea module applied after the multimodal in-
teraction. As shown in Table 3 and in Figure 2, the use
of Softmax normalization grants 4% to 5% R@1 in both
tasks for the ADAPT-T2I approach. Those results provide
reassurance behind the importance of the fovea module,
which in theory allows our models to focus on relevant high-
resolution image regions given a caption, and use them for
building better global embedding vectors. Another compo-
nent within the fovea module is the Softmax smoothing set-
ting λ. We have found that λ is quite important for ADAPT-
T2I, while ADAPT-I2T seems to benefit less from it. It
is clear that ADAPT-T2I benefits from larger values, i.e.,
γ = {≈ 6, 10, 15}, different from ADAPT-I2T that per-
forms best with γ = 1. We also tried to optimize λ via back-
propagation in an end-to-end fashion (depicted by Δγ). It
was initialized at 10, and at the end of the procedure it con-
verged to 6.27, achieving the third best result as measured
by the recall sum

∑
.

Word-embedding impact. Our hypothesis is that
ADAPT models would benefit from pre-trained word-
embeddings, given that such vectors already carry rich
semantic representations regarding concepts. This could
ease the process of adaptation of the intermediate image
representations to the global text vector, and vice-versa.
Table 4 shows experiments that compare results from:
(i) ΔRand, random word embeddings initialized from
an uniform distribution ∼ U(−0.1, 0.1) and trained via
backpropagation; (ii) using only pre-trained fixed Glove
embeddings; (iii) concatenating randomly initialized word-
embeddings and Glove vectors, though updating the entire
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Table 3: Ablation study on the focal module: cross-modal
results on Flickr30k validation set.

Image Annotation Image Retrieval Total
Method R@1 R@10 R@1 R@10

∑
ADAPT-I2T(No Fovea) 52.8 85.7 49.2 85.1 427.4
ADAPT-I2T 70.7 95.8 54.2 88.42 482.0
ADAPT-T2I(No Fovea) 72.4 95.2 52.9 86.7 478.2
ADAPT-T2I 76.2 96.1 57.4 88.9 494.2

ADAPT-T2I(λ = 1) 72.4 97.2 56.8 88.7 489.8
ADAPT-T2I(λ = 5) 75.1 96.4 57.5 88.3 492.8
ADAPT-T2I(λ = 10) 76.2 96.1 57.4 88.9 494.2
ADAPT-T2I(λ = 15) 76.1 96.5 58.0 88.7 494.1
ADAPT-T2I(Δλ) 75.7 95.9 58.1 88.4 493.1

concatenated vector during training (ΔRand+ΔGlove);
and (iv) using a concatenation of fixed pre-trained Glove
vectors and randomly initialized word embeddings up-
dated during training – which is our default option within
ADAPT. We expected larger impact on the adoption of
pre-trained word vectors, though results show that using
Glove versus randomly trained word-embeddings leads to
1.6% and 1.9% of absolute R@1 improvement for image
retrieval and image annotation, respectively. The best
performing approach is ADAPT-T2I(ΔRand+Glove), in
which Glove vectors are not updated. The clear drawback
of that approach is a larger amount of required mem-
ory to store the model, once it doubles the number of
word-embedding parameters, which may be problematic
in some cases, as discussed in (Wehrmann et al. 2019;
Wehrmann, Mattjie, and Barros 2018). Nevertheless, it is a
good option when memory is not a constraint.

Table 4: Cross-modal results on Flickr30k validation set.
Image Annotation Image Retrieval Total

Method R@1 R@10 R@1 R@10
∑

ADAPT-T2I(ΔRand) 74.1 95.4 54.7 87.0 484.1
ADAPT-T2I(ΔRand+ΔGlove) 75.4 96.0 57.5 88.4 492.3
ADAPT-T2I(Glove) 75.7 97.0 56.6 88.4 493.5
ADAPT-T2I(ΔRand+Glove) 76.2 96.1 57.4 88.9 494.2

Effects of the latent size and time complexity. The la-
tent size is such an important hyper-parameter once it af-
fects directly many aspects of the method: (i) number of
parameters; (ii) predictive performance; and (iii) time for
training and retrieval. Figure 3 depicts the impact of the la-
tent size in each of those aspects. The y-axis depicts R@1
performance in the Flickr30k test set, x-axis shows time
(in seconds) to build the similarity matrix (N × N ma-
trix), while the marker size represents the number of pa-
rameters (both trainable and not trainable) as measured in
millions (M). The dashed horizontal line depicts baseline
state-of-the-art results (from SCAN), whose model com-
prises about 15 million parameters, and takes ≈ 247 sec-
onds (using their own source code) to build the similar-
ity matrix of 1, 000 images and 5, 000 captions. We ran
all the time experiments on a server equipped with GTX
1080Ti GPU, 128GB RAM and Intel Core i9. It becomes
quite clear that even using much more compact represen-

tation vectors (d ∈ {128, 256, 512}) ADAPT-T2I is able
to surpass state-of-the-art results by a margin, while run-
ning up to one order of magnitude faster. When we com-
pare models with similar complexity in terms of parame-
ters (d = 1024), one can observe absolute improvements
of ≈ 10% for both image retrieval and annotation. Note
also that one could adopt strategies from (Burns et al. 2019;
Wehrmann et al. 2018) to further improve model efficiency.

Qualitative Analysis

We also depict qualitative examples to provide some in-
tuition behind the behavior of the fovea module within
ADAPT. We aim to provide a visualization that shows the
most relevant regions of the input image after performing the
feature vector adaptation based on a given caption. To gener-
ate such a visualization we extract the feature map M after
applying the softmax normalization within the fovea mod-
ule. Different from some attention strategies, our approach
generates per-dimension weights across the spatial (of tem-
poral) dimensions. Therefore, we compute the L2 norm of
each region vector, i.e., ∀i ∈ {1, 2, ..., k}||V i||2 summa-
rizing the entire channel dimension into a single attention
weight. Next, we clip negative values, and normalize feature
maps using the largest vector norm. Figure 4 shows results
generated the proposed approach. In the leftmost part of the
figure we depict the original image, the center part shows
all the bounding boxes found by the Faster-RCNN model,
and the rightmost part shows the focal points within the im-
age given the caption described in the figure title. We can
observe that ADAPT is able to filter irrelevant information,
and focus on subjects that are described in the given cap-
tions.

Conclusion

In this paper we proposed ADAPT, a method that improves
Image-Text Alignment with Cross-modal Embedding Adap-
tation. It uses a global embedding of the base modality to
adapt and filter intermediate features of the target modality,
so we can have a guided vector representation. In addition,
the proposed fovea module introduced within ADAPT have
shown to be effective and efficient in replacing stacked at-
tention ones. We have shown that one can use text features
to improve the visual representation, allowing for a ≈ 24%
relative improvement on Flickr30k in terms of R@1 when
compared to the strongest baseline to date – whilst being
much faster. Additionally, for Image Annotation, our models
also consistently outperformed state-of-the-art ones in most
of the metrics. Moreover we perform extensive analysis on
the impact of each part of our model. For future work, we in-
tend to further explore ADAPT in another multimodal tasks,
such as VQA, Image captioning and Text to image synthesis.
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Figure 2: Flickr30k validation data R@1 cross-modal results during training.

Figure 3: Model performance (R@1) compared to model complexity in terms of number of parameters and retrieval time for
(a) Image Annotation and (b) Image Retrieval.

Figure 4: Visualization of the weighted feature map projected onto the original image.
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